这是一篇来自已证抗体库的有关人类 VEGFR-2 (VEGFR-2) 的综述,是根据144篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合VEGFR-2 抗体。
VEGFR-2 同义词: CD309; FLK1; VEGFR; VEGFR2; vascular endothelial growth factor receptor 2; fetal liver kinase-1; kinase insert domain receptor (a type III receptor tyrosine kinase); protein-tyrosine kinase receptor Flk-1; soluble VEGFR2; tyrosine kinase growth factor receptor

圣克鲁斯生物技术
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, sc-393163)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Mol Med Rep (2018) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 1:500; 图 1c
圣克鲁斯生物技术VEGFR-2抗体(Santa cruz, sc-6251)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1c). Exp Ther Med (2017) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, (Sc- 6251)被用于被用于免疫印迹在人类样本上 (图 3a). Apoptosis (2017) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 7A
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, sc-6251)被用于被用于免疫印迹在人类样本上 (图 7A). Sci Rep (2017) ncbi
小鼠 单克隆(F-10)
  • 免疫细胞化学; 大鼠; 1:50; 图 1e
圣克鲁斯生物技术VEGFR-2抗体(SantaCruz, sc-393179)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1e). Mol Med Rep (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫细胞化学; 人类; 1:200; 表 1
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, sc6251)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 1). Methods Mol Biol (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, sc-6251)被用于被用于免疫印迹在人类样本上 (图 2c). Int J Oncol (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 s1
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, sc-6251)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 s1). Eur J Obstet Gynecol Reprod Biol (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫细胞化学; 小鼠; 图 1
圣克鲁斯生物技术VEGFR-2抗体(santa Cruz, sc-6251)被用于被用于免疫细胞化学在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫细胞化学; 小鼠; 1:50; 图 3b
  • 免疫印迹; 小鼠; 1:1000; 图 3a
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, sc-6251)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Stem Cell Res (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术VEGFR-2抗体(SantaCruz Biotechnology, Sc-6251)被用于被用于免疫印迹在人类样本上 (图 5c). Urol Oncol (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 大鼠; 1:200; 图 7
圣克鲁斯生物技术VEGFR-2抗体(santa Cruz, sc-6251)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 7). Mol Med Rep (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫组化-石蜡切片; 人类; 表 4
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, FLK1(A3))被用于被用于免疫组化-石蜡切片在人类样本上 (表 4). Chin J Cancer (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫细胞化学; 人类; 1:200; 图 s7
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, sc-6251)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s7). Nat Commun (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫细胞化学; 人类; 图 5d
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz Biotechnology, sc-6251)被用于被用于免疫细胞化学在人类样本上 (图 5d) 和 被用于免疫印迹在人类样本上 (图 5c). Mol Cell Biochem (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 大鼠; 1:100; 图 1
圣克鲁斯生物技术VEGFR-2抗体(santa Cruz, sc-6251)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(A-3)
  • 抑制或激活实验; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz Biotechnology, sc-6251)被用于被用于抑制或激活实验在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Cereb Blood Flow Metab (2015) ncbi
小鼠 单克隆(A-3)
  • 流式细胞仪; 人类; 图 2
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, sc-6251)被用于被用于流式细胞仪在人类样本上 (图 2). Int J Mol Med (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫组化; 人类; 表 2
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, Sc-6251)被用于被用于免疫组化在人类样本上 (表 2). PLoS ONE (2015) ncbi
小鼠 单克隆(A-3)
  • 流式细胞仪; 人类; 1:200; 图 4
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, SC-6251)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 4), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(A-3)
  • 抑制或激活实验; 大鼠; 1:50
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, sc-6251)被用于被用于抑制或激活实验在大鼠样本上浓度为1:50. Exp Cell Res (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫沉淀; 人类; 图 4
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, SC-6251)被用于被用于免疫沉淀在人类样本上 (图 4). Bone (2015) ncbi
小鼠 单克隆(A-3)
  • 流式细胞仪; 大鼠
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, sc-6251)被用于被用于流式细胞仪在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(A-3)
  • 免疫细胞化学; 人类; 1:200; 图 2
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, sc-6251)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Cell Biol Int (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz BiotechnologySanta Cruz Biotechnology, sc-6251)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(A-3)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz Biotechnology, SC-6251)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Int J Mol Sci (2014) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术VEGFR-2抗体(Santa Cruz, sc-6251)被用于被用于免疫印迹在人类样本上. J Steroid Biochem Mol Biol (2014) ncbi
赛默飞世尔
兔 单克隆(B.309.4)
  • 免疫印迹; 小鼠; 1:2000; 图 3b
赛默飞世尔VEGFR-2抗体(Thermofisher, B.309.4)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Nat Commun (2017) ncbi
兔 单克隆(H.266.3)
  • 免疫细胞化学; 人类; 图 5f
赛默飞世尔VEGFR-2抗体(Pierce, QE2026123)被用于被用于免疫细胞化学在人类样本上 (图 5f). Acta Histochem (2017) ncbi
小鼠 单克隆(4B4)
  • 免疫组化-石蜡切片; 人类; 1:600; 图 5
赛默飞世尔VEGFR-2抗体(Thermo Fisher, MA5-15556)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600 (图 5). Angiogenesis (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 2b
