这是一篇来自已证抗体库的有关人类 VE钙粘蛋白 (VE cadherin) 的综述,是根据126篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合VE钙粘蛋白 抗体。
VE钙粘蛋白 同义词: 7B4; CD144

圣克鲁斯生物技术
小鼠 单克隆(F-8)
  • 免疫细胞化学; 小鼠; 图 4d
  • 免疫印迹; 人类; 图 4f
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc-9989)被用于被用于免疫细胞化学在小鼠样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 4f). PLoS ONE (2020) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 人类; 1:100; 图 2c
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz Biotechnologies, sc-9989)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2c). elife (2019) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz Biotechnology, sc-9989)被用于被用于免疫印迹在小鼠样本上. elife (2018) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 1:500; 图 1c
圣克鲁斯生物技术VE钙粘蛋白抗体(SantaCruz, sc-9989)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1c). Cell Death Differ (2019) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学基因敲除验证; 人类; 1:200; 图 s6c
  • 免疫印迹; 人类; 1:200; 图 1g
圣克鲁斯生物技术VE钙粘蛋白抗体(SantaCruz, F-8)被用于被用于免疫细胞化学基因敲除验证在人类样本上浓度为1:200 (图 s6c) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 1g). Nature (2017) ncbi
小鼠 单克隆(CH-19)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc-59876)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 图 8d
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, SC-9989)被用于被用于免疫印迹在小鼠样本上 (图 8d) 和 被用于免疫印迹在人类样本上 (图 1c). Redox Biol (2017) ncbi
小鼠 单克隆(F-8)
  • 免疫组化-冰冻切片; pigs ; 图 1f
圣克鲁斯生物技术VE钙粘蛋白抗体(SantaCruz, sc-9989)被用于被用于免疫组化-冰冻切片在pigs 样本上 (图 1f). Biochim Biophys Acta Mol Cell Biol Lipids (2017) ncbi
小鼠 单克隆(F-8)
  • 免疫组化; 人类; 1:200; 图 5a
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc-9989)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术VE钙粘蛋白抗体(SantaCruz, F8)被用于被用于免疫印迹在人类样本上 (图 1a). Oncogene (2017) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 1:100; 图 2b
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc-9989)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2b). Mol Hum Reprod (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 人类; 1:100; 表 1
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc9989)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Methods Mol Biol (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 人类; 1:25; 图 2c
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz Biotechnology, F-8)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 2c). Mol Pharm (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 人类; 1:100; 图 2
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, SC-9989)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 人类; 1:50; 图 9d
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, F-8)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 9d). Angiogenesis (2016) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:50; 图 9d
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, F-8)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 9d). Angiogenesis (2016) ncbi
小鼠 单克隆(BV9)
  • 免疫细胞化学; 人类; 1:100; 图 2
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc-52751)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). MBio (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, SC-9989)被用于被用于免疫印迹在小鼠样本上 (图 7). Cardiovasc Res (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 人类; 1:100; 图 3b
  • 免疫印迹; 人类; 1:1000; 图 1c
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc-9989)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 大鼠; 1:100; 图 2
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc-9989)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2). Stem Cells Int (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc-9989)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(BV9)
  • 免疫细胞化学; 人类; 1:25; 图 1
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, BV9)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 1). Methods (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc-9989)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). EMBO Mol Med (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, SC-9989)被用于被用于免疫细胞化学在小鼠样本上. Cell Res (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 大鼠; 1:200; 图 6
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa-Cruz, sc-9989)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(BV9)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, Sc-52751)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Cancer Sci (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa-Cruz, sc-9989)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫组化-石蜡切片; pigs
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz Biotechnology, sc-9989)被用于被用于免疫组化-石蜡切片在pigs 样本上. Biomaterials (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 人类; 1:50; 图 3
圣克鲁斯生物技术VE钙粘蛋白抗体(santa Cruz, sc-9989)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(CH-19)
  • 免疫印迹; 小鼠; 1:4000; 图 5c
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz Biotechnology, sc-59876)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 5c). Nat Neurosci (2014) ncbi
小鼠 单克隆(F-8)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc-9989)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:200. J Histochem Cytochem (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz Biotechnology, sc-9989)被用于被用于免疫细胞化学在人类样本上. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 人类; 图 2, 3, 4
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc-9989)被用于被用于免疫细胞化学在人类样本上 (图 2, 3, 4). Cardiovasc Res (2014) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 人类; 1:200; 图 2
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc-9989)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Cell Biol Int (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 人类; 1:50
