这是一篇来自已证抗体库的有关人类 UBC的综述,是根据109篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合UBC 抗体。
UBC 同义词: HMG20

赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 s7b
赛默飞世尔 UBC抗体(Fisher Scientific, PA1-10023)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 s7b). Mol Neurodegener (2022) ncbi
小鼠 单克隆(HWA4C4)
  • 免疫印迹; 人类; 图 s3c
赛默飞世尔 UBC抗体(eBioscience, 14-6077-82)被用于被用于免疫印迹在人类样本上 (图 s3c). iScience (2021) ncbi
domestic rabbit 重组(10H4L21)
  • 免疫细胞化学; 小鼠; 1:1000
赛默飞世尔 UBC抗体(Thermo Fisher, 701339)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Nat Commun (2021) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:2000; 图 6b
赛默飞世尔 UBC抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6b). EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 6b
赛默飞世尔 UBC抗体(Thermo Scientific, PA1-10023)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 6b). Mol Neurobiol (2018) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 大鼠; 图 4d
赛默飞世尔 UBC抗体(Invitrogen, 131600)被用于被用于免疫印迹在大鼠样本上 (图 4d). FEBS Open Bio (2017) ncbi
小鼠 单克隆(Ubi-1)
赛默飞世尔 UBC抗体(Thermo Fisher, 13-1600)被用于. Sci Rep (2017) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:500; 图 s7a
赛默飞世尔 UBC抗体(Invitrogen, 131600)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s7a). Nat Commun (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 UBC抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样本上 (图 5). Neurobiol Dis (2017) ncbi
domestic rabbit 重组(10H4L21)
  • 免疫细胞化学; 人类; 图 6a
赛默飞世尔 UBC抗体(Thermo Fisher, 701339)被用于被用于免疫细胞化学在人类样本上 (图 6a). Stem Cell Reports (2016) ncbi
小鼠 单克隆(HWA4C4)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 UBC抗体(eBioscience, 14-6077)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛默飞世尔 UBC抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 非洲爪蛙; 图 1f
赛默飞世尔 UBC抗体(Pierce, PA1-187)被用于被用于免疫印迹在非洲爪蛙样本上 (图 1f). Mol Cell Biol (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
赛默飞世尔 UBC抗体(Invitrogen, 13.1600)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; fruit fly ; 1:20; 图 2
赛默飞世尔 UBC抗体(ThermoFisher Scientific, 13-1600)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:20 (图 2). Autophagy (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). Eur J Immunol (2016) ncbi
domestic rabbit 重组(10H4L21)
  • 免疫印迹; brewer's yeast
赛默飞世尔 UBC抗体(Thermo Scientific, 701339)被用于被用于免疫印迹在brewer's yeast样本上. Nature (2015) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 5e
赛默飞世尔 UBC抗体(生活技术, 13-1600)被用于被用于免疫印迹在人类样本上 (图 5e). Nat Commun (2015) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类
赛默飞世尔 UBC抗体(生活技术, 13-160)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上. Nat Commun (2014) ncbi
domestic rabbit 重组(10H4L21)
  • 免疫印迹; 人类
赛默飞世尔 UBC抗体(生活技术, 701339)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔 UBC抗体(生活技术, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上 (图 5). Clin Cancer Res (2013) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 UBC抗体(Zymed, monoclonal mix made of P4D1, SCBT and 13-1600)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2013) ncbi
小鼠 单克隆(HWA4C4)
  • 免疫印迹; 人类
赛默飞世尔 UBC抗体(eBioscience, 14-6077-82)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 人类
  • 免疫组化; 人类
  • 免疫印迹; 人类
  • 免疫细胞化学; African green monkey
  • 免疫印迹; African green monkey
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫细胞化学在人类样本上, 被用于免疫组化在人类样本上, 被用于免疫印迹在人类样本上, 被用于免疫细胞化学在African green monkey样本上 和 被用于免疫印迹在African green monkey样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 UBC抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 人类; 1:500; 图 1
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1). Acta Neuropathol (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 人类; 图 1
赛默飞世尔 UBC抗体(Invitrogen, 13-1600)被用于被用于免疫组化在人类样本上 (图 1). Neurobiol Dis (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:2000; 图 5g
赛默飞世尔 UBC抗体(Zymed Laboratories, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5g). BMC Biol (2010) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 小鼠; 1:250; 图 4
赛默飞世尔 UBC抗体(Invitrogen, 13?C1600)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4). Neuron (2010) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 人类; 1:50; 图 4
  • 免疫组化; 人类; 1:50; 图 4
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4) 和 被用于免疫组化在人类样本上浓度为1:50 (图 4). Neurobiol Dis (2011) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; fruit fly ; 1:200; 图 6
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 6). Cell Death Differ (2010) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫印迹在大鼠样本上 (图 6). Proteomics (2009) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫印迹在小鼠样本上 (图 6). J Biol Chem (2009) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 小鼠; 1:500
