这是一篇来自已证抗体库的有关人类 血管内皮生长因子 (VEGF) 的综述,是根据229篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合血管内皮生长因子 抗体。
血管内皮生长因子 同义词: MVCD1; VEGF; VPF; vascular endothelial growth factor A; vascular endothelial growth factor A121; vascular endothelial growth factor A165; vascular permeability factor

艾博抗(上海)贸易有限公司
兔 单克隆(EP1176Y)
  • 流式细胞仪; 人类; 图 s18c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, EP1176Y)被用于被用于流式细胞仪在人类样品上 (图 s18c). Science (2018) ncbi
兔 单克隆
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 s18d
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab209439)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:1000 (图 s18d). Science (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s6o
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样品上 (图 s6o). Cell (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样品上 (图 2b). Mol Ther Nucleic Acids (2017) ncbi
兔 单克隆(EP1176Y)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4b
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, EP1176Y)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(6B7)
  • 免疫组化-石蜡切片; 猪; 1:200; 图 4
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab69479)被用于被用于免疫组化-石蜡切片在猪样品上浓度为1:200 (图 4). Biomed Rep (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 4f
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫细胞化学在人类样品上 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 6a). Mol Cell Biol (2017) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化; 大鼠; 1:25; 图 4d
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化在大鼠样品上浓度为1:25 (图 4d) 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图 5a). Mol Med Rep (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 st2
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, Ab46154)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 st2). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7f
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 7f) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 4a). Mol Hum Reprod (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 6
  • 免疫印迹; 大鼠; 1:500; 图 7
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:400 (图 6) 和 被用于免疫印迹在大鼠样品上浓度为1:500 (图 7). Exp Ther Med (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab39250)被用于被用于免疫组化-冰冻切片在人类样品上 (图 6). Front Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s1a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, 46154)被用于被用于免疫印迹在人类样品上 (图 s1a). Laryngoscope (2016) ncbi
小鼠 单克隆(6B7)
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab69479)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5a). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 4a). J Clin Invest (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 5). Braz J Med Biol Res (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫印迹在小鼠样品上 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 5). Invest Ophthalmol Vis Sci (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
  • 免疫细胞化学; 人类; 1:200; 图 3
  • 免疫组化; 人类; 图 6
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化在小鼠样品上 (图 6), 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6), 被用于免疫细胞化学在人类样品上浓度为1:200 (图 3), 被用于免疫组化在人类样品上 (图 6) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
兔 单克隆(EP1176Y)
  • 免疫组化; 小鼠; 1:400; 图 6c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, EP1176Y)被用于被用于免疫组化在小鼠样品上浓度为1:400 (图 6c). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam Sapphire Bioscience, ab51745)被用于被用于免疫印迹在人类样品上 (图 5) 和 被用于免疫印迹在小鼠样品上 (图 3). Int J Mol Sci (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 7). Int J Biol Sci (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 兔; 1:1000; 图 7
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(abcam, ab1316)被用于被用于免疫印迹在兔样品上浓度为1:1000 (图 7). Mol Med Rep (2016) ncbi
小鼠 单克隆(6B7)
  • 免疫沉淀; 小鼠; 1:1000; 图 6j
  • 免疫印迹; 小鼠; 1:1000; 图 6i
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab69479)被用于被用于免疫沉淀在小鼠样品上浓度为1:1000 (图 6j) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6i). Nat Commun (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫印迹在人类样品上 (图 5). BMC Complement Altern Med (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:120; 图 2
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:120 (图 2). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4a). J Forensic Leg Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
  • 免疫印迹; 小鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab51745)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 4) 和 被用于免疫印迹在小鼠样品上浓度为1:5000 (图 3). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s8
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样品上 (图 s8). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5c). Mol Med Rep (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, VG-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 2a). BMC Cancer (2015) ncbi
兔 单克隆(EP1176Y)
  • 免疫组化; 小鼠; 1:200; 图 s8
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 s8). Nature (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 大鼠; 图 f4b
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫印迹在大鼠样品上 (图 f4b). Mol Med Rep (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
  • 免疫印迹; 小鼠; 1:300; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 5) 和 被用于免疫印迹在小鼠样品上浓度为1:300 (图 6). Sci Rep (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. Reprod Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样品上浓度为1:5000. Mol Cell Neurosci (2015) ncbi
兔 单克隆(EP1176Y)
  • 免疫组化; 人类; 表 2
  • 免疫印迹; 人类; 表 2
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(abcam, ab52917)被用于被用于免疫组化在人类样品上 (表 2) 和 被用于免疫印迹在人类样品上 (表 2). PLoS ONE (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1a). Onco Targets Ther (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 15
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫细胞化学在人类样品上浓度为1:50 (图 15). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样品上. Br J Pharmacol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 3n
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000 (图 3n). BMC Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样品上 (图 6). Mol Cancer (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 表 6
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (表 6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 6a). PLoS ONE (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 兔; 1:500; 图 4
  • 酶联免疫吸附测定; 兔; 1:500; 图 1
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在兔样品上浓度为1:500 (图 4) 和 被用于酶联免疫吸附测定在兔样品上浓度为1:500 (图 1). Oncol Lett (2015) ncbi
兔 单克隆(EP1176Y)
  • 免疫组化; 人类; 1:100; 图 1c
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab52917)被用于被用于免疫组化在人类样品上浓度为1:100 (图 1c) 和 被用于免疫印迹在人类样品上 (图 2c). Cancer Lett (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 7
  • 免疫印迹; 人类; 1:200; 图 7
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在人类样品上 (图 7) 和 被用于免疫印迹在人类样品上浓度为1:200 (图 7). Oncogene (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab9570)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2a). J Clin Pathol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Stem Cells (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab51745)被用于被用于免疫细胞化学在小鼠样品上 和 被用于免疫印迹在小鼠样品上. Stem Cells (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:250; 图 4c
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化在大鼠样品上浓度为1:250 (图 4c). Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:200 (图 4). Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样品上浓度为1:1000. Oncol Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样品上. World J Gastroenterol (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(AbCam, VG-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 2). BMC Cancer (2014) ncbi
小鼠 单克隆(6B7)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab69479)被用于被用于免疫印迹在人类样品上浓度为1:1000. Mol Cell Biochem (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(11B5)
  • 免疫组化; 小鼠; 1:250
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, AB 38909)被用于被用于免疫组化在小鼠样品上浓度为1:250 和 被用于免疫印迹在小鼠样品上浓度为1:200. Am J Pathol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:2500
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在大鼠样品上浓度为1:2500. Vascul Pharmacol (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:50
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫细胞化学在小鼠样品上浓度为1:50. FASEB J (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 和 被用于免疫印迹在大鼠样品上浓度为1:1000. Genet Mol Res (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化在小鼠样品上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 和 被用于免疫印迹在大鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, 46154)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 4a). PLoS ONE (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Int J Mol Sci (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化在大鼠样品上. Biomed Mater (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:2000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫印迹在大鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1 ug/mL
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫细胞化学在人类样品上浓度为1 ug/mL. Osteoarthritis Cartilage (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:50
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化在大鼠样品上浓度为1:50. Evid Based Complement Alternat Med (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:50. Kidney Int (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:400