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, F8)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Clin Cancer Res (2014) ncbi
小鼠 单克隆(F-8)
  • 免疫细胞化学; 人类
  • 免疫组化-冰冻切片; 小鼠
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz Biotechnology, sc-9989)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫组化-冰冻切片在小鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(BV9)
  • 免疫印迹; 人类
圣克鲁斯生物技术VE钙粘蛋白抗体(Santa Cruz, sc-52751)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛默飞世尔VE钙粘蛋白抗体(Invitrogen, 44-1144G)被用于被用于免疫印迹在小鼠样本上 (图 4f). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
赛默飞世尔VE钙粘蛋白抗体(Invitrogen, 44-1145G)被用于被用于免疫印迹在小鼠样本上 (图 2d). Am J Physiol Lung Cell Mol Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:50; 图 s8
赛默飞世尔VE钙粘蛋白抗体(Thermo Fisher, 36-1900)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 s8). J Tissue Eng Regen Med (2018) ncbi
小鼠 单克隆(16B1)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 6a
赛默飞世尔VE钙粘蛋白抗体(eBioscience, 14144982)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 6a). Biochemistry (Mosc) (2016) ncbi
小鼠 单克隆(16B1)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫细胞化学; 人类; 1:200; 图 6a
赛默飞世尔VE钙粘蛋白抗体(eBioscience, 14-1449-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 6a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛默飞世尔VE钙粘蛋白抗体(Thermo Scientific, PA5-17401)被用于被用于免疫印迹在人类样本上 (图 1c). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔VE钙粘蛋白抗体(Thermo Scientific, PA5-19612)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 6
  • 免疫印迹; 人类; 图 s4a
赛默飞世尔VE钙粘蛋白抗体(Thermo Scientific, PA5-19612)被用于被用于免疫细胞化学在小鼠样本上 (图 5c), 被用于免疫印迹在小鼠样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 s4a). Eur J Cell Biol (2016) ncbi
小鼠 单克隆(3D5C7)
  • 免疫印迹; 大鼠; 1:10,000; 图 2
赛默飞世尔VE钙粘蛋白抗体(ThermoFisher Scientific, MA5-17050)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 2). Peptides (2016) ncbi
小鼠 单克隆(16B1)
  • 免疫细胞化学; 人类; 1:200; 图 2a
赛默飞世尔VE钙粘蛋白抗体(eBioscience, 14-1449-82)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2a). Ann Oncol (2016) ncbi
小鼠 单克隆(16B1)
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔VE钙粘蛋白抗体(eBioscience, 16B1)被用于被用于流式细胞仪在人类样本上 (图 1c). J Cell Physiol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔VE钙粘蛋白抗体(生活技术, 441144G)被用于. Cardiovasc Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔VE钙粘蛋白抗体(生活技术, 441145G)被用于. Cardiovasc Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔VE钙粘蛋白抗体(Invitrogen, 441144G)被用于. Sci Adv (2015) ncbi
小鼠 单克隆(16B1)
  • 流式细胞仪; 人类; 1:150; 图 3e
赛默飞世尔VE钙粘蛋白抗体(eBioscience, 12-1449-80)被用于被用于流式细胞仪在人类样本上浓度为1:150 (图 3e). Nat Biotechnol (2015) ncbi
小鼠 单克隆(16B1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔VE钙粘蛋白抗体(e-Bioscience, 16B1)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(16B1)
  • 免疫细胞化学; 人类; 1:20
赛默飞世尔VE钙粘蛋白抗体(eBioscience, 16B1)被用于被用于免疫细胞化学在人类样本上浓度为1:20. Int J Mol Med (2015) ncbi
小鼠 单克隆(16B1)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔VE钙粘蛋白抗体(ebioscience, 12-1449-80)被用于被用于流式细胞仪在人类样本上 (表 2). J Thorac Cardiovasc Surg (2015) ncbi
小鼠 单克隆(16B1)
  • 流式细胞仪; 人类
赛默飞世尔VE钙粘蛋白抗体(eBioscience, 16B1)被用于被用于流式细胞仪在人类样本上. Nat Biotechnol (2014) ncbi
小鼠 单克隆(16B1)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔VE钙粘蛋白抗体(eBioscience, 17-1449)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nature (2013) ncbi
小鼠 单克隆(16B1)
  • 免疫组化; 人类
赛默飞世尔VE钙粘蛋白抗体(eBiosciences, 16B1)被用于被用于免疫组化在人类样本上. Development (2013) ncbi
小鼠 单克隆(16B1)
  • 流式细胞仪; 人类
赛默飞世尔VE钙粘蛋白抗体(E-Bioscience, 16B1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(16B1)
  • 流式细胞仪; 人类; 图 2c.1.3
赛默飞世尔VE钙粘蛋白抗体(eBioscience, 12-1449-80)被用于被用于流式细胞仪在人类样本上 (图 2c.1.3). Curr Protoc Stem Cell Biol (2008) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4f
  • 免疫细胞化学; 小鼠; 图 4d
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab33168)被用于被用于免疫印迹在人类样本上 (图 4f) 和 被用于免疫细胞化学在小鼠样本上 (图 4d). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3j
  • 免疫印迹; 小鼠; 1:1000; 图 7i
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab33168)被用于被用于免疫组化在小鼠样本上 (图 3j) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7i). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 4b
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab33168)被用于被用于免疫细胞化学在小鼠样本上 (图 4b). Mol Ther Nucleic Acids (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1b
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(ABcam, ab33168)被用于被用于免疫细胞化学在人类样本上 (图 s1b). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 4c
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab33168)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 4c). J Am Heart Assoc (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab33168)被用于被用于免疫印迹在人类样本上 (图 1d). J Cell Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1f
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab33168)被用于被用于免疫细胞化学在人类样本上 (图 1f). Fluids Barriers CNS (2018) ncbi
小鼠 单克隆(mAbcam22744)
  • 免疫印迹; 人类; 1:10,000; 图 1c
  • 免疫印迹; 小鼠; 1:10,000; 图 s2b
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, AB22744)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1c) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s2b). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 1:2000; 图 2j
  • 免疫沉淀; 人类; 图 2j
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab33168)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:2000 (图 2j) 和 被用于免疫沉淀在人类样本上 (图 2j). Nature (2017) ncbi
小鼠 单克隆(mAbcam22744)
  • 免疫细胞化学; 人类; 图 s5d
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab22744)被用于被用于免疫细胞化学在人类样本上 (图 s5d). PLoS Genet (2017) ncbi
domestic rabbit 单克隆(EPR18229)
  • 酶联免疫吸附测定; 人类; 1:100; 图 7d
  • 免疫印迹; 小鼠; 图 2f