赛默飞世尔 UBC抗体(Zymed, 131600)被用于被用于免疫组化在小鼠样本上浓度为1:500. Methods Enzymol (2009) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 酵母菌目
赛默飞世尔 UBC抗体(Zymed laboratories, 13-1600)被用于被用于免疫印迹在酵母菌目样本上. DNA Repair (Amst) (2008) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 人类; 4,000 ug/ml
赛默飞世尔 UBC抗体(Zymed Laboratories, 13-1600)被用于被用于免疫细胞化学在人类样本上浓度为4,000 ug/ml. Rapid Commun Mass Spectrom (2008) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类
赛默飞世尔 UBC抗体(Zymed Laboratories, Ubi-1)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2008) ncbi
小鼠 单克隆(Ubi-1)
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于. J Biol Chem (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Immunol (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 7
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Biochem Pharmacol (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 4d
赛默飞世尔 UBC抗体(Zymed, 13- 1600)被用于被用于免疫印迹在小鼠样本上 (图 4d). Nat Immunol (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上. Methods Enzymol (2005) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔 UBC抗体(ZYMED, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Biochem Biophys Res Commun (2005) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫沉淀; 人类
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫沉淀在人类样本上. Blood (2003) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫沉淀; 人类; 图 2
赛默飞世尔 UBC抗体(Zymed, 131600)被用于被用于免疫沉淀在人类样本上 (图 2). J Biol Chem (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 8
赛默飞世尔 UBC抗体(Zymed, 13?C1600)被用于被用于免疫印迹在人类样本上 (图 8). J Biol Chem (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 大鼠; 1:200; 表 1
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫组化在大鼠样本上浓度为1:200 (表 1). Brain Res (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 UBC抗体(Zymed Laboratories, 13-1600)被用于被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上 (图 2). Proc Natl Acad Sci U S A (2001) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 猕猴; 图 5
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫印迹在猕猴样本上 (图 5). J Biol Chem (1998) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫沉淀; domestic rabbit; 图 5d
赛默飞世尔 UBC抗体(Zymed, 13-1600)被用于被用于免疫沉淀在domestic rabbit样本上 (图 5d). Mol Cell Biol (1997) ncbi
BioLegend
小鼠 单克隆(P4G7)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
BioLegend UBC抗体(Biolegend, 838703)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Commun (2022) ncbi
小鼠 单克隆(P4G7)
  • 免疫印迹; 人类; 1:1000; 图 1d
BioLegend UBC抗体(BioLegend, P4G7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nat Commun (2021) ncbi
小鼠 单克隆(P4G7)
  • 免疫印迹; 人类; 1:500; 图 6a
BioLegend UBC抗体(Covance, P4G7)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6a). Nat Commun (2016) ncbi
小鼠 单克隆(P4G7)
  • 免疫印迹; 人类; 图 2d
BioLegend UBC抗体(Covance, P4G7)被用于被用于免疫印迹在人类样本上 (图 2d). Mol Neurobiol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 小鼠; 1:1000; 图 4c, 4f, s9b
赛信通(上海)生物试剂有限公司 UBC抗体(CST, 8081)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c, 4f, s9b). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠; 1:1000; 图 s9c
赛信通(上海)生物试剂有限公司 UBC抗体(CST, 5621)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9c). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signalling, 8081)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signalling, 5621)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠; 1:2000; 图 2i
  • 免疫印迹; 人类; 1:2000; 图 2j, s2d, s2e, s2h
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 5621)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2i) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2j, s2d, s2e, s2h). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 人类; 图 s7c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 8081)被用于被用于免疫印迹在人类样本上 (图 s7c). PLoS Pathog (2022) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 s7c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 5621)被用于被用于免疫印迹在人类样本上 (图 s7c). PLoS Pathog (2022) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling cat, 8081)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). EMBO J (2021) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, D7A11)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, D9D5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 人类; 1:1000; 图 8f
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 8081)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 5621)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 8081)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 小鼠; 1:2000; 图 s7a
赛信通(上海)生物试剂有限公司 UBC抗体(CST, 8081)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s7a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 小鼠; 图 6f
