这是一篇来自已证抗体库的有关人类 VDAC1的综述,是根据191篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合VDAC1 抗体。
VDAC1 同义词: PORIN; VDAC-1

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4f
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, Ab15895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). Acta Neuropathol Commun (2022) ncbi
domestic rabbit 单克隆(EPR10852(B))
  • 免疫组化-石蜡切片; 小鼠; 图 5b
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab154856)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 5a). Cells (2022) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 1:1000; 图 s7e
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7e). Nat Commun (2021) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 1:2000; 图 7c
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, 14734)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). EMBO Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4b). PLoS ONE (2021) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 1:2000; 图 1j, 2f
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1j, 2f). Mol Psychiatry (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2k, 3c
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在人类样本上 (图 2k, 3c). Oncogene (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c, 3e
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在人类样本上 (图 3c, 3e). Sci Rep (2021) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 图 3c, 3e
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上 (图 3c, 3e). Sci Rep (2021) ncbi
小鼠 单克隆(20B12AF2)
  • proximity ligation assay; 小鼠; 1:1000; 图 3c
  • 免疫印迹; 小鼠; 1:500; 图 s3c, s3g
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于proximity ligation assay在小鼠样本上浓度为1:1000 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 s3c, s3g). Nat Commun (2021) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上 (图 1a). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2g
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2g). Acta Neuropathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 6c
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab34726)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 6c). Sci Adv (2020) ncbi
domestic rabbit 单克隆(EPR10852(B))
  • 免疫印迹; 小鼠; 图 e1d
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab154856)被用于被用于免疫印迹在小鼠样本上 (图 e1d). Nat Immunol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在人类样本上浓度为1:1000. Life Sci Alliance (2020) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Front Genet (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). elife (2020) ncbi
domestic rabbit 单克隆(EPR10852(B))
  • 免疫印迹; 小鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab154856)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Front Cell Dev Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3a). Cells (2020) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Cycle (2020) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 VDAC1抗体(abcam, ab14734)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Science (2019) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 1:500-1:2000; 图 2g
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上浓度为1:500-1:2000 (图 2g). Cell Rep (2019) ncbi
小鼠 单克隆(20B12AF2)
  • 流式细胞仪; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, 20B12AF2)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Science (2019) ncbi
domestic rabbit 单克隆(EPR10852(B))
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab154856)被用于被用于免疫印迹在人类样本上 (图 6e). Cell (2019) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上 (图 4c). Cancer Cell Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4i
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4i). J Biol Chem (2019) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 图 3d, 7c
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上 (图 3d, 7c). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3e
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab34726)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Acta Neuropathol (2019) ncbi
domestic rabbit 单克隆(EPR10852(B))
  • 免疫印迹; 人类; 图 s3e
艾博抗(上海)贸易有限公司 VDAC1抗体(AbCam, 154856)被用于被用于免疫印迹在人类样本上 (图 s3e). Nat Commun (2019) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 图 7g
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上 (图 7g). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1b). Haematologica (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell Rep (2018) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 VDAC1抗体(abcam, ab14734)被用于被用于免疫印迹在人类样本上 (图 6a). Nucleic Acids Res (2018) ncbi
domestic rabbit 单克隆(EPR10852(B))
  • 免疫印迹; 小鼠; 1:2000; 图 7a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab154856)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7a). Toxicol Sci (2018) ncbi
小鼠 单克隆(20B12AF2)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 4c
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于流式细胞仪在人类样本上 (图 4c). Am J Hum Genet (2018) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上 (图 1d). Nature (2018) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 1:1000; 图 1f
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Nat Commun (2018) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫组化-石蜡切片; 小鼠; 1:700; 图 s1g
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:700 (图 s1g). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Endocrinology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 6e
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6e). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2a
艾博抗(上海)贸易有限公司 VDAC1抗体(abcam, ab15895)被用于被用于免疫印迹在人类样本上 (图 s2a). Nature (2017) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, 20B12AF2)被用于被用于免疫印迹在小鼠样本上 (图 4a). Nature (2017) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 大鼠; 图 4h
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在大鼠样本上 (图 4h). Am J Physiol Endocrinol Metab (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2500; 图 1b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 1b). Nature (2017) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上 (图 2a). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:5000; 图 7e
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在犬样本上浓度为1:5000 (图 7e). Mol Biol Cell (2017) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 图 e1d
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, 20B12AF2)被用于被用于免疫印迹在人类样本上 (图 e1d). Nature (2017) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 表 2
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, Ab14734)被用于被用于免疫印迹在人类样本上 (表 2). EMBO Rep (2017) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 1:2000; 图 s3b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3b). Redox Biol (2017) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2a
  • 免疫印迹; 小鼠; 1:2000; 图 2e
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, AB15895)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2e). Cryobiology (2017) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 1:2000; 图 4b
  • 免疫印迹; 人类; 1:2000; 图 3a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 7b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 7b). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abam, ab15895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Neurobiol Aging (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 图 3e
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上 (图 3e). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). J Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, Ab15895)被用于被用于免疫组化在人类样本上 (图 2a). Mitochondrion (2016) ncbi
domestic rabbit 单克隆(EPR10852(B))