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:400. J Transl Med (2013) ncbi
小鼠 单克隆(VG-1)
  • 抑制或激活实验; 小鼠
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于抑制或激活实验在小鼠样品上. J Biomed Res (2012) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, Ab46154)被用于被用于免疫印迹在人类样品上. Am J Physiol Heart Circ Physiol (2013) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Oncol Lett (2013) ncbi
兔 多克隆
  • 其他; 猪; 1:50; 图 3b
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab53465)被用于被用于其他在猪样品上浓度为1:50 (图 3b). Electrophoresis (2012) ncbi
小鼠 单克隆(VG-1)
  • 酶联免疫吸附测定; 大鼠; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子抗体(Abcam, ab1316)被用于被用于酶联免疫吸附测定在大鼠样品上浓度为1:1000. Microvasc Res (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫印迹在人类样品上 (图 2b). Oncol Lett (2017) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 大鼠; 1:200; 图 2a
圣克鲁斯生物技术血管内皮生长因子抗体(Santa cruz, sc?\7269)被用于被用于免疫印迹在大鼠样品上浓度为1:200 (图 2a). Physiol Rep (2017) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, SC-7269)被用于被用于免疫印迹在人类样品上 (图 5e). Circ Res (2017) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术血管内皮生长因子抗体(SantaCruz, SC-7269)被用于被用于免疫印迹在小鼠样品上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化; 小鼠; 图 3
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫组化在小鼠样品上 (图 3). Mol Cell Endocrinol (2017) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6a
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 6a). J Biomed Sci (2016) ncbi
小鼠 单克隆(C-1)
  • 抑制或激活实验; 小鼠; 图 3
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于抑制或激活实验在小鼠样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 4). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, Sc-7269)被用于被用于免疫印迹在人类样品上 (图 5a). Cell Death Discov (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术血管内皮生长因子抗体(santa Cruz, sc-53462)被用于被用于免疫印迹在大鼠样品上 (图 7). BMC Cancer (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1d
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 1d). Dis Markers (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 大鼠; 1:200; 图 6
圣克鲁斯生物技术血管内皮生长因子抗体(santa Cruz, sc-7269)被用于被用于免疫印迹在大鼠样品上浓度为1:200 (图 6). Mol Med Rep (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 8
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, S C-53462)被用于被用于免疫印迹在人类样品上 (图 4) 和 被用于免疫印迹在小鼠样品上 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 大鼠; 1:2000; 图 3
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫印迹在大鼠样品上浓度为1:2000 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(VG76e)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术血管内皮生长因子抗体(santa Cruz, sc-53463)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 8A
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 8A). Diabetol Metab Syndr (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, SC-7269)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1) 和 被用于免疫印迹在人类样品上 (图 4). Tumour Biol (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, SC-7269)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 1). Cancer Res Treat (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, Sc-7269)被用于被用于免疫印迹在人类样品上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术血管内皮生长因子抗体(santa Cruz, sc-7269)被用于被用于免疫印迹在人类样品上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Hepatology (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 狗; 图 4
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, SC-7269)被用于被用于免疫组化-石蜡切片在狗样品上 (图 4). J Vet Sci (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫印迹在人类样品上 (图 2). Exp Ther Med (2015) ncbi
小鼠 单克隆(C-1)
  • immunohistochemistry - free floating section; 大鼠; 1:50
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:50 和 被用于免疫印迹在大鼠样品上浓度为1:500. Biomed Res Int (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化; 大鼠
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz biotechnology, sc-53462)被用于被用于免疫组化在大鼠样品上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(C-1)
  • 免疫组化; 人类; 1:1000
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, Sc7269)被用于被用于免疫组化在人类样品上浓度为1:1000. Brain Pathol (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 羊; 1:50
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, SC-7269)被用于被用于免疫组化-石蜡切片在羊样品上浓度为1:50. Anim Reprod Sci (2014) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 羊; 1:200
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在羊样品上浓度为1:200. Biol Reprod (2014) ncbi
小鼠 单克隆(JH121)
  • 免疫印迹; 小鼠; 1:200; 图 4
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-57496)被用于被用于免疫印迹在小鼠样品上浓度为1:200 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 大鼠
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在大鼠样品上. Mater Sci Eng C Mater Biol Appl (2013) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Brain Tumor Pathol (2014) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:30
圣克鲁斯生物技术血管内皮生长因子抗体(Santa Cruz, sc- 7269)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:30. PLoS ONE (2012) ncbi
赛默飞世尔
小鼠 单克隆(16F1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔血管内皮生长因子抗体(Thermo scientific, 16F1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2). J Transl Med (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200; 图 5b
赛默飞世尔血管内皮生长因子抗体(ThermoFisher, PA5-16754)被用于被用于免疫印迹在人类样品上浓度为1:200 (图 5b). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 3
赛默飞世尔血管内皮生长因子抗体(Thermo Fisher, RB-222-P0)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:50 (图 3). Exp Ther Med (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
赛默飞世尔血管内皮生长因子抗体(Thermo Scientific, RB-9031-P0)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(JH121)
  • 免疫组化-石蜡切片; 狗; 1:100; 图 1
赛默飞世尔血管内皮生长因子抗体(Thermo Scientific, JH121)被用于被用于免疫组化-石蜡切片在狗样品上浓度为1:100 (图 1). Vet Comp Oncol (2017) ncbi
小鼠 单克隆(VG1)
  • 免疫细胞化学; 小鼠; 图 3
赛默飞世尔血管内皮生长因子抗体(ThermoFisher Scientific, VG1)被用于被用于免疫细胞化学在小鼠样品上 (图 3). Am J Pathol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 3
赛默飞世尔血管内皮生长因子抗体(Thermo Fisher Scientific, RB-9031-P)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:4000 (图 3). Development (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 6
赛默飞世尔血管内皮生长因子抗体(Neomarkers, RB-222-P0)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:300 (图 6). Toxicol Mech Methods (2015) ncbi
小鼠 单克隆(JH121)
  • 免疫组化-石蜡切片; 狗; 1:100
赛默飞世尔血管内皮生长因子抗体(Thermo Scientific, JH121)被用于被用于免疫组化-石蜡切片在狗样品上浓度为1:100. Anal Cell Pathol (Amst) (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
赛默飞世尔血管内皮生长因子抗体(Thermo Fisher, RB-9031-R 7CA)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 2). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(JH121)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔血管内皮生长因子抗体(NeoMarkers, JH12)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1). Head Face Med (2015) ncbi
小鼠 单克隆(VG1)
  • 免疫印迹; 大鼠; 1:200
赛默飞世尔血管内皮生长因子抗体(Thermo, MA1-16629)被用于被用于免疫印迹在大鼠样品上浓度为1:200. Acta Biomater (2015) ncbi
小鼠 单克隆(A183C 13G8)
  • dot blot; 人类; 表 s1
赛默飞世尔血管内皮生长因子抗体(Invitrogen, AHG0114)被用于被用于dot blot在人类样品上 (表 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔血管内皮生长因子抗体(LabVision, VG1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. APMIS (2015) ncbi
小鼠 单克隆(A183C 13G8)
  • 免疫组化; 人类; 1:150
赛默飞世尔血管内皮生长因子抗体(Invitrogen, AHG0114)被用于被用于免疫组化在人类样品上浓度为1:150. Neurobiol Dis (2015) ncbi
小鼠 单克隆(VG1)
  • 免疫组化; 人类; 1:100
赛默飞世尔血管内皮生长因子抗体(Thermo Scientific Lab Vision, MS-1467-P0)被用于被用于免疫组化在人类样品上浓度为1:100. Thromb Res (2014) ncbi
小鼠 单克隆(JH121)
  • 免疫组化-石蜡切片; 人类; 1:150
赛默飞世尔血管内皮生长因子抗体(Neomarkers, JH121)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:150. Reprod Domest Anim (2014) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔血管内皮生长因子抗体(Lab Vision, VG1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 2). Sci Rep (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 表 3
赛默飞世尔血管内皮生长因子抗体(Thermo Scientific, 222-P)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (表 3). J Neuroinflammation (2013) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔血管内皮生长因子抗体(Neomarkers, MS-1467-R7)被用于被用于免疫组化-石蜡切片在大鼠样品上. Clin Exp Obstet Gynecol (2012) ncbi
小鼠 单克隆(JH121)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔血管内皮生长因子抗体(Lab Vision, MS-350)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Int J Oncol (2012) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔血管内皮生长因子抗体(Lab Vision, MS-350)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Int J Oncol (2012) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3
赛默飞世尔血管内皮生长因子抗体(Neomarkers, RB-222- P1)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 (图 3). Histol Histopathol (2009) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔血管内皮生长因子抗体(Zymed, VG1)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1). Clin Cancer Res (2009) ncbi
小鼠 单克隆(JH121)
  • 酶联免疫吸附测定; 人类
赛默飞世尔血管内皮生长因子抗体(Lab Vision, Ab-3)被用于被用于酶联免疫吸附测定在人类样品上. Cell (2007) ncbi
安迪生物R&D
小鼠 单克隆(26503)
  • 免疫细胞化学; 人类; 1:500; 表 s1
安迪生物R&D血管内皮生长因子抗体(R&D, MAB293)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (表 s1). Stem Cell Reports (2017) ncbi
山羊 多克隆
  • 抑制或激活实验; 人类; 图 6b
安迪生物R&D血管内皮生长因子抗体(R&D, AF-293-NA)被用于被用于抑制或激活实验在人类样品上 (图 6b). Nat Commun (2017) ncbi
山羊 多克隆
  • 其他; 人类; 表 1
安迪生物R&D血管内皮生长因子抗体(R&D, BAF293)被用于被用于其他在人类样品上 (表 1). Dis Markers (2016) ncbi
山羊 多克隆
  • 免疫印迹; 大鼠; 图 4
安迪生物R&D血管内皮生长因子抗体(R&D, BAF293)被用于被用于免疫印迹在大鼠样品上 (图 4). PLoS ONE (2016) ncbi
安迪生物R&D血管内皮生长因子抗体(R&D Systems, 293-VE-010)被用于. J Cell Biol (2015) ncbi
