这是一篇来自已证抗体库的有关人类 VAMP2的综述,是根据52篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合VAMP2 抗体。
VAMP2 同义词: SYB2; VAMP-2

Synaptic Systems
小鼠 单克隆(69.1)
  • 免疫组化; 人类; 1:500; 图 1p
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1p). Brain Commun (2021) ncbi
小鼠 单克隆(69.1)
  • 免疫组化; 小鼠; 1:2000; 图 2a
  • 免疫印迹; 小鼠; 图 1b
Synaptic Systems VAMP2抗体(Synaptic Systems, 104 211)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 1b). Sci Rep (2021) ncbi
小鼠 单克隆(69.1)
  • 免疫组化; 人类; 1:500
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于免疫组化在人类样本上浓度为1:500. Nat Commun (2021) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 小鼠; 1:2000; 图 6d
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6d). Nat Commun (2021) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 小鼠; 图 1k
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于免疫印迹在小鼠样本上 (图 1k). Neuron (2021) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 大鼠; 图 5s1
Synaptic Systems VAMP2抗体(Synaptic Systems, 104 211)被用于被用于免疫印迹在大鼠样本上 (图 5s1). elife (2020) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s1f
Synaptic Systems VAMP2抗体(Synaptic Systems, 104204)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1f). Neuron (2021) ncbi
小鼠 单克隆(69.1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s2-1e
Synaptic Systems VAMP2抗体(Synaptic Systems, 104 211)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s2-1e). elife (2020) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 人类; 1:1000; 图 3b
Synaptic Systems VAMP2抗体(SySy, 104 211C5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). elife (2020) ncbi
小鼠 单克隆(69.1)
  • 免疫细胞化学基因敲除验证; 小鼠; 1:1000; 图 1s1c
Synaptic Systems VAMP2抗体(Synaptic Systems, 104 211)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上浓度为1:1000 (图 1s1c). elife (2020) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). elife (2020) ncbi
小鼠 单克隆(69.1)
  • 免疫组化; 小鼠; 图 2i
Synaptic Systems VAMP2抗体(Synaptic Systems, 104 211)被用于被用于免疫组化在小鼠样本上 (图 2i). Cell Rep (2019) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 小鼠; 1:10,000; 图 5b
Synaptic Systems VAMP2抗体(Synaptic Systems, 104 211)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Synaptic Systems VAMP2抗体(Synaptic Systems, 104202)被用于被用于免疫印迹在人类样本上 (图 2a). J Neurosci (2019) ncbi
小鼠 单克隆(69.1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3e
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3e). Nat Commun (2019) ncbi
domestic rabbit 多克隆
Synaptic Systems VAMP2抗体(Synaptic Systems, 104202)被用于. Science (2019) ncbi
小鼠 单克隆(69.1)
  • proximity ligation assay; 小鼠; 1:250; 图 s14e
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于proximity ligation assay在小鼠样本上浓度为1:250 (图 s14e). Mol Syst Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1g
  • 免疫印迹; 小鼠; 图 s1c
Synaptic Systems VAMP2抗体(Synaptic Systems, 104202)被用于被用于免疫组化在小鼠样本上 (图 1g) 和 被用于免疫印迹在小鼠样本上 (图 s1c). Cell (2018) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 小鼠; 图 2e
Synaptic Systems VAMP2抗体(Synaptic Systems, 104 211)被用于被用于免疫印迹在小鼠样本上 (图 2e). Neural Plast (2017) ncbi
小鼠 单克隆(69.1)
  • 免疫细胞化学; 牛; 图 1b
  • 免疫印迹; 牛; 图 s1
Synaptic Systems VAMP2抗体(Synaptic Systems, 69.1)被用于被用于免疫细胞化学在牛样本上 (图 1b) 和 被用于免疫印迹在牛样本上 (图 s1). Sci Rep (2017) ncbi
小鼠 单克隆(69.1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 7e
Synaptic Systems VAMP2抗体(SySy, 69.1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 7e). J Neurosci (2017) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 小鼠; 表 1
Synaptic Systems VAMP2抗体(Synaptic Systems, 104 211)被用于被用于免疫印迹在小鼠样本上 (表 1). Neuron (2017) ncbi
小鼠 单克隆(69.1)
  • 免疫细胞化学; 大鼠; 图 8b
  • 免疫印迹; 小鼠; 图 4
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于免疫细胞化学在大鼠样本上 (图 8b) 和 被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2017) ncbi
小鼠 单克隆(69.1)
  • 免疫组化; 小鼠; 1:1000; 图 3a
  • 免疫印迹; 小鼠; 1:5000; 图 1a