赛默飞世尔VEGFR-2抗体(Thermo Scientific, PA5-16487)被用于被用于免疫组化在人类样本上 (图 2b). Ann Oncol (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 图 3
赛默飞世尔VEGFR-2抗体(Thermo Fisher, PA5-16487)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1) 和 被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔VEGFR-2抗体(Invitrogen, 44-1047G)被用于被用于免疫印迹在人类样本上. J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔VEGFR-2抗体(Invitrogen, 441047G)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔VEGFR-2抗体(Invitrogen, 44-1052)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔VEGFR-2抗体(Invitrogen, 441052)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 6
赛默飞世尔VEGFR-2抗体(Invitrogen, 441052)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). PLoS ONE (2010) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛默飞世尔VEGFR-2抗体(Invitrogen, 44-1046)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Sci (2009) ncbi
艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 图 s6o
艾博抗(上海)贸易有限公司VEGFR-2抗体(Abcam, ab39256)被用于被用于免疫印迹在小鼠样本上 (图 s6o). Cell (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 8b
艾博抗(上海)贸易有限公司VEGFR-2抗体(Abcam, ab5473)被用于被用于免疫印迹在人类样本上 (图 8b). Int J Biochem Cell Biol (2018) ncbi
小鼠 单克隆(EIC)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司VEGFR-2抗体(Abcam, ab9530)被用于被用于免疫印迹在人类样本上. PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司VEGFR-2抗体(Abcam, ab2349)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Sci Rep (2017) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 图 1
艾博抗(上海)贸易有限公司VEGFR-2抗体(Abcam, ab11939)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司VEGFR-2抗体(Abcam, ab2349)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Physiol Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司VEGFR-2抗体(Abcam Sapphire Bioscience, ab39256)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 3). Int J Mol Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s1d
艾博抗(上海)贸易有限公司VEGFR-2抗体(Abcam, ab39638)被用于被用于免疫印迹在人类样本上 (图 s1d). Gene (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2e
艾博抗(上海)贸易有限公司VEGFR-2抗体(Abcam, ab2349)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2e). BMC Cancer (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司VEGFR-2抗体(AbCam, ab2349)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). BMC Cancer (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司VEGFR-2抗体(Abcam, ab2349)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Clin Chim Acta (2014) ncbi
大鼠 单克隆(RM0002-7A23)
  • 酶联免疫吸附测定; 小鼠
艾博抗(上海)贸易有限公司VEGFR-2抗体(Abcam, ab51873)被用于被用于酶联免疫吸附测定在小鼠样本上. Blood (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司VEGFR-2抗体(Abcam, ab2349)被用于被用于免疫细胞化学在小鼠样本上. Blood (2013) ncbi
安迪生物R&D
山羊 多克隆
  • proximity ligation assay; 人类; 1:100; 图 4b
安迪生物R&DVEGFR-2抗体(R&D Systems, AF357)被用于被用于proximity ligation assay在人类样本上浓度为1:100 (图 4b). J Pathol (2018) ncbi
小鼠 单克隆(89106)
  • 流式细胞仪; 人类; 表 1
安迪生物R&DVEGFR-2抗体(R&D Systems, 89106)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2016) ncbi
山羊 多克隆
  • 免疫沉淀; 人类; 图 3
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 1
安迪生物R&DVEGFR-2抗体(R&D systems, AF357)被用于被用于免疫沉淀在人类样本上 (图 3), 被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Biol Open (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
安迪生物R&DVEGFR-2抗体(R&D systems, AF1766)被用于被用于免疫印迹在人类样本上 (图 1). Biol Open (2016) ncbi
小鼠 单克隆(89106)
  • 流式细胞仪; 人类; 图 st1
安迪生物R&DVEGFR-2抗体(R&D Systems, FAB357P)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(89106)
  • 抑制或激活实验; 人类
安迪生物R&DVEGFR-2抗体(R&D Systems, MAB3572)被用于被用于抑制或激活实验在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(89106)
  • 流式细胞仪; 人类; 1:100; 图 2g
安迪生物R&DVEGFR-2抗体(R&D Systems, MAB3572)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2g). Stem Cells Transl Med (2016) ncbi
山羊 多克隆
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
安迪生物R&DVEGFR-2抗体(R&D Systems, AF357)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. FEBS J (2013) ncbi
BioLegend
小鼠 单克隆(7D4-6)
  • 流式细胞仪; 人类
BioLegendVEGFR-2抗体(BioLegend, 7D4-6)被用于被用于流式细胞仪在人类样本上. Nat Med (2016) ncbi
小鼠 单克隆(7D4-6)
  • 流式细胞仪; 人类
BioLegendVEGFR-2抗体(Biolegend Nos, 359903)被用于被用于流式细胞仪在人类样本上. J Vasc Res (2015) ncbi
LifeSpan Biosciences
小鼠 单克隆(4B4)
  • 免疫细胞化学; 人类
LifeSpan BiosciencesVEGFR-2抗体(LS Biosciences, LS-C109100)被用于被用于免疫细胞化学在人类样本上. Tissue Eng Part A (2014) ncbi
Novus Biologicals
兔 多克隆
  • 免疫印迹; 大鼠; 图 4
Novus BiologicalsVEGFR-2抗体(Novus Biologicals, NB-100-530)被用于被用于免疫印迹在大鼠样本上 (图 4). J Appl Physiol (1985) (2017) ncbi
西格玛奥德里奇
小鼠 单克隆(KDR-1)
  • 其他; 人类; 图 s1
西格玛奥德里奇VEGFR-2抗体(Sigma, V 9134)被用于被用于其他在人类样本上 (图 s1). Cell Chem Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 流式细胞仪; 人类; 图 4c
西格玛奥德里奇VEGFR-2抗体(Sigma, SAB4504567)被用于被用于免疫印迹在小鼠样本上 和 被用于流式细胞仪在人类样本上 (图 4c). Circ Res (2017) ncbi
小鼠 单克隆(KDR-1)
  • 流式细胞仪; 人类; 表 1
西格玛奥德里奇VEGFR-2抗体(Sigma, V9134)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(KDR-1)
  • 免疫组化-石蜡切片; 人类; 图 1b
西格玛奥德里奇VEGFR-2抗体(Sigma-Aldrich, V9134)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). Int J Oncol (2014) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:2000; 图 8b
  • 免疫印迹; 人类; 1:2000; 图 8a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(CST, 2479S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 8a). J Cell Sci (2019) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 小鼠; 1:2000; 图 8b