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab205336)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:100 (图 7d) 和 被用于免疫印迹在小鼠样本上 (图 2f). Biomed Res Int (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:700; 图 5a
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, AB119785)被用于被用于免疫印迹在小鼠样本上浓度为1:700 (图 5a). Mediators Inflamm (2016) ncbi
小鼠 单克隆(mAbcam22744)
  • 免疫印迹; 大鼠; 图 3b
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab22744)被用于被用于免疫印迹在大鼠样本上 (图 3b). Cardiovasc Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 8d
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, Ab33168)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 8d). Hear Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3t
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab33168)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3t). Free Radic Biol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab33168)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1g
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab33168)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1g). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:75; 图 6
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab33168)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:75 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 6). Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 8
  • 免疫印迹; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, Ab33168)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 8) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司VE钙粘蛋白抗体(Abcam, ab-33168)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Med (2016) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:70; 图 6c
安迪生物R&DVE钙粘蛋白抗体(Biotechne, AF938)被用于被用于免疫细胞化学在人类样本上浓度为1:70 (图 6c). elife (2019) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s1b
安迪生物R&DVE钙粘蛋白抗体(R&D Systems, AF938)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1b). Mol Ther Nucleic Acids (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s2e
  • 免疫细胞化学; 人类; 1:100; 图 2g
安迪生物R&DVE钙粘蛋白抗体(R&D, AF938)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s2e) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2g). Dev Cell (2019) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 图 1c
安迪生物R&DVE钙粘蛋白抗体(R&D Systems, AF938)被用于被用于免疫细胞化学在人类样本上 (图 1c). Stem Cell Rev (2017) ncbi
BioLegend
小鼠 单克隆(BV9)
  • 流式细胞仪; 人类; 图 5
BioLegendVE钙粘蛋白抗体(BioLegend, 348506)被用于被用于流式细胞仪在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(BV9)
  • 流式细胞仪; 人类; 表 1
BioLegendVE钙粘蛋白抗体(BioLegend, 2BV9)被用于被用于流式细胞仪在人类样本上 (表 1). J Transl Med (2015) ncbi
小鼠 单克隆(BV9)
  • 流式细胞仪; 人类; 图 5
BioLegendVE钙粘蛋白抗体(Biolegend, 348506)被用于被用于流式细胞仪在人类样本上 (图 5). J Neuroinflammation (2015) ncbi
北京傲锐东源
小鼠 单克隆(OTI1F4)
  • 免疫印迹; 人类; 图 4f
北京傲锐东源VE钙粘蛋白抗体(Origene, TA804746)被用于被用于免疫印迹在人类样本上 (图 4f). J Cell Physiol (2019) ncbi
Enzo Life Sciences
domestic rabbit 多克隆
  • 免疫组化; 小鼠
Enzo Life SciencesVE钙粘蛋白抗体(Enzo Life Sciences, ALX-210-232-C100)被用于被用于免疫组化在小鼠样本上. Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7
Enzo Life SciencesVE钙粘蛋白抗体(Enzo Life Sciences, ALX-210-232-C100)被用于被用于免疫细胞化学在人类样本上 (图 7). J Cell Sci (2016) ncbi
美天旎
人类 单克隆(REA199)
  • 流式细胞仪; 人类; 图 3a
美天旎VE钙粘蛋白抗体(Miltenyi, REA199)被用于被用于流式细胞仪在人类样本上 (图 3a). Stem Cells Dev (2018) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D87F2)
  • 免疫细胞化学; 人类; 1:100; 图 s2-5
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell Signaling, 2500S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s2-5). elife (2020) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫细胞化学; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell Signaling, 2500)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3c). Toxicology (2016) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell Signaling, 2500)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 6
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell signaling, 2158)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3a
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell Signaling Technology, 2500)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫细胞化学; 人类; 1:200; 图 2
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(CST Biological Reagents Company, 2500)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Oncol Lett (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s5
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell Signaling Technology, 2158)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s5). Cell Res (2016) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫细胞化学; 大鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 1:200; 图 2
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell signaling, 2500)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). Am J Respir Crit Care Med (2016) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫印迹; 人类; 1:2000; 图 6g
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell Signaling Technology, 2500)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6g). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫细胞化学; 人类; 1:400; 图 2c
  • 免疫印迹; 人类; 1:100
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell Signalling, D87F2)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell Signaling, 2500)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫细胞化学; 猕猴; 图 10
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell signaling, 2500)被用于被用于免疫细胞化学在猕猴样本上 (图 10). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫印迹; 人类; 1:300-500
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell signaling, #D87F2)被用于被用于免疫印迹在人类样本上浓度为1:300-500. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫细胞化学; 小鼠; 1:400