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, D9D5)被用于被用于免疫印迹在小鼠样本上 (图 6f). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠; 图 6f
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, D7A11)被用于被用于免疫印迹在小鼠样本上 (图 6f). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, D7A11)被用于被用于免疫印迹在人类样本上 (图 6c). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, D9D5)被用于被用于免疫印迹在人类样本上 (图 6c). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠; 图 5b
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, D7A11)被用于被用于免疫印迹在小鼠样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5f). Adv Sci (Weinh) (2020) ncbi
domestic rabbit 单克隆(E5T1W)
  • 免疫细胞化学; 人类; 1:500-1:1000; 图 3c, 6f
  • 免疫印迹; 人类; 1:500-1:2000; 图 1g, s3b
  • 免疫细胞化学; 大鼠; 1:500-1:1000; 图 4i, 4j
  • 免疫印迹; 大鼠; 1:500-1:2000; 图 3e
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 70973)被用于被用于免疫细胞化学在人类样本上浓度为1:500-1:1000 (图 3c, 6f), 被用于免疫印迹在人类样本上浓度为1:500-1:2000 (图 1g, s3b), 被用于免疫细胞化学在大鼠样本上浓度为1:500-1:1000 (图 4i, 4j) 和 被用于免疫印迹在大鼠样本上浓度为1:500-1:2000 (图 3e). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠; 图 s6c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 5621)被用于被用于免疫印迹在小鼠样本上 (图 s6c). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s6c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 4289)被用于被用于免疫印迹在小鼠样本上 (图 s6c). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 4289)被用于被用于免疫印迹在小鼠样本上 (图 2f). J Exp Med (2019) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 5621)被用于被用于免疫印迹在人类样本上 (图 6b). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 8081)被用于被用于免疫印迹在人类样本上 (图 6b). Cancer Cell Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, 4289)被用于被用于免疫印迹在小鼠样本上 (图 3c). Immunity (2019) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, 5621)被用于被用于免疫印迹在小鼠样本上 (图 3c). Immunity (2019) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫沉淀; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell signaling technology, 8081)被用于被用于免疫沉淀在小鼠样本上浓度为1:1000 (图 5c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫沉淀; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell signaling technology, 5621)被用于被用于免疫沉淀在小鼠样本上浓度为1:1000 (图 5c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 1:1000; 图 s3g
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 5621S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3g). EMBO J (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3g
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 4289S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3g). EMBO J (2018) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠; 1:200; 图 6e
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 5621)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 6e). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 s6u
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, 5621)被用于被用于免疫印迹在人类样本上 (图 s6u). Sci Adv (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6r
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, 4289)被用于被用于免疫印迹在人类样本上 (图 s6r). Sci Adv (2018) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫沉淀; 人类; 图 3b
赛信通(上海)生物试剂有限公司 UBC抗体(New England Biolabs, 8081S)被用于被用于免疫沉淀在人类样本上 (图 3b). EMBO J (2018) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 ev3c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, D7A11)被用于被用于免疫印迹在人类样本上 (图 ev3c). EMBO J (2018) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, D9D5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Mol Cell Biol (2018) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, 5621)被用于被用于免疫印迹在人类样本上 (图 5c). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 e9d
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signalling, 5621)被用于被用于免疫印迹在人类样本上 (图 e9d). Nature (2017) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signalling, 8081)被用于被用于免疫印迹在人类样本上 (图 2d). Nature (2017) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 5621)被用于被用于免疫印迹在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; fruit fly ; 图 4e
赛信通(上海)生物试剂有限公司 UBC抗体(CST, 8081)被用于被用于免疫印迹在fruit fly 样本上 (图 4e). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; fruit fly ; 图 4e
赛信通(上海)生物试剂有限公司 UBC抗体(CST, 5621)被用于被用于免疫印迹在fruit fly 样本上 (图 4e). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8b
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 4289)被用于被用于免疫印迹在小鼠样本上 (图 8b). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; brewer's yeast; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 UBC抗体(Cell signaling, 8081)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 4a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司 UBC抗体(Cell signaling, 4289)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫沉淀; 小鼠; 图 1c,1d