山羊 多克隆
  • 酶联免疫吸附测定; 人类
安迪生物R&D血管内皮生长因子抗体(R&D, BAF293)被用于被用于酶联免疫吸附测定在人类样品上. Analyst (2015) ncbi
山羊 多克隆
  • 免疫印迹; 人类; 图 5h
安迪生物R&D血管内皮生长因子抗体(R&D Systems, AF293NA)被用于被用于免疫印迹在人类样品上 (图 5h). EMBO Mol Med (2014) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 st15
  • 免疫组化-石蜡切片; 大鼠; 1:800; 图 st15
亚诺法生技股份有限公司血管内皮生长因子抗体(Abnova MAB6996, MAB6996)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:800 (图 st15) 和 被用于免疫组化-石蜡切片在大鼠样品上浓度为1:800 (图 st15). J Toxicol Pathol (2017) ncbi
武汉三鹰
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
武汉三鹰血管内皮生长因子抗体(Proteintech, 19003-1-AP)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 4). FEBS Open Bio (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
  • 免疫印迹; 人类; 1:1000; 图 2
武汉三鹰血管内皮生长因子抗体(Proteintech, 19003-1-AP)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 3) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:1000
武汉三鹰血管内皮生长因子抗体(Proteintech, 19003-1-AP)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 和 被用于免疫印迹在大鼠样品上浓度为1:1000. J Diabetes Res (2014) ncbi
ImmunoStar
兔 多克隆
  • 免疫组化; 小鼠; 1:250; 图 e4
ImmunoStar血管内皮生长因子抗体(Immunostar, 20085)被用于被用于免疫组化在小鼠样品上浓度为1:250 (图 e4). Nature (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:5000
ImmunoStar血管内皮生长因子抗体(Immunostar, 20085)被用于被用于免疫细胞化学在小鼠样品上浓度为1:5000. Hepatology (2013) ncbi
Rockland Immunochemicals
兔 多克隆
  • 免疫印迹; 人类
Rockland Immunochemicals血管内皮生长因子抗体(Rockland Antibodies and Assays, 209-403-B99)被用于被用于免疫印迹在人类样品上. Mol Cancer Ther (2013) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(CH-10)
  • 免疫印迹; 大鼠; 1:1000
伯乐(Bio-Rad)公司血管内皮生长因子抗体(AbD Serotec, MCA5693)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Diabetes Res Clin Pract (2013) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(55B11)
  • 免疫印迹; 人类; 1:2000; 图 8a
  • 免疫印迹; 小鼠; 1:2000; 图 8b
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(CST, 2479S)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 8a) 和 被用于免疫印迹在小鼠样品上浓度为1:2000 (图 8b). J Cell Sci (2019) ncbi
兔 单克隆(55B11)
  • 免疫沉淀; 人类; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫沉淀在人类样品上 (图 2a) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 2a). Science (2018) ncbi
兔 单克隆(55B11)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于其他在人类样品上 (图 4c). Cancer Cell (2018) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 8b
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样品上 (图 8b). Int J Biochem Cell Biol (2018) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 s8a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s8a). Nature (2017) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样品上 (图 8c). J Clin Invest (2017) ncbi
兔 单克隆(55B11)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(CST, 2479)被用于被用于reverse phase protein lysate microarray在人类样品上 (图 st6). Cancer Cell (2017) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1a). FASEB J (2017) ncbi
兔 单克隆(55B11)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于reverse phase protein lysate microarray在人类样品上 (图 3a). Nature (2017) ncbi
兔 单克隆(55B11)
  • 免疫细胞化学; 小鼠; 图 3i
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell signaling, 55B11)被用于被用于免疫细胞化学在小鼠样品上 (图 3i). Stem Cells Int (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell signaling, 2479)被用于被用于免疫印迹在人类样品上 (图 5c). Front Pharmacol (2016) ncbi
兔 单克隆(55B11)
  • 免疫沉淀; 人类; 图 5c
  • 免疫印迹; 人类; 图 4a
  • 免疫沉淀; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479S)被用于被用于免疫沉淀在人类样品上 (图 5c), 被用于免疫印迹在人类样品上 (图 4a) 和 被用于免疫沉淀在小鼠样品上 (图 5d). Cardiovasc Res (2017) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样品上. Cell Syst (2017) ncbi
兔 单克隆(55B11)
  • 免疫组化-冰冻切片; 小鼠; 图 s5c
  • 免疫印迹; 小鼠; 图 3i
  • 免疫印迹; 人类; 图 s7c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s5c), 被用于免疫印迹在小鼠样品上 (图 3i) 和 被用于免疫印迹在人类样品上 (图 s7c). J Clin Invest (2017) ncbi
兔 单克隆(55B11)
  • 免疫沉淀; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫沉淀在小鼠样品上 (图 3a) 和 被用于免疫印迹在小鼠样品上 (图 3a). Circ Res (2017) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样品上 (图 5). Mol Clin Oncol (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样品上 (图 1d). J Clin Invest (2016) ncbi
兔 单克隆(C28G5)
  • 免疫印迹; 小鼠; 1:1000; 图 s10c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2638)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s10c). Development (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479S)被用于被用于免疫印迹在人类样品上 (图 7a). Cell (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 s4e
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s4e). Nat Med (2016) ncbi
兔 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表 2). Histopathology (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell signaling, 2479)被用于被用于免疫印迹在人类样品上 (图 4). J Clin Invest (2016) ncbi
兔 单克隆(55B11)
  • 免疫组化; 人类; 图 1
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 55B11)被用于被用于免疫组化在人类样品上 (图 1). Mol Imaging Biol (2016) ncbi
兔 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 图 s1o
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫组化-石蜡切片在人类样品上 (图 s1o). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell signaling, 2479)被用于被用于免疫印迹在小鼠样品上 (图 5). J Biol Chem (2016) ncbi
兔 单克隆(55B11)
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(cell signalling, 2479S)被用于被用于免疫细胞化学在人类样品上 (图 4a). Oncogenesis (2016) ncbi
兔 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 图 5n
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫组化-石蜡切片在人类样品上 (图 5n). J Pathol (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 24790)被用于被用于免疫印迹在人类样品上 (图 6). BMC Cancer (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样品上浓度为1:1000 和 被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Oncotarget (2016) ncbi
兔 单克隆(55B11)
  • 流式细胞仪; 人类; 图 5
  • 免疫沉淀; 人类; 图 7
  • 免疫细胞化学; 人类; 图 6
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于流式细胞仪在人类样品上 (图 5), 被用于免疫沉淀在人类样品上 (图 7) 和 被用于免疫细胞化学在人类样品上 (图 6). J Cell Sci (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Ozyme, 2479)被用于被用于免疫印迹在人类样品上 (图 4a). Oncotarget (2016) ncbi
兔 单克隆(55B11)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4). EJNMMI Res (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 大鼠; 1:200; 图 2
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell signaling, 2479)被用于被用于免疫印迹在大鼠样品上浓度为1:200 (图 2). Am J Respir Crit Care Med (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样品上浓度为1:5000. Development (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:500; 图 2a
  • 免疫印迹; 人类; 1:500; 图 2a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signalling Technology, 24795)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 2a) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 2a). PLoS ONE (2015) ncbi
兔 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 1a). J Neurooncol (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 s5b
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479S)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s5b). Nature (2015) ncbi
兔 单克隆(55B11)
  • 免疫组化; 大鼠; 1:500; 图 7a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫组化在大鼠样品上浓度为1:500 (图 7a). Exp Eye Res (2016) ncbi
兔 单克隆(55B11)
  • 免疫细胞化学; 人类; 1:300
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫细胞化学在人类样品上浓度为1:300. Nature (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样品上 (图 3). Cancer Sci (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样品上. Cardiovasc Res (2015) ncbi
兔 单克隆(55B11)
  • 免疫组化; 小鼠; 1:300
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, # 2479L)被用于被用于免疫组化在小鼠样品上浓度为1:300. Reprod Sci (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479S)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Exp Ther Med (2015) ncbi
兔 单克隆(55B11)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫细胞化学在人类样品上 (图 4) 和 被用于免疫印迹在人类样品上 (图 4). PLoS ONE (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样品上. Br J Pharmacol (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样品上 (图 3a). BMC Cancer (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479S)被用于被用于免疫印迹在小鼠样品上. J Biol Chem (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 2). Front Pharmacol (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5e). Nat Commun (2015) ncbi
兔 单克隆(55B11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 表 6
  • 免疫印迹; 人类; 1:200; 表 4
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (表 6) 和 被用于免疫印迹在人类样品上浓度为1:200 (表 4). PLoS ONE (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样品上. J Cell Biol (2015) ncbi
兔 单克隆(55B11)
  • 免疫组化; 小鼠; 1:500; 图 8
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 55B11)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 8). J Biol Chem (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5e). PLoS ONE (2015) ncbi
兔 单克隆(55B11)
  • 免疫细胞化学; 小鼠; 图 2
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell signaling, 55B11)被用于被用于免疫细胞化学在小鼠样品上 (图 2). J Exp Med (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 大鼠; 1:750
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在大鼠样品上浓度为1:750. Ann Anat (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technologies, 2479)被用于被用于免疫印迹在小鼠样品上 (图 7). Diabetes (2015) ncbi
兔 单克隆(55B11)
  • 流式细胞仪; 人类; 图 5c
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479S)被用于被用于流式细胞仪在人类样品上 (图 5c). Invest New Drugs (2015) ncbi
