这是一篇来自已证抗体库的有关人类 血管内皮生长因子 (VEGF) 的综述,是根据243篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合血管内皮生长因子 抗体。
血管内皮生长因子 同义词: MVCD1; VEGF; VPF

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP1176Y)
  • 免疫细胞化学; 人类; 1:100; 图 4a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4a). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Cell Rep (2021) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 人类; 1:1000; 图 1i, 2e
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 7e
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1i, 2e) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 7e). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2d
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(abcam, ab46154)被用于被用于免疫组化在小鼠样本上 (图 2d). Sci Rep (2021) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). J Orthop Surg Res (2021) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 图 3d
  • 免疫组化-石蜡切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Oncogene (2021) ncbi
小鼠 单克隆(6B7)
  • 免疫印迹; 小鼠; 1:2000; 图 6a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab69479)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). Physiol Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab51745)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). Physiol Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s2
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(abcam, ab46154)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s2). PLoS ONE (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 4b
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 4b). Int J Oral Sci (2021) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫组化-石蜡切片; 小鼠; 图 s2d
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2d). Blood (2021) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫印迹; 小鼠; 图 4c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于免疫印迹在小鼠样本上 (图 4c). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫印迹; 人类; 图 6e
  • 免疫组化; 小鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于免疫印迹在人类样本上 (图 6e) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 5d). Front Oncol (2020) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫组化-冰冻切片; 小鼠; 图 7b
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7b). Neuron (2020) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 人类; 图 6d
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫印迹在人类样本上 (图 6d). PLoS Genet (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab4615)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5c). elife (2020) ncbi
小鼠 单克隆(6B7)
  • 免疫印迹; 小鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab69479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1e, 2d, 5h
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1e, 2d, 5h). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s1
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫印迹; 小鼠; 图 3c, 7e
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于免疫印迹在小鼠样本上 (图 3c, 7e). Cancers (Basel) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5e
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 e10j
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 e10j). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上 (图 3c). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫组化; 人类; 图 4b
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于免疫组化在人类样本上 (图 4b). Stem Cell Res Ther (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
  • 免疫印迹; 人类; 1:2000; 图 3c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Int J Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Cell Signaling, ab52917)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于免疫组化在小鼠样本上浓度为1:100. elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab51745)被用于被用于免疫印迹在人类样本上 (图 5d). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 流式细胞仪; 小鼠; 图 4e
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Immunity (2019) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 流式细胞仪; 人类; 图 s18c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, EP1176Y)被用于被用于流式细胞仪在人类样本上 (图 s18c). Science (2018) ncbi
domestic rabbit 单克隆
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 s18d
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab209439)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 s18d). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s6o
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样本上 (图 s6o). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上 (图 2b). Mol Ther Nucleic Acids (2017) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4b
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, EP1176Y)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(6B7)
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 4
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab69479)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 4). Biomed Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4f
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫细胞化学在人类样本上 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6a). Mol Cell Biol (2017) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化; 大鼠; 1:25; 图 4d
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化在大鼠样本上浓度为1:25 (图 4d) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Mol Med Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 st2
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, Ab46154)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 st2). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7f
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Mol Hum Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 6
  • 免疫印迹; 大鼠; 1:500; 图 7
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 6) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 7). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab39250)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6). Front Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, 46154)被用于被用于免疫印迹在人类样本上 (图 s1a). Laryngoscope (2016) ncbi
小鼠 单克隆(6B7)
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab69479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). J Clin Invest (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5). Braz J Med Biol Res (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5). Invest Ophthalmol Vis Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
  • 免疫细胞化学; 人类; 1:200; 图 3
  • 免疫组化; 人类; 图 6
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化在小鼠样本上 (图 6), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 3), 被用于免疫组化在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫组化; 小鼠; 1:400; 图 6c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, EP1176Y)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 6c). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam Sapphire Bioscience, ab51745)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 3). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7). Int J Biol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; domestic rabbit; 1:1000; 图 7
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(abcam, ab1316)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 7). Mol Med Rep (2016) ncbi
小鼠 单克隆(6B7)
  • 免疫沉淀; 小鼠; 1:1000; 图 6j
  • 免疫印迹; 小鼠; 1:1000; 图 6i
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab69479)被用于被用于免疫沉淀在小鼠样本上浓度为1:1000 (图 6j) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6i). Nat Commun (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫印迹在人类样本上 (图 5). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:120; 图 2
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:120 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Forensic Leg Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
  • 免疫印迹; 小鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab51745)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s8
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样本上 (图 s8). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Mol Med Rep (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, VG-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2a). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫组化; 小鼠; 1:200; 图 s8
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s8). Nature (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 大鼠; 图 f4b
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫印迹在大鼠样本上 (图 f4b). Mol Med Rep (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
  • 免疫印迹; 小鼠; 1:300; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:300 (图 6). Sci Rep (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Reprod Sci (2016) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫组化; 人类; 表 2
  • 免疫印迹; 人类; 表 2
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(abcam, ab52917)被用于被用于免疫组化在人类样本上 (表 2) 和 被用于免疫印迹在人类样本上 (表 2). PLoS ONE (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Onco Targets Ther (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 表 6
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (表 6). PLoS ONE (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; domestic rabbit; 1:500; 图 4
  • 酶联免疫吸附测定; domestic rabbit; 1:500; 图 1
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:500 (图 4) 和 被用于酶联免疫吸附测定在domestic rabbit样本上浓度为1:500 (图 1). Oncol Lett (2015) ncbi
domestic rabbit 单克隆(EP1176Y)
  • 免疫组化; 人类; 1:100; 图 1c
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1c) 和 被用于免疫印迹在人类样本上 (图 2c). Cancer Lett (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(AbCam, VG-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). BMC Cancer (2014) ncbi