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell Signaling, 2500)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 和 被用于免疫印迹在小鼠样本上浓度为1:1000. J Cell Physiol (2015) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell Signaling Technology, D87F2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:500. Fluids Barriers CNS (2014) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫组化-石蜡切片; 人类; 1:20
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(Cell Signaling Technology, 2500)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. Am J Pathol (2014) ncbi
domestic rabbit 单克隆(D87F2)
  • 免疫细胞化学; 人类; 1:300
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司VE钙粘蛋白抗体(细胞, D87F2)被用于被用于免疫细胞化学在人类样本上浓度为1:300 和 被用于免疫印迹在人类样本上浓度为1:500. J Immunol (2012) ncbi
Cayman Chemical
多克隆
  • 免疫印迹; 人类; 1:100; 图 2b
开曼群岛化学品VE钙粘蛋白抗体(开曼群岛化学品, 160840)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2b). Tissue Eng Part C Methods (2017) ncbi
多克隆
  • 免疫细胞化学; 人类; 1:500; 图 3
  • 免疫印迹; 人类; 1:2500; 图 s3
开曼群岛化学品VE钙粘蛋白抗体(Cayman, 160840)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 s3). Nat Commun (2016) ncbi
碧迪BD
小鼠 单克隆(55-7H1)
  • 免疫细胞化学; 人类; 1:100; 图 3a
碧迪BDVE钙粘蛋白抗体(BD Biosciences, 555661)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3a). elife (2020) ncbi
小鼠 单克隆(55-7H1)
  • 流式细胞仪; 人类; 图 3a
碧迪BDVE钙粘蛋白抗体(BD Bioscience, 560410)被用于被用于流式细胞仪在人类样本上 (图 3a). World J Stem Cells (2020) ncbi
小鼠 单克隆(55-7H1)
  • 免疫细胞化学; 人类; 图 s1
碧迪BDVE钙粘蛋白抗体(BD Biosciences, 555661)被用于被用于免疫细胞化学在人类样本上 (图 s1). J Cell Sci (2019) ncbi
小鼠 单克隆(75/Cadherin-5)
  • 免疫细胞化学; 人类; 图 7a
碧迪BDVE钙粘蛋白抗体(BD Transduction, 610252)被用于被用于免疫细胞化学在人类样本上 (图 7a). Cell (2019) ncbi
小鼠 单克隆(55-7H1)
  • 流式细胞仪; 人类; 图 1c
碧迪BDVE钙粘蛋白抗体(BD Bioscience, 55-7H1)被用于被用于流式细胞仪在人类样本上 (图 1c). Cell Stem Cell (2019) ncbi
小鼠 单克隆(75/Cadherin-5)
  • 免疫印迹; 人类; 图 7c
碧迪BDVE钙粘蛋白抗体(BD TransLab, 610252)被用于被用于免疫印迹在人类样本上 (图 7c). Mol Biol Cell (2017) ncbi
小鼠 单克隆(55-7H1)
  • 流式细胞仪; 人类; 1:1000; 图 1
碧迪BDVE钙粘蛋白抗体(BD Biosciences, 560874)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(55-7H1)
  • 流式细胞仪; 人类; 图 9
  • 免疫细胞化学; 人类; 1:500; 图 7
碧迪BDVE钙粘蛋白抗体(BD Pharmingen, 561567)被用于被用于流式细胞仪在人类样本上 (图 9) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(75/Cadherin-5)
  • 免疫细胞化学; 人类; 1:100; 图 1
  • 免疫印迹; 人类; 1:1000; 图 9
碧迪BDVE钙粘蛋白抗体(BD Bioscience, 610252)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 9). Nat Commun (2016) ncbi
小鼠 单克隆(55-7H1)
  • 免疫组化; 人类; 图 1b
碧迪BDVE钙粘蛋白抗体(BD, 555661)被用于被用于免疫组化在人类样本上 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(55-7H1)
  • 流式细胞仪; 人类; 图 s2
碧迪BDVE钙粘蛋白抗体(BD Biosciences, 561566)被用于被用于流式细胞仪在人类样本上 (图 s2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(55-7H1)
  • 流式细胞仪; 人类; 图 1b
碧迪BDVE钙粘蛋白抗体(BD Pharmingen, 55-7H1)被用于被用于流式细胞仪在人类样本上 (图 1b). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
小鼠 单克隆(55-7H1)
  • 流式细胞仪; 人类; 图 st1
碧迪BDVE钙粘蛋白抗体(BD, 560410)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(55-7H1)
  • 免疫细胞化学; 人类; 1:100; 图 3
碧迪BDVE钙粘蛋白抗体(Becton Dickinson, 560411)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(55-7H1)
  • 流式细胞仪; 人类
碧迪BDVE钙粘蛋白抗体(BD Biosciences, 561714)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(75/Cadherin-5)
  • 免疫细胞化学; 人类; 图 7
碧迪BDVE钙粘蛋白抗体(BD Transduction, 610251)被用于被用于免疫细胞化学在人类样本上 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(55-7H1)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 流式细胞仪; 人类; 图 s1
  • 免疫细胞化学; 人类; 图 2
碧迪BDVE钙粘蛋白抗体(BD Biosciences, 561567)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1), 被用于流式细胞仪在人类样本上 (图 s1) 和 被用于免疫细胞化学在人类样本上 (图 2). J Transl Med (2015) ncbi
小鼠 单克隆(55-7H1)
  • 流式细胞仪; 人类
碧迪BDVE钙粘蛋白抗体(BD Biosciences, 560411)被用于被用于流式细胞仪在人类样本上. J Stroke Cerebrovasc Dis (2015) ncbi
小鼠 单克隆(55-7H1)
  • 流式细胞仪; 人类; 1:50
碧迪BDVE钙粘蛋白抗体(BD, 560410)被用于被用于流式细胞仪在人类样本上浓度为1:50. Stem Cells (2015) ncbi
小鼠 单克隆(55-7H1)
  • 流式细胞仪; 人类; 1:50
碧迪BDVE钙粘蛋白抗体(BD, 560411)被用于被用于流式细胞仪在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(55-7H1)
  • 免疫细胞化学; 人类
碧迪BDVE钙粘蛋白抗体(BD Biosciences, 55-7H1)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(55-7H1)
  • 免疫细胞化学; 人类
碧迪BDVE钙粘蛋白抗体(BD Pharmingen, 555661)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2014) ncbi
小鼠 单克隆(55-7H1)
  • 免疫细胞化学; 人类
碧迪BDVE钙粘蛋白抗体(BD, 555661)被用于被用于免疫细胞化学在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(55-7H1)
  • 流式细胞仪; 人类; 图 3
碧迪BDVE钙粘蛋白抗体(BD Biosciences, 560410)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(55-7H1)
  • 流式细胞仪; 人类; 1:25
碧迪BDVE钙粘蛋白抗体(BD Pharmingen, 55-7H1)被用于被用于流式细胞仪在人类样本上浓度为1:25. Microvasc Res (2012) ncbi
文章列表
  1. Bersini S, Schulte R, Huang L, Tsai H, Hetzer M. Direct reprogramming of human smooth muscle and vascular endothelial cells reveals defects associated with aging and Hutchinson-Gilford progeria syndrome. elife. 2020;9: pubmed 出版商
  2. Idowu T, Etzrodt V, Seeliger B, Bolanos Palmieri P, Thamm K, Haller H, et al. Identification of specific Tie2 cleavage sites and therapeutic modulation in experimental sepsis. elife. 2020;9: pubmed 出版商
  3. Peroutka R, Buzza M, Mukhopadhyay S, Johnson T, Driesbaugh K, Antalis T. Testisin/Prss21 deficiency causes increased vascular permeability and a hemorrhagic phenotype during luteal angiogenesis. PLoS ONE. 2020;15:e0234407 pubmed 出版商
  4. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  5. Gao K, He S, Kumar P, Farmer D, Zhou J, Wang A. Clonal isolation of endothelial colony-forming cells from early gestation chorionic villi of human placenta for fetal tissue regeneration. World J Stem Cells. 2020;12:123-138 pubmed 出版商
  6. Luxan G, Stewen J, Díaz N, Kato K, Maney S, Aravamudhan A, et al. Endothelial EphB4 maintains vascular integrity and transport function in adult heart. elife. 2019;8: pubmed 出版商