兔 单克隆(55B11)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signalling, 2479)被用于被用于免疫组化在人类样品上浓度为1:100. Mol Oncol (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 大鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling Technology, 55B11)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 5). J Steroid Biochem Mol Biol (2014) ncbi
兔 单克隆(55B11)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 55B11)被用于被用于免疫组化在人类样品上浓度为1:100. Br J Cancer (2014) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样品上. Proc Natl Acad Sci U S A (2014) ncbi
兔 单克隆(55B11)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479S)被用于被用于免疫细胞化学在人类样品上. Biomaterials (2014) ncbi
兔 单克隆(55B11)
  • 免疫组化; 人类; 1:150
赛信通(上海)生物试剂有限公司血管内皮生长因子抗体(Cell Signaling, 2479)被用于被用于免疫组化在人类样品上浓度为1:150. Pathol Res Pract (2014) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
丹科医疗器械技术服务(上海)有限公司血管内皮生长因子抗体(DakoCytomation, M7273)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 4). J Egypt Natl Canc Inst (2016) ncbi
小鼠 单克隆(VG1)
  • 免疫细胞化学; 人类; 1:100; 图 5
丹科医疗器械技术服务(上海)有限公司血管内皮生长因子抗体(DAKO, M7273)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司血管内皮生长因子抗体(DAKOCytomation, M7273)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Anticancer Res (2014) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司血管内皮生长因子抗体(DAKOCytomation, M7273)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Oncology (2013) ncbi
默克密理博中国
小鼠 单克隆(9D9F9)
  • 免疫组化-石蜡切片; 人类; 图 1c
  • 免疫印迹; 人类; 图 4e
默克密理博中国血管内皮生长因子抗体(Millipore, MAB3757)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1c) 和 被用于免疫印迹在人类样品上 (图 4e). Nature (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5g
默克密理博中国血管内皮生长因子抗体(Millipore, 07-1420)被用于被用于免疫印迹在人类样品上 (图 5g). Cardiovasc Res (2017) ncbi
小鼠 单克隆(VG1)
  • 免疫印迹; 大鼠; 图 8a
默克密理博中国血管内皮生长因子抗体(Millipore, 05-1117)被用于被用于免疫印迹在大鼠样品上 (图 8a). J Appl Physiol (1985) (2017) ncbi
小鼠 单克隆(56/1)
  • 免疫印迹; 小鼠; 图 2
默克密理博中国血管内皮生长因子抗体(Millipore, MABC595)被用于被用于免疫印迹在小鼠样品上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(CH-10)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3
默克密理博中国血管内皮生长因子抗体(Millipore, 05-1116)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(9D9F9)
  • 免疫印迹; 人类; 1:500; 图 2
默克密理博中国血管内皮生长因子抗体(Millipore, MAB3757)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2). elife (2016) ncbi
小鼠 单克隆(JH)
  • 免疫组化-冰冻切片; 小鼠; 图 3
默克密理博中国血管内皮生长因子抗体(Millipore, 05-443)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 3). BMC Cancer (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 4
默克密理博中国血管内皮生长因子抗体(EMD Millipore, GF25-100UG)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 4). Oncotarget (2016) ncbi
兔 多克隆
  • 抑制或激活实验; 人类; 图 6
默克密理博中国血管内皮生长因子抗体(Millipore, 07-1420)被用于被用于抑制或激活实验在人类样品上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(JH)
  • 免疫组化-石蜡切片; 人类; 1:500
默克密理博中国血管内皮生长因子抗体(upstate, 05-443)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Oral Surg Oral Med Oral Pathol Oral Radiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国血管内皮生长因子抗体(EMD Millipore, ABS82)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Exp Ther Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
默克密理博中国血管内皮生长因子抗体(Millipore, abS82)被用于被用于免疫印迹在大鼠样品上浓度为1:500. Ann Anat (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:6000
默克密理博中国血管内皮生长因子抗体(Millipore, ABS82)被用于被用于免疫印迹在小鼠样品上浓度为1:6000. Eur Neuropsychopharmacol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 10 ug/mL
默克密理博中国血管内皮生长因子抗体(Millipore, ABS82)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为10 ug/mL. Int J Med Sci (2013) ncbi
小鼠 单克隆(9D9F9)
  • 免疫印迹; 人类
默克密理博中国血管内皮生长因子抗体(Millipore, MAB3757)被用于被用于免疫印迹在人类样品上. Mol Carcinog (2015) ncbi
小鼠 单克隆(9D9F9)
  • 免疫印迹; 人类; 图 7
默克密理博中国血管内皮生长因子抗体(Millipore, MAB3757)被用于被用于免疫印迹在人类样品上 (图 7). Mol Carcinog (2014) ncbi
碧迪BD
小鼠 单克隆(G153-694)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 5
碧迪BD血管内皮生长因子抗体(bD Bioscience, 555036)被用于被用于免疫印迹在人类样品上 (图 1) 和 被用于免疫印迹在小鼠样品上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(G153-694)
  • 免疫印迹; 人类; 1:1000; 图 s3
碧迪BD血管内皮生长因子抗体(BD Pharmigen, 555036)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s3). Mol Neurodegener (2015) ncbi
小鼠 单克隆(G153-694)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BD血管内皮生长因子抗体(Pharmingen BD, G153-694)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. BMC Cancer (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(3F7)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇血管内皮生长因子抗体(Sigma, SAB1402390)被用于被用于免疫印迹在人类样品上 (图 7). Sci Rep (2016) ncbi
文章列表
  1. Zhang S, Liu W, Yang Y, Sun K, Li S, Xu H, et al. TMEM30A deficiency in endothelial cells impairs cell proliferation and angiogenesis. J Cell Sci. 2019;132: pubmed 出版商
  2. Segarra M, Aburto M, Cop F, Llaó Cid C, Härtl R, Damm M, et al. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science. 2018;361: pubmed 出版商
  3. Young M, Mitchell T, Vieira Braga F, Tran M, Stewart B, Ferdinand J, et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science. 2018;361:594-599 pubmed 出版商
  4. Das A, Huang G, Bonkowski M, Longchamp A, Li C, Schultz M, et al. Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging. Cell. 2018;173:74-89.e20 pubmed 出版商
  5. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  6. Yin R, Guo L, Gu J, Li C, Zhang W. Over expressing miR-19b-1 suppress breast cancer growth by inhibiting tumor microenvironment induced angiogenesis. Int J Biochem Cell Biol. 2018;97:43-51 pubmed 出版商
  7. Holmgaard A, Askou A, Benckendorff J, Thomsen E, Cai Y, Bek T, et al. In Vivo Knockout of the Vegfa Gene by Lentiviral Delivery of CRISPR/Cas9 in Mouse Retinal Pigment Epithelium Cells. Mol Ther Nucleic Acids. 2017;9:89-99 pubmed 出版商
  8. Polacheck W, Kutys M, Yang J, Eyckmans J, Wu Y, Vasavada H, et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature. 2017;552:258-262 pubmed 出版商
  9. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  10. Liu Z, Li H, Liu J, Wu M, Chen X, Liu L, et al. Inactivated Wnt signaling in resveratrol-treated epidermal squamous cancer cells and its biological implication. Oncol Lett. 2017;14:2239-2243 pubmed 出版商
  11. Olmeda D, Cerezo Wallis D, Riveiro Falkenbach E, Pennacchi P, Contreras Alcalde M, Ibarz N, et al. Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature. 2017;546:676-680 pubmed 出版商
  12. Kitano H, Chung J, Noh K, Lee Y, Kim T, Lee S, et al. Synaptonemal complex protein 3 is associated with lymphangiogenesis in non-small cell lung cancer patients with lymph node metastasis. J Transl Med. 2017;15:138 pubmed 出版商
  13. Yasui T, Uezono N, Nakashima H, Noguchi H, Matsuda T, Noda Andoh T, et al. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports. 2017;8:1743-1756 pubmed 出版商
  14. Hara T, Nakaoka H, Hayashi T, Mimura K, Hoshino D, Inoue M, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017;114:E4416-E4424 pubmed 出版商
  15. Zhou Y, Yang P, Li A, Ye X, Ren S, Li X. Prostaglandin E2 reduces swine myocardial ischemia reperfusion injury via increased endothelial nitric oxide synthase and vascular endothelial growth factor expression levels. Biomed Rep. 2017;6:188-194 pubmed 出版商
  16. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  17. Carmona Fontaine C, Deforet M, Akkari L, Thompson C, Joyce J, Xavier J. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A. 2017;114:2934-2939 pubmed 出版商
  18. Hirayama Y, Nakanishi R, Maeshige N, Fujino H. Preventive effects of nucleoprotein supplementation combined with intermittent loading on capillary regression induced by hindlimb unloading in rat soleus muscle. Physiol Rep. 2017;5: pubmed 出版商
  19. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  20. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  21. Yang G, Zhao Z, Qin T, Wang D, Chen L, Xiang R, et al. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation. FASEB J. 2017;31:2001-2012 pubmed 出版商
  22. Hashimoto Y, Shiina M, Kato T, Yamamura S, Tanaka Y, Majid S, et al. The role of miR-24 as a race related genetic factor in prostate cancer. Oncotarget. 2017;8:16581-16593 pubmed 出版商
  23. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  24. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  25. Indrakusuma I, Romacho T, Eckel J. Protease-Activated Receptor 2 Promotes Pro-Atherogenic Effects through Transactivation of the VEGF Receptor 2 in Human Vascular Smooth Muscle Cells. Front Pharmacol. 2016;7:497 pubmed 出版商
  26. Wu Q, Ma Y, Ruan C, Yang Y, Liu X, Ge Q, et al. Loss of osteoglycin promotes angiogenesis in limb ischaemia mouse models via modulation of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 signalling pathway. Cardiovasc Res. 2017;113:70-80 pubmed 出版商
  27. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  28. Lee S, Rho S, Park H, Park J, Kim J, Lee I, et al. Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis. J Clin Invest. 2017;127:457-471 pubmed 出版商
  29. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  30. Liu L, Guan H, Li Y, Ying Z, Wu J, Zhu X, et al. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness. Mol Cell Biol. 2017;37: pubmed 出版商
  31. Dunford E, Leclair E, Aiken J, Mandel E, Haas T, Birot O, et al. The effects of voluntary exercise and prazosin on capillary rarefaction and metabolism in streptozotocin-induced diabetic male rats. J Appl Physiol (1985). 2017;122:492-502 pubmed 出版商
  32. Zhang H, Zhang P, Gao Y, Li C, Wang H, Chen L, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15:57-64 pubmed 出版商