小鼠 单克隆(6B7)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab69479)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cell Biochem (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Genet Mol Res (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Mol Sci (2014) ncbi
小鼠 单克隆(VG-1)
  • 抑制或激活实验; 小鼠
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于抑制或激活实验在小鼠样本上. J Biomed Res (2012) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncol Lett (2013) ncbi
小鼠 单克隆(VG-1)
  • 酶联免疫吸附测定; 大鼠; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于酶联免疫吸附测定在大鼠样本上浓度为1:1000. Microvasc Res (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-1)
  • 免疫组化; 大鼠; 图 8a
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化在大鼠样本上 (图 8a). Front Pharmacol (2021) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 8
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, SC-7269)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 8). Oxid Med Cell Longev (2021) ncbi
小鼠 单克隆(C-1)
  • 免疫沉淀; 人类; 1:100; 图 4b
  • 免疫印迹; 人类; 1:500; 图 1b
圣克鲁斯生物技术血管内皮生长因子抗体(Santa, sc-7269)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Cell Rep (2021) ncbi
小鼠 单克隆(JH121)
  • 免疫组化-石蜡切片; 小鼠; 1:300
圣克鲁斯生物技术血管内皮生长因子抗体(anta Cruz Biotechnology, sc-57496)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. Front Immunol (2021) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 小鼠; 图 6e
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, sc7269)被用于被用于免疫印迹在小鼠样本上 (图 6e). Biomolecules (2021) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 小鼠; 1:200; 图 1c
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, Sc-53462)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1c). Sci Rep (2020) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1f, 2f
  • 免疫印迹; 大鼠; 1:200; 图 5c
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1f, 2f) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 5c). Int J Nanomedicine (2020) ncbi
小鼠 单克隆(JH121)
  • 免疫组化; 人类; 图 1
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-57496)被用于被用于免疫组化在人类样本上 (图 1). PLoS ONE (2020) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, sc53462)被用于被用于免疫印迹在人类样本上 (图 5a). Exp Cell Res (2019) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫印迹在人类样本上 (图 2b). Oncol Lett (2017) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 大鼠; 1:200; 图 2a
圣克鲁斯生物技术血管内皮生长因子抗体(Santa cruz, sc?\7269)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2a). Physiol Rep (2017) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, SC-7269)被用于被用于免疫印迹在人类样本上 (图 5e). Circ Res (2017) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术血管内皮生长因子抗体(SantaCruz, SC-7269)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化; 小鼠; 图 3
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫组化在小鼠样本上 (图 3). Mol Cell Endocrinol (2017) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6a
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6a). J Biomed Sci (2016) ncbi
小鼠 单克隆(C-1)
  • 抑制或激活实验; 小鼠; 图 3
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于抑制或激活实验在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, Sc-7269)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Death Discov (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术血管内皮生长因子抗体(santa Cruz, sc-53462)被用于被用于免疫印迹在大鼠样本上 (图 7). BMC Cancer (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1d
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1d). Dis Markers (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 大鼠; 1:200; 图 6
圣克鲁斯生物技术血管内皮生长因子抗体(santa Cruz, sc-7269)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 6). Mol Med Rep (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 小鼠; 图 8
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, S C-53462)被用于被用于免疫印迹在小鼠样本上 (图 8) 和 被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 大鼠; 1:2000; 图 3
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(VG76e)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术血管内皮生长因子抗体(santa Cruz, sc-53463)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 8A
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 8A). Diabetol Metab Syndr (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, SC-7269)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 4). Tumour Biol (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, SC-7269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Cancer Res Treat (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, Sc-7269)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术血管内皮生长因子抗体(santa Cruz, sc-7269)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Hepatology (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 犬; 图 4
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, SC-7269)被用于被用于免疫组化-石蜡切片在犬样本上 (图 4). J Vet Sci (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫印迹在人类样本上 (图 2). Exp Ther Med (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-自由浮动切片; 大鼠; 1:50
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:50 和 被用于免疫印迹在大鼠样本上浓度为1:500. Biomed Res Int (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化; 大鼠
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz biotechnology, sc-53462)被用于被用于免疫组化在大鼠样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(C-1)
  • 免疫组化; 人类; 1:1000
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, Sc7269)被用于被用于免疫组化在人类样本上浓度为1:1000. Brain Pathol (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 家羊; 1:50
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, SC-7269)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:50. Anim Reprod Sci (2014) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 家羊; 1:200
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:200. Biol Reprod (2014) ncbi
小鼠 单克隆(JH121)
  • 免疫印迹; 小鼠; 1:200; 图 4
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-57496)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 大鼠
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在大鼠样本上. Mater Sci Eng C Mater Biol Appl (2013) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Brain Tumor Pathol (2014) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:30
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc- 7269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30. PLoS ONE (2012) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 9b
赛默飞世尔血管内皮生长因子抗体(Thermo Fisher Scientific, PA5-85,171)被用于被用于免疫组化在人类样本上 (图 9b). Cancer Cell Int (2021) ncbi
小鼠 单克隆(VG1)
  • 免疫印迹; 人类; 1:200; 图 5a
赛默飞世尔血管内皮生长因子抗体(Thermo Scientific, MA1-16629)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5a). Cancers (Basel) (2021) ncbi
小鼠 单克隆(VG1)
  • 免疫印迹基因敲除验证; 人类; 图 2a
  • 免疫组化; 人类; 1:200; 图 9a
赛默飞世尔血管内皮生长因子抗体(Thermo Fisher Scientific, MA1-16629)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 2a) 和 被用于免疫组化在人类样本上浓度为1:200 (图 9a). Sci Rep (2020) ncbi
小鼠 单克隆(16F1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔血管内皮生长因子抗体(Thermo scientific, 16F1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). J Transl Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 3
赛默飞世尔血管内皮生长因子抗体(Thermo Fisher, RB-222-P0)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(JH121)
  • 免疫组化-石蜡切片; 犬; 1:100; 图 1
赛默飞世尔血管内皮生长因子抗体(Thermo Scientific, JH121)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:100 (图 1). Vet Comp Oncol (2017) ncbi
小鼠 单克隆(VG1)
  • 免疫细胞化学; 小鼠; 图 3
赛默飞世尔血管内皮生长因子抗体(ThermoFisher Scientific, VG1)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔血管内皮生长因子抗体(Neomarkers, RB-222-P0)被用于. Toxicol Mech Methods (2015) ncbi
小鼠 单克隆(JH121)
  • 免疫组化-石蜡切片; 犬; 1:100
赛默飞世尔血管内皮生长因子抗体(Thermo Scientific, JH121)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:100. Anal Cell Pathol (Amst) (2015) ncbi
小鼠 单克隆(JH121)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔血管内皮生长因子抗体(NeoMarkers, JH12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Head Face Med (2015) ncbi
小鼠 单克隆(VG1)
  • 免疫印迹; 大鼠; 1:200
赛默飞世尔血管内皮生长因子抗体(Thermo, MA1-16629)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Acta Biomater (2015) ncbi
小鼠 单克隆(A183C 13G8)
  • dot blot; 人类; 表 s1
赛默飞世尔血管内皮生长因子抗体(Invitrogen, AHG0114)被用于被用于dot blot在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔血管内皮生长因子抗体(LabVision, VG1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. APMIS (2015) ncbi
小鼠 单克隆(A183C 13G8)
  • 免疫组化; 人类; 1:150
赛默飞世尔血管内皮生长因子抗体(Invitrogen, AHG0114)被用于被用于免疫组化在人类样本上浓度为1:150. Neurobiol Dis (2015) ncbi
小鼠 单克隆(VG1)
  • 免疫组化; 人类; 1:100
赛默飞世尔血管内皮生长因子抗体(Thermo Scientific Lab Vision, MS-1467-P0)被用于被用于免疫组化在人类样本上浓度为1:100. Thromb Res (2014) ncbi
小鼠 单克隆(JH121)
  • 免疫组化-石蜡切片; 人类; 1:150
赛默飞世尔血管内皮生长因子抗体(Neomarkers, JH121)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. Reprod Domest Anim (2014) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔血管内皮生长因子抗体(Lab Vision, VG1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔血管内皮生长因子抗体(Neomarkers, MS-1467-R7)被用于被用于免疫组化-石蜡切片在大鼠样本上. Clin Exp Obstet Gynecol (2012) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔血管内皮生长因子抗体(Lab Vision, MS-350)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Int J Oncol (2012) ncbi
小鼠 单克隆(JH121)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔血管内皮生长因子抗体(Lab Vision, MS-350)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Int J Oncol (2012) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔血管内皮生长因子抗体(Zymed, VG1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Clin Cancer Res (2009) ncbi
小鼠 单克隆(JH121)
  • 酶联免疫吸附测定; 人类
赛默飞世尔血管内皮生长因子抗体(Lab Vision, Ab-3)被用于被用于酶联免疫吸附测定在人类样本上. Cell (2007) ncbi