  • 免疫印迹; 人类; 1:2000; 图 8a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(CST, 2478S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 8a). J Cell Sci (2019) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Science (2018) ncbi
兔 单克隆(55B11)
  • 免疫沉淀; 人类; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫沉淀在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Science (2018) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 小鼠; 图 s6o
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2478)被用于被用于免疫印迹在小鼠样本上 (图 s6o). Cell (2018) ncbi
兔 单克隆(55B11)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 8b
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 8b). Int J Biochem Cell Biol (2018) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 s8a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 55B11)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8a). Nature (2017) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 8c). J Clin Invest (2017) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上 (图 8c). J Clin Invest (2017) ncbi
兔 单克隆(D5B1)
  • 流式细胞仪; 人类; 图 2a
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 9698)被用于被用于流式细胞仪在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2d). J Clin Invest (2017) ncbi
兔 单克隆(11A3)
  • 免疫细胞化学; 人类; 1:100; 图 10b
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signalling, 2477)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 10b). Biochem Pharmacol (2017) ncbi
兔 单克隆(19A10)
  • 免疫细胞化学; 人类; 1:100; 图 10b
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signalling, 2478)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 10b). Biochem Pharmacol (2017) ncbi
兔 单克隆(D5B11)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 3770)被用于被用于免疫印迹在小鼠样本上 (图 3b). Nature (2017) ncbi
兔 单克隆(55B11)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司VEGFR-2抗体(CST, 2479)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). FASEB J (2017) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). FASEB J (2017) ncbi
兔 单克隆(55B11)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
兔 单克隆(55B11)
  • 免疫细胞化学; 小鼠; 图 3i
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell signaling, 55B11)被用于被用于免疫细胞化学在小鼠样本上 (图 3i). Stem Cells Int (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 5c). Front Pharmacol (2016) ncbi
兔 单克隆(55B11)
  • 免疫沉淀; 小鼠; 图 5d
  • 免疫沉淀; 人类; 图 5c
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479S)被用于被用于免疫沉淀在小鼠样本上 (图 5d), 被用于免疫沉淀在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 4a). Cardiovasc Res (2017) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上 (图 4a). Cardiovasc Res (2017) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 s7c
  • 免疫组化-冰冻切片; 小鼠; 图 s5c
  • 免疫印迹; 小鼠; 图 3i
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 s7c), 被用于免疫组化-冰冻切片在小鼠样本上 (图 s5c) 和 被用于免疫印迹在小鼠样本上 (图 3i). J Clin Invest (2017) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类; 图 s7c
  • 免疫印迹; 小鼠; 图 3i
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上 (图 s7c) 和 被用于免疫印迹在小鼠样本上 (图 3i). J Clin Invest (2017) ncbi
兔 单克隆(55B11)
  • 免疫沉淀; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 55B11)被用于被用于免疫沉淀在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3a). Circ Res (2017) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 5). Mol Clin Oncol (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 1d). J Clin Invest (2016) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2478S)被用于被用于免疫印迹在人类样本上 (图 s1). Cell (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479S)被用于被用于免疫印迹在人类样本上 (图 7a). Cell (2016) ncbi
兔 单克隆(D5B1)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 9698)被用于被用于免疫印迹在人类样本上 (图 2d). J Cell Biol (2016) ncbi
兔 单克隆(D5B1)
  • 免疫印迹; 大鼠; 1:1000; 图 7g
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell signaling, D5B1)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7g). Mol Hum Reprod (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2471)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 s4e
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4e). Nat Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2472)被用于被用于免疫印迹在大鼠样本上 (图 4). PLoS ONE (2016) ncbi
兔 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 55B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Histopathology (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 4). J Clin Invest (2016) ncbi
兔 单克隆(55B11)
  • 免疫组化; 人类; 图 1
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 55B11)被用于被用于免疫组化在人类样本上 (图 1). Mol Imaging Biol (2016) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Tech, 2478S)被用于被用于免疫印迹在人类样本上 (图 1). Biol Open (2016) ncbi
兔 单克隆(15D2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Tech, 4991S)被用于被用于免疫印迹在人类样本上 (图 1). Biol Open (2016) ncbi
兔 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 图 s1o
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 55B11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1o). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(D5B1)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 9698)被用于被用于免疫印迹在人类样本上 (图 2). Onco Targets Ther (2016) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell signaling, 2478)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell signaling, 2479)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2016) ncbi