  • 免疫印迹; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab154856)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 1:1000; 图 6Aa
艾博抗(上海)贸易有限公司 VDAC1抗体(abcam, ab14734)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6Aa). J Cell Sci (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫沉淀; 小鼠
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 1:2000; 图 1b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫沉淀在小鼠样本上, 被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR10852(B))
  • 免疫印迹; 小鼠; 图 s1b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab154856)被用于被用于免疫印迹在小鼠样本上 (图 s1b). Cell Rep (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(EPR10852(B))
  • 免疫细胞化学; 人类; 图 s6f
  • 免疫印迹; 人类; 图 7c
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab154856)被用于被用于免疫细胞化学在人类样本上 (图 s6f) 和 被用于免疫印迹在人类样本上 (图 7c). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4c
  • 免疫印迹; 人类; 1:400; 图 3a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, Ab15895)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4c) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 3a). Brain Pathol (2017) ncbi
domestic rabbit 单克隆(EPR10852(B))
  • 免疫印迹; 小鼠; 1:4000; 图 2b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab154856)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 2b). Int J Mol Sci (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫组化; 人类; 1:100; 图 4
  • 免疫组化; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; pigs ; 1:1000; 图 7c
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 7c). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上 (图 1). Int J Mol Sci (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 1:6000; 图 6
  • 免疫印迹; 大鼠; 1:6000; 图 3
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上浓度为1:6000 (图 6) 和 被用于免疫印迹在大鼠样本上浓度为1:6000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab15895)被用于被用于免疫印迹在人类样本上 (图 2e). Hum Mol Genet (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫细胞化学; 小鼠; 图 5
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫细胞化学在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; fruit fly ; 1:2000; 图 4d
  • 免疫印迹; brewer's yeast; 1:2000; 图 3a
艾博抗(上海)贸易有限公司 VDAC1抗体(Mitosciences, Ab14734)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 4d) 和 被用于免疫印迹在brewer's yeast样本上浓度为1:2000 (图 3a). Biol Open (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5c
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5c). Aging Cell (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 大鼠; 图 1
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在大鼠样本上 (图 1). EMBO Mol Med (2015) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Arch Toxicol (2016) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上. Am J Physiol Heart Circ Physiol (2015) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上 (图 4). FEBS Lett (2015) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; fruit fly
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在fruit fly 样本上. Nat Cell Biol (2015) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 大鼠; 1:5000; 图 4
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4). Hum Mol Genet (2015) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在大鼠样本上 (图 4). J Transl Med (2015) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 1:2500; 图 5a, 5c
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, 14734)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 5a, 5c). EMBO Mol Med (2015) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上 (图 1b). EMBO Mol Med (2015) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 1:500; 图 4d
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, Ab14734)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4d). Sci Rep (2015) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mitochondrion (2015) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; fruit fly ; 1:2000
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, Ab14734)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 大鼠; 图 7
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在大鼠样本上 (图 7). PLoS ONE (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 1:50,000; 图 3
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 3). J Clin Endocrinol Metab (2015) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 大鼠
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上. J Proteome Res (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 1:20,000
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. Neurobiol Dis (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 图 s4
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上 (图 s4). Nat Commun (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 1:5000; 图 6
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). J Cell Sci (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 1:2000; 图 1c
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1c). Autophagy (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; fruit fly ; 1:2000
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000. Hum Mol Genet (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 1:5000
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上 (图 5b). Cell Commun Signal (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类; 1:500; 图 4
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, Ab14734)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). FASEB J (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, 20B12AF)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化-石蜡切片在小鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在大鼠样本上. Anim Sci J (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上. Proteomics (2014) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫沉淀; 人类; 1:1000
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫沉淀在人类样本上浓度为1:1000. Am J Hum Genet (2013) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上 (图 3a). Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; thirteen-lined ground squirrel; 1:1000
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在thirteen-lined ground squirrel样本上浓度为1:1000. Physiol Genomics (2013) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(20B12AF2)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 VDAC1抗体(Abcam, ab14734)被用于被用于免疫印迹在人类样本上. Neurosci Lett (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 1:500; 图 s2b
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz, sc-390996)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2b). Mol Neurobiol (2022) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz, sc-390996)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Nat Commun (2022) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 1:500; 图 s3a
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz, sc-390996)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s3a). Mol Neurobiol (2022) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术 VDAC1抗体(SCBT, Sc-390996)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Cell Commun Signal (2021) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz, sc-390996)被用于被用于免疫印迹在小鼠样本上 (图 4b). Cell (2019) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 大鼠; 图 2b
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz Biotechnology, Inc, Sc-390996)被用于被用于免疫印迹在大鼠样本上 (图 2b). Front Neurosci (2018) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz, sc-390996)被用于被用于免疫印迹在人类样本上 (图 1c). J Cell Biol (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 大鼠; 图 5d
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz, sc-390996)被用于被用于免疫印迹在大鼠样本上 (图 5d). Front Cell Neurosci (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 s4d