  7. Hu Z, Zhou M, Wu Y, Li Z, Liu X, Wu L, et al. ssODN-Mediated In-Frame Deletion with CRISPR/Cas9 Restores FVIII Function in Hemophilia A-Patient-Derived iPSCs and ECs. Mol Ther Nucleic Acids. 2019;17:198-209 pubmed 出版商
  8. Carvalho J, Fortunato I, Fonseca C, Pezzarossa A, Barbacena P, Domínguez Cejudo M, et al. Non-canonical Wnt signaling regulates junctional mechanocoupling during angiogenic collective cell migration. elife. 2019;8: pubmed 出版商
  9. Xanthis I, Souilhol C, Serbanovic Canic J, Roddie H, Kalli A, Fragiadaki M, et al. β1 integrin is a sensor of blood flow direction. J Cell Sci. 2019;132: pubmed 出版商
  10. Ferraro D, Patella F, Zanivan S, Donato C, Aceto N, Giannotta M, et al. Endothelial cell-derived nidogen-1 inhibits migration of SK-BR-3 breast cancer cells. BMC Cancer. 2019;19:312 pubmed 出版商
  11. Ruan J, Hirai H, Yang D, Ma L, Hou X, Jiang H, et al. Efficient Gene Editing at Major CFTR Mutation Loci. Mol Ther Nucleic Acids. 2019;16:73-81 pubmed 出版商
  12. Liu X, Dong H, Huang B, Miao H, Xu Z, Yuan Y, et al. Native Coronary Collateral Microcirculation Reserve in Rat Hearts. J Am Heart Assoc. 2019;8:e011220 pubmed 出版商
  13. Sahara M, Santoro F, Sohlmér J, Zhou C, Witman N, Leung C, et al. Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell. 2019;48:475-490.e7 pubmed 出版商
  14. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  15. Montel Hagen A, Seet C, Li S, Chick B, Zhu Y, Chang P, et al. Organoid-Induced Differentiation of Conventional T Cells from Human Pluripotent Stem Cells. Cell Stem Cell. 2019;24:376-389.e8 pubmed 出版商
  16. Hancock M, Hafstad A, Nabeebaccus A, Catibog N, Logan A, Smyrnias I, et al. Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. elife. 2018;7: pubmed 出版商
  17. de Jong O, van der Waals L, Kools F, Verhaar M, van Balkom B. Lysyl oxidase-like 2 is a regulator of angiogenesis through modulation of endothelial-to-mesenchymal transition. J Cell Physiol. 2019;234:10260-10269 pubmed 出版商
  18. Song S, Zhang R, Cao W, Fang G, Yu Y, Wan Y, et al. Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. J Cell Physiol. 2019;234:9052-9064 pubmed 出版商
  19. Wevers N, Kasi D, Gray T, Wilschut K, Smith B, van Vught R, et al. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS. 2018;15:23 pubmed 出版商
  20. Seo B, Cho T, Lee D, Lee J, Lee B, Kim S, et al. LARGE, an intellectual disability-associated protein, regulates AMPA-type glutamate receptor trafficking and memory. Proc Natl Acad Sci U S A. 2018;115:7111-7116 pubmed 出版商
  21. Delgado Bellido D, Fernández Cortés M, Rodriguez M, Serrano Saenz S, Carracedo A, García Díaz A, et al. VE-cadherin promotes vasculogenic mimicry by modulating kaiso-dependent gene expression. Cell Death Differ. 2019;26:348-361 pubmed 出版商
  22. Polacheck W, Kutys M, Yang J, Eyckmans J, Wu Y, Vasavada H, et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature. 2017;552:258-262 pubmed 出版商
  23. Simara P, Tesarova L, Rehakova D, Farkas S, Salingova B, Kutalkova K, et al. Reprogramming of Adult Peripheral Blood Cells into Human Induced Pluripotent Stem Cells as a Safe and Accessible Source of Endothelial Cells. Stem Cells Dev. 2018;27:10-22 pubmed 出版商
  24. Rong X, Wang B, Palladino E, de Aguiar Vallim T, Ford D, Tontonoz P. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest. 2017;127:3640-3651 pubmed 出版商
  25. Xia Z, Wei J, Li Y, Wang J, Li W, Wang K, et al. Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis. PLoS Genet. 2017;13:e1006892 pubmed 出版商
  26. Antfolk D, Sjöqvist M, Cheng F, Isoniemi K, Duran C, Rivero Muller A, et al. Selective regulation of Notch ligands during angiogenesis is mediated by vimentin. Proc Natl Acad Sci U S A. 2017;114:E4574-E4581 pubmed 出版商
  27. Soni D, Regmi S, Wang D, Debroy A, Zhao Y, Vogel S, et al. Pyk2 phosphorylation of VE-PTP downstream of STIM1-induced Ca2+ entry regulates disassembly of adherens junctions. Am J Physiol Lung Cell Mol Physiol. 2017;312:L1003-L1017 pubmed 出版商
  28. Jiao T, Yao Y, Zhang B, Hao D, Sun Q, Li J, et al. Role of MicroRNA-103a Targeting ADAM10 in Abdominal Aortic Aneurysm. Biomed Res Int. 2017;2017:9645874 pubmed 出版商
  29. Chattopadhyay R, Raghavan S, Rao G. Resolvin D1 via prevention of ROS-mediated SHP2 inactivation protects endothelial adherens junction integrity and barrier function. Redox Biol. 2017;12:438-455 pubmed 出版商
  30. Kober A, Manavalan A, Tam Amersdorfer C, Holmér A, Saeed A, Fanaee Danesh E, et al. Implications of cerebrovascular ATP-binding cassette transporter G1 (ABCG1) and apolipoprotein M in cholesterol transport at the blood-brain barrier. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:573-588 pubmed 出版商
  31. Wu Z, Wang Z, Dai F, Liu H, Ren W, Chang J, et al. Dephosphorylation of Y685-VE-Cadherin Involved in Pulmonary Microvascular Endothelial Barrier Injury Induced by Angiotensin II. Mediators Inflamm. 2016;2016:8696481 pubmed 出版商
  32. Kim T, Terentyeva R, Roder K, Li W, Liu M, Greener I, et al. SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. Cardiovasc Res. 2017;113:343-353 pubmed 出版商
  33. Zhang J, Chen S, Cai J, Hou Z, Wang X, Kachelmeier A, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system. Hear Res. 2017;345:10-22 pubmed 出版商
  34. Gomi K, Tang Y, Arbelaez V, Crystal R, Walters M. Endothelial Cell Mediated Promotion of Ciliated Cell Differentiation of Human Airway Basal Cells via Insulin and Insulin-Like Growth Factor 1 Receptor Mediated Signaling. Stem Cell Rev. 2017;13:309-317 pubmed 出版商
  35. Scarritt M, Pashos N, Motherwell J, Eagle Z, Burkett B, Gregory A, et al. Re-endothelialization of rat lung scaffolds through passive, gravity-driven seeding of segment-specific pulmonary endothelial cells. J Tissue Eng Regen Med. 2018;12:e786-e806 pubmed 出版商