Synaptic Systems VAMP2抗体(Synaptic Systems, 104 211)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1a). J Neurosci Methods (2017) ncbi
小鼠 单克隆(69.1)
  • 免疫细胞化学; 大鼠; 1:4000; 图 5c
  • 免疫印迹; 大鼠; 1:4000; 图 5a
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于免疫细胞化学在大鼠样本上浓度为1:4000 (图 5c) 和 被用于免疫印迹在大鼠样本上浓度为1:4000 (图 5a). J Gen Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 5c
  • 免疫印迹; 大鼠; 1:1000; 图 5a
Synaptic Systems VAMP2抗体(Synaptic Systems, 104202)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 5c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). J Gen Physiol (2017) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 5c
  • 免疫印迹; 大鼠; 1:500; 图 5a
Synaptic Systems VAMP2抗体(Synaptic Systems, 104204)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 5c) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). J Gen Physiol (2017) ncbi
小鼠 单克隆(69.1)
  • 免疫细胞化学; 小鼠; 图 4b
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于免疫细胞化学在小鼠样本上 (图 4b). J Cell Biol (2016) ncbi
小鼠 单克隆(69.1)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
  • 免疫印迹; 小鼠; 图 7d
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 7d). J Cell Biol (2016) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 小鼠; 图 3a
Synaptic Systems VAMP2抗体(Synaptic systems, 69.1)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 4
Synaptic Systems VAMP2抗体(Synaptic System, 104203)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 2
Synaptic Systems VAMP2抗体(Synaptic Systems, 104 202)被用于被用于免疫细胞化学在大鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 人类; 1:10,000; 图 6B
Synaptic Systems VAMP2抗体(Synaptic System, 104211)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6B). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 大鼠; 图 1
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于免疫印迹在大鼠样本上 (图 1). EMBO Rep (2016) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 人类; 图 8
  • 免疫印迹; 小鼠; 图 6
Synaptic Systems VAMP2抗体(Synaptic Systems, cl. 69.1)被用于被用于免疫印迹在人类样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 6). PLoS Biol (2015) ncbi
小鼠 单克隆(69.1)
  • 免疫组化-冰冻切片; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
Synaptic Systems VAMP2抗体(Synaptic Systems, 104 211)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(69.1)
  • 免疫组化; 小鼠; 1:1000; 图 5
Synaptic Systems VAMP2抗体(Synaptic Systems, 104-C211)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5). J Neurosci (2015) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 小鼠; 1:200; 图 2
Synaptic Systems VAMP2抗体(Synaptic systems, 104 211)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2). Nat Neurosci (2015) ncbi
小鼠 单克隆(69.1)
  • 免疫组化-冰冻切片; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 2
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2014) ncbi
小鼠 单克隆(69.1)
  • 免疫印迹; 小鼠; 图 6
Synaptic Systems VAMP2抗体(SYSY, 69.1)被用于被用于免疫印迹在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(69.1)
  • 免疫组化-冰冻切片; 大鼠; 1:250
  • 免疫印迹; 大鼠; 1:1000
Synaptic Systems VAMP2抗体(SYSY, 104 211)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:250 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
小鼠 单克隆(69.1)
  • 免疫细胞化学; 大鼠
Synaptic Systems VAMP2抗体(Synaptic Systems, 104211)被用于被用于免疫细胞化学在大鼠样本上. PLoS ONE (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR12790)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
艾博抗(上海)贸易有限公司 VAMP2抗体(Abcam, ab181869)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司 VAMP2抗体(Abcam, ab3347)被用于被用于免疫细胞化学在大鼠样本上. Sci Adv (2021) ncbi
domestic rabbit 单克隆(EPR12790)
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 VAMP2抗体(Abcam, ab181869)被用于被用于免疫印迹在小鼠样本上 (图 8). Cell Death Dis (2017) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-11)
  • 免疫细胞化学; 小鼠; 1:100; 图 2e
圣克鲁斯生物技术 VAMP2抗体(SantaCruz, sc-133129)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2e). J Immunol Methods (2017) ncbi