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz, B-6)被用于被用于免疫印迹在小鼠样本上 (图 s4d). PLoS Pathog (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 s4d
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz, B-6)被用于被用于免疫印迹在小鼠样本上 (图 s4d). PLoS Pathog (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 7c
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz, sc-390996)被用于被用于免疫印迹在人类样本上 (图 7c). Mol Cell Biol (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫细胞化学; 小鼠; 图 6f
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz, sc-390996)被用于被用于免疫细胞化学在小鼠样本上 (图 6f). Mol Endocrinol (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz, sc-390996)被用于被用于免疫印迹在小鼠样本上 (图 6). Antioxid Redox Signal (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz Biotech, sc-390996)被用于被用于免疫印迹在人类样本上浓度为1:100. Cancer Chemother Pharmacol (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类
圣克鲁斯生物技术 VDAC1抗体(Santa Cruz Biotechnology, sc-390996)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6d
赛默飞世尔 VDAC1抗体(ThermoFisher, PA1-954A)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6d). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 9f
赛默飞世尔 VDAC1抗体(Thermo Fisher, PA1-954A)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9f). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛默飞世尔 VDAC1抗体(Thermoscientific, Pa1-954a)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). EMBO J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 VDAC1抗体(Pierce, PA1-954A)被用于被用于免疫印迹在小鼠样本上 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 S7
赛默飞世尔 VDAC1抗体(Thermo Scientific, PA1-954A)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 S7). Aging Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 6
赛默飞世尔 VDAC1抗体(ThermoFisher, PA1-954A)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 6). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 VDAC1抗体(Thermo Scientific, PA1-954A)被用于被用于免疫印迹在大鼠样本上 (图 3). Redox Biol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 VDAC1抗体(Affinity Bioreagents, PA1-954A)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 VDAC1抗体(Thermo, PA1-954A)被用于. Exp Neurol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 VDAC1抗体(Thermo Scientific, PA1-954A)被用于. J Lipid Res (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆(OTI9B2)
  • 免疫印迹; 小鼠; 图 2a
Novus Biologicals VDAC1抗体(Novus, NB100-695)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cells (2021) ncbi
domestic rabbit 多克隆(OTI9B2)
Novus Biologicals VDAC1抗体(Novus Biologicals, NB 100-695)被用于. PLoS ONE (2015) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1b
Rockland Immunochemicals VDAC1抗体(Rockland, 600-401-882)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1b). Sci Rep (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 VDAC1抗体(CST, 4661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 小鼠; 图 2j
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4661)被用于被用于免疫印迹在小鼠样本上 (图 2j). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 大鼠; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4661)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5f). J Mol Med (Berl) (2021) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 VDAC1抗体(CST, 4661)被用于被用于免疫印迹在小鼠样本上. Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4661)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:40; 图 2e
赛信通(上海)生物试剂有限公司 VDAC1抗体(CST, 4866)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (图 2e). Oncogene (2021) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Mol Metab (2021) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 VDAC1抗体(CST, 4661s)被用于被用于免疫印迹在人类样本上 (图 s4a). Cell Death Differ (2021) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 VDAC1抗体(CST, 4661)被用于被用于免疫印迹在小鼠样本上 (图 1f). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 小鼠; 1:50; 图 4a
赛信通(上海)生物试剂有限公司 VDAC1抗体(CST, 4661)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 4a). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 大鼠; 图 1d
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signalling Technology, 4661S)被用于被用于免疫印迹在大鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 1a). J Cachexia Sarcopenia Muscle (2020) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4661S)被用于被用于免疫印迹在人类样本上 (图 6a). Nature (2020) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 大鼠; 图 3b
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4661)被用于被用于免疫印迹在大鼠样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 7c). elife (2019) ncbi
domestic rabbit 单克隆(D73D12)
  • 流式细胞仪; 人类; 图 4c
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4661)被用于被用于流式细胞仪在人类样本上 (图 4c). Physiol Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3e
赛信通(上海)生物试剂有限公司 VDAC1抗体(CST, 4866S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3e). Nature (2019) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 小鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). elife (2019) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4661)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4866)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 人类; 图 1b, 3b
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4661S)被用于被用于免疫印迹在人类样本上 (图 1b, 3b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4866)被用于被用于免疫印迹在人类样本上 (图 3g). Front Mol Neurosci (2019) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 人类; 图 2h
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4661)被用于被用于免疫印迹在人类样本上 (图 2h). J Appl Physiol (1985) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4866)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4866)被用于被用于免疫印迹在人类样本上 (图 1e). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4866)被用于被用于免疫印迹在小鼠样本上 (图 1c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4866)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4661)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4661)被用于被用于免疫印迹在人类样本上 (图 4a). Hum Mutat (2017) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4661)被用于被用于免疫印迹在人类样本上 (图 4c). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4866S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6c). J Vasc Res (2017) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 大鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 VDAC1抗体(cell signalling, 4661)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3d). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 小鼠; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4661S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). Am J Physiol Endocrinol Metab (2017) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 人类; 1:1000; 图 2f
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 1:3000; 图 8a
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell signaling, 46615)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 8a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4661s)被用于被用于免疫印迹在人类样本上 (图 2d). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell signaling, 4661)被用于被用于免疫印迹在人类样本上 (图 7). Lipids Health Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8e
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4866)被用于被用于免疫印迹在人类样本上 (图 8e). Antioxid Redox Signal (2017) ncbi
domestic rabbit 单克隆(D73D12)
  • proximity ligation assay; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4661)被用于被用于proximity ligation assay在小鼠样本上浓度为1:500 (图 4). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 小鼠; 1:5000; 图 s2
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell signaling, 4661)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫沉淀; 人类; 图 2e