  33. Galoian K, Luo S, Qureshi A, Patel P, Price R, Morse A, et al. Effect of cytostatic proline rich polypeptide-1 on tumor suppressors of inflammation pathway signaling in chondrosarcoma. Mol Clin Oncol. 2016;5:618-624 pubmed
  34. Chu L, Ganta V, Choi M, Chen G, Finley S, Annex B, et al. A multiscale computational model predicts distribution of anti-angiogenic isoform VEGF165b in peripheral arterial disease in human and mouse. Sci Rep. 2016;6:37030 pubmed 出版商
  35. Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126:4527-4536 pubmed 出版商
  36. Wang Y, Baeyens N, Corti F, Tanaka K, Fang J, Zhang J, et al. Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development. Development. 2016;143:4441-4451 pubmed
  37. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  38. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  39. Seemann S, Lupp A. Administration of AMD3100 in endotoxemia is associated with pro-inflammatory, pro-oxidative, and pro-apoptotic effects in vivo. J Biomed Sci. 2016;23:68 pubmed
  40. Liang X, Guo Y, Sun T, Song H, Gao Y. Anti-angiogenic effect of total saponins of Rhizoma Dioscorea nipponica on collagen induced-arthritis in rats. Exp Ther Med. 2016;12:2155-2160 pubmed
  41. Xin H, ZHONG C, Nudleman E, Ferrara N. Evidence for Pro-angiogenic Functions of VEGF-Ax. Cell. 2016;167:275-284.e6 pubmed 出版商
  42. De Paoli M, Gogalic S, Sauer U, Preininger C, Pandha H, Simpson G, et al. Multiplatform Biomarker Discovery for Bladder Cancer Recurrence Diagnosis. Dis Markers. 2016;2016:4591910 pubmed
  43. Scotti L, Di Pietro M, Pascuali N, Irusta G, I de Zúñiga -, Gomez Peña M, et al. Sphingosine-1-phosphate restores endothelial barrier integrity in ovarian hyperstimulation syndrome. Mol Hum Reprod. 2016;22:852-866 pubmed
  44. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed 出版商
  45. Quan F, Chen J, Zhong Y, Ren W. Comparative effect of immature neuronal or glial cell transplantation on motor functional recovery following experimental traumatic brain injury in rats. Exp Ther Med. 2016;12:1671-1680 pubmed
  46. Spina A, Montella R, Liccardo D, De Rosa A, Laino L, Mitsiadis T, et al. NZ-GMP Approved Serum Improve hDPSC Osteogenic Commitment and Increase Angiogenic Factor Expression. Front Physiol. 2016;7:354 pubmed 出版商
  47. Yang Y, Zhang Y, Iwamoto H, Hosaka K, Seki T, Andersson P, et al. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun. 2016;7:12680 pubmed 出版商
  48. Sweeny L, Prince A, Patel N, Moore L, Rosenthal E, Hughley B, et al. Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies. Laryngoscope. 2016;126:E387-E395 pubmed 出版商
  49. Qian L, Lin L, Du Y, Hao X, Zhao Y, Liu X. MicroRNA-588 suppresses tumor cell migration and invasion by targeting GRN in lung squamous cell carcinoma. Mol Med Rep. 2016;14:3021-8 pubmed 出版商
  50. Jinesh G, Molina J, Huang L, Laing N, Mills G, Bar Eli M, et al. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis. Cell Death Discov. 2016;2:16003 pubmed 出版商
  51. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  52. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  53. Liu L, Jiang Y, Steinle J. Compound 49b Restores Retinal Thickness and Reduces Degenerate Capillaries in the Rat Retina following Ischemia/Reperfusion. PLoS ONE. 2016;11:e0159532 pubmed 出版商
  54. Garcia P, Seiva F, Carniato A, de Mello Júnior W, Duran N, Macedo A, et al. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer. 2016;16:422 pubmed 出版商
  55. Li X, Chen Y, Wang L, Shang G, Zhang C, Zhao Z, et al. Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome. Braz J Med Biol Res. 2016;49: pubmed 出版商
  56. Peckova K, Michal M, Hadravsky L, Suster S, Damjanov I, Miesbauerova M, et al. Littoral cell angioma of the spleen: a study of 25 cases with confirmation of frequent association with visceral malignancies. Histopathology. 2016;69:762-774 pubmed 出版商
  57. Chung S, Gillies M, Yam M, Wang Y, Shen W. Differential expression of microRNAs in retinal vasculopathy caused by selective Müller cell disruption. Sci Rep. 2016;6:28993 pubmed 出版商
  58. Su X, Tan Q, Parikh B, Tan A, Mehta M, Sia Wey Y, et al. Characterization of Fatty Acid Binding Protein 7 (FABP7) in the Murine Retina. Invest Ophthalmol Vis Sci. 2016;57:3397-408 pubmed 出版商
  59. Tsai S, Huang P, Hsu Y, Peng Y, Lee C, Wang J, et al. Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep. 2016;6:28612 pubmed 出版商
  60. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  61. Gao S, Fan C, Huang H, Zhu C, Su M, Zhang Y. Effects of HCG on human epithelial ovarian cancer vasculogenic mimicry formation in vivo. Oncol Lett. 2016;12:459-466 pubmed
  62. Al Sadoun H, Burgess M, Hentges K, Mace K. Enforced Expression of Hoxa3 Inhibits Classical and Promotes Alternative Activation of Macrophages In Vitro and In Vivo. J Immunol. 2016;197:872-84 pubmed 出版商
  63. Hafez N, Tahoun N. Expression of cyclooxygenase 2 and vascular endothelial growth factor in gastric carcinoma: Relationship with clinicopathological parameters. J Egypt Natl Canc Inst. 2016;28:149-56 pubmed 出版商
  64. Wang L, Lee A, Wigg J, Peshavariya H, Liu P, Zhang H. miR-126 Regulation of Angiogenesis in Age-Related Macular Degeneration in CNV Mouse Model. Int J Mol Sci. 2016;17: pubmed 出版商
  65. Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao K, et al. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep. 2016;6:28627 pubmed 出版商
  66. Belfort Mattos P, Focchi G, Ribalta J, Megale De Lima T, Nogueira Carvalho C, Kesselring Tso F, et al. Immunohistochemical Expression of VEGF and Podoplanin in Uterine Cervical Squamous Intraepithelial Lesions. Dis Markers. 2016;2016:8293196 pubmed 出版商
  67. Zhang J, Guan J, Qi X, Ding H, Yuan H, Xie Z, et al. Dimethyloxaloylglycine Promotes the Angiogenic Activity of Mesenchymal Stem Cells Derived from iPSCs via Activation of the PI3K/Akt Pathway for Bone Regeneration. Int J Biol Sci. 2016;12:639-52 pubmed 出版商
  68. Zhang M, Huang W, Bai J, Nie X, Wang W. Chymase inhibition protects diabetic rats from renal lesions. Mol Med Rep. 2016;14:121-8 pubmed 出版商
  69. Keilhoff G, Lucas B, Uhde K, Fansa H. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med. 2016;11:1685-1699 pubmed
  70. Lock R, Ingraham R, Maertens O, Miller A, Weledji N, Legius E, et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. J Clin Invest. 2016;126:2181-90 pubmed 出版商
  71. Wang Y, Li Y, Song L, Li Y, Jiang S, Zhang S. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. Mol Med Rep. 2016;14:234-42 pubmed 出版商
  72. de Geus S, Boogerd L, Swijnenburg R, Mieog J, Tummers W, Prevoo H, et al. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol Imaging Biol. 2016;18:807-819 pubmed
  73. Li C, Zhen G, Chai Y, Xie L, Crane J, Farber E, et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat Commun. 2016;7:11455 pubmed 出版商
  74. Shi J, CUI N, Wang S, Zhao M, Wang B, Wang Y, et al. Overexpression of YB1 C-terminal domain inhibits proliferation, angiogenesis and tumorigenicity in a SK-BR-3 breast cancer xenograft mouse model. FEBS Open Bio. 2016;6:33-42 pubmed 出版商
  75. Krampitz G, George B, Willingham S, Volkmer J, Weiskopf K, Jahchan N, et al. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proc Natl Acad Sci U S A. 2016;113:4464-9 pubmed 出版商
  76. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed 出版商
  77. Nishida Fukuda H, Araki R, Shudou M, Okazaki H, Tomono Y, Nakayama H, et al. Ectodomain Shedding of Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE-1) Is Induced by Vascular Endothelial Growth Factor A (VEGF-A). J Biol Chem. 2016;291:10490-500 pubmed 出版商
  78. Shukla P, Chaudhry K, Mir H, Gangwar R, Yadav N, Manda B, et al. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer. 2016;16:189 pubmed 出版商
  79. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  80. Tao Y, Hu K, Tan F, Zhang S, Zhou M, Luo J, et al. SH3-domain binding protein 1 in the tumor microenvironment promotes hepatocellular carcinoma metastasis through WAVE2 pathway. Oncotarget. 2016;7:18356-70 pubmed 出版商
  81. Jung O, Trapp Stamborski V, Purushothaman A, Jin H, Wang H, Sanderson R, et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogenesis. 2016;5:e202 pubmed 出版商
  82. Sato T, Paquet Fifield S, Harris N, Roufail S, Turner D, Yuan Y, et al. VEGF-D promotes pulmonary oedema in hyperoxic acute lung injury. J Pathol. 2016;239:152-61 pubmed 出版商
  83. Abu N, Akhtar M, Yeap S, Lim K, Ho W, Abdullah M, et al. Flavokawain B induced cytotoxicity in two breast cancer cell lines, MCF-7 and MDA-MB231 and inhibited the metastatic potential of MDA-MB231 via the regulation of several tyrosine kinases In vitro. BMC Complement Altern Med. 2016;16:86 pubmed 出版商
  84. Milosavljević M, Jovanovic I, Pejnovic N, Mitrovic S, Arsenijevic N, Simovic Markovic B, et al. Deletion of IL-33R attenuates VEGF expression and enhances necrosis in mammary carcinoma. Oncotarget. 2016;7:18106-15 pubmed 出版商
  85. Wu G, Zeng G. METCAM/MUC18 is a novel tumor and metastasis suppressor for the human ovarian cancer SKOV3 cells. BMC Cancer. 2016;16:136 pubmed 出版商
  86. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  87. Lin Y, Ma Q, Lin S, Zhou H, Wen Q, Gao S, et al. Inhibitory effects of 90Sr/90Y β-irradiation on alkali burn-induced corneal neovascularization in rats. Exp Ther Med. 2016;11:409-414 pubmed