兔 单克隆(55B11)
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(cell signalling, 2479S)被用于被用于免疫细胞化学在人类样本上 (图 4a). Oncogenesis (2016) ncbi
兔 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 图 5n
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2479)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5n). J Pathol (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 24790)被用于被用于免疫印迹在人类样本上 (图 6). BMC Cancer (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上浓度为1:1000 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Oncotarget (2016) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Tech, 2478S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
兔 单克隆(D5B11)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 3770)被用于被用于免疫印迹在人类样本上 (图 8). J Cell Sci (2016) ncbi
兔 单克隆(55B11)
  • 流式细胞仪; 人类; 图 5
  • 免疫沉淀; 人类; 图 7
  • 免疫细胞化学; 人类; 图 6
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2479)被用于被用于流式细胞仪在人类样本上 (图 5), 被用于免疫沉淀在人类样本上 (图 7) 和 被用于免疫细胞化学在人类样本上 (图 6). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2474)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Sci (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Ozyme, 2479)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
兔 单克隆(55B11)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2479)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). EJNMMI Res (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 大鼠; 1:200; 图 2
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell signaling, 2479)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). Am J Respir Crit Care Med (2016) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上浓度为1:1000. Development (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上浓度为1:5000. Development (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 1:500; 图 2a
  • 免疫印迹; 小鼠; 1:500; 图 2a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signalling Technology, 24795)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2a). PLoS ONE (2015) ncbi
兔 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 55B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a). J Neurooncol (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 s5b
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5b). Nature (2015) ncbi
兔 单克隆(55B11)
  • 免疫组化; 大鼠; 1:500; 图 7a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 55B11)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 7a). Exp Eye Res (2016) ncbi
兔 单克隆(55B11)
  • 免疫细胞化学; 人类; 1:300
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2479)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Nature (2015) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2478)被用于被用于免疫印迹在小鼠样本上 (图 3). Cancer Sci (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上 (图 3). Cancer Sci (2015) ncbi
兔 单克隆(15D2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 4991)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
兔 单克隆(D5B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 3770)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2472)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 19A10)被用于被用于免疫印迹在小鼠样本上. J Cereb Blood Flow Metab (2015) ncbi
兔 单克隆(55B11)
  • 免疫组化; 小鼠; 1:300
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, # 2479L)被用于被用于免疫组化在小鼠样本上浓度为1:300. Reprod Sci (2016) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2479S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Exp Ther Med (2015) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signalling Technologies, 2478)被用于被用于免疫印迹在小鼠样本上. Cardiovasc Res (2015) ncbi
兔 单克隆(D5B1)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signalling Technologies, 9698)被用于被用于免疫印迹在小鼠样本上. Cardiovasc Res (2015) ncbi
兔 单克隆(55B11)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2479)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2478)被用于被用于免疫印迹在人类样本上. Br J Pharmacol (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上. Br J Pharmacol (2015) ncbi
兔 单克隆(D5B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 3770)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上 (图 3a). BMC Cancer (2015) ncbi
兔 单克隆(D5B11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 3770S)被用于被用于免疫印迹在人类样本上 (图 3a). BMC Cancer (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479S)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Front Pharmacol (2015) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2478)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Commun (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Commun (2015) ncbi
兔 单克隆(55B11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 表 6
  • 免疫印迹; 人类; 1:200; 表 4
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (表 6) 和 被用于免疫印迹在人类样本上浓度为1:200 (表 4). PLoS ONE (2015) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2478)被用于被用于免疫印迹在人类样本上. J Cell Biol (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上. J Cell Biol (2015) ncbi
兔 单克隆(55B11)
  • 免疫组化; 小鼠; 1:500; 图 8
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 55B11)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8). J Biol Chem (2015) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2478)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). PLoS ONE (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). PLoS ONE (2015) ncbi
兔 单克隆(55B11)
  • 免疫细胞化学; 小鼠; 图 2