  36. Ganesan M, Finsterwalder R, Leb H, Resch U, Neumüller K, de Martin R, et al. Three-Dimensional Coculture Model to Analyze the Cross Talk Between Endothelial and Smooth Muscle Cells. Tissue Eng Part C Methods. 2017;23:38-49 pubmed 出版商
  37. Galkin I, Pletjushkina O, Zinovkin R, Zakharova V, Chernyak B, Popova E. Mitochondria-Targeted Antioxidant SkQR1 Reduces TNF-Induced Endothelial Permeability in vitro. Biochemistry (Mosc). 2016;81:1188-1197 pubmed
  38. Patche J, Girard D, Catan A, Boyer F, Dobi A, Planesse C, et al. Diabetes-induced hepatic oxidative stress: a new pathogenic role for glycated albumin. Free Radic Biol Med. 2017;102:133-148 pubmed 出版商
  39. Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322 pubmed 出版商
  40. Su W, Kowalczyk A. The VE-cadherin cytoplasmic domain undergoes proteolytic processing during endocytosis. Mol Biol Cell. 2017;28:76-84 pubmed 出版商
  41. Smith C, Mont S, Traver G, Sekhar K, Crooks P, Freeman M. Targeting Enox1 in tumor stroma increases the efficacy of fractionated radiotherapy. Oncotarget. 2016;7:77926-77936 pubmed 出版商
  42. Bruinsma W, Aprelia M, García Santisteban I, Kool J, Xu Y, Medema R. Inhibition of Polo-like kinase 1 during the DNA damage response is mediated through loss of Aurora A recruitment by Bora. Oncogene. 2017;36:1840-1848 pubmed 出版商
  43. Scotti L, Di Pietro M, Pascuali N, Irusta G, I de Zúñiga -, Gomez Peña M, et al. Sphingosine-1-phosphate restores endothelial barrier integrity in ovarian hyperstimulation syndrome. Mol Hum Reprod. 2016;22:852-866 pubmed
  44. Verrando P, Capovilla M, Rahmani R. Trans-nonachlor decreases miR-141-3p levels in human melanocytes in vitro promoting melanoma cell characteristics and shows a multigenerational impact on miR-8 levels in Drosophila. Toxicology. 2016;368-369:129-141 pubmed 出版商
  45. Zahran A, Aly S, Altayeb H, Ali A. Circulating endothelial cells and their progenitors in acute myeloid leukemia. Oncol Lett. 2016;12:1965-1970 pubmed
  46. Bao X, Lian X, Palecek S. Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions. Methods Mol Biol. 2016;1481:183-96 pubmed 出版商
  47. Yang Y, Zhang Y, Iwamoto H, Hosaka K, Seki T, Andersson P, et al. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun. 2016;7:12680 pubmed 出版商
  48. Huang L, Stuart C, Takeda K, D Agnillo F, Golding B. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5. PLoS ONE. 2016;11:e0160875 pubmed 出版商
  49. Clark P, Al Ahmad A, Qian T, Zhang R, Wilson H, Weichert J, et al. Analysis of Cancer-Targeting Alkylphosphocholine Analogue Permeability Characteristics Using a Human Induced Pluripotent Stem Cell Blood-Brain Barrier Model. Mol Pharm. 2016;13:3341-9 pubmed 出版商
  50. Dorland Y, Malinova T, van Stalborch A, Grieve A, van Geemen D, Jansen N, et al. The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions. Nat Commun. 2016;7:12210 pubmed 出版商
  51. Herwig N, Belter B, Pietzsch J. Extracellular S100A4 affects endothelial cell integrity and stimulates transmigration of A375 melanoma cells. Biochem Biophys Res Commun. 2016;477:963-969 pubmed 出版商
  52. Seo H, Jeong H, Joo H, Choi S, Park C, Kim J, et al. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system. Sci Rep. 2016;6:28832 pubmed 出版商
  53. Kudová J, Prochazkova J, Vašíček O, Perecko T, Sedláčková M, Pesl M, et al. HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells. PLoS ONE. 2016;11:e0158358 pubmed 出版商
  54. Ebert L, Tan L, Johan M, Min K, Cockshell M, Parham K, et al. A non-canonical role for desmoglein-2 in endothelial cells: implications for neoangiogenesis. Angiogenesis. 2016;19:463-86 pubmed 出版商
  55. Horrillo A, Porras G, Ayuso M, González Manchón C. Loss of endothelial barrier integrity in mice with conditional ablation of podocalyxin (Podxl) in endothelial cells. Eur J Cell Biol. 2016;95:265-76 pubmed 出版商
  56. Pal P, Daniels B, Oskman A, Diamond M, Klein R, Goldberg D. Plasmodium falciparum Histidine-Rich Protein II Compromises Brain Endothelial Barriers and May Promote Cerebral Malaria Pathogenesis. MBio. 2016;7: pubmed 出版商
  57. Skaria T, Burgener J, Bächli E, Schoedon G. IL-4 Causes Hyperpermeability of Vascular Endothelial Cells through Wnt5A Signaling. PLoS ONE. 2016;11:e0156002 pubmed 出版商
  58. Li C, Zhen G, Chai Y, Xie L, Crane J, Farber E, et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat Commun. 2016;7:11455 pubmed 出版商
  59. Chatterjee I, Baruah J, Lurie E, Wary K. Endothelial lipid phosphate phosphatase-3 deficiency that disrupts the endothelial barrier function is a modifier of cardiovascular development. Cardiovasc Res. 2016;111:105-18 pubmed 出版商
  60. Saxena S, Ronn R, Guibentif C, Moraghebi R, Woods N. Cyclic AMP Signaling through Epac Axis Modulates Human Hemogenic Endothelium and Enhances Hematopoietic Cell Generation. Stem Cell Reports. 2016;6:692-703 pubmed 出版商
  61. Choi S, Kim M, Lee H, Kim E, Kim C, Lee Y. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation?induced pulmonary fibrosis. Mol Med Rep. 2016;13:4135-42 pubmed 出版商
  62. Huang M, Liu T, Ma P, Mitteer R, Zhang Z, Kim H, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 2016;126:1801-14 pubmed 出版商
  63. Falcão V, Maschio D, de Fontes C, Oliveira R, Santos Silva J, Almeida A, et al. Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules (CAMS) in diabetic mice after prolonged high-fat diet. Histochem Cell Biol. 2016;146:13-31 pubmed 出版商
  64. Yang C, Demars K, Hawkins K, Candelario Jalil E. Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia-like conditions. Peptides. 2016;81:29-37 pubmed 出版商
  65. Ando K, Fujino N, Mitani K, Ota C, Okada Y, Kondo T, et al. Isolation of individual cellular components from lung tissues of patients with lymphangioleiomyomatosis. Am J Physiol Lung Cell Mol Physiol. 2016;310:L899-908 pubmed 出版商