  88. Wang L, Zhao R, Liu C, Liu M, Li S, Li J, et al. A fundamental study on the dynamics of multiple biomarkers in mouse excisional wounds for wound age estimation. J Forensic Leg Med. 2016;39:138-46 pubmed 出版商
  89. Alonso F, Domingos Pereira S, Le Gal L, Derré L, Meda P, Jichlinski P, et al. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion. Oncotarget. 2016;7:14015-28 pubmed 出版商
  90. Liu L, Tong Q, Liu S, Cui J, Zhang Q, Sun W, et al. ZEB1 Upregulates VEGF Expression and Stimulates Angiogenesis in Breast Cancer. PLoS ONE. 2016;11:e0148774 pubmed 出版商
  91. Zhang Z, Zhang H, Peng T, Li D, Xu J. Melittin suppresses cathepsin S-induced invasion and angiogenesis via blocking of the VEGF-A/VEGFR-2/MEK1/ERK1/2 pathway in human hepatocellular carcinoma. Oncol Lett. 2016;11:610-618 pubmed
  92. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  93. Derangère V, Fumet J, Boidot R, Bengrine L, Limagne E, Chevriaux A, et al. Does bevacizumab impact anti-EGFR therapy efficacy in metastatic colorectal cancer?. Oncotarget. 2016;7:9309-21 pubmed 出版商
  94. Soriano A, París Coderch L, Jubierre L, Martínez A, Zhou X, Piskareva O, et al. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget. 2016;7:9271-87 pubmed 出版商
  95. Carvalho M, Pires I, Prada J, Raposo T, Gregório H, Lobo L, et al. High COX-2 expression is associated with increased angiogenesis, proliferation and tumoural inflammatory infiltrate in canine malignant mammary tumours: a multivariate survival study. Vet Comp Oncol. 2017;15:619-631 pubmed 出版商
  96. Jiang T, Liu T, Li L, Yang Z, Bai Y, Liu D, et al. Knockout of phospholipase Cε attenuates N-butyl-N-(4-hydroxybutyl) nitrosamine-induced bladder tumorigenesis. Mol Med Rep. 2016;13:2039-45 pubmed 出版商
  97. Cui L, Gao B, Cao Z, Chen X, Zhang S, Zhang W. Downregulation of B7-H4 in the MHCC97-H hepatocellular carcinoma cell line by arsenic trioxide. Mol Med Rep. 2016;13:2032-8 pubmed 出版商
  98. Rusckowski M, Wang Y, Blankenberg F, Levashova Z, Backer M, Backer J. Targeted scVEGF/(177)Lu radiopharmaceutical inhibits growth of metastases and can be effectively combined with chemotherapy. EJNMMI Res. 2016;6:4 pubmed 出版商
  99. Wang Y, Tadjuidje E, Pandey R, Stefater J, Smith L, Lang R, et al. The Eyes Absent Proteins in Developmental and Pathological Angiogenesis. Am J Pathol. 2016;186:568-78 pubmed 出版商
  100. Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, et al. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism. Sci Rep. 2016;6:19404 pubmed 出版商
  101. Szulcek R, Happé C, Rol N, Fontijn R, Dickhoff C, Hartemink K, et al. Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. Am J Respir Crit Care Med. 2016;193:1410-20 pubmed 出版商
  102. von Moltke J, Ji M, Liang H, Locksley R. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016;529:221-5 pubmed 出版商
  103. Monaghan M, Linneweh M, Liebscher S, Van Handel B, Layland S, Schenke Layland K. Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development. Development. 2016;143:473-82 pubmed 出版商
  104. Ulrich F, Carretero Ortega J, Menéndez J, Narvaez C, Sun B, Lancaster E, et al. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development. 2016;143:147-59 pubmed 出版商
  105. Chen X, Dong X, Gao H, Jiang Y, Jin Y, Chang Y, et al. Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells. Mol Med Rep. 2016;13:689-96 pubmed 出版商
  106. Al Trad B, Ashankyty I, Alaraj M. Progesterone ameliorates diabetic nephropathy in streptozotocin-induced diabetic Rats. Diabetol Metab Syndr. 2015;7:97 pubmed 出版商
  107. Boiko E, Maltsev D, Savicheva A, Shalepo K, Khusnutdinova T, Pozniak A, et al. Infection of Human Retinal Pigment Epithelium with Chlamydia trachomatis. PLoS ONE. 2015;10:e0141754 pubmed 出版商
  108. Koudelkova P, Weber G, Mikulits W. Liver Sinusoidal Endothelial Cells Escape Senescence by Loss of p19ARF. PLoS ONE. 2015;10:e0142134 pubmed 出版商
  109. Pinheiro C, Garcia E, Morais Santos F, Moreira M, Almeida F, Jubé L, et al. Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas. BMC Cancer. 2015;15:835 pubmed 出版商
  110. Taïeb D, Barlier A, Yang C, Pertuit M, Tchoghandjian A, Rochette C, et al. Somatic gain-of-function HIF2A mutations in sporadic central nervous system hemangioblastomas. J Neurooncol. 2016;126:473-81 pubmed 出版商
  111. He W, Bai G, Zhou H, Wei N, White N, Lauer J, et al. CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase. Nature. 2015;526:710-4 pubmed 出版商
  112. Nakano A, Nakahara T, Mori A, Ushikubo H, Sakamoto K, Ishii K. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats. Exp Eye Res. 2016;143:120-31 pubmed 出版商
  113. Kim C, Kim J, Jo K, Lee Y, Sohn E, Yoo N, et al. OSSC1E-K19, a novel phytochemical component of Osteomeles schwerinae, prevents glycated albumin-induced retinal vascular injury in rats. Mol Med Rep. 2015;12:7279-84 pubmed 出版商
  114. Takasato M, Er P, Chiu H, Maier B, Baillie G, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564-8 pubmed 出版商
  115. Hasan S, Sultana S. Geraniol attenuates 2-acetylaminofluorene induced oxidative stress, inflammation and apoptosis in the liver of wistar rats. Toxicol Mech Methods. 2015;25:559-73 pubmed 出版商
  116. Yang S, He H, Ma Q, Zhang Y, Zhu Y, Wan X, et al. Experimental study of the protective effects of SYVN1 against diabetic retinopathy. Sci Rep. 2015;5:14036 pubmed 出版商
  117. Jiang Q, Zhang Z, Li S, Wang Z, Ma Y, Hu Y. Defective heat shock factor 1 inhibits the growth of fibrosarcoma derived from simian virus 40/T antigen‑transformed MEF cells. Mol Med Rep. 2015;12:6517-26 pubmed 出版商
  118. Carvalho M, Pires I, Dias M, Prada J, Gregório H, Lobo L, et al. Intratumoral CD3+ T-lymphocytes immunoexpression and its association with c-Kit, angiogenesis, and overall survival in malignant canine mammary tumors. Anal Cell Pathol (Amst). 2015;2015:920409 pubmed 出版商
  119. Osman W, Youssef N. Combined use of COX-1 and VEGF immunohistochemistry refines the histopathologic prognosis of renal cell carcinoma. Int J Clin Exp Pathol. 2015;8:8165-77 pubmed
  120. Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, et al. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol. 2016;37:1889-99 pubmed 出版商
  121. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed 出版商
  122. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  123. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  124. Bacallao K, Plaza Parrochia F, Cerda A, Gabler F, Romero C, Vantman D, et al. Levels of Regulatory Proteins Associated With Cell Proliferation in Endometria From Untreated Patients Having Polycystic Ovarian Syndrome With and Without Endometrial Hyperplasia. Reprod Sci. 2016;23:211-8 pubmed 出版商
  125. Matsui T, Shigeta T, Umeda M, Komori T. Vascular endothelial growth factor C (VEGF-C) expression predicts metastasis in tongue cancer. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120:436-42 pubmed 出版商
  126. Park S, Nam S, Keam B, Kim T, Jeon Y, Lee S, et al. VEGF and Ki-67 Overexpression in Predicting Poor Overall Survival in Adenoid Cystic Carcinoma. Cancer Res Treat. 2016;48:518-26 pubmed 出版商
  127. Regan J, Kannan P, Kemp M, Kramer B, Newnham J, Jobe A, et al. Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep. Reprod Sci. 2016;23:69-80 pubmed 出版商
  128. Jing L, Li S, Li Q. Akt/hypoxia-inducible factor-1α signaling deficiency compromises skin wound healing in a type 1 diabetes mouse model. Exp Ther Med. 2015;9:2141-2146 pubmed
  129. Kapuralin K, Ćurlin M, Mitrečić D, Kosi N, Schwarzer C, Glavan G, et al. STAM2, a member of the endosome-associated complex ESCRT-0 is highly expressed in neurons. Mol Cell Neurosci. 2015;67:104-15 pubmed 出版商
  130. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  131. Jung S, Sielker S, Purcz N, Sproll C, Acil Y, Kleinheinz J. Analysis of angiogenic markers in oral squamous cell carcinoma-gene and protein expression. Head Face Med. 2015;11:19 pubmed 出版商
  132. Li C, Wang L, Zheng L, Zhan X, Xu B, Jiang J, et al. SIRT1 expression is associated with poor prognosis of lung adenocarcinoma. Onco Targets Ther. 2015;8:977-84 pubmed 出版商
  133. Wang W, Chen S, Zhu J, Zuo S, Ma Y, Chen Z, et al. Intestinal alkaline phosphatase inhibits the translocation of bacteria of gut-origin in mice with peritonitis: mechanism of action. PLoS ONE. 2015;10:e0124835 pubmed 出版商
  134. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  135. Kim B, Lee J, Choi J, Park D, Song H, Park T, et al. Imidazole-based alkaloid derivative LCB54-0009 suppresses ocular angiogenesis and lymphangiogenesis in models of experimental retinopathy and corneal neovascularization. Br J Pharmacol. 2015;172:3875-89 pubmed 出版商
  136. Raha Chowdhury R, Raha A, Forostyak S, Zhao J, Stott S, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci. 2015;16:24 pubmed 出版商
  137. Ji T, Guo Y, Kim K, McQueen P, Ghaffar S, Christ A, et al. Neuropilin-2 expression is inhibited by secreted Wnt antagonists and its down-regulation is associated with reduced tumor growth and metastasis in osteosarcoma. Mol Cancer. 2015;14:86 pubmed 出版商
  138. Liu L, Yu H, Huang X, Tan H, Li S, Luo Y, et al. A novel engineered VEGF blocker with an excellent pharmacokinetic profile and robust anti-tumor activity. BMC Cancer. 2015;15:170 pubmed 出版商
  139. Majumder A, Syed K, Joseph S, Scambler P, Dutta D. Histone Chaperone HIRA in Regulation of Transcription Factor RUNX1. J Biol Chem. 2015;290:13053-63 pubmed 出版商