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell signaling, 55B11)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Exp Med (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 大鼠; 1:750
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在大鼠样本上浓度为1:750. Ann Anat (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technologies, 2479)被用于被用于免疫印迹在小鼠样本上 (图 7). Diabetes (2015) ncbi
兔 单克隆(55B11)
  • 流式细胞仪; 人类; 图 5c
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479S)被用于被用于流式细胞仪在人类样本上 (图 5c). Invest New Drugs (2015) ncbi
兔 单克隆(55B11)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signalling, 2479)被用于被用于免疫组化在人类样本上浓度为1:100. Mol Oncol (2015) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 大鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 55B11)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5). J Steroid Biochem Mol Biol (2014) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 19A10)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). J Steroid Biochem Mol Biol (2014) ncbi
兔 单克隆(55B11)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 55B11)被用于被用于免疫组化在人类样本上浓度为1:100. Br J Cancer (2014) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
兔 单克隆(15D2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 4991)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
兔 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
兔 单克隆(55B11)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479S)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2014) ncbi
兔 单克隆(15D2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 4991)被用于被用于免疫印迹在人类样本上. J Vasc Interv Radiol (2014) ncbi
兔 单克隆(55B11)
  • 免疫组化; 人类; 1:150
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2479)被用于被用于免疫组化在人类样本上浓度为1:150. Pathol Res Pract (2014) ncbi
兔 单克隆(19A10)
  • 免疫组化-冰冻切片; 小鼠
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 2478)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2013) ncbi
兔 单克隆(D5B11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling Technology, 3770)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Blood (2013) ncbi
兔 单克隆(19A10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司VEGFR-2抗体(Cell Signaling, 19A10)被用于被用于免疫印迹在人类样本上. FEBS J (2013) ncbi
碧迪BD
小鼠 单克隆(89106)
  • 流式细胞仪; 人类; 图 s1b
碧迪BDVEGFR-2抗体(BD, 89106)被用于被用于流式细胞仪在人类样本上 (图 s1b). Nature (2017) ncbi
小鼠 单克隆(89106)
  • 流式细胞仪; 人类; 表 s1
碧迪BDVEGFR-2抗体(BD Biosciences, 560494)被用于被用于流式细胞仪在人类样本上 (表 s1). J Transl Med (2017) ncbi
小鼠 单克隆(89106)
  • 流式细胞仪; 人类
碧迪BDVEGFR-2抗体(BD, 560494)被用于被用于流式细胞仪在人类样本上. J Cell Biol (2016) ncbi
小鼠 单克隆(89106)
  • 流式细胞仪; 人类
碧迪BDVEGFR-2抗体(BD Biosciences, 560872)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(89106)
  • 流式细胞仪; 人类; 1:50
碧迪BDVEGFR-2抗体(BD, 560494)被用于被用于流式细胞仪在人类样本上浓度为1:50. Stem Cells (2015) ncbi
小鼠 单克隆(89106)
  • 流式细胞仪; 人类
碧迪BDVEGFR-2抗体(BD Biosciences, 560872)被用于被用于流式细胞仪在人类样本上. Angiogenesis (2014) ncbi
默克密理博中国
兔 单克隆(D1W)
  • 免疫印迹; 人类; 图 1
默克密理博中国VEGFR-2抗体(Merck Millipore, 04-894)被用于被用于免疫印迹在人类样本上 (图 1). Biol Open (2016) ncbi
小鼠 单克隆(CH-11)
  • 免疫沉淀; 人类; 图 5c
  • 免疫印迹; 人类; 图 5d
默克密理博中国VEGFR-2抗体(Millipore, 05-C554)被用于被用于免疫沉淀在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 5d). Oncogenesis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5a
默克密理博中国VEGFR-2抗体(Merck Millipore, 07-722)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(CH-11)
  • 免疫印迹; 人类
默克密理博中国VEGFR-2抗体(Millipore, 05-554)被用于被用于免疫印迹在人类样本上. Biomed Res Int (2014) ncbi
文章列表
  1. Zhang S, Liu W, Yang Y, Sun K, Li S, Xu H, et al. Tmem30a Deficiency in endothelial cells impairs cell proliferation and angiogenesis. J Cell Sci. 2019;: pubmed 出版商
  2. Segarra M, Aburto M, Cop F, Llaó Cid C, Härtl R, Damm M, et al. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science. 2018;361: pubmed 出版商
  3. Morin E, Sjöberg E, Tjomsland V, Testini C, Lindskog C, Franklin O, et al. VEGF receptor-2/neuropilin 1 trans-complex formation between endothelial and tumor cells is an independent predictor of pancreatic cancer survival. J Pathol. 2018;246:311-322 pubmed 出版商
  4. Das A, Huang G, Bonkowski M, Longchamp A, Li C, Schultz M, et al. Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging. Cell. 2018;173:74-89.e20 pubmed 出版商
  5. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  6. Yin R, Guo L, Gu J, Li C, Zhang W. Over expressing miR-19b-1 suppress breast cancer growth by inhibiting tumor microenvironment induced angiogenesis. Int J Biochem Cell Biol. 2018;97:43-51 pubmed 出版商
  7. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  8. Polacheck W, Kutys M, Yang J, Eyckmans J, Wu Y, Vasavada H, et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature. 2017;552:258-262 pubmed 出版商
  9. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  10. Shah F, Stepan A, O Mahony A, Velichko S, Folias A, Houle C, et al. Mechanisms of Skin Toxicity Associated with Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. Cell Chem Biol. 2017;24:858-869.e5 pubmed 出版商
  11. Sugimura R, Jha D, Han A, Soria Valles C, da Rocha E, Lu Y, et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature. 2017;545:432-438 pubmed 出版商
  12. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  13. Huang Y, Rajappa P, Hu W, Hoffman C, CISSE B, Kim J, et al. A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma. J Clin Invest. 2017;127:1826-1838 pubmed 出版商