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, 8081)被用于被用于免疫沉淀在小鼠样本上 (图 1c,1d). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 4289)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 s7b
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 5621)被用于被用于免疫印迹在人类样本上 (图 s7b). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 5621)被用于被用于免疫印迹在人类样本上 (图 1). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 UBC抗体(Cell signaling, 8081)被用于被用于免疫印迹在小鼠样本上. elife (2016) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 UBC抗体(Cell signaling, 5621)被用于被用于免疫印迹在小鼠样本上. elife (2016) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, D9D5)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, 4289)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫沉淀; 人类; 图 s6a, s6b
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 5621)被用于被用于免疫沉淀在人类样本上 (图 s6a, s6b). Nat Genet (2016) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, D7A11)被用于被用于免疫印迹在人类样本上 (图 3b). Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, 5621)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 UBC抗体(Cell signaling, D7A11)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, D9D5)被用于被用于免疫印迹在人类样本上 (图 2c). Biochem J (2015) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, D7A11)被用于被用于免疫印迹在人类样本上 (图 2c). Biochem J (2015) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; malaria parasite P. falciparum; 图 2
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, 5621S)被用于被用于免疫印迹在malaria parasite P. falciparum样本上 (图 2). Nature (2015) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 UBC抗体(Cell signaling, 5621)被用于被用于免疫印迹在小鼠样本上 (图 7). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 UBC抗体(Cell signaling, 8081)被用于被用于免疫印迹在小鼠样本上 (图 7). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 8081)被用于被用于免疫印迹在大鼠样本上. Cell Biol Toxicol (2015) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 大鼠; 图 s4
赛信通(上海)生物试剂有限公司 UBC抗体(CST, 8081)被用于被用于免疫印迹在大鼠样本上 (图 s4). Cell Rep (2015) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 大鼠; 图 s4
赛信通(上海)生物试剂有限公司 UBC抗体(cst, 5621)被用于被用于免疫印迹在大鼠样本上 (图 s4). Cell Rep (2015) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology., 5621S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 小鼠; 1:1,000
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, D9D5)被用于被用于免疫印迹在小鼠样本上浓度为1:1,000. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠; 1:1,000
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, D7A11)被用于被用于免疫印迹在小鼠样本上浓度为1:1,000. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, 5621)被用于被用于免疫印迹在小鼠样本上 (图 4). EMBO J (2014) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 人类; 图 3, 4, 5
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling, D7A11)被用于被用于免疫印迹在人类样本上 (图 3, 4, 5). Oncogene (2015) ncbi
domestic rabbit 单克隆(D9D5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, D9D5)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
domestic rabbit 单克隆(D7A11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 UBC抗体(Cell Signaling Technology, 5621)被用于被用于免疫印迹在小鼠样本上. Toxicology (2014) ncbi
文章列表
  1. Zhang X, Xiong T, Gao L, Wang Y, Liu L, Tian T, et al. Extracellular fibrinogen-binding protein released by intracellular Staphylococcus aureus suppresses host immunity by targeting TRAF3. Nat Commun. 2022;13:5493 pubmed 出版商
  2. Puntambekar S, Moutinho M, Lin P, Jadhav V, Tumbleson Brink D, Balaji A, et al. CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer's disease. Mol Neurodegener. 2022;17:47 pubmed 出版商
  3. Lohraseb I, McCarthy P, Secker G, Marchant C, Wu J, Ali N, et al. Global ubiquitinome profiling identifies NEDD4 as a regulator of Profilin 1 and actin remodelling in neural crest cells. Nat Commun. 2022;13:2018 pubmed 出版商
  4. Xiong W, Gao X, Zhang T, Jiang B, Hu M, Bu X, et al. USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nat Commun. 2022;13:1700 pubmed 出版商
  5. Ma C, Li Y, Zong Y, Velkov T, Wang C, Yang X, et al. p21 restricts influenza A virus by perturbing the viral polymerase complex and upregulating type I interferon signaling. PLoS Pathog. 2022;18:e1010295 pubmed 出版商
  6. Iampietro M, Dumont C, Mathieu C, Spanier J, Robert J, Charpenay A, et al. Activation of cGAS/STING pathway upon paramyxovirus infection. iScience. 2021;24:102519 pubmed 出版商
  7. Höllmüller E, Geigges S, Niedermeier M, Kammer K, Kienle S, Rösner D, et al. Site-specific ubiquitylation acts as a regulator of linker histone H1. Nat Commun. 2021;12:3497 pubmed 出版商
  8. Tian G, Hu C, Yun Y, Yang W, Dubiel W, Cheng Y, et al. Dual roles of HSP70 chaperone HSPA1 in quality control of nascent and newly synthesized proteins. EMBO J. 2021;40:e106183 pubmed 出版商