  66. Morrow C, Trapani F, Metcalf R, Bertolini G, Hodgkinson C, Khandelwal G, et al. Tumourigenic non-small-cell lung cancer mesenchymal circulating tumour cells: a clinical case study. Ann Oncol. 2016;27:1155-60 pubmed 出版商
  67. Zhao N, Sun H, Sun B, Zhu D, Zhao X, Wang Y, et al. miR-27a-3p suppresses tumor metastasis and VM by down-regulating VE-cadherin expression and inhibiting EMT: an essential role for Twist-1 in HCC. Sci Rep. 2016;6:23091 pubmed 出版商
  68. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  69. Lu W, Su L, Yu Z, Zhang S, Miao J. The New Role of CD163 in the Differentiation of Bone Marrow Stromal Cells into Vascular Endothelial-Like Cells. Stem Cells Int. 2016;2016:2539781 pubmed 出版商
  70. Li J, Pan Q, Rowan P, Trotter T, Peker D, Regal K, et al. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells. Oncotarget. 2016;7:11299-309 pubmed 出版商
  71. Heemskerk N, Schimmel L, Oort C, van Rijssel J, Yin T, Ma B, et al. F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling. Nat Commun. 2016;7:10493 pubmed 出版商
  72. Wiltshire R, Nelson V, Kho D, Angel C, O Carroll S, Graham E. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. Sci Rep. 2016;6:19814 pubmed 出版商
  73. Jin G, Zhao J, Yang Y, Liu K, Jiang Y, Zhang X, et al. JAK/STAT3 signaling pathway mediates endothelial-like differentiation of immature dendritic cells. Oncol Lett. 2015;10:3471-3477 pubmed
  74. Dave J, Abbey C, Duran C, Seo H, Johnson G, Bayless K. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci. 2016;129:743-56 pubmed 出版商
  75. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26:190-205 pubmed 出版商
  76. Szulcek R, Happé C, Rol N, Fontijn R, Dickhoff C, Hartemink K, et al. Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. Am J Respir Crit Care Med. 2016;193:1410-20 pubmed 出版商
  77. Park S, Shin M, Kim D, Park J, Choi S, Kang Y. Blockade of monocyte-endothelial trafficking by transduced Tat-superoxide dismutase protein. Int J Mol Med. 2016;37:387-97 pubmed 出版商
  78. Roth Flach R, Skoura A, Matevossian A, Danai L, Zheng W, Cortes C, et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun. 2015;6:8995 pubmed 出版商
  79. Leclercq A, Veillat V, Loriot S, Spuul P, Madonna F, Roques X, et al. A Methodology for Concomitant Isolation of Intimal and Adventitial Endothelial Cells from the Human Thoracic Aorta. PLoS ONE. 2015;10:e0143144 pubmed 出版商
  80. Laner Plamberger S, Lener T, Schmid D, Streif D, Salzer T, Öller M, et al. Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate. J Transl Med. 2015;13:354 pubmed 出版商
  81. Stebbins M, Wilson H, Canfield S, Qian T, Palecek S, Shusta E. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 2016;101:93-102 pubmed 出版商
  82. Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S, et al. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med. 2015;7:1403-17 pubmed 出版商
  83. Bai H, Liu Y, Xie Y, Hoyle D, Brodsky R, Cheng L, et al. Definitive Hematopoietic Multipotent Progenitor Cells Are Transiently Generated From Hemogenic Endothelial Cells in Human Pluripotent Stem Cells. J Cell Physiol. 2016;231:1065-76 pubmed 出版商
  84. Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 2015;25:1013-24 pubmed 出版商
  85. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  86. Kumar P, Thirkill T, Ji J, Monte L, Douglas G. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation. PLoS ONE. 2015;10:e0135089 pubmed 出版商
  87. Hahn C, Scott D, Xu X, Roda M, Payne G, Wells J, et al. The matrikine N-α-PGP couples extracellular matrix fragmentation to endothelial permeability. Sci Adv. 2015;1: pubmed
  88. Nishimatsu H, Suzuki E, Saito Y, Niimi A, Nomiya A, Yamada D, et al. Neuromedin B Restores Erectile Function by Protecting the Cavernous Body and the Nitrergic Nerves from Injury in a Diabetic Rat Model. PLoS ONE. 2015;10:e0133874 pubmed 出版商
  89. Birket M, Ribeiro M, Verkerk A, Ward D, Leitoguinho A, Den Hartogh S, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970-9 pubmed 出版商
  90. O Carroll S, Kho D, Wiltshire R, Nelson V, Rotimi O, Johnson R, et al. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation. 2015;12:131 pubmed 出版商
  91. Tasev D, van Wijhe M, Weijers E, van Hinsbergh V, Koolwijk P. Long-Term Expansion in Platelet Lysate Increases Growth of Peripheral Blood-Derived Endothelial-Colony Forming Cells and Their Growth Factor-Induced Sprouting Capacity. PLoS ONE. 2015;10:e0129935 pubmed 出版商
  92. Minami H, Tashiro K, Okada A, Hirata N, Yamaguchi T, Takayama K, et al. Generation of Brain Microvascular Endothelial-Like Cells from Human Induced Pluripotent Stem Cells by Co-Culture with C6 Glioma Cells. PLoS ONE. 2015;10:e0128890 pubmed 出版商
  93. Choi H, Zhang H, Park H, Choi K, Lee H, Agrawal V, et al. Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2. Nat Commun. 2015;6:6943 pubmed 出版商
  94. Liu X, Wang J, Li S, Li L, Huang M, Zhang Y, et al. Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase / ERK-MMP-laminin5γ2 signaling pathway. Cancer Sci. 2015;106:857-66 pubmed 出版商
  95. Nishimatsu H, Suzuki E, Saito Y, Niimi A, Nomiya A, Fukuhara H, et al. Senescent Cells Impair Erectile Function through Induction of Endothelial Dysfunction and Nerve Injury in Mice. PLoS ONE. 2015;10:e0124129 pubmed 出版商
  96. Charest J, Okamoto T, Kitano K, Yasuda A, Gilpin S, Mathisen D, et al. Design and validation of a clinical-scale bioreactor for long-term isolated lung culture. Biomaterials. 2015;52:79-87 pubmed 出版商
  97. Sajja R, Green K, Cucullo L. Altered Nrf2 signaling mediates hypoglycemia-induced blood-brain barrier endothelial dysfunction in vitro. PLoS ONE. 2015;10:e0122358 pubmed 出版商