小鼠 单克隆(4E240)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 VAMP2抗体(Santa Cruz, sc58309)被用于被用于免疫印迹在小鼠样本上 (图 1). Diabetes (2013) ncbi
安迪生物R&D
小鼠 单克隆(541405)
  • 免疫印迹; 人类; 1:2000; 图 5c
安迪生物R&D VAMP2抗体(R&D Systems, MAB5136)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5c). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(541405)
  • 免疫印迹; 人类; 图 10c
安迪生物R&D VAMP2抗体(R&D Systems, MAB5136-SP)被用于被用于免疫印迹在人类样本上 (图 10c). J Biol Chem (2017) ncbi
Alomone Labs
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5k
Alomone Labs VAMP2抗体(Alomone labs, ANR-007)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5k). Nat Commun (2021) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D6O1A)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6h
赛信通(上海)生物试剂有限公司 VAMP2抗体(Cell Signaling, 13508S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6h). Diabetologia (2022) ncbi
domestic rabbit 单克隆(D6O1A)
  • 免疫印迹; 小鼠; 表 1
赛信通(上海)生物试剂有限公司 VAMP2抗体(Cell Signaling, 13508)被用于被用于免疫印迹在小鼠样本上 (表 1). Front Synaptic Neurosci (2021) ncbi
domestic rabbit 单克隆(D6O1A)
  • 免疫组化-冰冻切片; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 VAMP2抗体(Cell Signaling, 13508)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4d). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(D6O1A)
  • 免疫细胞化学; 人类; 1:200; 图 5a
  • 免疫印迹; 人类; 1:1000; 图 1s1b
  • 免疫细胞化学; 小鼠; 1:200; 图 5a
赛信通(上海)生物试剂有限公司 VAMP2抗体(Cell Signaling, 13508)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5a), 被用于免疫印迹在人类样本上浓度为1:1000 (图 1s1b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5a). elife (2019) ncbi
domestic rabbit 单克隆(D6O1A)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司 VAMP2抗体(Cell Signaling, 13508)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 7d). J Cell Biol (2016) ncbi
文章列表
  1. Merino B, Casanueva xc1 lvarez E, Quesada I, Gonz xe1 lez Casimiro C, Fern xe1 ndez D xed az C, Postigo Casado T, et al. Insulin-degrading enzyme ablation in mouse pancreatic alpha cells triggers cell proliferation, hyperplasia and glucagon secretion dysregulation. Diabetologia. 2022;65:1375-1389 pubmed 出版商
  2. Kim J, Hwang K, Dang B, Eom M, Kong I, Gwack Y, et al. Insulin-activated store-operated Ca2+ entry via Orai1 induces podocyte actin remodeling and causes proteinuria. Nat Commun. 2021;12:6537 pubmed 出版商
  3. Zhang X, Liu Y, Hong X, Li X, Meshul C, Moore C, et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat Commun. 2021;12:5740 pubmed 出版商
  4. Haytural H, Jordà Siquier T, Winblad B, Mulle C, Tjernberg L, Granholm A, et al. Distinctive alteration of presynaptic proteins in the outer molecular layer of the dentate gyrus in Alzheimer's disease. Brain Commun. 2021;3:fcab079 pubmed 出版商
  5. Ivanova D, Dobson K, Gajbhiye A, Davenport E, Hacker D, Ultanir S, et al. Control of synaptic vesicle release probability via VAMP4 targeting to endolysosomes. Sci Adv. 2021;7: pubmed 出版商
  6. Ishii C, Shibano N, Yamazaki M, Arima T, Kato Y, Ishii Y, et al. CAPS1 is involved in hippocampal synaptic plasticity and hippocampus-associated learning. Sci Rep. 2021;11:8656 pubmed 出版商
  7. Inak G, Rybak Wolf A, Lisowski P, Pentimalli T, Jüttner R, Glažar P, et al. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nat Commun. 2021;12:1929 pubmed 出版商
  8. Yoshida T, Yamagata A, Imai A, Kim J, Izumi H, Nakashima S, et al. Canonical versus non-canonical transsynaptic signaling of neuroligin 3 tunes development of sociality in mice. Nat Commun. 2021;12:1848 pubmed 出版商
  9. Safari M, Obexer D, Baier Bitterlich G, zur Nedden S. PKN1 Is a Novel Regulator of Hippocampal GluA1 Levels. Front Synaptic Neurosci. 2021;13:640495 pubmed 出版商
  10. Largo Barrientos P, Apóstolo N, Creemers E, Callaerts Vegh Z, Swerts J, Davies C, et al. Lowering Synaptogyrin-3 expression rescues Tau-induced memory defects and synaptic loss in the presence of microglial activation. Neuron. 2021;109:767-777.e5 pubmed 出版商