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4661)被用于被用于免疫沉淀在人类样本上 (图 2e) 和 被用于免疫印迹在人类样本上 (图 2e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:3000; 图 5
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4866)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 5). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4866)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4866S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell signaling, 4866S)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 2). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4866)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Skelet Muscle (2016) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4661S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 大鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4661)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Endocrinology (2016) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 大鼠; 图 3
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, D73D12)被用于被用于免疫印迹在大鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 6). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Immunol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signalling, 4866)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Tech, 4661S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 小鼠; 1:200; 图 8
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling Technology, 4661)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 8). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 小鼠; 1:10,000
赛信通(上海)生物试剂有限公司 VDAC1抗体(Cell Signaling, 4661)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. J Proteome Res (2014) ncbi
domestic rabbit 单克隆(D73D12)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 VDAC1抗体(CST, 4661)被用于被用于免疫印迹在大鼠样本上. FASEB J (2014) ncbi
Neuromab
小鼠 单克隆(N152B/23)
  • 免疫印迹; 小鼠; 图 7
Neuromab VDAC1抗体(NeuroMab, 75-204)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
文章列表
  1. Petkevicius K, Palmgren H, Glover M, Ahnmark A, Andr xe9 asson A, Madeyski Bengtson K, et al. TLCD1 and TLCD2 regulate cellular phosphatidylethanolamine composition and promote the progression of non-alcoholic steatohepatitis. Nat Commun. 2022;13:6020 pubmed 出版商
  2. Li T, Sun Y, Zhang S, Xu Y, Li K, Xie C, et al. AIF Overexpression Aggravates Oxidative Stress in Neonatal Male Mice After Hypoxia-Ischemia Injury. Mol Neurobiol. 2022;59:6613-6631 pubmed 出版商
  3. Queiroz A, Dantas E, Ramsamooj S, Murthy A, Ahmed M, Zunica E, et al. Blocking ActRIIB and restoring appetite reverses cachexia and improves survival in mice with lung cancer. Nat Commun. 2022;13:4633 pubmed 出版商
  4. Jin Y, Liu Y, Xu L, Xu J, Xiong Y, Peng Y, et al. Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis. Cell Death Dis. 2022;13:512 pubmed 出版商
  5. Creed R, Memon A, Komaragiri S, Barodia S, Goldberg M. Analysis of hemisphere-dependent effects of unilateral intrastriatal injection of α-synuclein pre-formed fibrils on mitochondrial protein levels, dynamics, and function. Acta Neuropathol Commun. 2022;10:78 pubmed 出版商
  6. Liu W, Zhou H, Wang H, Zhang Q, Zhang R, Willard B, et al. IL-1R-IRAKM-Slc25a1 signaling axis reprograms lipogenesis in adipocytes to promote diet-induced obesity in mice. Nat Commun. 2022;13:2748 pubmed 出版商
  7. Tayyeb A, Dihazi G, Tampe B, Zeisberg M, Tampe D, Hakroush S, et al. Calreticulin Shortage Results in Disturbance of Calcium Storage, Mitochondrial Disease, and Kidney Injury. Cells. 2022;11: pubmed 出版商
  8. Wang Y, Xu Y, Zhou K, Zhang S, Wang Y, Li T, et al. Autophagy Inhibition Reduces Irradiation-Induced Subcortical White Matter Injury Not by Reducing Inflammation, but by Increasing Mitochondrial Fusion and Inhibiting Mitochondrial Fission. Mol Neurobiol. 2022;59:1199-1213 pubmed 出版商
  9. Sabbir M, Taylor C, Zahradka P. CAMKK2 regulates mitochondrial function by controlling succinate dehydrogenase expression, post-translational modification, megacomplex assembly, and activity in a cell-type-specific manner. Cell Commun Signal. 2021;19:98 pubmed 出版商
  10. Xue Y, Morris J, Yang K, Fu Z, Zhu X, Johnson F, et al. SMARCA4/2 loss inhibits chemotherapy-induced apoptosis by restricting IP3R3-mediated Ca2+ flux to mitochondria. Nat Commun. 2021;12:5404 pubmed 出版商
  11. Hu D, Sun X, Magpusao A, Fedorov Y, Thompson M, Wang B, et al. Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington's disease. Nat Commun. 2021;12:5305 pubmed 出版商
  12. Herranz C, Mateo F, Baiges A, Ruiz de Garibay G, Junza A, Johnson S, et al. Histamine signaling and metabolism identify potential biomarkers and therapies for lymphangioleiomyomatosis. EMBO Mol Med. 2021;13:e13929 pubmed 出版商
  13. Yoon Y, Go G, Yoon S, Lim J, Lee G, Lee J, et al. Melatonin Treatment Improves Renal Fibrosis via miR-4516/SIAH3/PINK1 Axis. Cells. 2021;10: pubmed 出版商
  14. Kuroda R, Tominaga K, Kasashima K, Kuroiwa K, Sakashita E, Hayakawa H, et al. Loss of mitochondrial transcription factor A in neural stem cells leads to immature brain development and triggers the activation of the integral stress response in vivo. PLoS ONE. 2021;16:e0255355 pubmed 出版商
  15. Zhang Y, Hu M, Yang F, Zhang Y, Ma S, Zhang D, et al. Increased uterine androgen receptor protein abundance results in implantation and mitochondrial defects in pregnant rats with hyperandrogenism and insulin resistance. J Mol Med (Berl). 2021;99:1427-1446 pubmed 出版商
  16. Gan L, Liu D, Liu J, Chen E, Chen C, Liu L, et al. CD38 deficiency alleviates Ang II-induced vascular remodeling by inhibiting small extracellular vesicle-mediated vascular smooth muscle cell senescence in mice. Signal Transduct Target Ther. 2021;6:223 pubmed 出版商
  17. Hung C, Lombardo P, Malik N, Brun S, Hellberg K, Van Nostrand J, et al. AMPK/ULK1-mediated phosphorylation of Parkin ACT domain mediates an early step in mitophagy. Sci Adv. 2021;7: pubmed 出版商
  18. Frison M, Faccenda D, Abeti R, Rigon M, Strobbe D, England Rendon B, et al. The translocator protein (TSPO) is prodromal to mitophagy loss in neurotoxicity. Mol Psychiatry. 2021;: pubmed 出版商
  19. Galbraith L, Mui E, Nixon C, Hedley A, Strachan D, Mackay G, et al. PPAR-gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene. 2021;40:2355-2366 pubmed 出版商
  20. Lee J, Park K, Sul H, Hong H, Kim K, Kero J, et al. Loss of primary cilia promotes mitochondria-dependent apoptosis in thyroid cancer. Sci Rep. 2021;11:4181 pubmed 出版商
  21. Ziegler D, Vindrieux D, Goehrig D, Jaber S, Collin G, Griveau A, et al. Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging. Nat Commun. 2021;12:720 pubmed 出版商
  22. Sass F, Schlein C, Jaeckstein M, Pertzborn P, Schweizer M, Schinke T, et al. TFEB deficiency attenuates mitochondrial degradation upon brown adipose tissue whitening at thermoneutrality. Mol Metab. 2021;47:101173 pubmed 出版商
  23. Luo X, Gong H, Gao H, Wu Y, Sun W, Li Z, et al. Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ. 2021;: pubmed 出版商
  24. Ha B, Heo J, Jang Y, Park T, Choi J, Jang W, et al. Depletion of Mitochondrial Components from Extracellular Vesicles Secreted from Astrocytes in a Mouse Model of Fragile X Syndrome. Int J Mol Sci. 2021;22: pubmed 出版商
  25. Mehta A, Gregory J, Dando O, Carter R, Burr K, Nanda J, et al. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathol. 2021;141:257-279 pubmed 出版商
  26. Zhang X, Wang R, Hu D, Sun X, Fujioka H, Lundberg K, et al. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer's disease. Sci Adv. 2020;6: pubmed 出版商