  9. Ji M, Zhao Z, Li Y, Xu P, Shi J, Li Z, et al. FBXO6-mediated RNASET2 ubiquitination and degradation governs the development of ovarian cancer. Cell Death Dis. 2021;12:317 pubmed 出版商
  10. Choi G, Lee H, Chae C, Cho J, Jung Y, Kim J, et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun. 2021;12:487 pubmed 出版商
  11. Hou P, Jia P, Yang K, Li Z, Tian T, Lin Y, et al. An unconventional role of an ASB family protein in NF-κB activation and inflammatory response during microbial infection and colitis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  12. Guo S, Chen Y, Yang Y, Zhang X, Ma L, Xue X, et al. TRIB2 modulates proteasome function to reduce ubiquitin stability and protect liver cancer cells against oxidative stress. Cell Death Dis. 2021;12:42 pubmed 出版商
  13. Deng M, Tam J, Wang L, Liang K, Li S, Zhang L, et al. TRAF3IP3 negatively regulates cytosolic RNA induced anti-viral signaling by promoting TBK1 K48 ubiquitination. Nat Commun. 2020;11:2193 pubmed 出版商
  14. Wang W, Hu D, Wu C, Feng Y, Li A, Liu W, et al. STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection. PLoS Pathog. 2020;16:e1008335 pubmed 出版商
  15. Gain C, Malik S, Bhattacharjee S, Ghosh A, Robertson E, Das B, et al. Proteasomal inhibition triggers viral oncoprotein degradation via autophagy-lysosomal pathway. PLoS Pathog. 2020;16:e1008105 pubmed 出版商
  16. Chen M, Zhao Z, Meng Q, Liang P, Su Z, Wu Y, et al. TRIM14 Promotes Noncanonical NF-κB Activation by Modulating p100/p52 Stability via Selective Autophagy. Adv Sci (Weinh). 2020;7:1901261 pubmed 出版商
  17. Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed 出版商
  18. Yang S, Harding A, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019;5:eaav7999 pubmed 出版商
  19. Nakai A, Fujimoto J, Miyata H, Stumm R, Narazaki M, Schulz S, et al. The COMMD3/8 complex determines GRK6 specificity for chemoattractant receptors. J Exp Med. 2019;: pubmed 出版商
  20. Luo H, Jing B, Xia Y, Zhang Y, Hu M, Cai H, et al. WP1130 reveals USP24 as a novel target in T-cell acute lymphoblastic leukemia. Cancer Cell Int. 2019;19:56 pubmed 出版商
  21. Arora H, Wilcox S, Johnson L, Munro L, Eyford B, Pfeifer C, et al. The ATP-Binding Cassette Gene ABCF1 Functions as an E2 Ubiquitin-Conjugating Enzyme Controlling Macrophage Polarization to Dampen Lethal Septic Shock. Immunity. 2019;50:418-431.e6 pubmed 出版商
  22. Signes A, Cerutti R, Dickson A, Benincá C, Hinchy E, Ghezzi D, et al. APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Mol Med. 2019;11: pubmed 出版商
  23. Panda S, Gekara N. The deubiquitinase MYSM1 dampens NOD2-mediated inflammation and tissue damage by inactivating the RIP2 complex. Nat Commun. 2018;9:4654 pubmed 出版商
  24. Jena K, Kolapalli S, Mehto S, Nath P, Das B, Sahoo P, et al. TRIM16 controls assembly and degradation of protein aggregates by modulating the p62-NRF2 axis and autophagy. EMBO J. 2018;37: pubmed 出版商
  25. Yang L, Wang L, Ketkar H, Ma J, Yang G, Cui S, et al. UBXN3B positively regulates STING-mediated antiviral immune responses. Nat Commun. 2018;9:2329 pubmed 出版商
  26. Liu Q, Wu Y, Qin Y, Hu J, Xie W, Qin F, et al. Broad and diverse mechanisms used by deubiquitinase family members in regulating the type I interferon signaling pathway during antiviral responses. Sci Adv. 2018;4:eaar2824 pubmed 出版商
  27. Glaeser K, Urban M, Fenech E, Voloshanenko O, Kranz D, Lari F, et al. ERAD-dependent control of the Wnt secretory factor Evi. EMBO J. 2018;37: pubmed 出版商
  28. Zaffagnini G, Savova A, Danieli A, Romanov J, Tremel S, Ebner M, et al. p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J. 2018;37: pubmed 出版商
  29. Korczeniewska J, Barnes B. Corrected and Republished from: The COP9 Signalosome Interacts with and Regulates Interferon Regulatory Factor 5 Protein Stability. Mol Cell Biol. 2018;38: pubmed 出版商
  30. Wu G, Mu T, Gao Z, Wang J, Sy M, Li C. Prion protein is required for tumor necrosis factor α (TNFα)-triggered nuclear factor κB (NF-κB) signaling and cytokine production. J Biol Chem. 2017;292:18747-18759 pubmed 出版商
  31. Xu J, Kurup P, Nairn A, Lombroso P. Synaptic NMDA Receptor Activation Induces Ubiquitination and Degradation of STEP61. Mol Neurobiol. 2018;55:3096-3111 pubmed 出版商
  32. Ashkenazi A, Bento C, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature. 2017;545:108-111 pubmed 出版商
  33. Strickson S, Emmerich C, Goh E, Zhang J, Kelsall I, MacArtney T, et al. Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proc Natl Acad Sci U S A. 2017;114:E3481-E3489 pubmed 出版商