安迪生物R&D
小鼠 单克隆(23410)
  • 流式细胞仪; 人类; 1:10; 图 3a
安迪生物R&D血管内皮生长因子抗体(R&D, IC2931P)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 3a). Cell Rep (2021) ncbi
小鼠 单克隆(26503)
  • 免疫印迹; 大鼠; 1:750; 图 9d
安迪生物R&D血管内皮生长因子抗体(R&D, MAB293)被用于被用于免疫印迹在大鼠样本上浓度为1:750 (图 9d). Invest Ophthalmol Vis Sci (2021) ncbi
小鼠 单克隆(211615)
  • 免疫印迹; 斑马鱼; 1:1000; 图 s7
安迪生物R&D血管内皮生长因子抗体(R&D Systems, MAB1247)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 s7). Front Cell Dev Biol (2021) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1g, 1h
安迪生物R&D血管内皮生长因子抗体(R&D, AF-493-NA)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g, 1h). Sci Rep (2020) ncbi
domestic goat 多克隆
  • proximity ligation assay; 人类; 1:100; 图 6c
安迪生物R&D血管内皮生长因子抗体(R&D Systems, AF-293-NA)被用于被用于proximity ligation assay在人类样本上浓度为1:100 (图 6c). PLoS ONE (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6a
安迪生物R&D血管内皮生长因子抗体(R&D, AF-493)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6a). J Cell Sci (2019) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 小鼠; 图 3a
安迪生物R&D血管内皮生长因子抗体(R&D Systems, AF-493-NA)被用于被用于抑制或激活实验在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4b
安迪生物R&D血管内皮生长因子抗体(R&D Systems, AF-493-NA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 人类; 图 6b
安迪生物R&D血管内皮生长因子抗体(R&D, AF-293-NA)被用于被用于抑制或激活实验在人类样本上 (图 6b). Nat Commun (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:80; 图 3b
安迪生物R&D血管内皮生长因子抗体(R&D, AF-493-NA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:80 (图 3b). PLoS ONE (2016) ncbi
domestic goat 多克隆
  • 其他; 人类; 表 1
安迪生物R&D血管内皮生长因子抗体(R&D, BAF293)被用于被用于其他在人类样本上 (表 1). Dis Markers (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 大鼠; 图 4
安迪生物R&D血管内皮生长因子抗体(R&D, BAF293)被用于被用于免疫印迹在大鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 3
安迪生物R&D血管内皮生长因子抗体(R&D Systems, AF-493-NA)被用于被用于免疫组化在小鼠样本上 (图 3). Mol Cell Proteomics (2016) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 小鼠; 图 6
安迪生物R&D血管内皮生长因子抗体(R&D, AF-493-NA)被用于被用于抑制或激活实验在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5
安迪生物R&D血管内皮生长因子抗体(R&D Systems, AF493NA)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). Nat Commun (2016) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250
安迪生物R&D血管内皮生长因子抗体(R&D Systems, AF-493-NA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. Mol Carcinog (2016) ncbi
domestic goat 多克隆
安迪生物R&D血管内皮生长因子抗体(R&D Systems, AF564)被用于. PLoS ONE (2015) ncbi
ImmunoStar
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s1g
ImmunoStar血管内皮生长因子抗体(Immunostar, 20085)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s1g). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 e4
ImmunoStar血管内皮生长因子抗体(Immunostar, 20085)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 e4). Nature (2016) ncbi
BioLegend
domestic rabbit 多克隆(poly6275)
  • mass cytometry; 人类; 图 4d
BioLegend血管内皮生长因子抗体(Biolegend, 627501)被用于被用于mass cytometry在人类样本上 (图 4d). Front Oncol (2020) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 大鼠; 1:800; 图 st15
  • 免疫组化-石蜡切片; 人类; 1:800; 图 st15
亚诺法生技股份有限公司血管内皮生长因子抗体(Abnova MAB6996, MAB6996)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:800 (图 st15) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 st15). J Toxicol Pathol (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479s)被用于被用于免疫印迹在人类样本上 (图 5d). J Hematol Oncol (2021) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Cell Rep (2021) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-冰冻切片; 小鼠; 图 6
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). Biomolecules (2021) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 小鼠; 1:200
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫印迹在小鼠样本上 (图 6e). Biomolecules (2021) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3c). elife (2019) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2019) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 s4t
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 s4t). Cell (2019) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 人类; 图 5h
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫组化在人类样本上 (图 5h) 和 被用于免疫印迹在人类样本上 (图 5c). Cell Rep (2019) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:2000; 图 8a
  • 免疫印迹; 小鼠; 1:2000; 图 8b
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(CST, 2479S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8b). J Cell Sci (2019) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫沉淀; 猕猴; 1:100; 图 1c
  • 免疫印迹; 猕猴; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫沉淀在猕猴样本上浓度为1:100 (图 1c) 和 被用于免疫印迹在猕猴样本上浓度为1:1000 (图 1c). Sci Rep (2019) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). EMBO J (2019) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫沉淀; 人类; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫沉淀在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Science (2018) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-冰冻切片; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 6a). Brain Behav Immun (2018) ncbi
domestic rabbit 单克隆(55B11)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 8b
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 8b). Int J Biochem Cell Biol (2018) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 s8a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8a). Nature (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 8c). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(55B11)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(CST, 2479)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). FASEB J (2017) ncbi
domestic rabbit 单克隆(55B11)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫细胞化学; 小鼠; 图 3i
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell signaling, 55B11)被用于被用于免疫细胞化学在小鼠样本上 (图 3i). Stem Cells Int (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 5c). Front Pharmacol (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫沉淀; 小鼠; 图 5d
  • 免疫沉淀; 人类; 图 5c
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479S)被用于被用于免疫沉淀在小鼠样本上 (图 5d), 被用于免疫沉淀在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 4a). Cardiovasc Res (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-冰冻切片; 小鼠; 图 s5c
  • 免疫印迹; 小鼠; 图 3i
  • 免疫印迹; 人类; 图 s7c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5c), 被用于免疫印迹在小鼠样本上 (图 3i) 和 被用于免疫印迹在人类样本上 (图 s7c). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫沉淀; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫沉淀在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3a). Circ Res (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 5). Mol Clin Oncol (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 1d). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(C28G5)
  • 免疫印迹; 小鼠; 1:1000; 图 s10c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2638)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10c). Development (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479S)被用于被用于免疫印迹在人类样本上 (图 7a). Cell (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 s4e
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4e). Nat Med (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Histopathology (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 4). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 人类; 图 1
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 55B11)被用于被用于免疫组化在人类样本上 (图 1). Mol Imaging Biol (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 图 s1o
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1o). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell signaling, 2479)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(cell signalling, 2479S)被用于被用于免疫细胞化学在人类样本上 (图 4a). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 图 5n
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5n). J Pathol (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 24790)被用于被用于免疫印迹在人类样本上 (图 6). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上浓度为1:1000 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Oncotarget (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 流式细胞仪; 人类; 图 5
  • 免疫沉淀; 人类; 图 7
  • 免疫细胞化学; 人类; 图 6
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于流式细胞仪在人类样本上 (图 5), 被用于免疫沉淀在人类样本上 (图 7) 和 被用于免疫细胞化学在人类样本上 (图 6). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Ozyme, 2479)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). EJNMMI Res (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 大鼠; 1:200; 图 2
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell signaling, 2479)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). Am J Respir Crit Care Med (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上浓度为1:5000. Development (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:500; 图 2a
  • 免疫印迹; 人类; 1:500; 图 2a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signalling Technology, 24795)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a). J Neurooncol (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 s5b
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5b). Nature (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 大鼠; 1:500; 图 7a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 7a). Exp Eye Res (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫细胞化学; 人类; 1:300
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Nature (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上 (图 3). Cancer Sci (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 小鼠; 1:300