  27. Li Y, Ivica N, Dong T, Papageorgiou D, He Y, Brown D, et al. MFSD7C switches mitochondrial ATP synthesis to thermogenesis in response to heme. Nat Commun. 2020;11:4837 pubmed 出版商
  28. Zhou H, Wang H, Yu M, Schugar R, Qian W, Tang F, et al. IL-1 induces mitochondrial translocation of IRAK2 to suppress oxidative metabolism in adipocytes. Nat Immunol. 2020;21:1219-1231 pubmed 出版商
  29. Rusilowicz Jones E, Jardine J, Kallinos A, Pinto Fernandez A, Guenther F, Giurrandino M, et al. USP30 sets a trigger threshold for PINK1-PARKIN amplification of mitochondrial ubiquitylation. Life Sci Alliance. 2020;3: pubmed 出版商
  30. Ng Y, Thompson K, Loher D, Hopton S, Falkous G, Hardy S, et al. Novel MT-ND Gene Variants Causing Adult-Onset Mitochondrial Disease and Isolated Complex I Deficiency. Front Genet. 2020;11:24 pubmed 出版商
  31. Siems S, Jahn O, Eichel M, Kannaiyan N, Wu L, Sherman D, et al. Proteome profile of peripheral myelin in healthy mice and in a neuropathy model. elife. 2020;9: pubmed 出版商
  32. Zhang Y, Lu P, Liang F, Liufu N, Dong Y, ZHENG J, et al. Cyclophilin D Contributes to Anesthesia Neurotoxicity in the Developing Brain. Front Cell Dev Biol. 2019;7:396 pubmed 出版商
  33. Hu H, Hone E, Provencher E, Sprowls S, Farooqi I, Corbin D, et al. MiR-34a Interacts with Cytochrome c and Shapes Stroke Outcomes. Sci Rep. 2020;10:3233 pubmed 出版商
  34. Pittala S, Levy I, De S, Kumar Pandey S, Melnikov N, Hyman T, et al. The VDAC1-based R-Tf-D-LP4 Peptide as a Potential Treatment for Diabetes Mellitus. Cells. 2020;9: pubmed 出版商
  35. Shah D, Nisr R, Stretton C, Krasteva Christ G, Hundal H. Caveolin-3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function. J Cachexia Sarcopenia Muscle. 2020;11:838-858 pubmed 出版商
  36. Nixon C, Mavigner M, Sampey G, Brooks A, Spagnuolo R, Irlbeck D, et al. Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo. Nature. 2020;578:160-165 pubmed 出版商
  37. Singh V, Khalil M, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle. 2020;19:363-375 pubmed 出版商
  38. Giridharan V, Collodel A, Generoso J, Scaini G, Wassather R, Selvaraj S, et al. Neuroinflammation trajectories precede cognitive impairment after experimental meningitis-evidence from an in vivo PET study. J Neuroinflammation. 2020;17:5 pubmed 出版商
  39. Kim J, Gupta R, Blanco L, Yang S, Shteinfer Kuzmine A, Wang K, et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science. 2019;366:1531-1536 pubmed 出版商
  40. Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed 出版商
  41. Herring S, Moon H, Rawal P, Chhibber A, Zhao L. Brain clusterin protein isoforms and mitochondrial localization. elife. 2019;8: pubmed 出版商
  42. Høgild M, Gudiksen A, Pilegaard H, Stødkilde Jørgensen H, Pedersen S, Møller N, et al. Redundancy in regulation of lipid accumulation in skeletal muscle during prolonged fasting in obese men. Physiol Rep. 2019;7:e14285 pubmed 出版商
  43. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  44. Hoshino A, Wang W, Wada S, McDermott Roe C, Evans C, Gosis B, et al. The ADP/ATP translocase drives mitophagy independent of nucleotide exchange. Nature. 2019;575:375-379 pubmed 出版商
  45. Sharma A, Oonthonpan L, Sheldon R, Rauckhorst A, Zhu Z, Tompkins S, et al. Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness. elife. 2019;8: pubmed 出版商
  46. Park S, Safi R, Liu X, Baldi R, Liu W, Liu J, et al. Inhibition of ERRα Prevents Mitochondrial Pyruvate Uptake Exposing NADPH-Generating Pathways as Targetable Vulnerabilities in Breast Cancer. Cell Rep. 2019;27:3587-3601.e4 pubmed 出版商
  47. van Heesch S, Witte F, Schneider Lunitz V, Schulz J, Adami E, Faber A, et al. The Translational Landscape of the Human Heart. Cell. 2019;: pubmed 出版商
  48. Yang S, Harding A, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019;5:eaav7999 pubmed 出版商
  49. Wang R, Geng J, Sheng W, Liu X, Jiang M, Zhen Y. The ionophore antibiotic gramicidin A inhibits pancreatic cancer stem cells associated with CD47 down-regulation. Cancer Cell Int. 2019;19:145 pubmed 出版商
  50. Meyer M, Benkusky N, Kaufmann M, Lee S, Redfield R, Jones G, et al. Targeted genomic deletions identify diverse enhancer functions and generate a kidney-specific, endocrine-deficient Cyp27b1 pseudo-null mouse. J Biol Chem. 2019;294:9518-9535 pubmed 出版商
  51. Zheng J, Croteau D, Bohr V, Akbari M. Diminished OPA1 expression and impaired mitochondrial morphology and homeostasis in Aprataxin-deficient cells. Nucleic Acids Res. 2019;: pubmed 出版商
  52. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  53. Zhou B, Kreuzer J, Kumsta C, Wu L, Kamer K, Cedillo L, et al. Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell. 2019;177:299-314.e16 pubmed 出版商
  54. Hu D, Sun X, Liao X, Zhang X, Zarabi S, Schimmer A, et al. Alpha-synuclein suppresses mitochondrial protease ClpP to trigger mitochondrial oxidative damage and neurotoxicity. Acta Neuropathol. 2019;137:939-960 pubmed 出版商
  55. Park H, Chung K, An H, Gim J, Hong J, Woo H, et al. Parkin Promotes Mitophagic Cell Death in Adult Hippocampal Neural Stem Cells Following Insulin Withdrawal. Front Mol Neurosci. 2019;12:46 pubmed 出版商
  56. Kurelac I, Iommarini L, Vatrinet R, Amato L, De Luise M, Leone G, et al. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun. 2019;10:903 pubmed 出版商
  57. Yambire K, Fernández Mosquera L, Steinfeld R, Mühle C, Ikonen E, Milosevic I, et al. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. elife. 2019;8: pubmed 出版商
  58. Maio N, Kim K, Holmes Hampton G, Singh A, Rouault T. Dimeric ferrochelatase bridges ABCB7 and ABCB10 homodimers in an architecturally defined molecular complex required for heme biosynthesis. Haematologica. 2019;: pubmed 出版商
  59. D Eletto M, Rossin F, Occhigrossi L, Farrace M, Faccenda D, Desai R, et al. Transglutaminase Type 2 Regulates ER-Mitochondria Contact Sites by Interacting with GRP75. Cell Rep. 2018;25:3573-3581.e4 pubmed 出版商
  60. Riis S, Christensen B, Nellemann B, Møller A, Husted A, Pedersen S, et al. Molecular adaptations in human subcutaneous adipose tissue after ten weeks of endurance exercise training in healthy males. J Appl Physiol (1985). 2019;126:569-577 pubmed 出版商
  61. Maiti P, Kim H, Tu Y, Barrientos A. Human GTPBP10 is required for mitoribosome maturation. Nucleic Acids Res. 2018;46:11423-11437 pubmed 出版商
  62. Walsh T, van den Bosch M, Lewis K, Williams C, Poole A. Loss of the mitochondrial kinase PINK1 does not alter platelet function. Sci Rep. 2018;8:14377 pubmed 出版商
  63. Sabbir M, Calcutt N, Fernyhough P. Muscarinic Acetylcholine Type 1 Receptor Activity Constrains Neurite Outgrowth by Inhibiting Microtubule Polymerization and Mitochondrial Trafficking in Adult Sensory Neurons. Front Neurosci. 2018;12:402 pubmed 出版商
  64. Yu H, Jiang X, Lin X, Zhang Z, Wu D, Zhou L, et al. Hippocampal Subcellular Organelle Proteomic Alteration of Copper-Treated Mice. Toxicol Sci. 2018;164:250-263 pubmed 出版商
  65. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  66. Piekutowska Abramczuk D, Assouline Z, Mataković L, Feichtinger R, Koňaříková E, Jurkiewicz E, et al. NDUFB8 Mutations Cause Mitochondrial Complex I Deficiency in Individuals with Leigh-like Encephalomyopathy. Am J Hum Genet. 2018;102:460-467 pubmed 出版商
  67. Morscher R, Ducker G, Li S, Mayer J, Gitai Z, Sperl W, et al. Mitochondrial translation requires folate-dependent tRNA methylation. Nature. 2018;554:128-132 pubmed 出版商
  68. Velázquez Villegas L, Perino A, Lemos V, Zietak M, Nomura M, Pols T, et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun. 2018;9:245 pubmed 出版商
  69. Frattini V, Pagnotta S, Tala -, Fan J, Russo M, Lee S, et al. A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature. 2018;553:222-227 pubmed 出版商