  11. Kreutzberger A, Kiessling V, Doyle C, Schenk N, Upchurch C, Elmer Dixon M, et al. Distinct insulin granule subpopulations implicated in the secretory pathology of diabetes types 1 and 2. elife. 2020;9: pubmed 出版商
  12. Kuijpers M, Kochlamazashvili G, Stumpf A, Puchkov D, Swaminathan A, Lucht M, et al. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron. 2021;109:299-313.e9 pubmed 出版商
  13. Huson V, Meijer M, Dekker R, ter Veer M, Ruiter M, van Weering J, et al. Post-tetanic potentiation lowers the energy barrier for synaptic vesicle fusion independently of Synaptotagmin-1. elife. 2020;9: pubmed 出版商
  14. Vevea J, Chapman E. Acute disruption of the synaptic vesicle membrane protein synaptotagmin 1 using knockoff in mouse hippocampal neurons. elife. 2020;9: pubmed 出版商
  15. Dhara M, Mantero Martinez M, Makke M, Schwarz Y, Mohrmann R, Bruns D. Synergistic actions of v-SNARE transmembrane domains and membrane-curvature modifying lipids in neurotransmitter release. elife. 2020;9: pubmed 出版商
  16. Sclip A, Sudhof T. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. elife. 2020;9: pubmed 出版商
  17. Datta P, Hendrickson B, Brendalen S, Ruffcorn A, Seo S. The myosin-tail homology domain of centrosomal protein 290 is essential for protein confinement between the inner and outer segments in photoreceptors. J Biol Chem. 2019;294:19119-19136 pubmed 出版商
  18. Park H, Kim T, Kim J, Yamamoto Y, Tanaka Yamamoto K. Inputs from Sequentially Developed Parallel Fibers Are Required for Cerebellar Organization. Cell Rep. 2019;28:2939-2954.e5 pubmed 出版商
  19. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  20. Yao W, Tambini M, Liu X, D ADAMIO L. Tuning of glutamate, but not GABA, release by an intra-synaptic vesicles APP domain whose function can be modulated by β- or α-secretase cleavage. J Neurosci. 2019;: pubmed 出版商
  21. Li Y, Li K, Hu W, Ojcius D, Fang J, Li S, et al. Endocytic recycling and vesicular transport systems mediate transcytosis of Leptospira interrogans across cell monolayer. elife. 2019;8: pubmed 出版商
  22. Sun J, Carlson Stevermer J, Das U, Shen M, Delenclos M, Snead A, et al. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage. Nat Commun. 2019;10:53 pubmed 出版商
  23. Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363: pubmed 出版商
  24. Trepte P, Kruse S, Kostova S, Hoffmann S, Buntru A, Tempelmeier A, et al. LuTHy: a double-readout bioluminescence-based two-hybrid technology for quantitative mapping of protein-protein interactions in mammalian cells. Mol Syst Biol. 2018;14:e8071 pubmed 出版商
  25. Wang Y, Figueiredo D, Sun X, Dong Z, Chen W, Cui W, et al. Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A. 2018;115:2508-2513 pubmed 出版商
  26. Liu C, Kershberg L, Wang J, Schneeberger S, Kaeser P. Dopamine Secretion Is Mediated by Sparse Active Zone-like Release Sites. Cell. 2018;172:706-718.e15 pubmed 出版商
  27. Yadirgi G, Stickings P, Rajagopal S, Liu Y, Sesardic D. Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency. J Immunol Methods. 2017;451:90-99 pubmed 出版商
  28. Biggi S, Buccarello L, Sclip A, Lippiello P, Tonna N, Rumio C, et al. Evidence of Presynaptic Localization and Function of the c-Jun N-Terminal Kinase. Neural Plast. 2017;2017:6468356 pubmed 出版商
  29. Gümürdü A, Yildiz R, Eren E, Karakülah G, Unver T, Genc S, et al. MicroRNA exocytosis by large dense-core vesicle fusion. Sci Rep. 2017;7:45661 pubmed 出版商
  30. Santos T, Wierda K, Broeke J, Toonen R, Verhage M. Early Golgi Abnormalities and Neurodegeneration upon Loss of Presynaptic Proteins Munc18-1, Syntaxin-1, or SNAP-25. J Neurosci. 2017;37:4525-4539 pubmed 出版商
  31. Cao M, Wu Y, Ashrafi G, McCartney A, Wheeler H, Bushong E, et al. Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron. 2017;93:882-896.e5 pubmed 出版商