  14. Kilpatrick L, Friedman Ohana R, Alcobia D, Riching K, Peach C, Wheal A, et al. Real-time analysis of the binding of fluorescent VEGF165a to VEGFR2 in living cells: Effect of receptor tyrosine kinase inhibitors and fate of internalized agonist-receptor complexes. Biochem Pharmacol. 2017;136:62-75 pubmed 出版商
  15. Al Maqtari T, Hong K, Vajravelu B, Moktar A, Cao P, Moore J, et al. Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells. PLoS ONE. 2017;12:e0174242 pubmed 出版商
  16. Lu X, Horner J, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732 pubmed 出版商
  17. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  18. Taoka R, Jinesh G, Xue W, Safe S, Kamat A. CF3DODA-Me induces apoptosis, degrades Sp1, and blocks the transformation phase of the blebbishield emergency program. Apoptosis. 2017;22:719-729 pubmed 出版商
  19. Zakharova I, Zhiven M, Saaya S, Shevchenko A, Smirnova A, Strunov A, et al. Endothelial and smooth muscle cells derived from human cardiac explants demonstrate angiogenic potential and suitable for design of cell-containing vascular grafts. J Transl Med. 2017;15:54 pubmed 出版商
  20. Chung C, Chang C, Hsu C, Lin K, Peng H, Huang T. Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep. 2017;7:43612 pubmed 出版商
  21. Motiani K, Savolainen A, Eskelinen J, Toivanen J, Ishizu T, Yli Karjanmaa M, et al. Two weeks of moderate-intensity continuous training, but not high-intensity interval training, increases insulin-stimulated intestinal glucose uptake. J Appl Physiol (1985). 2017;122:1188-1197 pubmed 出版商
  22. Yang G, Zhao Z, Qin T, Wang D, Chen L, Xiang R, et al. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation. FASEB J. 2017;31:2001-2012 pubmed 出版商
  23. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  24. Tang M, Gao G, Rueda C, Yu H, Thibodeaux D, Awano T, et al. Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein. Nat Commun. 2017;8:14152 pubmed 出版商
  25. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  26. Indrakusuma I, Romacho T, Eckel J. Protease-Activated Receptor 2 Promotes Pro-Atherogenic Effects through Transactivation of the VEGF Receptor 2 in Human Vascular Smooth Muscle Cells. Front Pharmacol. 2016;7:497 pubmed 出版商
  27. Bai H, Lee J, Chen E, Wang M, Xing Y, Fahmy T, et al. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia. Sci Rep. 2017;7:40142 pubmed 出版商
  28. Wu Q, Ma Y, Ruan C, Yang Y, Liu X, Ge Q, et al. Loss of osteoglycin promotes angiogenesis in limb ischaemia mouse models via modulation of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 signalling pathway. Cardiovasc Res. 2017;113:70-80 pubmed 出版商
  29. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  30. Tancharoen W, Aungsuchawan S, Pothacharoen P, Markmee R, Narakornsak S, Kieodee J, et al. Differentiation of mesenchymal stem cells from human amniotic fluid to vascular endothelial cells. Acta Histochem. 2017;119:113-121 pubmed 出版商
  31. Lee S, Rho S, Park H, Park J, Kim J, Lee I, et al. Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis. J Clin Invest. 2017;127:457-471 pubmed 出版商
  32. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  33. El Alaoui Lasmaili K, Djermoune E, Tylcz J, Meng D, Plénat F, Thomas N, et al. A new algorithm for a better characterization and timing of the anti-VEGF vascular effect named "normalization". Angiogenesis. 2017;20:149-162 pubmed 出版商
  34. Monsuur H, Weijers E, Niessen F, Gefen A, Koolwijk P, Gibbs S, et al. Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering. PLoS ONE. 2016;11:e0167056 pubmed 出版商
  35. Galoian K, Luo S, Qureshi A, Patel P, Price R, Morse A, et al. Effect of cytostatic proline rich polypeptide-1 on tumor suppressors of inflammation pathway signaling in chondrosarcoma. Mol Clin Oncol. 2016;5:618-624 pubmed
  36. Zeltner N, Fattahi F, Dubois N, Saurat N, Lafaille F, Shang L, et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 2016;22:1421-1427 pubmed 出版商
  37. Zhu L, Gómez Durán A, Saretzki G, Jin S, Tilgner K, Melguizo Sanchís D, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol. 2016;215:187-202 pubmed
  38. Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126:4527-4536 pubmed 出版商
  39. Agulnik M, Costa R, Milhem M, Rademaker A, Prunder B, Daniels D, et al. A phase II study of tivozanib in patients with metastatic and nonresectable soft-tissue sarcomas. Ann Oncol. 2017;28:121-127 pubmed 出版商
  40. Xu J, Wu D, Yang Y, Ji K, Gao P. Endothelial?like cells differentiated from mesenchymal stem cells attenuate neointimal hyperplasia after vascular injury. Mol Med Rep. 2016;14:4830-4836 pubmed 出版商
  41. Xin H, ZHONG C, Nudleman E, Ferrara N. Evidence for Pro-angiogenic Functions of VEGF-Ax. Cell. 2016;167:275-284.e6 pubmed 出版商
  42. Baeyens N, Larrivee B, Ola R, Hayward Piatkowskyi B, Dubrac A, Huang B, et al. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J Cell Biol. 2016;214:807-16 pubmed 出版商
  43. Scotti L, Di Pietro M, Pascuali N, Irusta G, I de Zúñiga -, Gomez Peña M, et al. Sphingosine-1-phosphate restores endothelial barrier integrity in ovarian hyperstimulation syndrome. Mol Hum Reprod. 2016;22:852-866 pubmed
  44. Bao X, Lian X, Palecek S. Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions. Methods Mol Biol. 2016;1481:183-96 pubmed 出版商