  70. Viana Huete V, Guillen C, García G, Fernandez S, García Aguilar A, Kahn C, et al. Male Brown Fat-Specific Double Knockout of IGFIR/IR: Atrophy, Mitochondrial Fission Failure, Impaired Thermogenesis, and Obesity. Endocrinology. 2018;159:323-340 pubmed 出版商
  71. Caino M, Seo J, Wang Y, Rivadeneira D, Gabrilovich D, Kim E, et al. Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest. 2017;127:3755-3769 pubmed 出版商
  72. Meyer M, Benkusky N, Kaufmann M, Lee S, Onal M, Jones G, et al. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation. J Biol Chem. 2017;292:17541-17558 pubmed 出版商
  73. Wang W, Xia Z, Farré J, Subramani S. TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J Cell Biol. 2017;216:2843-2858 pubmed 出版商
  74. Bononi A, Giorgi C, Patergnani S, Larson D, Verbruggen K, Tanji M, et al. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature. 2017;546:549-553 pubmed 出版商
  75. Pereira R, Tadinada S, Zasadny F, Oliveira K, Pires K, Olvera A, et al. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J. 2017;36:2126-2145 pubmed 出版商
  76. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546:158-161 pubmed 出版商
  77. Nam M, Akie T, Sanosaka M, Craige S, Kant S, Keaney J, et al. Mitochondrial retrograde signaling connects respiratory capacity to thermogenic gene expression. Sci Rep. 2017;7:2013 pubmed 出版商
  78. Pinto S, Lamon S, Stephenson E, Kalanon M, Mikovic J, Koch L, et al. Expression of microRNAs and target proteins in skeletal muscle of rats selectively bred for high and low running capacity. Am J Physiol Endocrinol Metab. 2017;313:E335-E343 pubmed 出版商
  79. Luongo T, Lambert J, Gross P, Nwokedi M, Lombardi A, Shanmughapriya S, et al. The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature. 2017;545:93-97 pubmed 出版商
  80. Wakim J, Goudenège D, Perrot R, Gueguen N, Desquiret Dumas V, Chao De La Barca J, et al. CLUH couples mitochondrial distribution to the energetic and metabolic status. J Cell Sci. 2017;130:1940-1951 pubmed 出版商
  81. Latina V, Caioli S, Zona C, Ciotti M, Amadoro G, Calissano P. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Front Cell Neurosci. 2017;11:68 pubmed 出版商
  82. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  83. Møller A, Kampmann U, Hedegaard J, Thorsen K, Nordentoft I, Vendelbo M, et al. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes. Sci Rep. 2017;7:43775 pubmed 出版商
  84. Musante L, Püttmann L, Kahrizi K, Garshasbi M, Hu H, Stehr H, et al. Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability. Hum Mutat. 2017;38:621-636 pubmed 出版商
  85. Lapierre L, Manning E, Mitchell K, Caldwell C, Goldenring J. Interaction of phosphorylated Rab11-FIP2 with Eps15 regulates apical junction composition. Mol Biol Cell. 2017;28:1088-1100 pubmed 出版商
  86. Wolfson R, Chantranupong L, Wyant G, Gu X, Orozco J, Shen K, et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature. 2017;543:438-442 pubmed 出版商
  87. Sugiura A, Mattie S, Prudent J, McBride H. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature. 2017;542:251-254 pubmed 出版商
  88. Koh H, Kim Y, Kim J, Yun J, Jang K, Yang C. Toxoplasma gondii GRA7-Targeted ASC and PLD1 Promote Antibacterial Host Defense via PKCα. PLoS Pathog. 2017;13:e1006126 pubmed 出版商
  89. Merdzo I, Rutkai I, Sure V, McNulty C, Katakam P, Busija D. Impaired Mitochondrial Respiration in Large Cerebral Arteries of Rats with Type 2 Diabetes. J Vasc Res. 2017;54:1-12 pubmed 出版商
  90. Bourens M, Barrientos A. A CMC1-knockout reveals translation-independent control of human mitochondrial complex IV biogenesis. EMBO Rep. 2017;18:477-494 pubmed 出版商
  91. Gomez Serrano M, Camafeita E, Lopez J, Rubio M, Bretón I, Garcia Consuegra I, et al. Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes. Redox Biol. 2017;11:415-428 pubmed 出版商
  92. Meng F, Cang X, Peng Y, Li R, Zhang Z, Li F, et al. Biochemical Evidence for a Nuclear Modifier Allele (A10S) in TRMU (Methylaminomethyl-2-thiouridylate-methyltransferase) Related to Mitochondrial tRNA Modification in the Phenotypic Manifestation of Deafness-associated 12S rRNA Mutation. J Biol Chem. 2017;292:2881-2892 pubmed 出版商
  93. Wang X, Wang L, Sun Y, Li R, Deng J, Deng J. DNA methylation and histone deacetylation regulating insulin sensitivity due to chronic cold exposure. Cryobiology. 2017;74:36-42 pubmed 出版商
  94. Yao P, Manor U, Petralia R, Brose R, Wu R, Ott C, et al. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons. Mol Biol Cell. 2017;28:387-395 pubmed 出版商
  95. Fischer A, Shabalina I, Mattsson C, Abreu Vieira G, Cannon B, Nedergaard J, et al. UCP1 inhibition in Cidea-overexpressing mice is physiologically counteracted by brown adipose tissue hyperrecruitment. Am J Physiol Endocrinol Metab. 2017;312:E72-E87 pubmed 出版商
  96. Guo X, Qi X. VCP cooperates with UBXD1 to degrade mitochondrial outer membrane protein MCL1 in model of Huntington's disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863:552-559 pubmed 出版商
  97. Watanabe S, Ilieva H, Tamada H, Nomura H, Komine O, Endo F, et al. Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol Med. 2016;8:1421-1437 pubmed 出版商
  98. Zhu L, Gómez Durán A, Saretzki G, Jin S, Tilgner K, Melguizo Sanchís D, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol. 2016;215:187-202 pubmed
  99. Jitobaom K, Tongluan N, Smith D. Involvement of voltage-dependent anion channel (VDAC) in dengue infection. Sci Rep. 2016;6:35753 pubmed 出版商
  100. Zou P, Liu L, Zheng L, Payne K, Manjili M, Idowu M, et al. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment. Oxid Med Cell Longev. 2016;2016:4085727 pubmed
  101. Choi Y, Shembade N, Parvatiyar K, Balachandran S, Harhaj E. TAX1BP1 Restrains Virus-Induced Apoptosis by Facilitating Itch-Mediated Degradation of the Mitochondrial Adaptor MAVS. Mol Cell Biol. 2017;37: pubmed 出版商
  102. Christensen B, Nellemann B, Jørgensen J, Pedersen S, Jessen N. Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo. Lipids Health Dis. 2016;15:160 pubmed 出版商
  103. Lauritzen K, Hasan Olive M, Regnell C, Kleppa L, Scheibye Knudsen M, Gjedde A, et al. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging. 2016;48:34-47 pubmed 出版商
  104. D Andrea A, Gritti I, Nicoli P, Giorgio M, Doni M, Conti A, et al. The mitochondrial translation machinery as a therapeutic target in Myc-driven lymphomas. Oncotarget. 2016;7:72415-72430 pubmed 出版商
  105. Lacroix M, Rodier G, Kirsh O, Houles T, Delpech H, Seyran B, et al. E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A. 2016;113:10998-1003 pubmed 出版商
  106. Spendiff S, Vuda M, Gouspillou G, Aare S, Pérez A, Morais J, et al. Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol. 2016;594:7361-7379 pubmed 出版商
  107. Nag T, Wadhwa S. Immunolocalisation pattern of complex I-V in ageing human retina: Correlation with mitochondrial ultrastructure. Mitochondrion. 2016;31:20-32 pubmed 出版商
  108. Vishnyakova P, Volodina M, Tarasova N, Marey M, Tsvirkun D, Vavina O, et al. Mitochondrial role in adaptive response to stress conditions in preeclampsia. Sci Rep. 2016;6:32410 pubmed 出版商
  109. Diokmetzidou A, Soumaka E, Kloukina I, Tsikitis M, Makridakis M, Varela A, et al. Desmin and ?B-crystallin interplay in the maintenance of mitochondrial homeostasis and cardiomyocyte survival. J Cell Sci. 2016;129:3705-3720 pubmed
  110. Guo X, Sun X, Hu D, Wang Y, Fujioka H, Vyas R, et al. VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington's disease. Nat Commun. 2016;7:12646 pubmed 出版商