  98. Ishikawa T, Takizawa T, Iwaki J, Mishima T, Ui Tei K, Takeshita T, et al. Fc gamma receptor IIb participates in maternal IgG trafficking of human placental endothelial cells. Int J Mol Med. 2015;35:1273-89 pubmed 出版商
  99. Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu Kaoud N, Halabi N, et al. Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 2015;13:27 pubmed 出版商
  100. Horváth L, Umehara Y, Jud C, Blank F, Petri Fink A, Rothen Rutishauser B. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep. 2015;5:7974 pubmed 出版商
  101. Sugimoto T, Hosomi N, Nezu T, Takahashi T, Aoki S, Takeda I, et al. CD34+/CD144+ circulating endothelial cells as an indicator of carotid atherosclerosis. J Stroke Cerebrovasc Dis. 2015;24:583-90 pubmed 出版商
  102. Lee S, Lee K, Lee J, Kang S, Kim H, Asahara T, et al. Selective Interference Targeting of Lnk in Umbilical Cord-Derived Late Endothelial Progenitor Cells Improves Vascular Repair, Following Hind Limb Ischemic Injury, via Regulation of JAK2/STAT3 Signaling. Stem Cells. 2015;33:1490-500 pubmed 出版商
  103. Jy W, Gómez Marín O, Salerno T, Panos A, Williams D, Horstman L, et al. Presurgical levels of circulating cell-derived microparticles discriminate between patients with and without transfusion in coronary artery bypass graft surgery. J Thorac Cardiovasc Surg. 2015;149:305-11 pubmed 出版商
  104. Kalwa H, Storch U, Demleitner J, Fiedler S, Mayer T, Kannler M, et al. Phospholipase C epsilon (PLCε) induced TRPC6 activation: a common but redundant mechanism in primary podocytes. J Cell Physiol. 2015;230:1389-99 pubmed 出版商
  105. Rohringer S, Holnthoner W, Hackl M, Weihs A, Rünzler D, Skalicky S, et al. Molecular and cellular effects of in vitro shockwave treatment on lymphatic endothelial cells. PLoS ONE. 2014;9:e114806 pubmed 出版商
  106. Lee Y, Ehninger D, Zhou M, Oh J, Kang M, Kwak C, et al. Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat Neurosci. 2014;17:1736-43 pubmed 出版商
  107. Li Y, Zhao Y, Zou Q, Zhang K, Wu Y, Zhou C, et al. Preeclampsia does not alter vascular growth and expression of CD31 and vascular endothelial cadherin in human placentas. J Histochem Cytochem. 2015;63:22-31 pubmed 出版商
  108. Mooren O, Li J, Nawas J, Cooper J. Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier. Mol Biol Cell. 2014;25:4115-29 pubmed 出版商
  109. Guerrero J, Oliveira H, Catros S, Siadous R, Derkaoui S, Bareille R, et al. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis. Tissue Eng Part A. 2015;21:861-74 pubmed 出版商
  110. Prasain N, Lee M, Vemula S, Meador J, Yoshimoto M, Ferkowicz M, et al. Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells. Nat Biotechnol. 2014;32:1151-1157 pubmed 出版商
  111. Menhofer M, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, et al. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res. 2014;104:303-14 pubmed 出版商
  112. Dogan A, Demirci S, Sahin F. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int. 2015;39:94-103 pubmed 出版商
  113. Wang J, Li B, Li Z, Ren K, Jin L, Zhang S, et al. Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents. Biomaterials. 2014;35:7679-89 pubmed 出版商
  114. Davis C, Zhu W, Gibson C, Bowman Kirigin J, Sorensen L, Ling J, et al. ARF6 inhibition stabilizes the vasculature and enhances survival during endotoxic shock. J Immunol. 2014;192:6045-52 pubmed 出版商
  115. Sajja R, Prasad S, Cucullo L. Impact of altered glycaemia on blood-brain barrier endothelium: an in vitro study using the hCMEC/D3 cell line. Fluids Barriers CNS. 2014;11:8 pubmed 出版商
  116. Driskell R, Lichtenberger B, Hoste E, Kretzschmar K, Simons B, Charalambous M, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277-281 pubmed 出版商
  117. Larson A, Lee C, Lezcano C, Zhan Q, Huang J, Fischer A, et al. Melanoma spheroid formation involves laminin-associated vasculogenic mimicry. Am J Pathol. 2014;184:71-8 pubmed 出版商
  118. Malin D, Strekalova E, Petrovic V, Deal A, Al Ahmad A, Adamo B, et al. ?B-crystallin: a novel regulator of breast cancer metastasis to the brain. Clin Cancer Res. 2014;20:56-67 pubmed 出版商
  119. Zeng L, Wang G, Ummarino D, Margariti A, Xu Q, Xiao Q, et al. Histone deacetylase 3 unconventional splicing mediates endothelial-to-mesenchymal transition through transforming growth factor ?2. J Biol Chem. 2013;288:31853-66 pubmed 出版商
  120. Dave J, Kang H, Abbey C, Maxwell S, Bayless K. Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK). J Biol Chem. 2013;288:30720-33 pubmed 出版商
  121. Farley A, Morris L, Vroegindeweij E, Depreter M, Vaidya H, Stenhouse F, et al. Dynamics of thymus organogenesis and colonization in early human development. Development. 2013;140:2015-26 pubmed 出版商
  122. Roubelakis M, Tsaknakis G, Pappa K, Anagnou N, Watt S. Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS ONE. 2013;8:e54747 pubmed 出版商
  123. Lopez Ramirez M, Fischer R, Torres Badillo C, Davies H, Logan K, Pfizenmaier K, et al. Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. J Immunol. 2012;189:3130-9 pubmed 出版商
  124. Kim S, Moon G, Cho Y, Kang H, Hyung N, Kim D, et al. Circulating mesenchymal stem cells microparticles in patients with cerebrovascular disease. PLoS ONE. 2012;7:e37036 pubmed 出版商
  125. Sölder E, Böckle B, Nguyen V, Fürhapter C, Obexer P, Erdel M, et al. Isolation and characterization of CD133+CD34+VEGFR-2+CD45- fetal endothelial cells from human term placenta. Microvasc Res. 2012;84:65-73 pubmed 出版商
  126. Mead L, Prater D, Yoder M, Ingram D. Isolation and characterization of endothelial progenitor cells from human blood. Curr Protoc Stem Cell Biol. 2008;Chapter 2:Unit 2C.1 pubmed 出版商