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, # 2479L)被用于被用于免疫组化在小鼠样本上浓度为1:300. Reprod Sci (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Exp Ther Med (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上. Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上 (图 3a). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479S)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Front Pharmacol (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Commun (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:200; 表 4
  • 免疫组化-冰冻切片; 小鼠; 1:200; 表 6
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上浓度为1:200 (表 4) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (表 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上. J Cell Biol (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 小鼠; 1:500; 图 8
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 55B11)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫细胞化学; 小鼠; 图 2
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell signaling, 55B11)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Exp Med (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 大鼠; 1:750
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在大鼠样本上浓度为1:750. Ann Anat (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technologies, 2479)被用于被用于免疫印迹在小鼠样本上 (图 7). Diabetes (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 流式细胞仪; 人类; 图 5c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479S)被用于被用于流式细胞仪在人类样本上 (图 5c). Invest New Drugs (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signalling, 2479)被用于被用于免疫组化在人类样本上浓度为1:100. Mol Oncol (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 大鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 55B11)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5). J Steroid Biochem Mol Biol (2014) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫组化在人类样本上浓度为1:100. Br J Cancer (2014) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479S)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2014) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 人类; 1:150
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫组化在人类样本上浓度为1:150. Pathol Res Pract (2014) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(VG1)
  • 免疫组化; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司血管内皮生长因子抗体(DAKO, VG1)被用于被用于免疫组化在人类样本上浓度为1:40. Ann Hematol (2021) ncbi
小鼠 单克隆(VG1)
  • 免疫组化; 人类; 1:300; 图 3
丹科医疗器械技术服务(上海)有限公司血管内皮生长因子抗体(Dako, VG1)被用于被用于免疫组化在人类样本上浓度为1:300 (图 3). Postepy Dermatol Alergol (2020) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
丹科医疗器械技术服务(上海)有限公司血管内皮生长因子抗体(DakoCytomation, M7273)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4). J Egypt Natl Canc Inst (2016) ncbi
小鼠 单克隆(VG1)
  • 免疫细胞化学; 人类; 1:100; 图 5
丹科医疗器械技术服务(上海)有限公司血管内皮生长因子抗体(DAKO, M7273)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司血管内皮生长因子抗体(DAKOCytomation, M7273)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Anticancer Res (2014) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司血管内皮生长因子抗体(DAKOCytomation, M7273)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncology (2013) ncbi
碧迪BD
小鼠 单克隆(G153-694)
  • 免疫组化; 人类; 1:100
碧迪BD血管内皮生长因子抗体(BD Pharmingen, G153-694)被用于被用于免疫组化在人类样本上浓度为1:100. Sci Rep (2020) ncbi
小鼠 单克隆(G153-694)
  • 流式细胞仪; 人类; 图 s5b
碧迪BD血管内皮生长因子抗体(BD Biosciences, 555036)被用于被用于流式细胞仪在人类样本上 (图 s5b). Cell (2019) ncbi
小鼠 单克隆(G153-694)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 1
碧迪BD血管内皮生长因子抗体(bD Bioscience, 555036)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(G153-694)
  • 免疫印迹; 人类; 1:1000; 图 s3
碧迪BD血管内皮生长因子抗体(BD Pharmigen, 555036)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Mol Neurodegener (2015) ncbi
小鼠 单克隆(G153-694)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BD血管内皮生长因子抗体(Pharmingen BD, G153-694)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. BMC Cancer (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(3F7)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇血管内皮生长因子抗体(Sigma, SAB1402390)被用于被用于免疫印迹在人类样本上 (图 7). Sci Rep (2016) ncbi
文章列表
  1. Lee J, Hur J, Kwon Y, Chae C, Choi J, Hwang I, et al. KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state. J Hematol Oncol. 2021;14:148 pubmed 出版商
  2. Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, et al. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol. 2021;12:724141 pubmed 出版商
  3. Alvi A, Al Kury L, Alattar A, Ullah I, Muhammad A, Alshaman R, et al. Carveol Attenuates Seizure Severity and Neuroinflammation in Pentylenetetrazole-Kindled Epileptic Rats by Regulating the Nrf2 Signaling Pathway. Oxid Med Cell Longev. 2021;2021:9966663 pubmed 出版商
  4. Ma S, Mangala L, Hu W, Bayaktar E, Yokoi A, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549 pubmed 出版商
  5. Hu J, Zhu M, Li D, Wu Q, Le Y. VEGF as a Direct Functional Regulator of Photoreceptors and Contributing Factor to Diabetes-Induced Alteration of Photoreceptor Function. Biomolecules. 2021;11: pubmed 出版商
  6. Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther. 2021;12:415 pubmed 出版商
  7. Abu El Asrar A, Nawaz M, Ahmad A, Siddiquei M, Allegaert E, Gikandi P, et al. CD146/Soluble CD146 Pathway Is a Novel Biomarker of Angiogenesis and Inflammation in Proliferative Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2021;62:32 pubmed 出版商
  8. Umans R, Pollock C, Mills W, Clark K, Pan Y, Sontheimer H. Using Zebrafish to Elucidate Glial-Vascular Interactions During CNS Development. Front Cell Dev Biol. 2021;9:654338 pubmed 出版商
  9. Yang Y, Li Y, Qi R, Zhang L. Constructe a novel 5 hypoxia genes signature for cervical cancer. Cancer Cell Int. 2021;21:345 pubmed 出版商
  10. Cai C, Zeng D, Gao Q, Ma L, Zeng B, Zhou Y, et al. Decreased ferroportin in hepatocytes promotes macrophages polarize towards an M2-like phenotype and liver fibrosis. Sci Rep. 2021;11:13386 pubmed 出版商
  11. Qian J, Xu Q, Xu W, Cai R, Huang G. Expression of VEGF-A Signaling Pathway in Cartilage of ACLT-induced Osteoarthritis Mouse Model. J Orthop Surg Res. 2021;16:379 pubmed 出版商
  12. Brady N, Bagadion A, Singh R, Conteduca V, Van Emmenis L, Arceci E, et al. Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer. Nat Commun. 2021;12:3372 pubmed 出版商
  13. Shen M, Zhang R, Jia W, Zhu Z, Zhao X, Zhao L, et al. Nuclear scaffold protein p54nrb/NONO facilitates the hypoxia-enhanced progression of hepatocellular carcinoma. Oncogene. 2021;40:4167-4183 pubmed 出版商
  14. Visniauskas B, Perry J, Gomes G, Nogueira Pedro A, Paredes Gamero E, Tufik S, et al. Intermittent hypoxia changes the interaction of the kinin-VEGF system and impairs myocardial angiogenesis in the hypertrophic heart. Physiol Rep. 2021;9:e14863 pubmed 出版商
  15. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  16. He B, Chen P, Zambrano S, Dabaghie D, Hu Y, Möller Hackbarth K, et al. Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nat Commun. 2021;12:2141 pubmed 出版商
  17. Maier A, Reichhart N, Gonnermann J, Kociok N, Riechardt A, Gundlach E, et al. Effects of TNFα receptor TNF-Rp55- or TNF-Rp75- deficiency on corneal neovascularization and lymphangiogenesis in the mouse. PLoS ONE. 2021;16:e0245143 pubmed 出版商
  18. Borges P, Waclawiak I, Georgii J, Fraga Junior V, Barros J, Lemos F, et al. Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y12 Receptor Activation. Front Immunol. 2021;12:651740 pubmed 出版商
  19. Tirronen A, Downes N, Huusko J, Laakkonen J, Tuomainen T, Tavi P, et al. The Ablation of VEGFR-1 Signaling Promotes Pressure Overload-Induced Cardiac Dysfunction and Sudden Death. Biomolecules. 2021;11: pubmed 出版商
  20. Chen W, Wu C, Chen Y, Guo Y, Qiu L, Liu Z, et al. Downregulation of ceramide synthase 1 promotes oral cancer through endoplasmic reticulum stress. Int J Oral Sci. 2021;13:10 pubmed 出版商
  21. Sewastianik T, Straubhaar J, Zhao J, Samur M, Adler K, Tanton H, et al. miR-15a/16-1 deletion in activated B cells promotes plasma cell and mature B-cell neoplasms. Blood. 2021;137:1905-1919 pubmed 出版商
  22. Brune M, Stussi G, Lundberg P, Vela V, Heim D, Manz M, et al. Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann Hematol. 2021;100:1169-1179 pubmed 出版商
  23. Wan B, Li C, Wang M, Kong F, Ding Q, Zhang C, et al. GIT1 protects traumatically injured spinal cord by prompting microvascular endothelial cells to clear myelin debris. Aging (Albany NY). 2021;13:7067-7083 pubmed 出版商
  24. Attaai A, Noreldin A, Abdel Maksoud F, Hussein M. An updated investigation on the dromedary camel cerebellum (Camelus dromedarius) with special insight into the distribution of calcium-binding proteins. Sci Rep. 2020;10:21157 pubmed 出版商
  25. Mulcrone P, Edwards S, Petrusca D, Haneline L, Delgado Calle J, Roodman G. Osteocyte Vegf-a contributes to myeloma-associated angiogenesis and is regulated by Fgf23. Sci Rep. 2020;10:17319 pubmed 出版商
  26. Zhu W, Liu C, Lu T, Zhang Y, Zhang S, Chen Q, et al. Knockout of EGFL6 by CRISPR/Cas9 Mediated Inhibition of Tumor Angiogenesis in Ovarian Cancer. Front Oncol. 2020;10:1451 pubmed 出版商
  27. Kolano P, Bednarski I, Lesiak A, Skibińska M, Stasikowska Kanicka O, Danilewicz M, et al. Overexpression of cathepsin K and vascular endothelial growth factor in chronic venous ulcerations. Postepy Dermatol Alergol. 2020;37:234-239 pubmed 出版商
  28. Jiang H, Gallet S, Klemm P, Scholl P, Folz Donahue K, Altmuller J, et al. MCH Neurons Regulate Permeability of the Median Eminence Barrier. Neuron. 2020;107:306-319.e9 pubmed 出版商