  34. Aukrust I, Rosenberg L, Ankerud M, Bertelsen V, Hollås H, Saraste J, et al. Post-translational modifications of Annexin A2 are linked to its association with perinuclear nonpolysomal mRNP complexes. FEBS Open Bio. 2017;7:160-173 pubmed 出版商
  35. Dadson K, Hauck L, Hao Z, Grothe D, Rao V, Mak T, et al. The E3 ligase Mule protects the heart against oxidative stress and mitochondrial dysfunction through Myc-dependent inactivation of Pgc-1α and Pink1. Sci Rep. 2017;7:41490 pubmed 出版商
  36. Vonk J, Yeshaw W, Pinto F, Faber A, Lahaye L, Kanon B, et al. Drosophila Vps13 Is Required for Protein Homeostasis in the Brain. PLoS ONE. 2017;12:e0170106 pubmed 出版商
  37. Oh E, Kim J, Kim J, Kim S, Lee J, Hong S, et al. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat Commun. 2016;7:13593 pubmed 出版商
  38. Ding X, Barodia S, Ma L, Goldberg M. Fbxl18 targets LRRK2 for proteasomal degradation and attenuates cell toxicity. Neurobiol Dis. 2017;98:122-136 pubmed 出版商
  39. Brykczynska U, Pecho Vrieseling E, Thiemeyer A, Klein J, Fruh I, Doll T, et al. CGG Repeat-Induced FMR1 Silencing Depends on the Expansion Size in Human iPSCs and Neurons Carrying Unmethylated Full Mutations. Stem Cell Reports. 2016;7:1059-1071 pubmed 出版商
  40. Yang Y, Yang C, Chan W, Wang Z, Deibel K, Pomerantz J. Molecular Determinants of Scaffold-induced Linear Ubiquitinylation of B Cell Lymphoma/Leukemia 10 (Bcl10) during T Cell Receptor and Oncogenic Caspase Recruitment Domain-containing Protein 11 (CARD11) Signaling. J Biol Chem. 2016;291:25921-25936 pubmed
  41. Choi Y, Shembade N, Parvatiyar K, Balachandran S, Harhaj E. TAX1BP1 Restrains Virus-Induced Apoptosis by Facilitating Itch-Mediated Degradation of the Mitochondrial Adaptor MAVS. Mol Cell Biol. 2017;37: pubmed 出版商
  42. Hu Z, Wang J, Yu D, Soon J, de Kleijn D, Foo R, et al. Aberrant Splicing Promotes Proteasomal Degradation of L-type CaV1.2 Calcium Channels by Competitive Binding for CaVβ Subunits in Cardiac Hypertrophy. Sci Rep. 2016;6:35247 pubmed 出版商
  43. Eccles R, Czajkowski M, Barth C, Müller P, McShane E, Grunwald S, et al. Bimodal antagonism of PKA signalling by ARHGAP36. Nat Commun. 2016;7:12963 pubmed 出版商
  44. Fang N, Zhu M, Rose A, Wu K, Mayor T. Deubiquitinase activity is required for the proteasomal degradation of misfolded cytosolic proteins upon heat-stress. Nat Commun. 2016;7:12907 pubmed 出版商
  45. Fullbright G, Rycenga H, Gruber J, Long D. p97 Promotes a Conserved Mechanism of Helicase Unloading during DNA Cross-Link Repair. Mol Cell Biol. 2016;36:2983-2994 pubmed 出版商
  46. Ren Y, Zhao P, Liu J, Yuan Y, Cheng Q, Zuo Y, et al. Deubiquitinase USP2a Sustains Interferons Antiviral Activity by Restricting Ubiquitination of Activated STAT1 in the Nucleus. PLoS Pathog. 2016;12:e1005764 pubmed 出版商
  47. Zhu L, Luo T, Xu X, Guo Y, Zhao X, Wang T, et al. E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor-mediated antifungal innate immunity. J Exp Med. 2016;213:1555-70 pubmed 出版商
  48. Bento C, Ashkenazi A, Jimenez Sanchez M, Rubinsztein D. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nat Commun. 2016;7:11803 pubmed 出版商
  49. Bayram Weston Z, Jones L, Dunnett S, Brooks S. Comparison of mHTT Antibodies in Huntington's Disease Mouse Models Reveal Specific Binding Profiles and Steady-State Ubiquitin Levels with Disease Development. PLoS ONE. 2016;11:e0155834 pubmed 出版商
  50. Francavilla C, Papetti M, Rigbolt K, Pedersen A, Sigurdsson J, Cazzamali G, et al. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat Struct Mol Biol. 2016;23:608-18 pubmed 出版商
  51. Emmerich C, Bakshi S, Kelsall I, Ortiz Guerrero J, Shpiro N, Cohen P. Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochem Biophys Res Commun. 2016;474:452-461 pubmed 出版商
  52. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed 出版商
  53. Bouché V, Espinosa A, Leone L, Sardiello M, Ballabio A, Botas J. Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway. Autophagy. 2016;12:484-98 pubmed 出版商
  54. Su X, Yan H, Huang Y, Yun H, Zeng B, Wang E, et al. Expression of FABP4, adipsin and adiponectin in Paneth cells is modulated by gut Lactobacillus. Sci Rep. 2015;5:18588 pubmed 出版商
  55. Slowicka K, Vereecke L, Mc Guire C, Sze M, Maelfait J, Kolpe A, et al. Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling. Eur J Immunol. 2016;46:971-80 pubmed 出版商
  56. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18:202-12 pubmed 出版商
  57. Zhou Q, Wang H, Schwartz D, Stoffels M, Park Y, Zhang Y, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48:67-73 pubmed 出版商
  58. Yung C, Sha D, Li L, Chin L. Parkin Protects Against Misfolded SOD1 Toxicity by Promoting Its Aggresome Formation and Autophagic Clearance. Mol Neurobiol. 2016;53:6270-6287 pubmed 出版商