  140. Khayati F, Pérez Cano L, Maouche K, Sadoux A, Boutalbi Z, Podgorniak M, et al. EMMPRIN/CD147 is a novel coreceptor of VEGFR-2 mediating its activation by VEGF. Oncotarget. 2015;6:9766-80 pubmed
  141. Lee I, Hüttemann M, Kruger A, Bollig Fischer A, Malek M. (-)-Epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice. Front Pharmacol. 2015;6:43 pubmed 出版商
  142. Li S, Wu X, Dong C, Xie X, Wu J, Zhang X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS ONE. 2015;10:e0118033 pubmed 出版商
  143. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  144. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  145. Holloway T, Bloemberg D, da Silva M, Simpson J, Quadrilatero J, Spriet L. High intensity interval and endurance training have opposing effects on markers of heart failure and cardiac remodeling in hypertensive rats. PLoS ONE. 2015;10:e0121138 pubmed 出版商
  146. Coon B, Baeyens N, Han J, Budatha M, Ross T, Fang J, et al. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J Cell Biol. 2015;208:975-86 pubmed 出版商
  147. de Monès E, Schlaubitz S, Oliveira H, d Elbée J, Bareille R, Bourget C, et al. Comparative study of membranes induced by PMMA or silicone in rats, and influence of external radiotherapy. Acta Biomater. 2015;19:119-27 pubmed 出版商
  148. Fang J, Zhou H, Zhang C, Shang L, Zhang L, Xu J, et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology. 2015;62:452-65 pubmed 出版商
  149. Shi X, Zirbes K, Rasmussen T, Ferdous A, Garry M, Koyano Nakagawa N, et al. The transcription factor Mesp1 interacts with cAMP-responsive element binding protein 1 (Creb1) and coactivates Ets variant 2 (Etv2) gene expression. J Biol Chem. 2015;290:9614-25 pubmed 出版商
  150. Qi J, Wang W, Li F. Combination of interventional adenovirus-p53 introduction and ultrasonic irradiation in the treatment of liver cancer. Oncol Lett. 2015;9:1297-1302 pubmed
  151. Lu Y, Xue Q, Eisele M, Sulistijo E, Brower K, Han L, et al. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc Natl Acad Sci U S A. 2015;112:E607-15 pubmed 出版商
  152. Wei Z, Xia G, Wu Y, Chen W, Xiang Z, Schwarz R, et al. CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer. Cancer Lett. 2015;359:335-43 pubmed 出版商
  153. Choi S, Lee H, Choi J, Kim J, Park C, Joo H, et al. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS ONE. 2015;10:e0117410 pubmed 出版商
  154. Warnier M, Roudbaraki M, Derouiche S, Delcourt P, Bokhobza A, Prevarskaya N, et al. CACNA2D2 promotes tumorigenesis by stimulating cell proliferation and angiogenesis. Oncogene. 2015;34:5383-94 pubmed 出版商
  155. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet A, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212:139-48 pubmed 出版商
  156. Cook N, Brais R, Qian W, Hak C, Corrie P. Endothelin-1 and endothelin B receptor expression in pancreatic adenocarcinoma. J Clin Pathol. 2015;68:309-13 pubmed 出版商
  157. Gurzu S, Kádár Z, Sugimura H, Bara T, Hălmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APMIS. 2015;123:223-33 pubmed 出版商
  158. Gültiken N, Guvenc T, Kaya D, Agaoglu A, Ay S, Kücükaslan I, et al. Tarantula cubensis extract alters the degree of apoptosis and mitosis in canine mammary adenocarcinomas. J Vet Sci. 2015;16:213-9 pubmed
  159. Lee S, Lee K, Lee J, Kang S, Kim H, Asahara T, et al. Selective Interference Targeting of Lnk in Umbilical Cord-Derived Late Endothelial Progenitor Cells Improves Vascular Repair, Following Hind Limb Ischemic Injury, via Regulation of JAK2/STAT3 Signaling. Stem Cells. 2015;33:1490-500 pubmed 出版商
  160. Chen T, Margariti A, Kelaini S, Cochrane A, Guha S, Hu Y, et al. MicroRNA-199b Modulates Vascular Cell Fate During iPS Cell Differentiation by Targeting the Notch Ligand Jagged1 and Enhancing VEGF Signaling. Stem Cells. 2015;33:1405-18 pubmed 出版商
  161. Pienaar I, Lee C, Elson J, McGuinness L, Gentleman S, Kalaria R, et al. Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson's disease. Neurobiol Dis. 2015;74:392-405 pubmed 出版商
  162. Huang D, Wang F, Guo M, Li S, Yan M, Yu T, et al. Effect of combined treatment with rosuvastatin and protein kinase Cβ2 inhibitor on angiogenesis following myocardial infarction in diabetic rats. Int J Mol Med. 2015;35:829-38 pubmed 出版商
  163. Yuan L, Liu X. Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Mol Med Rep. 2015;11:2449-58 pubmed 出版商
  164. Ozmen A, Unek G, Kipmen Korgun D, Cetinkaya B, Avcil Z, Korgun E. Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta. Ann Anat. 2015;198:34-40 pubmed 出版商
  165. Aggarwal P, Veron D, Thomas D, Siegel D, Moeckel G, Kashgarian M, et al. Semaphorin3a promotes advanced diabetic nephropathy. Diabetes. 2015;64:1743-59 pubmed 出版商
  166. Wang H, Zhang L, Zhang S, Li Y. Inhibition of vascular endothelial growth factor by small interfering RNA upregulates differentiation, maturation and function of dendritic cells. Exp Ther Med. 2015;9:120-124 pubmed
  167. Gogalic S, Sauer U, Doppler S, Preininger C. Bladder cancer biomarker array to detect aberrant levels of proteins in urine. Analyst. 2015;140:724-35 pubmed 出版商
  168. Li C, Wang Z, Chen Y, Zhou M, Zhang H, Chen R, et al. Transcriptional silencing of ETS-1 abrogates epithelial-mesenchymal transition resulting in reduced motility of pancreatic cancer cells. Oncol Rep. 2015;33:559-65 pubmed 出版商
  169. Guzmán E, Maers K, Roberts J, Kemami Wangun H, Harmody D, Wright A. The marine natural product microsclerodermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. Invest New Drugs. 2015;33:86-94 pubmed 出版商
  170. Chen R, Xu B, Chen S, Chen S, Zhang T, Ren J, et al. Effect of oridonin-mediated hallmark changes on inflammatory pathways in human pancreatic cancer (BxPC-3) cells. World J Gastroenterol. 2014;20:14895-903 pubmed 出版商
  171. Pinheiro C, Garcia E, Morais Santos F, Scapulatempo Neto C, Mafra A, Steenbergen R, et al. Lactate transporters and vascular factors in HPV-induced squamous cell carcinoma of the uterine cervix. BMC Cancer. 2014;14:751 pubmed 出版商
  172. Waisberg J, de Souza Viana L, Affonso Junior R, Silva S, Denadai M, Margeotto F, et al. Overexpression of the ITGAV gene is associated with progression and spread of colorectal cancer. Anticancer Res. 2014;34:5599-607 pubmed
  173. Kostić J, Orlić D, Borović M, Beleslin B, MilaÅ¡inović D, Dobrić M, et al. Coronary thrombi neovascularization in patients with ST-elevation myocardial infarction - clinical and angiographic implications. Thromb Res. 2014;134:1038-45 pubmed 出版商
  174. Mendonça M, Soares E, Stávale L, Kalapothakis E, Cruz Höfling M. Vascular endothelial growth factor increases during blood-brain barrier-enhanced permeability caused by Phoneutria nigriventer spider venom. Biomed Res Int. 2014;2014:721968 pubmed 出版商
  175. Hamdollah Zadeh M, Amin E, Hoareau Aveilla C, Domingo E, Symonds K, Ye X, et al. Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance. Mol Oncol. 2015;9:167-78 pubmed 出版商
  176. Zhang J, Zhao J, Bai Y, Huang L, Yu W, Li X. Effects of p75 neurotrophin receptor on regulating hypoxia-induced angiogenic factors in retinal pigment epithelial cells. Mol Cell Biochem. 2015;398:123-34 pubmed 出版商
  177. Aeimlapa R, Wongdee K, Charoenphandhu N, Suntornsaratoon P, Krishnamra N. Premature chondrocyte apoptosis and compensatory upregulation of chondroregulatory protein expression in the growth plate of Goto-Kakizaki diabetic rats. Biochem Biophys Res Commun. 2014;452:395-401 pubmed 出版商
  178. Scotti L, Abramovich D, Pascuali N, Irusta G, Meresman G, Tesone M, et al. Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome. J Steroid Biochem Mol Biol. 2014;144 Pt B:392-401 pubmed 出版商
  179. Shen W, Chung S, Irhimeh M, Li S, Lee S, Gillies M. Systemic administration of erythropoietin inhibits retinopathy in RCS rats. PLoS ONE. 2014;9:e104759 pubmed 出版商
  180. Tawfik A, Markand S, Al Shabrawey M, Mayo J, Reynolds J, Bearden S, et al. Alterations of retinal vasculature in cystathionine-?-synthase heterozygous mice: a model of mild to moderate hyperhomocysteinemia. Am J Pathol. 2014;184:2573-85 pubmed 出版商
  181. Hagel C, Krasemann S, Löffler J, Puschel K, Magnus T, Glatzel M. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1? expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms. Brain Pathol. 2015;25:146-56 pubmed 出版商
  182. Styring E, Seinen J, Dominguez Valentin M, Domanski H, Jonsson M, von Steyern F, et al. Key roles for MYC, KIT and RET signaling in secondary angiosarcomas. Br J Cancer. 2014;111:407-12 pubmed 出版商
  183. Wang C, Cai Y, Zhang Y, Xiong Z, Li G, Cui L. Local injection of deferoxamine improves neovascularization in ischemic diabetic random flap by increasing HIF-1? and VEGF expression. PLoS ONE. 2014;9:e100818 pubmed 出版商
  184. Wiles J, Katchko R, Benavides E, O Gorman C, Escudero J, Keisler D, et al. The effect of leptin on luteal angiogenic factors during the luteal phase of the estrous cycle in goats. Anim Reprod Sci. 2014;148:121-9 pubmed 出版商
  185. Howell K, Pillai A. Effects of prenatal hypoxia on schizophrenia-related phenotypes in heterozygous reeler mice: a gene × environment interaction study. Eur Neuropsychopharmacol. 2014;24:1324-36 pubmed 出版商