  29. Gao P, Wang D, Liu M, Chen S, Yang Z, Zhang J, et al. DNA methylation-mediated repression of exosomal miR-652-5p expression promotes oesophageal squamous cell carcinoma aggressiveness by targeting PARG and VEGF pathways. PLoS Genet. 2020;16:e1008592 pubmed 出版商
  30. Yang X, Zhao L, Campos M, Abu Asab M, Ortolan D, Hotaling N, et al. CSF1R blockade induces macrophage ablation and results in mouse choroidal vascular atrophy and RPE disorganization. elife. 2020;9: pubmed 出版商
  31. Che H, Li J, Li Y, Ma C, Liu H, Qin J, et al. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. elife. 2020;9: pubmed 出版商
  32. Fu W, Wang W, Li H, Jiao Y, Weng J, Huo R, et al. High Dimensional Mass Cytometry Analysis Reveals Characteristics of the Immunosuppressive Microenvironment in Diffuse Astrocytomas. Front Oncol. 2020;10:78 pubmed 出版商
  33. Lin Y, Huang X, Chang K, Liao K, Tsai N. Encapsulated n-Butylidenephthalide Efficiently Crosses the Blood-Brain Barrier and Suppresses Growth of Glioblastoma. Int J Nanomedicine. 2020;15:749-760 pubmed 出版商
  34. Ichikawa K, Watanabe Miyano S, Minoshima Y, Matsui J, Funahashi Y. Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy. Sci Rep. 2020;10:2939 pubmed 出版商
  35. de Gooyer J, Versleijen Jonkers Y, Hillebrandt Roeffen M, Frielink C, Desar I, de Wilt J, et al. Immunohistochemical selection of biomarkers for tumor-targeted image-guided surgery of myxofibrosarcoma. Sci Rep. 2020;10:2915 pubmed 出版商
  36. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  37. Baptista J, Traynelis V, Liberti E, Fontes R. Expression of degenerative markers in intervertebral discs of young and elderly asymptomatic individuals. PLoS ONE. 2020;15:e0228155 pubmed 出版商
  38. Njau F, Shushakova N, Schenk H, Wulfmeyer V, Bollin R, Menne J, et al. Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice. PLoS ONE. 2020;15:e0218494 pubmed 出版商
  39. Harde E, Nicholson L, Furones Cuadrado B, Bissen D, Wigge S, Urban S, et al. EphrinB2 regulates VEGFR2 during dendritogenesis and hippocampal circuitry development. elife. 2019;8: pubmed 出版商
  40. Luck R, Urban S, Karakatsani A, Harde E, Sambandan S, Nicholson L, et al. VEGF/VEGFR2 signaling regulates hippocampal axon branching during development. elife. 2019;8: pubmed 出版商
  41. Jiang X, Xu C, Shi H, Cheng Q. PTH1-34 improves bone healing by promoting angiogenesis and facilitating MSCs migration and differentiation in a stabilized fracture mouse model. PLoS ONE. 2019;14:e0226163 pubmed 出版商
  42. Song Y, Lu H, Wang Q, Xiang R. Targeting Angiogenesis by Blocking the ATM-SerRS-VEGFA Pathway for UV-Induced Skin Photodamage and Melanoma Growth. Cancers (Basel). 2019;11: pubmed 出版商
  43. Yang Y, Tang F, Wei F, Yang L, Kuang C, Zhang H, et al. Silencing of long non-coding RNA H19 downregulates CTCF to protect against atherosclerosis by upregulating PKD1 expression in ApoE knockout mice. Aging (Albany NY). 2019;11:10016-10030 pubmed 出版商
  44. Zhang Q, He Y, Luo N, Patel S, Han Y, Gao R, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell. 2019;179:829-845.e20 pubmed 出版商
  45. Ramachandran P, Dobie R, Wilson Kanamori J, Dora E, Henderson B, Luu N, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512-518 pubmed 出版商
  46. Xu M, Xu H, Lin Y, Sun X, Wang L, Fang Z, et al. LECT2, a Ligand for Tie1, Plays a Crucial Role in Liver Fibrogenesis. Cell. 2019;178:1478-1492.e20 pubmed 出版商
  47. Wei C, Zhu M, Zhang P, Yang X, Wang L, Ying J, et al. Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY). 2019;11:6273-6285 pubmed 出版商
  48. Li B, Zhang Q, Sun J, Lai D. Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model. Stem Cell Res Ther. 2019;10:257 pubmed 出版商
  49. Njah K, Chakraborty S, Qiu B, Arumugam S, Raju A, Pobbati A, et al. A Role of Agrin in Maintaining the Stability of Vascular Endothelial Growth Factor Receptor-2 during Tumor Angiogenesis. Cell Rep. 2019;28:949-965.e7 pubmed 出版商
  50. Peng T, Deng X, Tian F, Li Z, Jiang P, Zhao X, et al. The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma. Int J Oncol. 2019;: pubmed 出版商
  51. Xie X, Wang Y, Xia Y, Mao Y. Overexpressed vascular endothelial growth factor in adipose derived stem cells attenuates fibroblasts and skin injuries by ultraviolet radiation. Biosci Rep. 2019;39: pubmed 出版商
  52. Liu F, Fan D, Yang Z, Tang N, Guo Z, Ma S, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480 pubmed 出版商
  53. Lesch B, Tothova Z, Morgan E, Liao Z, Bronson R, Ebert B, et al. Intergenerational epigenetic inheritance of cancer susceptibility in mammals. elife. 2019;8: pubmed 出版商
  54. Chen Z, Wang H, Wang S, Fan L, Feng S, Cai X, et al. USP9X deubiquitinates ALDH1A3 and maintains mesenchymal identity in glioblastoma stem cells. J Clin Invest. 2019;130:2043-2055 pubmed 出版商
  55. Janela B, Patel A, Lau M, Goh C, Msallam R, Kong W, et al. A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGFα-Mediated Recruitment of Neutrophils. Immunity. 2019;50:1069-1083.e8 pubmed 出版商
  56. Zhang S, Liu W, Yang Y, Sun K, Li S, Xu H, et al. Tmem30a Deficiency in endothelial cells impairs cell proliferation and angiogenesis. J Cell Sci. 2019;: pubmed 出版商
  57. Hayashi H, Mamun A, Takeyama M, Yamamura A, Zako M, Yagasaki R, et al. Activator of G-protein signaling 8 is involved in VEGF-induced choroidal neovascularization. Sci Rep. 2019;9:1560 pubmed 出版商
  58. Guan H, Li N, Wang X, Shan X, Li Z, Lin Z. Role of Paip1 on angiogenesis and invasion in pancreatic cancer. Exp Cell Res. 2019;376:198-209 pubmed 出版商
  59. Urner S, Planas Paz L, Hilger L, Henning C, Branopolski A, Kelly Goss M, et al. Identification of ILK as a critical regulator of VEGFR3 signalling and lymphatic vascular growth. EMBO J. 2019;38: pubmed 出版商
  60. Segarra M, Aburto M, Cop F, Llaó Cid C, Härtl R, Damm M, et al. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science. 2018;361: pubmed 出版商
  61. Young M, Mitchell T, Vieira Braga F, Tran M, Stewart B, Ferdinand J, et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science. 2018;361:594-599 pubmed 出版商
  62. Das A, Huang G, Bonkowski M, Longchamp A, Li C, Schultz M, et al. Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging. Cell. 2018;173:74-89.e20 pubmed 出版商
  63. Beazley Long N, Moss C, Ashby W, Bestall S, Almahasneh F, Durrant A, et al. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun. 2018;74:49-67 pubmed 出版商
  64. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  65. Yin R, Guo L, Gu J, Li C, Zhang W. Over expressing miR-19b-1 suppress breast cancer growth by inhibiting tumor microenvironment induced angiogenesis. Int J Biochem Cell Biol. 2018;97:43-51 pubmed 出版商
  66. Holmgaard A, Askou A, Benckendorff J, Thomsen E, Cai Y, Bek T, et al. In Vivo Knockout of the Vegfa Gene by Lentiviral Delivery of CRISPR/Cas9 in Mouse Retinal Pigment Epithelium Cells. Mol Ther Nucleic Acids. 2017;9:89-99 pubmed 出版商
  67. Polacheck W, Kutys M, Yang J, Eyckmans J, Wu Y, Vasavada H, et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature. 2017;552:258-262 pubmed 出版商
  68. Jiang Y, Lin X, Tang Z, Lee C, Tian G, Du Y, et al. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proc Natl Acad Sci U S A. 2017;114:10737-10742 pubmed 出版商
  69. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  70. Liu Z, Li H, Liu J, Wu M, Chen X, Liu L, et al. Inactivated Wnt signaling in resveratrol-treated epidermal squamous cancer cells and its biological implication. Oncol Lett. 2017;14:2239-2243 pubmed 出版商
  71. Kitano H, Chung J, Noh K, Lee Y, Kim T, Lee S, et al. Synaptonemal complex protein 3 is associated with lymphangiogenesis in non-small cell lung cancer patients with lymph node metastasis. J Transl Med. 2017;15:138 pubmed 出版商
  72. Hara T, Nakaoka H, Hayashi T, Mimura K, Hoshino D, Inoue M, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017;114:E4416-E4424 pubmed 出版商
  73. Zhou Y, Yang P, Li A, Ye X, Ren S, Li X. Prostaglandin E2 reduces swine myocardial ischemia reperfusion injury via increased endothelial nitric oxide synthase and vascular endothelial growth factor expression levels. Biomed Rep. 2017;6:188-194 pubmed 出版商
  74. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  75. Carmona Fontaine C, Deforet M, Akkari L, Thompson C, Joyce J, Xavier J. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A. 2017;114:2934-2939 pubmed 出版商
  76. Hirayama Y, Nakanishi R, Maeshige N, Fujino H. Preventive effects of nucleoprotein supplementation combined with intermittent loading on capillary regression induced by hindlimb unloading in rat soleus muscle. Physiol Rep. 2017;5: pubmed 出版商
  77. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  78. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  79. Yang G, Zhao Z, Qin T, Wang D, Chen L, Xiang R, et al. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation. FASEB J. 2017;31:2001-2012 pubmed 出版商
  80. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  81. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  82. Indrakusuma I, Romacho T, Eckel J. Protease-Activated Receptor 2 Promotes Pro-Atherogenic Effects through Transactivation of the VEGF Receptor 2 in Human Vascular Smooth Muscle Cells. Front Pharmacol. 2016;7:497 pubmed 出版商
  83. Wu Q, Ma Y, Ruan C, Yang Y, Liu X, Ge Q, et al. Loss of osteoglycin promotes angiogenesis in limb ischaemia mouse models via modulation of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 signalling pathway. Cardiovasc Res. 2017;113:70-80 pubmed 出版商
  84. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  85. Lee S, Rho S, Park H, Park J, Kim J, Lee I, et al. Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis. J Clin Invest. 2017;127:457-471 pubmed 出版商
