这是一篇来自已证抗体库的有关人类 VAMP1的综述,是根据10篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合VAMP1 抗体。
VAMP1 同义词: SPAX1; SYB1; VAMP-1; vesicle-associated membrane protein 1; vesicle-associated membrane protein 1 (synaptobrevin 1)

圣克鲁斯生物技术
小鼠 单克隆(F-11)
  • 免疫细胞化学; 小鼠; 1:100; 图 2e
圣克鲁斯生物技术 VAMP1抗体(SantaCruz, sc-133129)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 2e). J Immunol Methods (2017) ncbi
小鼠 单克隆(4E240)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 VAMP1抗体(Santa Cruz, sc58309)被用于被用于免疫印迹在小鼠样品上 (图 1). Diabetes (2013) ncbi
BioLegend
小鼠 单克隆(SP10)
  • 免疫细胞化学; 大鼠; 1:1000; 图 3
  • 免疫印迹; 大鼠; 1:1000; 图 1
BioLegend VAMP1抗体(Covance, MMS-616R)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000 (图 3) 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图 1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(SP10)
  • 免疫细胞化学; 人类; 1:10000
BioLegend VAMP1抗体(Covance, MMS-616R)被用于被用于免疫细胞化学在人类样品上浓度为1:10000. Front Cell Neurosci (2014) ncbi
赛默飞世尔
小鼠 单克隆(SP11)
  • 免疫组化; 人类; 1:100; 图 s6a
赛默飞世尔 VAMP1抗体(Thermo Scientific, RM-9111-S)被用于被用于免疫组化在人类样品上浓度为1:100 (图 s6a). Nat Med (2016) ncbi
Synaptic Systems
兔 多克隆(/)
  • 免疫印迹; 小鼠; 1:2500
Synaptic Systems VAMP1抗体(Synaptic Systems, 104 002)被用于被用于免疫印迹在小鼠样品上浓度为1:2500. Front Cell Neurosci (2014) ncbi
兔 多克隆(/)
  • 免疫组化-冰冻切片; 大鼠; 1:250
  • 免疫印迹; 大鼠; 1:1000
Synaptic Systems VAMP1抗体(SYSY, 104 002)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:250 和 被用于免疫印迹在大鼠样品上浓度为1:1000. Neuroscience (2014) ncbi
兔 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
Synaptic Systems VAMP1抗体(Synaptic Systems, 104 002)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2008) ncbi
默克密理博中国
小鼠 单克隆(SP10)
  • 免疫印迹; 大鼠; 1:2000
默克密理博中国 VAMP1抗体(Chemicon, MAB333)被用于被用于免疫印迹在大鼠样品上浓度为1:2000. Clin Psychopharmacol Neurosci (2012) ncbi
小鼠 单克隆(SP10)
  • 免疫细胞化学; 大鼠; 1:1000
默克密理博中国 VAMP1抗体(Chemicon, MAB333)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000. J Comp Neurol (2006) ncbi
文章列表
  1. Yadirgi G, Stickings P, Rajagopal S, Liu Y, Sesardic D. Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency. J Immunol Methods. 2017;451:90-99 pubmed 出版商
  2. Beltran H, Prandi D, Mosquera J, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298-305 pubmed 出版商
  3. Garcia Alvarez G, Lu B, Yap K, Wong L, Thevathasan J, Lim L, et al. STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs. Mol Biol Cell. 2015;26:1141-59 pubmed 出版商
  4. Beccano Kelly D, Kuhlmann N, Tatarnikov I, Volta M, Munsie L, Chou P, et al. Synaptic function is modulated by LRRK2 and glutamate release is increased in cortical neurons of G2019S LRRK2 knock-in mice. Front Cell Neurosci. 2014;8:301 pubmed 出版商
  5. Poon V, Goh C, Voorhoeve P, Fivaz M. High-content imaging of presynaptic assembly. Front Cell Neurosci. 2014;8:66 pubmed 出版商
  6. Manca P, Mameli O, Caria M, Torrej n Escribano B, Blasi J. Distribution of SNAP25, VAMP1 and VAMP2 in mature and developing deep cerebellar nuclei after estrogen administration. Neuroscience. 2014;266:102-15 pubmed 出版商
  7. Song W, Mondal P, Li Y, Lee S, Hussain M. Pancreatic ?-cell response to increased metabolic demand and to pharmacologic secretagogues requires EPAC2A. Diabetes. 2013;62:2796-807 pubmed 出版商
  8. Scarr E, Dean B. Altered neuronal markers following treatment with mood stabilizer and antipsychotic drugs indicate an increased likelihood of neurotransmitter release. Clin Psychopharmacol Neurosci. 2012;10:25-33 pubmed 出版商
  9. Witkovsky P, G briel R, Krizaj D. Anatomical and neurochemical characterization of dopaminergic interplexiform processes in mouse and rat retinas. J Comp Neurol. 2008;510:158-74 pubmed 出版商
  10. King A, Chung R, Vickers J, Dickson T. Localization of glutamate receptors in developing cortical neurons in culture and relationship to susceptibility to excitotoxicity. J Comp Neurol. 2006;498:277-94 pubmed