  59. Hochrainer K, Pejanovic N, Olaseun V, Zhang S, Iadecola C, Anrather J. The ubiquitin ligase HERC3 attenuates NF-κB-dependent transcription independently of its enzymatic activity by delivering the RelA subunit for degradation. Nucleic Acids Res. 2015;43:9889-904 pubmed 出版商
  60. Geng J, Sun X, Wang P, Zhang S, Wang X, Wu H, et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol. 2015;16:1142-52 pubmed 出版商
  61. Mahanic C, Budhavarapu V, Graves J, Li G, Lin W. Regulation of E2 promoter binding factor 1 (E2F1) transcriptional activity through a deubiquitinating enzyme, UCH37. J Biol Chem. 2015;290:26508-22 pubmed 出版商
  62. Wang X, Chen X. A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature. 2015;524:481-4 pubmed 出版商
  63. Phan L, Chou P, Velazquez Torres G, Samudio I, Parreno K, Huang Y, et al. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming. Nat Commun. 2015;6:7530 pubmed 出版商
  64. Zhao J, Molitor T, Langston J, Nichols R. LRRK2 dephosphorylation increases its ubiquitination. Biochem J. 2015;469:107-20 pubmed 出版商
  65. Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G, Stahelin R, et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature. 2015;520:683-7 pubmed 出版商
  66. Yazlovitskaya E, Tseng H, Viquez O, Tu T, Mernaugh G, McKee K, et al. Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Mol Biol Cell. 2015;26:1857-74 pubmed 出版商
  67. Opperman C, Sishi B. Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS. Cell Biol Toxicol. 2015;31:83-94 pubmed 出版商
  68. Widagdo J, Chai Y, Ridder M, Chau Y, Johnson R, Sah P, et al. Activity-Dependent Ubiquitination of GluA1 and GluA2 Regulates AMPA Receptor Intracellular Sorting and Degradation. Cell Rep. 2015;10:783-795 pubmed 出版商
  69. Kanayama M, Inoue M, Danzaki K, Hammer G, He Y, Shinohara M. Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun. 2015;6:5779 pubmed 出版商
  70. Lee S, Lee T, Lee E, Kang S, Park A, Kim S, et al. Identification of a subnuclear body involved in sequence-specific cytokine RNA processing. Nat Commun. 2015;6:5791 pubmed 出版商
  71. Chen J, Shin J, Zhao R, Phan L, Wang H, Xue Y, et al. CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 2014;5:5384 pubmed 出版商
  72. Shiba Fukushima K, Inoshita T, Hattori N, Imai Y. Lysine 63-linked polyubiquitination is dispensable for Parkin-mediated mitophagy. J Biol Chem. 2014;289:33131-6 pubmed 出版商
  73. Charlaftis N, Suddason T, Wu X, Anwar S, Karin M, Gallagher E. The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J. 2014;33:2581-96 pubmed 出版商
  74. Kobayashi T, Masoumi K, Massoumi R. Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Oncogene. 2015;34:2251-60 pubmed 出版商
  75. Tullman J, Harmon M, Delannoy M, Gibson W. Recovery of an HMWP/hmwBP (pUL48/pUL47) complex from virions of human cytomegalovirus: subunit interactions, oligomer composition, and deubiquitylase activity. J Virol. 2014;88:8256-67 pubmed 出版商
  76. Stevenson C, de la Rosa G, Anderson C, Murphy P, Capece T, Kim M, et al. Essential role of Elmo1 in Dock2-dependent lymphocyte migration. J Immunol. 2014;192:6062-70 pubmed 出版商
  77. Watanabe M, Funakoshi T, Unuma K, Aki T, Uemura K. Activation of the ubiquitin-proteasome system against arsenic trioxide cardiotoxicity involves ubiquitin ligase Parkin for mitochondrial homeostasis. Toxicology. 2014;322:43-50 pubmed 出版商
  78. Naudin C, Sirvent A, Leroy C, Larive R, Simon V, Pannequin J, et al. SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2. Nat Commun. 2014;5:3159 pubmed 出版商
  79. Brouxhon S, Kyrkanides S, Teng X, Raja V, O Banion M, Clarke R, et al. Monoclonal antibody against the ectodomain of E-cadherin (DECMA-1) suppresses breast carcinogenesis: involvement of the HER/PI3K/Akt/mTOR and IAP pathways. Clin Cancer Res. 2013;19:3234-46 pubmed 出版商
  80. Choudhury S, Kolukula V, Preet A, Albanese C, Avantaggiati M. Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy?. Cell Cycle. 2013;12:1022-9 pubmed 出版商
  81. Chan W, Schaffer T, Pomerantz J. A quantitative signaling screen identifies CARD11 mutations in the CARD and LATCH domains that induce Bcl10 ubiquitination and human lymphoma cell survival. Mol Cell Biol. 2013;33:429-43 pubmed 出版商
  82. Kirilyuk A, Shimoji M, Catania J, Sahu G, Pattabiraman N, Giordano A, et al. An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation. PLoS ONE. 2012;7:e48243 pubmed 出版商
  83. Kensche T, Tokunaga F, Ikeda F, Goto E, Iwai K, Dikic I. Analysis of nuclear factor-?B (NF-?B) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-?B. J Biol Chem. 2012;287:23626-34 pubmed 出版商
  84. Schwab C, Yu S, McGeer P. Optineurin is colocalized with ubiquitin in Marinesco bodies. Acta Neuropathol. 2012;123:289-92 pubmed 出版商