  86. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  87. Liu L, Guan H, Li Y, Ying Z, Wu J, Zhu X, et al. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness. Mol Cell Biol. 2017;37: pubmed 出版商
  88. Zhang H, Zhang P, Gao Y, Li C, Wang H, Chen L, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15:57-64 pubmed 出版商
  89. Galoian K, Luo S, Qureshi A, Patel P, Price R, Morse A, et al. Effect of cytostatic proline rich polypeptide-1 on tumor suppressors of inflammation pathway signaling in chondrosarcoma. Mol Clin Oncol. 2016;5:618-624 pubmed
  90. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  91. Chu L, Ganta V, Choi M, Chen G, Finley S, Annex B, et al. A multiscale computational model predicts distribution of anti-angiogenic isoform VEGF165b in peripheral arterial disease in human and mouse. Sci Rep. 2016;6:37030 pubmed 出版商
  92. Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126:4527-4536 pubmed 出版商
  93. Wang Y, Baeyens N, Corti F, Tanaka K, Fang J, Zhang J, et al. Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development. Development. 2016;143:4441-4451 pubmed
  94. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  95. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  96. Seemann S, Lupp A. Administration of AMD3100 in endotoxemia is associated with pro-inflammatory, pro-oxidative, and pro-apoptotic effects in vivo. J Biomed Sci. 2016;23:68 pubmed
  97. Liang X, Guo Y, Sun T, Song H, Gao Y. Anti-angiogenic effect of total saponins of Rhizoma Dioscorea nipponica on collagen induced-arthritis in rats. Exp Ther Med. 2016;12:2155-2160 pubmed
  98. Xin H, ZHONG C, Nudleman E, Ferrara N. Evidence for Pro-angiogenic Functions of VEGF-Ax. Cell. 2016;167:275-284.e6 pubmed 出版商
  99. De Paoli M, Gogalic S, Sauer U, Preininger C, Pandha H, Simpson G, et al. Multiplatform Biomarker Discovery for Bladder Cancer Recurrence Diagnosis. Dis Markers. 2016;2016:4591910 pubmed
  100. Scotti L, Di Pietro M, Pascuali N, Irusta G, I de Zúñiga -, Gomez Peña M, et al. Sphingosine-1-phosphate restores endothelial barrier integrity in ovarian hyperstimulation syndrome. Mol Hum Reprod. 2016;22:852-866 pubmed
  101. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed 出版商
  102. Quan F, Chen J, Zhong Y, Ren W. Comparative effect of immature neuronal or glial cell transplantation on motor functional recovery following experimental traumatic brain injury in rats. Exp Ther Med. 2016;12:1671-1680 pubmed
  103. Spina A, Montella R, Liccardo D, De Rosa A, Laino L, Mitsiadis T, et al. NZ-GMP Approved Serum Improve hDPSC Osteogenic Commitment and Increase Angiogenic Factor Expression. Front Physiol. 2016;7:354 pubmed 出版商
  104. Yang Y, Zhang Y, Iwamoto H, Hosaka K, Seki T, Andersson P, et al. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun. 2016;7:12680 pubmed 出版商
  105. Sweeny L, Prince A, Patel N, Moore L, Rosenthal E, Hughley B, et al. Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies. Laryngoscope. 2016;126:E387-E395 pubmed 出版商
  106. Qian L, Lin L, Du Y, Hao X, Zhao Y, Liu X. MicroRNA-588 suppresses tumor cell migration and invasion by targeting GRN in lung squamous cell carcinoma. Mol Med Rep. 2016;14:3021-8 pubmed 出版商
  107. Jinesh G, Molina J, Huang L, Laing N, Mills G, Bar Eli M, et al. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis. Cell Death Discov. 2016;2:16003 pubmed 出版商
  108. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  109. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  110. Liu L, Jiang Y, Steinle J. Compound 49b Restores Retinal Thickness and Reduces Degenerate Capillaries in the Rat Retina following Ischemia/Reperfusion. PLoS ONE. 2016;11:e0159532 pubmed 出版商
  111. Garcia P, Seiva F, Carniato A, de Mello Júnior W, Duran N, Macedo A, et al. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer. 2016;16:422 pubmed 出版商
  112. Li X, Chen Y, Wang L, Shang G, Zhang C, Zhao Z, et al. Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome. Braz J Med Biol Res. 2016;49: pubmed 出版商
  113. Peckova K, Michal M, Hadravsky L, Suster S, Damjanov I, Miesbauerova M, et al. Littoral cell angioma of the spleen: a study of 25 cases with confirmation of frequent association with visceral malignancies. Histopathology. 2016;69:762-774 pubmed 出版商
  114. Chung S, Gillies M, Yam M, Wang Y, Shen W. Differential expression of microRNAs in retinal vasculopathy caused by selective Müller cell disruption. Sci Rep. 2016;6:28993 pubmed 出版商
  115. Su X, Tan Q, Parikh B, Tan A, Mehta M, Sia Wey Y, et al. Characterization of Fatty Acid Binding Protein 7 (FABP7) in the Murine Retina. Invest Ophthalmol Vis Sci. 2016;57:3397-408 pubmed 出版商
  116. Tsai S, Huang P, Hsu Y, Peng Y, Lee C, Wang J, et al. Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep. 2016;6:28612 pubmed 出版商
  117. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  118. Gao S, Fan C, Huang H, Zhu C, Su M, Zhang Y. Effects of HCG on human epithelial ovarian cancer vasculogenic mimicry formation in vivo. Oncol Lett. 2016;12:459-466 pubmed
  119. Al Sadoun H, Burgess M, Hentges K, Mace K. Enforced Expression of Hoxa3 Inhibits Classical and Promotes Alternative Activation of Macrophages In Vitro and In Vivo. J Immunol. 2016;197:872-84 pubmed 出版商
  120. Hafez N, Tahoun N. Expression of cyclooxygenase 2 and vascular endothelial growth factor in gastric carcinoma: Relationship with clinicopathological parameters. J Egypt Natl Canc Inst. 2016;28:149-56 pubmed 出版商
  121. Wang L, Lee A, Wigg J, Peshavariya H, Liu P, Zhang H. miR-126 Regulation of Angiogenesis in Age-Related Macular Degeneration in CNV Mouse Model. Int J Mol Sci. 2016;17: pubmed 出版商
  122. Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao K, et al. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep. 2016;6:28627 pubmed 出版商
  123. Belfort Mattos P, Focchi G, Ribalta J, Megale De Lima T, Nogueira Carvalho C, Kesselring Tso F, et al. Immunohistochemical Expression of VEGF and Podoplanin in Uterine Cervical Squamous Intraepithelial Lesions. Dis Markers. 2016;2016:8293196 pubmed 出版商
  124. Zhang J, Guan J, Qi X, Ding H, Yuan H, Xie Z, et al. Dimethyloxaloylglycine Promotes the Angiogenic Activity of Mesenchymal Stem Cells Derived from iPSCs via Activation of the PI3K/Akt Pathway for Bone Regeneration. Int J Biol Sci. 2016;12:639-52 pubmed 出版商
  125. Zhang M, Huang W, Bai J, Nie X, Wang W. Chymase inhibition protects diabetic rats from renal lesions. Mol Med Rep. 2016;14:121-8 pubmed 出版商
  126. Lock R, Ingraham R, Maertens O, Miller A, Weledji N, Legius E, et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. J Clin Invest. 2016;126:2181-90 pubmed 出版商
  127. Wang Y, Li Y, Song L, Li Y, Jiang S, Zhang S. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. Mol Med Rep. 2016;14:234-42 pubmed 出版商
  128. de Geus S, Boogerd L, Swijnenburg R, Mieog J, Tummers W, Prevoo H, et al. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol Imaging Biol. 2016;18:807-819 pubmed
  129. Li C, Zhen G, Chai Y, Xie L, Crane J, Farber E, et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat Commun. 2016;7:11455 pubmed 出版商
  130. Krampitz G, George B, Willingham S, Volkmer J, Weiskopf K, Jahchan N, et al. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proc Natl Acad Sci U S A. 2016;113:4464-9 pubmed 出版商
  131. Jo D, Bae J, Chae S, Kim J, Han J, Hwang D, et al. Quantitative Proteomics Reveals β2 Integrin-mediated Cytoskeletal Rearrangement in Vascular Endothelial Growth Factor (VEGF)-induced Retinal Vascular Hyperpermeability. Mol Cell Proteomics. 2016;15:1681-91 pubmed 出版商
  132. Nishida Fukuda H, Araki R, Shudou M, Okazaki H, Tomono Y, Nakayama H, et al. Ectodomain Shedding of Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE-1) Is Induced by Vascular Endothelial Growth Factor A (VEGF-A). J Biol Chem. 2016;291:10490-500 pubmed 出版商
  133. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  134. Jung O, Trapp Stamborski V, Purushothaman A, Jin H, Wang H, Sanderson R, et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogenesis. 2016;5:e202 pubmed 出版商
  135. Sato T, Paquet Fifield S, Harris N, Roufail S, Turner D, Yuan Y, et al. VEGF-D promotes pulmonary oedema in hyperoxic acute lung injury. J Pathol. 2016;239:152-61 pubmed 出版商
  136. Abu N, Akhtar M, Yeap S, Lim K, Ho W, Abdullah M, et al. Flavokawain B induced cytotoxicity in two breast cancer cell lines, MCF-7 and MDA-MB231 and inhibited the metastatic potential of MDA-MB231 via the regulation of several tyrosine kinases In vitro. BMC Complement Altern Med. 2016;16:86 pubmed 出版商
  137. Milosavljević M, Jovanovic I, Pejnovic N, Mitrovic S, Arsenijevic N, Simovic Markovic B, et al. Deletion of IL-33R attenuates VEGF expression and enhances necrosis in mammary carcinoma. Oncotarget. 2016;7:18106-15 pubmed 出版商
  138. Wu G, Zeng G. METCAM/MUC18 is a novel tumor and metastasis suppressor for the human ovarian cancer SKOV3 cells. BMC Cancer. 2016;16:136 pubmed 出版商
  139. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  140. Lin Y, Ma Q, Lin S, Zhou H, Wen Q, Gao S, et al. Inhibitory effects of 90Sr/90Y β-irradiation on alkali burn-induced corneal neovascularization in rats. Exp Ther Med. 2016;11:409-414 pubmed
  141. Wang L, Zhao R, Liu C, Liu M, Li S, Li J, et al. A fundamental study on the dynamics of multiple biomarkers in mouse excisional wounds for wound age estimation. J Forensic Leg Med. 2016;39:138-46 pubmed 出版商