  111. Liu J, Liu J, Holmström K, Menazza S, Parks R, Fergusson M, et al. MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium Overload. Cell Rep. 2016;16:1561-1573 pubmed 出版商
  112. McLelland G, Lee S, McBride H, Fon E. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J Cell Biol. 2016;214:275-91 pubmed 出版商
  113. Rohlenova K, Sachaphibulkij K, Stursa J, Bezawork Geleta A, Blecha J, Endaya B, et al. Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2high Breast Cancer. Antioxid Redox Signal. 2017;26:84-103 pubmed 出版商
  114. Zhang X, Ling Y, Guo Y, Bai Y, Shi X, Gong F, et al. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria. Cell Death Dis. 2016;7:e2292 pubmed 出版商
  115. Frau Méndez M, Fernández Vega I, Ansoleaga B, Blanco Tech R, Carmona Tech M, Antonio Del Río J, et al. Fatal familial insomnia: mitochondrial and protein synthesis machinery decline in the mediodorsal thalamus. Brain Pathol. 2017;27:95-106 pubmed 出版商
  116. He C, Wang J, Zhang Z, Yang M, Li Y, Tian X, et al. Mitochondria Synthesize Melatonin to Ameliorate Its Function and Improve Mice Oocyte's Quality under in Vitro Conditions. Int J Mol Sci. 2016;17: pubmed 出版商
  117. Hall A, Burke N, Dongworth R, Kalkhoran S, Dyson A, Vicencio J, et al. Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction. Cell Death Dis. 2016;7:e2238 pubmed 出版商
  118. Phillips J, Laude A, Lightowlers R, Morris C, Turnbull D, Lax N. Development of passive CLARITY and immunofluorescent labelling of multiple proteins in human cerebellum: understanding mechanisms of neurodegeneration in mitochondrial disease. Sci Rep. 2016;6:26013 pubmed 出版商
  119. Thakurela S, Garding A, Jung R, Müller C, Goebbels S, White R, et al. The transcriptome of mouse central nervous system myelin. Sci Rep. 2016;6:25828 pubmed 出版商
  120. Fan J, Li X, Issop L, Culty M, Papadopoulos V. ACBD2/ECI2-Mediated Peroxisome-Mitochondria Interactions in Leydig Cell Steroid Biosynthesis. Mol Endocrinol. 2016;30:763-82 pubmed 出版商
  121. Beck S, Guo L, Phensy A, Tian J, Wang L, Tandon N, et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nat Commun. 2016;7:11483 pubmed 出版商
  122. Swiader A, Nahapetyan H, Faccini J, D Angelo R, Mucher E, Elbaz M, et al. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget. 2016;7:28821-35 pubmed 出版商
  123. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  124. Hiemstra J, Lee D, Chakir K, Gutiérrez Aguilar M, Marshall K, Zgoda P, et al. Saxagliptin and Tadalafil Differentially Alter Cyclic Guanosine Monophosphate (cGMP) Signaling and Left Ventricular Function in Aortic-Banded Mini-Swine. J Am Heart Assoc. 2016;5:e003277 pubmed 出版商
  125. Basisty N, Dai D, Gagnidze A, Gitari L, Fredrickson J, Maina Y, et al. Mitochondrial-targeted catalase is good for the old mouse proteome, but not for the young: 'reverse' antagonistic pleiotropy?. Aging Cell. 2016;15:634-45 pubmed 出版商
  126. Zhuang H, Tian W, Li W, Zhang X, Wang J, Yang Y, et al. Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury. Int J Mol Sci. 2016;17:515 pubmed 出版商
  127. Hattori K, Naguro I, Okabe K, Funatsu T, Furutani S, Takeda K, et al. ASK1 signalling regulates brown and beige adipocyte function. Nat Commun. 2016;7:11158 pubmed 出版商
  128. Wang H, Zhang H, Chen X, Zhao T, Kong Q, Yan M, et al. The decreased expression of electron transfer flavoprotein ? is associated with tubular cell apoptosis in diabetic nephropathy. Int J Mol Med. 2016;37:1290-8 pubmed 出版商
  129. Zhao Y, Xu L, Qiao Z, Gao L, Ding S, Ying X, et al. YiXin-Shu, a ShengMai-San-based traditional Chinese medicine formula, attenuates myocardial ischemia/reperfusion injury by suppressing mitochondrial mediated apoptosis and upregulating liver-X-receptor α. Sci Rep. 2016;6:23025 pubmed 出版商
  130. Cannavo A, Liccardo D, Eguchi A, Elliott K, Traynham C, Ibetti J, et al. Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases. Nat Commun. 2016;7:10877 pubmed 出版商
  131. Zhang Y, Zhao Z, Ke B, Wan L, Wang H, Ye J. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function. PLoS ONE. 2016;11:e0150454 pubmed 出版商
  132. Polyzos A, Holt A, Brown C, Cosme C, Wipf P, Gomez Marin A, et al. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. Hum Mol Genet. 2016;25:1792-802 pubmed 出版商
  133. Lu Y, Galbraith L, Herndon J, Lü Y, Pras Raves M, Vervaart M, et al. Defining functional classes of Barth syndrome mutation in humans. Hum Mol Genet. 2016;25:1754-70 pubmed 出版商
  134. Li N, Fan J, Papadopoulos V. Sterol Carrier Protein-2, a Nonspecific Lipid-Transfer Protein, in Intracellular Cholesterol Trafficking in Testicular Leydig Cells. PLoS ONE. 2016;11:e0149728 pubmed 出版商
  135. Merdzo I, Rutkai I, Tokés T, Sure V, Katakam P, Busija D. The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats. Am J Physiol Heart Circ Physiol. 2016;310:H830-8 pubmed 出版商
  136. Shinde V, Kotla P, Strang C, Gorbatyuk M. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa. Cell Death Dis. 2016;7:e2085 pubmed 出版商
  137. Safdar A, Khrapko K, Flynn J, Saleem A, De Lisio M, Johnston A, et al. Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice. Skelet Muscle. 2016;6:7 pubmed 出版商
  138. Sen A, Cox R. Clueless is a conserved ribonucleoprotein that binds the ribosome at the mitochondrial outer membrane. Biol Open. 2016;5:195-203 pubmed 出版商
  139. Gray L, Rauckhorst A, Taylor E. A Method for Multiplexed Measurement of Mitochondrial Pyruvate Carrier Activity. J Biol Chem. 2016;291:7409-17 pubmed 出版商
  140. Visavadiya N, Patel S, VanRooyen J, Sullivan P, Rabchevsky A. Cellular and subcellular oxidative stress parameters following severe spinal cord injury. Redox Biol. 2016;8:59-67 pubmed 出版商
  141. Suliman H, Zobi F, Piantadosi C. Heme Oxygenase-1/Carbon Monoxide System and Embryonic Stem Cell Differentiation and Maturation into Cardiomyocytes. Antioxid Redox Signal. 2016;24:345-60 pubmed 出版商
  142. Liu C, Li X, Lu B. The Immp2l mutation causes age-dependent degeneration of cerebellar granule neurons prevented by antioxidant treatment. Aging Cell. 2016;15:167-76 pubmed 出版商
  143. Lesmana R, Sinha R, Singh B, Zhou J, Ohba K, Wu Y, et al. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology. 2016;157:23-38 pubmed 出版商
  144. Sabirzhanov B, Stoica B, Zhao Z, Loane D, Wu J, Dorsey S, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23:654-68 pubmed 出版商
  145. Geng J, Sun X, Wang P, Zhang S, Wang X, Wu H, et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol. 2015;16:1142-52 pubmed 出版商
  146. Hwang S, Disatnik M, Mochly Rosen D. Impaired GAPDH-induced mitophagy contributes to the pathology of Huntington's disease. EMBO Mol Med. 2015;7:1307-26 pubmed 出版商
  147. Ying L, Chunxia Y, Wei L. Inhibition of ovarian cancer cell growth by a novel TAK1 inhibitor LYTAK1. Cancer Chemother Pharmacol. 2015;76:641-50 pubmed 出版商
  148. Yoon S, Bogdanov K, Kovalenko A, Wallach D. Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it. Cell Death Differ. 2016;23:253-60 pubmed 出版商
  149. Nagaoka K, Matoba T, Mao Y, Nakano Y, Ikeda G, Egusa S, et al. A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model. PLoS ONE. 2015;10:e0132451 pubmed 出版商
  150. Liu K, Frazier W. Phosphorylation of the BNIP3 C-Terminus Inhibits Mitochondrial Damage and Cell Death without Blocking Autophagy. PLoS ONE. 2015;10:e0129667 pubmed 出版商
  151. Liu G, Wang Z, Wang Z, Yang D, Liu Z, Wang L. Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol. 2016;90:1193-209 pubmed 出版商
  152. Dettmer U, Newman A, Soldner F, Luth E, Kim N, von Saucken V, et al. Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat Commun. 2015;6:7314 pubmed 出版商