  85. Ginsberg S, Alldred M, Che S. Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer's disease. Neurobiol Dis. 2012;45:99-107 pubmed 出版商
  86. Rico Bautista E, Yang C, Lu L, Roth G, Wolf D. Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells. BMC Biol. 2010;8:153 pubmed 出版商
  87. Duvick L, Barnes J, Ebner B, Agrawal S, ANDRESEN M, Lim J, et al. SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron. 2010;67:929-35 pubmed 出版商
  88. Takahashi Fujigasaki J, Breidert T, Fujigasaki H, Duyckaerts C, Camonis J, Brice A, et al. Amyloid precursor-like protein 2 cleavage contributes to neuronal intranuclear inclusions and cytotoxicity in spinocerebellar ataxia-7 (SCA7). Neurobiol Dis. 2011;41:33-42 pubmed 出版商
  89. Nisoli I, Chauvin J, Napoletano F, Calamita P, Zanin V, Fanto M, et al. Neurodegeneration by polyglutamine Atrophin is not rescued by induction of autophagy. Cell Death Differ. 2010;17:1577-87 pubmed 出版商
  90. Guttman M, Betts G, Barnes H, Ghassemian M, van der Geer P, Komives E. Interactions of the NPXY microdomains of the low density lipoprotein receptor-related protein 1. Proteomics. 2009;9:5016-28 pubmed 出版商
  91. Wiseman R, Chin K, Haynes C, Stanhill A, Xu C, Roguev A, et al. Thioredoxin-related Protein 32 is an arsenite-regulated Thiol Reductase of the proteasome 19 S particle. J Biol Chem. 2009;284:15233-45 pubmed 出版商
  92. Zhu H, Rothermel B, Hill J. Autophagy in load-induced heart disease. Methods Enzymol. 2009;453:343-63 pubmed 出版商
  93. den Dulk B, van Eijk P, de Ruijter M, Brandsma J, Brouwer J. The NER protein Rad33 shows functional homology to human Centrin2 and is involved in modification of Rad4. DNA Repair (Amst). 2008;7:858-68 pubmed 出版商
  94. Marvin Guy L, Duncan P, Wagnière S, Antille N, Porta N, Affolter M, et al. Rapid identification of differentiation markers from whole epithelial cells by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and statistical analysis. Rapid Commun Mass Spectrom. 2008;22:1099-108 pubmed 出版商
  95. Nakamura N, Hirose S. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol Biol Cell. 2008;19:1903-11 pubmed 出版商
  96. Bjørkhaug L, Molnes J, Søvik O, Njølstad P, Flatmark T. Allosteric activation of human glucokinase by free polyubiquitin chains and its ubiquitin-dependent cotranslational proteasomal degradation. J Biol Chem. 2007;282:22757-64 pubmed
  97. Tanaka T, Grusby M, Kaisho T. PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol. 2007;8:584-91 pubmed
  98. Nomura N, Nomura M, Newcomb E, Zagzag D. Geldanamycin induces G2 arrest in U87MG glioblastoma cells through downregulation of Cdc2 and cyclin B1. Biochem Pharmacol. 2007;73:1528-36 pubmed
  99. Gallagher E, Enzler T, Matsuzawa A, Anzelon Mills A, Otero D, Holzer R, et al. Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production. Nat Immunol. 2007;8:57-63 pubmed
  100. Bloom J, Pagano M. Experimental tests to definitively determine ubiquitylation of a substrate. Methods Enzymol. 2005;399:249-66 pubmed
  101. Nomura M, Nomura N, Yamashita J. Geldanamycin-induced degradation of Chk1 is mediated by proteasome. Biochem Biophys Res Commun. 2005;335:900-5 pubmed
  102. Lensch M, Tischkowitz M, Christianson T, Reifsteck C, Speckhart S, Jakobs P, et al. Acquired FANCA dysfunction and cytogenetic instability in adult acute myelogenous leukemia. Blood. 2003;102:7-16 pubmed
  103. Alberti S, Demand J, Esser C, Emmerich N, Schild H, Hohfeld J. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem. 2002;277:45920-7 pubmed
  104. Kassenbrock C, Hunter S, Garl P, Johnson G, Anderson S. Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J Biol Chem. 2002;277:24967-75 pubmed
  105. Tan Z, Sankar R, Tu W, Shin D, Liu H, Wasterlain C, et al. Immunohistochemical study of p53-associated proteins in rat brain following lithium-pilocarpine status epilepticus. Brain Res. 2002;929:129-38 pubmed
  106. Floyd Z, Stephens J. Interferon-gamma-mediated activation and ubiquitin-proteasome-dependent degradation of PPARgamma in adipocytes. J Biol Chem. 2002;277:4062-8 pubmed
  107. Ruffner H, Joazeiro C, Hemmati D, Hunter T, Verma I. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A. 2001;98:5134-9 pubmed
  108. Verdier F, Chretien S, Muller O, Varlet P, Yoshimura A, Gisselbrecht S, et al. Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein. J Biol Chem. 1998;273:28185-90 pubmed
  109. Nielsen K, Papageorge A, Vass W, Willumsen B, Lowy D. The Ras-specific exchange factors mouse Sos1 (mSos1) and mSos2 are regulated differently: mSos2 contains ubiquitination signals absent in mSos1. Mol Cell Biol. 1997;17:7132-8 pubmed