  45. Yang Y, Zhang Y, Iwamoto H, Hosaka K, Seki T, Andersson P, et al. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun. 2016;7:12680 pubmed 出版商
  46. Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed 出版商
  47. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  48. Yerlikaya G, Balendran S, Pröstling K, Reischer T, Birner P, Wenzl R, et al. Comprehensive study of angiogenic factors in women with endometriosis compared to women without endometriosis. Eur J Obstet Gynecol Reprod Biol. 2016;204:88-98 pubmed 出版商
  49. Liu L, Jiang Y, Steinle J. Compound 49b Restores Retinal Thickness and Reduces Degenerate Capillaries in the Rat Retina following Ischemia/Reperfusion. PLoS ONE. 2016;11:e0159532 pubmed 出版商
  50. Xia X, Yu Y, Zhang L, Ma Y, Wang H. Inhibitor of DNA binding 1 regulates cell cycle progression of endothelial progenitor cells through induction of Wnt2 expression. Mol Med Rep. 2016;14:2016-24 pubmed 出版商
  51. Peckova K, Michal M, Hadravsky L, Suster S, Damjanov I, Miesbauerova M, et al. Littoral cell angioma of the spleen: a study of 25 cases with confirmation of frequent association with visceral malignancies. Histopathology. 2016;69:762-774 pubmed 出版商
  52. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  53. Wang L, Lee A, Wigg J, Peshavariya H, Liu P, Zhang H. miR-126 Regulation of Angiogenesis in Age-Related Macular Degeneration in CNV Mouse Model. Int J Mol Sci. 2016;17: pubmed 出版商
  54. Kim J, Hong S, Park C, Park J, Choi S, Woo S, et al. Intramyocardial Adipose-Derived Stem Cell Transplantation Increases Pericardial Fat with Recovery of Myocardial Function after Acute Myocardial Infarction. PLoS ONE. 2016;11:e0158067 pubmed 出版商
  55. Shi H, Drummond C, Fan X, Haller S, Liu J, Malhotra D, et al. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells. Stem Cell Res. 2016;16:795-806 pubmed 出版商
  56. Lock R, Ingraham R, Maertens O, Miller A, Weledji N, Legius E, et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. J Clin Invest. 2016;126:2181-90 pubmed 出版商
  57. de Geus S, Boogerd L, Swijnenburg R, Mieog J, Tummers W, Prevoo H, et al. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol Imaging Biol. 2016;18:807-819 pubmed
  58. Fearnley G, Smith G, Abdul Zani I, Yuldasheva N, Mughal N, Homer Vanniasinkam S, et al. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis. Biol Open. 2016;5:571-83 pubmed 出版商
  59. Takeuchi H, Taoka R, Mmeje C, Jinesh G, Safe S, Kamat A. CDODA-Me decreases specificity protein transcription factors and induces apoptosis in bladder cancer cells through induction of reactive oxygen species. Urol Oncol. 2016;34:337.e11-8 pubmed 出版商
  60. Krampitz G, George B, Willingham S, Volkmer J, Weiskopf K, Jahchan N, et al. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proc Natl Acad Sci U S A. 2016;113:4464-9 pubmed 出版商
  61. Ding X, Qiu L, Zhang L, Xi J, Li D, Huang X, et al. The role of semaphorin 4D as a potential biomarker for antiangiogenic therapy in colorectal cancer. Onco Targets Ther. 2016;9:1189-204 pubmed 出版商
  62. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  63. Nishida Fukuda H, Araki R, Shudou M, Okazaki H, Tomono Y, Nakayama H, et al. Ectodomain Shedding of Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE-1) Is Induced by Vascular Endothelial Growth Factor A (VEGF-A). J Biol Chem. 2016;291:10490-500 pubmed 出版商
  64. Arnott C, Punnia Moorthy G, Tan J, Sadeghipour S, Bursill C, Patel S. The Vascular Endothelial Growth Factor Inhibitors Ranibizumab and Aflibercept Markedly Increase Expression of Atherosclerosis-Associated Inflammatory Mediators on Vascular Endothelial Cells. PLoS ONE. 2016;11:e0150688 pubmed 出版商
  65. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  66. Jung O, Trapp Stamborski V, Purushothaman A, Jin H, Wang H, Sanderson R, et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogenesis. 2016;5:e202 pubmed 出版商
  67. Sato T, Paquet Fifield S, Harris N, Roufail S, Turner D, Yuan Y, et al. VEGF-D promotes pulmonary oedema in hyperoxic acute lung injury. J Pathol. 2016;239:152-61 pubmed 出版商
  68. Wu G, Zeng G. METCAM/MUC18 is a novel tumor and metastasis suppressor for the human ovarian cancer SKOV3 cells. BMC Cancer. 2016;16:136 pubmed 出版商
  69. Song D, Ko G, Lee J, Lee J, Lee G, Kim H, et al. Myoferlin expression in non-small cell lung cancer: Prognostic role and correlation with VEGFR-2 expression. Oncol Lett. 2016;11:998-1006 pubmed
  70. Alonso F, Domingos Pereira S, Le Gal L, Derré L, Meda P, Jichlinski P, et al. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion. Oncotarget. 2016;7:14015-28 pubmed 出版商
  71. Adighibe O, Leek R, Fernandez Mercado M, Hu J, Snell C, Gatter K, et al. Why some tumours trigger neovascularisation and others don't: the story thus far. Chin J Cancer. 2016;35:18 pubmed 出版商
  72. Zhang Z, Zhang H, Peng T, Li D, Xu J. Melittin suppresses cathepsin S-induced invasion and angiogenesis via blocking of the VEGF-A/VEGFR-2/MEK1/ERK1/2 pathway in human hepatocellular carcinoma. Oncol Lett. 2016;11:610-618 pubmed
  73. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  74. Derangère V, Fumet J, Boidot R, Bengrine L, Limagne E, Chevriaux A, et al. Does bevacizumab impact anti-EGFR therapy efficacy in metastatic colorectal cancer?. Oncotarget. 2016;7:9309-21 pubmed 出版商