  186. Yu J, Wang Q, Wang H, Lu W, Li W, Qin Z, et al. Activation of liver X receptor enhances the proliferation and migration of endothelial progenitor cells and promotes vascular repair through PI3K/Akt/eNOS signaling pathway activation. Vascul Pharmacol. 2014;62:150-61 pubmed 出版商
  187. Quintas H, Alegría N, Mendonça A, Botelho A, Alves A, Pires I. Coexistence of tuberculosis and mammary carcinoma in a goat. Reprod Domest Anim. 2014;49:606-610 pubmed 出版商
  188. Fidanza A, Toschi P, Zacchini F, Czernik M, Palmieri C, Scapolo P, et al. Impaired placental vasculogenesis compromises the growth of sheep embryos developed in vitro. Biol Reprod. 2014;91:21 pubmed 出版商
  189. Gao X, Usas A, Proto J, Lu A, Cummins J, Proctor A, et al. Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects. FASEB J. 2014;28:3792-809 pubmed 出版商
  190. Yuan S, Jiang T, Sun L, Zheng R, Cao G, Ahat N, et al. Use of bone mesenchymal stem cells to treat rats with acute liver failure. Genet Mol Res. 2014;13:6962-80 pubmed 出版商
  191. Li W, Zhao R, Liu J, Tian M, Lu Y, He T, et al. Small islets transplantation superiority to large ones: implications from islet microcirculation and revascularization. J Diabetes Res. 2014;2014:192093 pubmed 出版商
  192. Li Q, Wijesekera O, Salas S, Wang J, Zhu M, ApRhys C, et al. Mesenchymal stem cells from human fat engineered to secrete BMP4 are nononcogenic, suppress brain cancer, and prolong survival. Clin Cancer Res. 2014;20:2375-87 pubmed 出版商
  193. Bai X, Li X, Tian J, Zhou Z. Antiangiogenic treatment diminishes renal injury and dysfunction via regulation of local AKT in early experimental diabetes. PLoS ONE. 2014;9:e96117 pubmed 出版商
  194. Chen P, Qin L, Zhuang Z, Tellides G, Lax I, Schlessinger J, et al. The docking protein FRS2? is a critical regulator of VEGF receptors signaling. Proc Natl Acad Sci U S A. 2014;111:5514-9 pubmed 出版商
  195. Zimmermann A, Morrison S, Hu M, Li S, Nauta A, Sorkin M, et al. Epidermal or dermal specific knockout of PHD-2 enhances wound healing and minimizes ischemic injury. PLoS ONE. 2014;9:e93373 pubmed 出版商
  196. Pryzhkova M, Aria I, Cheng Q, Harris G, Zan X, Gharib M, et al. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials. 2014;35:5098-109 pubmed 出版商
  197. Ferreira C, Siqueira D, Romitti M, Ceolin L, Brasil B, Meurer L, et al. Role of VEGF-A and its receptors in sporadic and MEN2-associated pheochromocytoma. Int J Mol Sci. 2014;15:5323-36 pubmed 出版商
  198. Stofas A, Levidou G, Piperi C, Adamopoulos C, Dalagiorgou G, Bamias A, et al. The role of CXC-chemokine receptor CXCR2 and suppressor of cytokine signaling-3 (SOCS-3) in renal cell carcinoma. BMC Cancer. 2014;14:149 pubmed 出版商
  199. Yan J, Chen Y, Yuan Q, Wang X, Yu S, Qiu W, et al. Comparison of the effects of Mg-6Zn and Ti-3Al-2.5V alloys on TGF-?/TNF-?/VEGF/b-FGF in the healing of the intestinal tract in vivo. Biomed Mater. 2014;9:025011 pubmed 出版商
  200. Moura C, Lollo P, Morato P, Nisishima L, Carneiro E, Amaya Farfan J. Whey protein hydrolysate enhances HSP90 but does not alter HSP60 and HSP25 in skeletal muscle of rats. PLoS ONE. 2014;9:e83437 pubmed 出版商
  201. Gorman J, Liu S, Slopack D, Shariati K, Hasanee A, Olenich S, et al. Angiotensin II evokes angiogenic signals within skeletal muscle through co-ordinated effects on skeletal myocytes and endothelial cells. PLoS ONE. 2014;9:e85537 pubmed 出版商
  202. Knösel T, Werner M, Jung A, Kirchner T, Dürr H. Dedifferentiated chondrosarcoma mimicking a giant cell tumor. Is this low grade dedifferentiated chondrosarcoma?. Pathol Res Pract. 2014;210:194-7 pubmed 出版商
  203. Romagnoli M, Mineva N, Polmear M, Conrad C, Srinivasan S, Loussouarn D, et al. ADAM8 expression in invasive breast cancer promotes tumor dissemination and metastasis. EMBO Mol Med. 2014;6:278-94 pubmed 出版商
  204. Moon H, Yurube T, Lozito T, Pohl P, Hartman R, Sowa G, et al. Effects of secreted factors in culture medium of annulus fibrosus cells on microvascular endothelial cells: elucidating the possible pathomechanisms of matrix degradation and nerve in-growth in disc degeneration. Osteoarthritis Cartilage. 2014;22:344-54 pubmed 出版商
  205. Duan H, Huang J, Li W, Tang M. Protective effects of fufang xueshuantong on diabetic retinopathy in rats. Evid Based Complement Alternat Med. 2013;2013:408268 pubmed 出版商
  206. Fretz J, Nelson T, Velazquez H, Xi Y, Moeckel G, Horowitz M. Early B-cell factor 1 is an essential transcription factor for postnatal glomerular maturation. Kidney Int. 2014;85:1091-102 pubmed 出版商
  207. Takahashi Y, Izumi Y, Kohno M, Ikeda E, Nomori H. Airway administration of vascular endothelial growth factor siRNAs induces transient airspace enlargement in mice. Int J Med Sci. 2013;10:1702-14 pubmed 出版商
  208. Huang X, Zhang Y, Zhang X, Xu L, Chen X, Wei S. Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng C Mater Biol Appl. 2013;33:4816-24 pubmed 出版商
  209. Esteves J, Marcantonio E, de Souza Faloni A, Rocha F, Marcantonio R, Wilk K, et al. Dynamics of bone healing after osteotomy with piezosurgery or conventional drilling - histomorphometrical, immunohistochemical, and molecular analysis. J Transl Med. 2013;11:221 pubmed 出版商
  210. Sreevalsan S, Safe S. The cannabinoid WIN 55,212-2 decreases specificity protein transcription factors and the oncogenic cap protein eIF4E in colon cancer cells. Mol Cancer Ther. 2013;12:2483-93 pubmed 出版商
  211. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  212. Stewart J, Ma X, Megison M, Nabers H, Cance W, Kurenova E, et al. Inhibition of FAK and VEGFR-3 binding decreases tumorigenicity in neuroblastoma. Mol Carcinog. 2015;54:9-23 pubmed 出版商
  213. Zou Y, Kan E, Lu J, Ng K, Tan M, Yao L, et al. Primary blast injury-induced lesions in the retina of adult rats. J Neuroinflammation. 2013;10:79 pubmed 出版商
  214. Hou Z, Nie C, Si Z, Ma Y. Deferoxamine enhances neovascularization and accelerates wound healing in diabetic rats via the accumulation of hypoxia-inducible factor-1?. Diabetes Res Clin Pract. 2013;101:62-71 pubmed 出版商
  215. Dipaola F, Shivakumar P, Pfister J, Walters S, Sabla G, Bezerra J. Identification of intramural epithelial networks linked to peribiliary glands that express progenitor cell markers and proliferate after injury in mice. Hepatology. 2013;58:1486-1496 pubmed 出版商
  216. Xu W, Fan W, Yao K. Cyclosporine A stimulated hair growth from mouse vibrissae follicles in an organ culture model. J Biomed Res. 2012;26:372-80 pubmed 出版商
  217. Stride N, Larsen S, Hey Mogensen M, Hansen C, Prats C, Steinbruchel D, et al. Impaired mitochondrial function in chronically ischemic human heart. Am J Physiol Heart Circ Physiol. 2013;304:H1407-14 pubmed 出版商
  218. Wang W, Jiang H, Zhu H, Zhang H, Gong J, Zhang L, et al. Overexpression of high mobility group box 1 and 2 is associated with the progression and angiogenesis of human bladder carcinoma. Oncol Lett. 2013;5:884-888 pubmed
  219. Cao W, Kawai N, Miyake K, Zhang X, Fei Z, Tamiya T. Relationship of 14-3-3zeta (?), HIF-1?, and VEGF expression in human brain gliomas. Brain Tumor Pathol. 2014;31:1-10 pubmed 出版商
  220. Ahmed F, Gyorgy A, Kamnaksh A, Ling G, Tong L, Parks S, et al. Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. Electrophoresis. 2012;33:3705-11 pubmed 出版商
  221. Viana L, Affonso R, Silva S, Denadai M, Matos D, Salinas de Souza C, et al. Relationship between the expression of the extracellular matrix genes SPARC, SPP1, FN1, ITGA5 and ITGAV and clinicopathological parameters of tumor progression and colorectal cancer dissemination. Oncology. 2013;84:81-91 pubmed 出版商
  222. Beierle E, Ma X, Stewart J, Megison M, Cance W, Kurenova E. Inhibition of the focal adhesion kinase and vascular endothelial growth factor receptor-3 interaction leads to decreased survival in human neuroblastoma cell lines. Mol Carcinog. 2014;53:230-42 pubmed 出版商
  223. Kweider N, Huppertz B, Wruck C, Beckmann R, Rath W, Pufe T, et al. A role for Nrf2 in redox signalling of the invasive extravillous trophoblast in severe early onset IUGR associated with preeclampsia. PLoS ONE. 2012;7:e47055 pubmed 出版商
  224. Tripathy D, Sanchez A, Yin X, Martinez J, Grammas P. Age-related decrease in cerebrovascular-derived neuroprotective proteins: effect of acetaminophen. Microvasc Res. 2012;84:278-85 pubmed 出版商
  225. Boztosun A, Piçnak A, Kosar M, Gulturk S, Cetin A. Effects of methylene blue, pentoxyphylline and enoxaparin on postoperative adhesion formation and markers of angiogenesis in a rat uterine horn model. Clin Exp Obstet Gynecol. 2012;39:89-95 pubmed
  226. Jung Y, Joo K, Seong D, Choi Y, Kong D, Kim Y, et al. Identification of prognostic biomarkers for glioblastomas using protein expression profiling. Int J Oncol. 2012;40:1122-32 pubmed 出版商
  227. Pedersen M, Larsen A, Pedersen D, Stoltenberg M, Penkowa M. Metallic gold treatment reduces proliferation of inflammatory cells, increases expression of VEGF and FGF, and stimulates cell proliferation in the subventricular zone following experimental traumatic brain injury. Histol Histopathol. 2009;24:573-86 pubmed 出版商
  228. Dawson M, Opat S, Taouk Y, Donovan M, Zammit M, Monaghan K, et al. Clinical and immunohistochemical features associated with a response to bortezomib in patients with multiple myeloma. Clin Cancer Res. 2009;15:714-22 pubmed 出版商
  229. Lee D, Kuo H, Chen C, Hsu J, Chou C, Wei Y, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell. 2007;130:440-55 pubmed