  142. Alonso F, Domingos Pereira S, Le Gal L, Derré L, Meda P, Jichlinski P, et al. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion. Oncotarget. 2016;7:14015-28 pubmed 出版商
  143. Zhang Z, Zhang H, Peng T, Li D, Xu J. Melittin suppresses cathepsin S-induced invasion and angiogenesis via blocking of the VEGF-A/VEGFR-2/MEK1/ERK1/2 pathway in human hepatocellular carcinoma. Oncol Lett. 2016;11:610-618 pubmed
  144. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  145. Derangère V, Fumet J, Boidot R, Bengrine L, Limagne E, Chevriaux A, et al. Does bevacizumab impact anti-EGFR therapy efficacy in metastatic colorectal cancer?. Oncotarget. 2016;7:9309-21 pubmed 出版商
  146. Soriano A, París Coderch L, Jubierre L, Martínez A, Zhou X, Piskareva O, et al. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget. 2016;7:9271-87 pubmed 出版商
  147. Carvalho M, Pires I, Prada J, Raposo T, Gregório H, Lobo L, et al. High COX-2 expression is associated with increased angiogenesis, proliferation and tumoural inflammatory infiltrate in canine malignant mammary tumours: a multivariate survival study. Vet Comp Oncol. 2017;15:619-631 pubmed 出版商
  148. Jiang T, Liu T, Li L, Yang Z, Bai Y, Liu D, et al. Knockout of phospholipase Cε attenuates N-butyl-N-(4-hydroxybutyl) nitrosamine-induced bladder tumorigenesis. Mol Med Rep. 2016;13:2039-45 pubmed 出版商
  149. Cui L, Gao B, Cao Z, Chen X, Zhang S, Zhang W. Downregulation of B7-H4 in the MHCC97-H hepatocellular carcinoma cell line by arsenic trioxide. Mol Med Rep. 2016;13:2032-8 pubmed 出版商
  150. Rusckowski M, Wang Y, Blankenberg F, Levashova Z, Backer M, Backer J. Targeted scVEGF/(177)Lu radiopharmaceutical inhibits growth of metastases and can be effectively combined with chemotherapy. EJNMMI Res. 2016;6:4 pubmed 出版商
  151. Wang Y, Tadjuidje E, Pandey R, Stefater J, Smith L, Lang R, et al. The Eyes Absent Proteins in Developmental and Pathological Angiogenesis. Am J Pathol. 2016;186:568-78 pubmed 出版商
  152. Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, et al. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism. Sci Rep. 2016;6:19404 pubmed 出版商
  153. Szulcek R, Happé C, Rol N, Fontijn R, Dickhoff C, Hartemink K, et al. Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. Am J Respir Crit Care Med. 2016;193:1410-20 pubmed 出版商
  154. Kim Y, Nam H, Lee J, Park D, Kim C, Yu Y, et al. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nat Commun. 2016;7:10347 pubmed 出版商
  155. von Moltke J, Ji M, Liang H, Locksley R. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016;529:221-5 pubmed 出版商
  156. Ulrich F, Carretero Ortega J, Menendez J, Narvaez C, Sun B, Lancaster E, et al. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development. 2016;143:147-59 pubmed 出版商
  157. Chen X, Dong X, Gao H, Jiang Y, Jin Y, Chang Y, et al. Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells. Mol Med Rep. 2016;13:689-96 pubmed 出版商
  158. Al Trad B, Ashankyty I, Alaraj M. Progesterone ameliorates diabetic nephropathy in streptozotocin-induced diabetic Rats. Diabetol Metab Syndr. 2015;7:97 pubmed 出版商
  159. Boiko E, Maltsev D, Savicheva A, Shalepo K, Khusnutdinova T, Pozniak A, et al. Infection of Human Retinal Pigment Epithelium with Chlamydia trachomatis. PLoS ONE. 2015;10:e0141754 pubmed 出版商
  160. Koudelkova P, Weber G, Mikulits W. Liver Sinusoidal Endothelial Cells Escape Senescence by Loss of p19ARF. PLoS ONE. 2015;10:e0142134 pubmed 出版商
  161. Pinheiro C, Garcia E, Morais Santos F, Moreira M, Almeida F, Jubé L, et al. Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas. BMC Cancer. 2015;15:835 pubmed 出版商
  162. Taïeb D, Barlier A, Yang C, Pertuit M, Tchoghandjian A, Rochette C, et al. Somatic gain-of-function HIF2A mutations in sporadic central nervous system hemangioblastomas. J Neurooncol. 2016;126:473-81 pubmed 出版商
  163. He W, Bai G, Zhou H, Wei N, White N, Lauer J, et al. CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase. Nature. 2015;526:710-4 pubmed 出版商
  164. Nakano A, Nakahara T, Mori A, Ushikubo H, Sakamoto K, Ishii K. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats. Exp Eye Res. 2016;143:120-31 pubmed 出版商
  165. Kim C, Kim J, Jo K, Lee Y, Sohn E, Yoo N, et al. OSSC1E-K19, a novel phytochemical component of Osteomeles schwerinae, prevents glycated albumin-induced retinal vascular injury in rats. Mol Med Rep. 2015;12:7279-84 pubmed 出版商
  166. Takasato M, Er P, Chiu H, Maier B, Baillie G, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564-8 pubmed 出版商
  167. Hasan S, Sultana S. Geraniol attenuates 2-acetylaminofluorene induced oxidative stress, inflammation and apoptosis in the liver of wistar rats. Toxicol Mech Methods. 2015;25:559-73 pubmed 出版商
  168. Yang S, He H, Ma Q, Zhang Y, Zhu Y, Wan X, et al. Experimental study of the protective effects of SYVN1 against diabetic retinopathy. Sci Rep. 2015;5:14036 pubmed 出版商
  169. Jiang Q, Zhang Z, Li S, Wang Z, Ma Y, Hu Y. Defective heat shock factor 1 inhibits the growth of fibrosarcoma derived from simian virus 40/T antigen‑transformed MEF cells. Mol Med Rep. 2015;12:6517-26 pubmed 出版商
  170. Carvalho M, Pires I, Dias M, Prada J, Gregório H, Lobo L, et al. Intratumoral CD3+ T-lymphocytes immunoexpression and its association with c-Kit, angiogenesis, and overall survival in malignant canine mammary tumors. Anal Cell Pathol (Amst). 2015;2015:920409 pubmed 出版商
  171. Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, et al. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol. 2016;37:1889-99 pubmed 出版商
  172. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed 出版商
  173. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  174. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  175. Bacallao K, Plaza Parrochia F, Cerda A, Gabler F, Romero C, Vantman D, et al. Levels of Regulatory Proteins Associated With Cell Proliferation in Endometria From Untreated Patients Having Polycystic Ovarian Syndrome With and Without Endometrial Hyperplasia. Reprod Sci. 2016;23:211-8 pubmed 出版商
  176. Park S, Nam S, Keam B, Kim T, Jeon Y, Lee S, et al. VEGF and Ki-67 Overexpression in Predicting Poor Overall Survival in Adenoid Cystic Carcinoma. Cancer Res Treat. 2016;48:518-26 pubmed 出版商
  177. Regan J, Kannan P, Kemp M, Kramer B, Newnham J, Jobe A, et al. Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep. Reprod Sci. 2016;23:69-80 pubmed 出版商
  178. Jing L, Li S, Li Q. Akt/hypoxia-inducible factor-1α signaling deficiency compromises skin wound healing in a type 1 diabetes mouse model. Exp Ther Med. 2015;9:2141-2146 pubmed
  179. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  180. Jung S, Sielker S, Purcz N, Sproll C, Acil Y, Kleinheinz J. Analysis of angiogenic markers in oral squamous cell carcinoma-gene and protein expression. Head Face Med. 2015;11:19 pubmed 出版商
  181. Li C, Wang L, Zheng L, Zhan X, Xu B, Jiang J, et al. SIRT1 expression is associated with poor prognosis of lung adenocarcinoma. Onco Targets Ther. 2015;8:977-84 pubmed 出版商
  182. Wang J, Xiao J, Wen D, Wu X, Mao Z, Zhang J, et al. Endothelial cell-anchored tissue factor pathway inhibitor regulates tumor metastasis to the lung in mice. Mol Carcinog. 2016;55:882-96 pubmed 出版商
  183. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  184. Kim B, Lee J, Choi J, Park D, Song H, Park T, et al. Imidazole-based alkaloid derivative LCB54-0009 suppresses ocular angiogenesis and lymphangiogenesis in models of experimental retinopathy and corneal neovascularization. Br J Pharmacol. 2015;172:3875-89 pubmed 出版商
  185. Liu L, Yu H, Huang X, Tan H, Li S, Luo Y, et al. A novel engineered VEGF blocker with an excellent pharmacokinetic profile and robust anti-tumor activity. BMC Cancer. 2015;15:170 pubmed 出版商
  186. Majumder A, Syed K, Joseph S, Scambler P, Dutta D. Histone Chaperone HIRA in Regulation of Transcription Factor RUNX1. J Biol Chem. 2015;290:13053-63 pubmed 出版商
  187. Khayati F, Pérez Cano L, Maouche K, Sadoux A, Boutalbi Z, Podgorniak M, et al. EMMPRIN/CD147 is a novel coreceptor of VEGFR-2 mediating its activation by VEGF. Oncotarget. 2015;6:9766-80 pubmed
  188. Lee I, Hüttemann M, Kruger A, Bollig Fischer A, Malek M. (-)-Epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice. Front Pharmacol. 2015;6:43 pubmed 出版商
  189. Li S, Wu X, Dong C, Xie X, Wu J, Zhang X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS ONE. 2015;10:e0118033 pubmed 出版商
  190. Imberti B, Corna D, Rizzo P, Xinaris C, Abbate M, Longaretti L, et al. Renal primordia activate kidney regenerative events in a rat model of progressive renal disease. PLoS ONE. 2015;10:e0120235 pubmed 出版商
  191. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  192. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  193. Coon B, Baeyens N, Han J, Budatha M, Ross T, Fang J, et al. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J Cell Biol. 2015;208:975-86 pubmed 出版商
  194. de Monès E, Schlaubitz S, Oliveira H, d Elbée J, Bareille R, Bourget C, et al. Comparative study of membranes induced by PMMA or silicone in rats, and influence of external radiotherapy. Acta Biomater. 2015;19:119-27 pubmed 出版商
  195. Fang J, Zhou H, Zhang C, Shang L, Zhang L, Xu J, et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology. 2015;62:452-65 pubmed 出版商
  196. Shi X, Zirbes K, Rasmussen T, Ferdous A, Garry M, Koyano Nakagawa N, et al. The transcription factor Mesp1 interacts with cAMP-responsive element binding protein 1 (Creb1) and coactivates Ets variant 2 (Etv2) gene expression. J Biol Chem. 2015;290:9614-25 pubmed 出版商