  153. Kim J, Kim B, Lee H, Thakkar S, Babbitt D, Eguchi S, et al. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells. Am J Physiol Heart Circ Physiol. 2015;309:H425-33 pubmed 出版商
  154. Nagata T, Yasukawa H, Kyogoku S, Oba T, Takahashi J, Nohara S, et al. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules. PLoS ONE. 2015;10:e0127942 pubmed 出版商
  155. Tian W, Li W, Chen Y, Yan Z, Huang X, Zhuang H, et al. Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy. FEBS Lett. 2015;589:1847-54 pubmed 出版商
  156. Teixeira F, Sanchez C, Hurd T, Seifert J, Czech B, Preall J, et al. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nat Cell Biol. 2015;17:689-96 pubmed 出版商
  157. Boddu R, Hull T, Bolisetty S, Hu X, Moehle M, Daher J, et al. Leucine-rich repeat kinase 2 deficiency is protective in rhabdomyolysis-induced kidney injury. Hum Mol Genet. 2015;24:4078-93 pubmed 出版商
  158. Moreira J, Wohlwend M, Alves M, Wisløff U, Bye A. A small molecule activator of AKT does not reduce ischemic injury of the rat heart. J Transl Med. 2015;13:76 pubmed 出版商
  159. Antonenkov V, Isomursu A, Mennerich D, Vapola M, Weiher H, Kietzmann T, et al. The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential. J Biol Chem. 2015;290:13840-61 pubmed 出版商
  160. Seillier M, Pouyet L, N Guessan P, Nollet M, Capo F, Guillaumond F, et al. Defects in mitophagy promote redox-driven metabolic syndrome in the absence of TP53INP1. EMBO Mol Med. 2015;7:802-18 pubmed 出版商
  161. Luna Sánchez M, Díaz Casado E, Barca E, Tejada M, Montilla García Ã, Cobos E, et al. The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene. EMBO Mol Med. 2015;7:670-87 pubmed 出版商
  162. Gouspillou G, Scheede Bergdahl C, Spendiff S, Vuda M, Meehan B, Mlynarski H, et al. Anthracycline-containing chemotherapy causes long-term impairment of mitochondrial respiration and increased reactive oxygen species release in skeletal muscle. Sci Rep. 2015;5:8717 pubmed 出版商
  163. Kettwig M, Schubach M, Zimmermann F, Klinge L, Mayr J, Biskup S, et al. From ventriculomegaly to severe muscular atrophy: expansion of the clinical spectrum related to mutations in AIFM1. Mitochondrion. 2015;21:12-8 pubmed 出版商
  164. Wang W, Visavadiya N, Pandya J, Nelson P, Sullivan P, Springer J. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol. 2015;265:84-93 pubmed 出版商
  165. Jaishy B, Zhang Q, Chung H, Riehle C, Soto J, Jenkins S, et al. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J Lipid Res. 2015;56:546-61 pubmed 出版商
  166. Baggio F, Bratic A, Mourier A, Kauppila T, Tain L, Kukat C, et al. Drosophila melanogaster LRPPRC2 is involved in coordination of mitochondrial translation. Nucleic Acids Res. 2014;42:13920-38 pubmed 出版商
  167. Sunaga D, Tanno M, Kuno A, Ishikawa S, Ogasawara M, Yano T, et al. Accelerated recovery of mitochondrial membrane potential by GSK-3β inactivation affords cardiomyocytes protection from oxidant-induced necrosis. PLoS ONE. 2014;9:e112529 pubmed 出版商
  168. Lassance L, Haghiac M, Minium J, Catalano P, Hauguel De Mouzon S. Obesity-induced down-regulation of the mitochondrial translocator protein (TSPO) impairs placental steroid production. J Clin Endocrinol Metab. 2015;100:E11-8 pubmed 出版商
  169. Tanno M, Kuno A, Ishikawa S, Miki T, Kouzu H, Yano T, et al. Translocation of glycogen synthase kinase-3β (GSK-3β), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent anion channel 2 (VDAC2). J Biol Chem. 2014;289:29285-96 pubmed 出版商
  170. García Dorival I, Wu W, Dowall S, Armstrong S, Touzelet O, Wastling J, et al. Elucidation of the Ebola virus VP24 cellular interactome and disruption of virus biology through targeted inhibition of host-cell protein function. J Proteome Res. 2014;13:5120-35 pubmed 出版商
  171. Subramaniam S, Vergnes L, Franich N, Reue K, Chesselet M. Region specific mitochondrial impairment in mice with widespread overexpression of alpha-synuclein. Neurobiol Dis. 2014;70:204-13 pubmed 出版商
  172. Boczonadi V, Müller J, Pyle A, Munkley J, Dor T, Quartararo J, et al. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun. 2014;5:4287 pubmed 出版商
  173. Fiesel F, Moussaud Lamodière E, Ando M, Springer W. A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently. J Cell Sci. 2014;127:3488-504 pubmed 出版商
  174. Choubey V, Cagalinec M, Liiv J, Safiulina D, Hickey M, Kuum M, et al. BECN1 is involved in the initiation of mitophagy: it facilitates PARK2 translocation to mitochondria. Autophagy. 2014;10:1105-19 pubmed 出版商
  175. Hegde V, Vogel R, Feany M. Glia are critical for the neuropathology of complex I deficiency in Drosophila. Hum Mol Genet. 2014;23:4686-92 pubmed 出版商
  176. Stauch K, Purnell P, Fox H. Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability. J Proteome Res. 2014;13:2620-36 pubmed 出版商
  177. Buler M, Aatsinki S, Izzi V, Uusimaa J, Hakkola J. SIRT5 is under the control of PGC-1? and AMPK and is involved in regulation of mitochondrial energy metabolism. FASEB J. 2014;28:3225-37 pubmed 出版商
  178. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed 出版商
  179. Li W, Zhang X, Zhuang H, Chen H, Chen Y, Tian W, et al. MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J Biol Chem. 2014;289:10691-701 pubmed 出版商
  180. Rupprecht A, Sittner D, Smorodchenko A, Hilse K, Goyn J, Moldzio R, et al. Uncoupling protein 2 and 4 expression pattern during stem cell differentiation provides new insight into their putative function. PLoS ONE. 2014;9:e88474 pubmed 出版商
  181. Bravard A, Vial G, Chauvin M, Rouille Y, Bailleul B, Vidal H, et al. FTO contributes to hepatic metabolism regulation through regulation of leptin action and STAT3 signalling in liver. Cell Commun Signal. 2014;12:4 pubmed 出版商
  182. Gouspillou G, Sgarioto N, Kapchinsky S, Purves Smith F, Norris B, Pion C, et al. Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J. 2014;28:1621-33 pubmed 出版商
  183. van Weeghel M, Ofman R, Argmann C, Ruiter J, Claessen N, Oussoren S, et al. Identification and characterization of Eci3, a murine kidney-specific ?3,?2-enoyl-CoA isomerase. FASEB J. 2014;28:1365-74 pubmed 出版商
  184. Mizunoya W, Iwamoto Y, Shirouchi B, Sato M, Komiya Y, Razin F, et al. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle. PLoS ONE. 2013;8:e80152 pubmed 出版商
  185. Mizunoya W, Iwamoto Y, Sato Y, Tatsumi R, Ikeuchi Y. Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats. Anim Sci J. 2014;85:293-304 pubmed 出版商
  186. Jockusch H, Holland A, Staunton L, Schmitt John T, Heimann P, Dowling P, et al. Pathoproteomics of testicular tissue deficient in the GARP component VPS54: the wobbler mouse model of globozoospermia. Proteomics. 2014;14:839-52 pubmed 出版商
  187. Haack T, Kopajtich R, Freisinger P, Wieland T, Rorbach J, Nicholls T, et al. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet. 2013;93:211-23 pubmed 出版商
  188. Choi J, Batchu V, Schubert M, Castellani R, Russell J. A novel PGC-1? isoform in brain localizes to mitochondria and associates with PINK1 and VDAC. Biochem Biophys Res Commun. 2013;435:671-7 pubmed 出版商
  189. Chung D, Szyszka B, Brown J, Huner N, Staples J. Changes in the mitochondrial phosphoproteome during mammalian hibernation. Physiol Genomics. 2013;45:389-99 pubmed 出版商
  190. Buler M, Aatsinki S, Izzi V, Hakkola J. Metformin reduces hepatic expression of SIRT3, the mitochondrial deacetylase controlling energy metabolism. PLoS ONE. 2012;7:e49863 pubmed 出版商
  191. Hong K, Li Y, Duan W, Guo Y, Jiang H, Li W, et al. Full-length TDP-43 and its C-terminal fragments activate mitophagy in NSC34 cell line. Neurosci Lett. 2012;530:144-9 pubmed 出版商