  32. Vazquez Cintron E, Beske P, Tenezaca L, Tran B, Oyler J, Glotfelty E, et al. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery. Sci Rep. 2017;7:42923 pubmed 出版商
  33. Vashi N, Andrabi S, Ghanwat S, Suar M, Kumar D. Ca2+-dependent Focal Exocytosis of Golgi-derived Vesicles Helps Phagocytic Uptake in Macrophages. J Biol Chem. 2017;292:5144-5165 pubmed 出版商
  34. Han F, Liu C, Zhang L, Zhou Y, Qin Y, Wang Y, et al. Globozoospermia and lack of acrosome formation in GM130-deficient mice. Cell Death Dis. 2017;8:e2532 pubmed 出版商
  35. Horvath P, Kavalali E, Monteggia L. CRISPR/Cas9 system-mediated impairment of synaptobrevin/VAMP function in postmitotic hippocampal neurons. J Neurosci Methods. 2017;278:57-64 pubmed 出版商
  36. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  37. Shang S, Zhu F, Liu B, Chai Z, Wu Q, Hu M, et al. Intracellular TRPA1 mediates Ca2+ release from lysosomes in dorsal root ganglion neurons. J Cell Biol. 2016;215:369-381 pubmed
  38. Kunii M, Ohara Imaizumi M, Takahashi N, Kobayashi M, Kawakami R, Kondoh Y, et al. Opposing roles for SNAP23 in secretion in exocrine and endocrine pancreatic cells. J Cell Biol. 2016;215:121-138 pubmed
  39. Sclip A, Bacaj T, Giam L, Sudhof T. Extended Synaptotagmin (ESyt) Triple Knock-Out Mice Are Viable and Fertile without Obvious Endoplasmic Reticulum Dysfunction. PLoS ONE. 2016;11:e0158295 pubmed 出版商
  40. Schedin Weiss S, Caesar I, Winblad B, Blom H, Tjernberg L. Super-resolution microscopy reveals ?-secretase at both sides of the neuronal synapse. Acta Neuropathol Commun. 2016;4:29 pubmed 出版商
  41. Tagliatti E, Fadda M, Falace A, Benfenati F, Fassio A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. elife. 2016;5: pubmed 出版商
  42. Benítez B, Cairns N, Schmidt R, Morris J, Norton J, Cruchaga C, et al. Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss. Acta Neuropathol Commun. 2015;3:73 pubmed 出版商
  43. Wang C, Wang Y, Hu M, Chai Z, Wu Q, Huang R, et al. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis. EMBO Rep. 2016;17:47-63 pubmed 出版商
  44. Bacaj T, Wu D, Burré J, Malenka R, Liu X, Sudhof T. Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles. PLoS Biol. 2015;13:e1002267 pubmed 出版商
  45. Zulliger R, Conley S, Mwoyosvi M, Stuck M, Azadi S, Naash M. SNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting. PLoS ONE. 2015;10:e0138508 pubmed 出版商
  46. Williams M, DeSpenza T, Li M, Gulledge A, Luikart B. Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive. J Neurosci. 2015;35:943-59 pubmed 出版商
  47. Blanchard J, Eade K, Szucs A, Lo Sardo V, Tsunemoto R, Williams D, et al. Selective conversion of fibroblasts into peripheral sensory neurons. Nat Neurosci. 2015;18:25-35 pubmed 出版商
  48. Messenger S, Falkowski M, Thomas D, Jones E, Hong W, Gaisano H, et al. Vesicle associated membrane protein 8 (VAMP8)-mediated zymogen granule exocytosis is dependent on endosomal trafficking via the constitutive-like secretory pathway. J Biol Chem. 2014;289:28040-53 pubmed 出版商
  49. Lee S, Sharma M, S dhof T, Shen J. Synaptic function of nicastrin in hippocampal neurons. Proc Natl Acad Sci U S A. 2014;111:8973-8 pubmed 出版商
  50. Manca P, Mameli O, Caria M, Torrej n Escribano B, Blasi J. Distribution of SNAP25, VAMP1 and VAMP2 in mature and developing deep cerebellar nuclei after estrogen administration. Neuroscience. 2014;266:102-15 pubmed 出版商
  51. Vazquez Cintron E, Vakulenko M, Band P, Stanker L, Johnson E, Ichtchenko K. Atoxic derivative of botulinum neurotoxin A as a prototype molecular vehicle for targeted delivery to the neuronal cytoplasm. PLoS ONE. 2014;9:e85517 pubmed 出版商
  52. Song W, Mondal P, Li Y, Lee S, Hussain M. Pancreatic ?-cell response to increased metabolic demand and to pharmacologic secretagogues requires EPAC2A. Diabetes. 2013;62:2796-807 pubmed 出版商