  197. Qi J, Wang W, Li F. Combination of interventional adenovirus-p53 introduction and ultrasonic irradiation in the treatment of liver cancer. Oncol Lett. 2015;9:1297-1302 pubmed
  198. Lu Y, Xue Q, Eisele M, Sulistijo E, Brower K, Han L, et al. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc Natl Acad Sci U S A. 2015;112:E607-15 pubmed 出版商
  199. Wei Z, Xia G, Wu Y, Chen W, Xiang Z, Schwarz R, et al. CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer. Cancer Lett. 2015;359:335-43 pubmed 出版商
  200. Choi S, Lee H, Choi J, Kim J, Park C, Joo H, et al. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS ONE. 2015;10:e0117410 pubmed 出版商
  201. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet A, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212:139-48 pubmed 出版商
  202. Gurzu S, Kádár Z, Sugimura H, Bara T, Hălmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APMIS. 2015;123:223-33 pubmed 出版商
  203. Gültiken N, Guvenc T, Kaya D, Agaoglu A, Ay S, Kücükaslan I, et al. Tarantula cubensis extract alters the degree of apoptosis and mitosis in canine mammary adenocarcinomas. J Vet Sci. 2015;16:213-9 pubmed
  204. Pienaar I, Lee C, Elson J, McGuinness L, Gentleman S, Kalaria R, et al. Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson's disease. Neurobiol Dis. 2015;74:392-405 pubmed 出版商
  205. Yuan L, Liu X. Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Mol Med Rep. 2015;11:2449-58 pubmed 出版商
  206. Ozmen A, Unek G, Kipmen Korgun D, Cetinkaya B, Avcil Z, Korgun E. Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta. Ann Anat. 2015;198:34-40 pubmed 出版商
  207. Aggarwal P, Veron D, Thomas D, Siegel D, Moeckel G, Kashgarian M, et al. Semaphorin3a promotes advanced diabetic nephropathy. Diabetes. 2015;64:1743-59 pubmed 出版商
  208. Wang H, Zhang L, Zhang S, Li Y. Inhibition of vascular endothelial growth factor by small interfering RNA upregulates differentiation, maturation and function of dendritic cells. Exp Ther Med. 2015;9:120-124 pubmed
  209. Guzmán E, Maers K, Roberts J, Kemami Wangun H, Harmody D, Wright A. The marine natural product microsclerodermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. Invest New Drugs. 2015;33:86-94 pubmed 出版商
  210. Pinheiro C, Garcia E, Morais Santos F, Scapulatempo Neto C, Mafra A, Steenbergen R, et al. Lactate transporters and vascular factors in HPV-induced squamous cell carcinoma of the uterine cervix. BMC Cancer. 2014;14:751 pubmed 出版商
  211. Waisberg J, de Souza Viana L, Affonso Junior R, Silva S, Denadai M, Margeotto F, et al. Overexpression of the ITGAV gene is associated with progression and spread of colorectal cancer. Anticancer Res. 2014;34:5599-607 pubmed
  212. Kostić J, Orlić D, Borović M, Beleslin B, MilaÅ¡inović D, Dobrić M, et al. Coronary thrombi neovascularization in patients with ST-elevation myocardial infarction - clinical and angiographic implications. Thromb Res. 2014;134:1038-45 pubmed 出版商
  213. Mendonça M, Soares E, Stávale L, Kalapothakis E, Cruz Höfling M. Vascular endothelial growth factor increases during blood-brain barrier-enhanced permeability caused by Phoneutria nigriventer spider venom. Biomed Res Int. 2014;2014:721968 pubmed 出版商
  214. Hamdollah Zadeh M, Amin E, Hoareau Aveilla C, Domingo E, Symonds K, Ye X, et al. Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance. Mol Oncol. 2015;9:167-78 pubmed 出版商
  215. Zhang J, Zhao J, Bai Y, Huang L, Yu W, Li X. Effects of p75 neurotrophin receptor on regulating hypoxia-induced angiogenic factors in retinal pigment epithelial cells. Mol Cell Biochem. 2015;398:123-34 pubmed 出版商
  216. Aeimlapa R, Wongdee K, Charoenphandhu N, Suntornsaratoon P, Krishnamra N. Premature chondrocyte apoptosis and compensatory upregulation of chondroregulatory protein expression in the growth plate of Goto-Kakizaki diabetic rats. Biochem Biophys Res Commun. 2014;452:395-401 pubmed 出版商
  217. Scotti L, Abramovich D, Pascuali N, Irusta G, Meresman G, Tesone M, et al. Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome. J Steroid Biochem Mol Biol. 2014;144 Pt B:392-401 pubmed 出版商
  218. Shen W, Chung S, Irhimeh M, Li S, Lee S, Gillies M. Systemic administration of erythropoietin inhibits retinopathy in RCS rats. PLoS ONE. 2014;9:e104759 pubmed 出版商
  219. Hagel C, Krasemann S, Löffler J, Puschel K, Magnus T, Glatzel M. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1? expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms. Brain Pathol. 2015;25:146-56 pubmed 出版商
  220. Styring E, Seinen J, Dominguez Valentin M, Domanski H, Jonsson M, von Steyern F, et al. Key roles for MYC, KIT and RET signaling in secondary angiosarcomas. Br J Cancer. 2014;111:407-12 pubmed 出版商
  221. Wiles J, Katchko R, Benavides E, O Gorman C, Escudero J, Keisler D, et al. The effect of leptin on luteal angiogenic factors during the luteal phase of the estrous cycle in goats. Anim Reprod Sci. 2014;148:121-9 pubmed 出版商
  222. Quintas H, Alegría N, Mendonça A, Botelho A, Alves A, Pires I. Coexistence of tuberculosis and mammary carcinoma in a goat. Reprod Domest Anim. 2014;49:606-610 pubmed 出版商
  223. Fidanza A, Toschi P, Zacchini F, Czernik M, Palmieri C, Scapolo P, et al. Impaired placental vasculogenesis compromises the growth of sheep embryos developed in vitro. Biol Reprod. 2014;91:21 pubmed 出版商
  224. Yuan S, Jiang T, Sun L, Zheng R, Cao G, Ahat N, et al. Use of bone mesenchymal stem cells to treat rats with acute liver failure. Genet Mol Res. 2014;13:6962-80 pubmed 出版商
  225. Bai X, Li X, Tian J, Zhou Z. Antiangiogenic treatment diminishes renal injury and dysfunction via regulation of local AKT in early experimental diabetes. PLoS ONE. 2014;9:e96117 pubmed 出版商
  226. Chen P, Qin L, Zhuang Z, Tellides G, Lax I, Schlessinger J, et al. The docking protein FRS2? is a critical regulator of VEGF receptors signaling. Proc Natl Acad Sci U S A. 2014;111:5514-9 pubmed 出版商
  227. Pryzhkova M, Aria I, Cheng Q, Harris G, Zan X, Gharib M, et al. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials. 2014;35:5098-109 pubmed 出版商
  228. Ferreira C, Siqueira D, Romitti M, Ceolin L, Brasil B, Meurer L, et al. Role of VEGF-A and its receptors in sporadic and MEN2-associated pheochromocytoma. Int J Mol Sci. 2014;15:5323-36 pubmed 出版商
  229. Stofas A, Levidou G, Piperi C, Adamopoulos C, Dalagiorgou G, Bamias A, et al. The role of CXC-chemokine receptor CXCR2 and suppressor of cytokine signaling-3 (SOCS-3) in renal cell carcinoma. BMC Cancer. 2014;14:149 pubmed 出版商
  230. Gorman J, Liu S, Slopack D, Shariati K, Hasanee A, Olenich S, et al. Angiotensin II evokes angiogenic signals within skeletal muscle through co-ordinated effects on skeletal myocytes and endothelial cells. PLoS ONE. 2014;9:e85537 pubmed 出版商
  231. Knösel T, Werner M, Jung A, Kirchner T, Dürr H. Dedifferentiated chondrosarcoma mimicking a giant cell tumor. Is this low grade dedifferentiated chondrosarcoma?. Pathol Res Pract. 2014;210:194-7 pubmed 出版商
  232. Huang X, Zhang Y, Zhang X, Xu L, Chen X, Wei S. Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng C Mater Biol Appl. 2013;33:4816-24 pubmed 出版商
  233. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  234. Xu W, Fan W, Yao K. Cyclosporine A stimulated hair growth from mouse vibrissae follicles in an organ culture model. J Biomed Res. 2012;26:372-80 pubmed 出版商
  235. Wang W, Jiang H, Zhu H, Zhang H, Gong J, Zhang L, et al. Overexpression of high mobility group box 1 and 2 is associated with the progression and angiogenesis of human bladder carcinoma. Oncol Lett. 2013;5:884-888 pubmed
  236. Cao W, Kawai N, Miyake K, Zhang X, Fei Z, Tamiya T. Relationship of 14-3-3zeta (?), HIF-1?, and VEGF expression in human brain gliomas. Brain Tumor Pathol. 2014;31:1-10 pubmed 出版商
  237. Viana L, Affonso R, Silva S, Denadai M, Matos D, Salinas de Souza C, et al. Relationship between the expression of the extracellular matrix genes SPARC, SPP1, FN1, ITGA5 and ITGAV and clinicopathological parameters of tumor progression and colorectal cancer dissemination. Oncology. 2013;84:81-91 pubmed 出版商
  238. Kweider N, Huppertz B, Wruck C, Beckmann R, Rath W, Pufe T, et al. A role for Nrf2 in redox signalling of the invasive extravillous trophoblast in severe early onset IUGR associated with preeclampsia. PLoS ONE. 2012;7:e47055 pubmed 出版商
  239. Tripathy D, Sanchez A, Yin X, Martinez J, Grammas P. Age-related decrease in cerebrovascular-derived neuroprotective proteins: effect of acetaminophen. Microvasc Res. 2012;84:278-85 pubmed 出版商
  240. Boztosun A, Piçnak A, Kosar M, Gulturk S, Cetin A. Effects of methylene blue, pentoxyphylline and enoxaparin on postoperative adhesion formation and markers of angiogenesis in a rat uterine horn model. Clin Exp Obstet Gynecol. 2012;39:89-95 pubmed
  241. Jung Y, Joo K, Seong D, Choi Y, Kong D, Kim Y, et al. Identification of prognostic biomarkers for glioblastomas using protein expression profiling. Int J Oncol. 2012;40:1122-32 pubmed 出版商
  242. Dawson M, Opat S, Taouk Y, Donovan M, Zammit M, Monaghan K, et al. Clinical and immunohistochemical features associated with a response to bortezomib in patients with multiple myeloma. Clin Cancer Res. 2009;15:714-22 pubmed 出版商
  243. Lee D, Kuo H, Chen C, Hsu J, Chou C, Wei Y, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell. 2007;130:440-55 pubmed