  75. Rusckowski M, Wang Y, Blankenberg F, Levashova Z, Backer M, Backer J. Targeted scVEGF/(177)Lu radiopharmaceutical inhibits growth of metastases and can be effectively combined with chemotherapy. EJNMMI Res. 2016;6:4 pubmed 出版商
  76. Szulcek R, Happé C, Rol N, Fontijn R, Dickhoff C, Hartemink K, et al. Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. Am J Respir Crit Care Med. 2016;193:1410-20 pubmed 出版商
  77. Wang X, Dai Z, Wu X, Wang K, Wang X. Distinct RNA transcriptome patterns are potentially associated with angiogenesis in Tie2-expressing monocytes. Gene. 2016;580:1-7 pubmed 出版商
  78. Guye P, Ebrahimkhani M, Kipniss N, Velazquez J, Schoenfeld E, Kiani S, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 2016;7:10243 pubmed 出版商
  79. Ulrich F, Carretero Ortega J, Menendez J, Narvaez C, Sun B, Lancaster E, et al. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development. 2016;143:147-59 pubmed 出版商
  80. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med. 2016;5:117-28 pubmed 出版商
  81. Koudelkova P, Weber G, Mikulits W. Liver Sinusoidal Endothelial Cells Escape Senescence by Loss of p19ARF. PLoS ONE. 2015;10:e0142134 pubmed 出版商
  82. Pinheiro C, Garcia E, Morais Santos F, Moreira M, Almeida F, Jubé L, et al. Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas. BMC Cancer. 2015;15:835 pubmed 出版商
  83. Taïeb D, Barlier A, Yang C, Pertuit M, Tchoghandjian A, Rochette C, et al. Somatic gain-of-function HIF2A mutations in sporadic central nervous system hemangioblastomas. J Neurooncol. 2016;126:473-81 pubmed 出版商
  84. He W, Bai G, Zhou H, Wei N, White N, Lauer J, et al. CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase. Nature. 2015;526:710-4 pubmed 出版商
  85. Nakano A, Nakahara T, Mori A, Ushikubo H, Sakamoto K, Ishii K. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats. Exp Eye Res. 2016;143:120-31 pubmed 出版商
  86. Zomerman W, Plasschaert S, Diks S, Lourens H, Meeuwsen de Boer T, Hoving E, et al. Exogenous HGF Bypasses the Effects of ErbB Inhibition on Tumor Cell Viability in Medulloblastoma Cell Lines. PLoS ONE. 2015;10:e0141381 pubmed 出版商
  87. Takasato M, Er P, Chiu H, Maier B, Baillie G, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564-8 pubmed 出版商
  88. Litwin M, RadwaÅ„ska A, Paprocka M, Kieda C, Dobosz T, Witkiewicz W, et al. The role of FGF2 in migration and tubulogenesis of endothelial progenitor cells in relation to pro-angiogenic growth factor production. Mol Cell Biochem. 2015;410:131-42 pubmed 出版商
  89. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed 出版商
  90. Wang T, Cheng C, Yang W, Chen W, Chang P. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma. Mol Med Rep. 2015;12:6435-44 pubmed 出版商
  91. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  92. Fisher O, Deng H, Liu D, Zhang Y, Wei R, Deng Y, et al. Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex. Nat Commun. 2015;6:7937 pubmed 出版商
  93. Suzuki Y, Nagai N, Yamakawa K, Muranaka Y, Hokamura K, Umemura K. Recombinant tissue-type plasminogen activator transiently enhances blood-brain barrier permeability during cerebral ischemia through vascular endothelial growth factor-mediated endothelial endocytosis in mice. J Cereb Blood Flow Metab. 2015;35:2021-31 pubmed 出版商
  94. Regan J, Kannan P, Kemp M, Kramer B, Newnham J, Jobe A, et al. Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep. Reprod Sci. 2016;23:69-80 pubmed 出版商
  95. Bian Y, Qian W, Li H, Zhao R, Shan W, Weng X. Pathogenesis of glucocorticoid-induced avascular necrosis: A microarray analysis of gene expression in vitro. Int J Mol Med. 2015;36:678-84 pubmed 出版商
  96. Jing L, Li S, Li Q. Akt/hypoxia-inducible factor-1α signaling deficiency compromises skin wound healing in a type 1 diabetes mouse model. Exp Ther Med. 2015;9:2141-2146 pubmed
  97. Andersson L, Scharin Täng M, Lundqvist A, Lindbom M, Mardani I, Fogelstrand P, et al. Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia. Cardiovasc Res. 2015;107:478-86 pubmed 出版商
  98. Tasev D, van Wijhe M, Weijers E, van Hinsbergh V, Koolwijk P. Long-Term Expansion in Platelet Lysate Increases Growth of Peripheral Blood-Derived Endothelial-Colony Forming Cells and Their Growth Factor-Induced Sprouting Capacity. PLoS ONE. 2015;10:e0129935 pubmed 出版商
  99. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  100. Anderson E, Mooney D. The Combination of Vascular Endothelial Growth Factor and Stromal Cell-Derived Factor Induces Superior Angiogenic Sprouting by Outgrowth Endothelial Cells. J Vasc Res. 2015;52:62-9 pubmed 出版商
  101. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  102. Kim B, Lee J, Choi J, Park D, Song H, Park T, et al. Imidazole-based alkaloid derivative LCB54-0009 suppresses ocular angiogenesis and lymphangiogenesis in models of experimental retinopathy and corneal neovascularization. Br J Pharmacol. 2015;172:3875-89 pubmed 出版商
  103. Yamana S, Tokiyama A, Mizutani K, Hirata K, Takai Y, Rikitake Y. The Cell Adhesion Molecule Necl-4/CADM4 Serves as a Novel Regulator for Contact Inhibition of Cell Movement and Proliferation. PLoS ONE. 2015;10:e0124259 pubmed 出版商
  104. Liu L, Yu H, Huang X, Tan H, Li S, Luo Y, et al. A novel engineered VEGF blocker with an excellent pharmacokinetic profile and robust anti-tumor activity. BMC Cancer. 2015;15:170 pubmed 出版商
  105. Majumder A, Syed K, Joseph S, Scambler P, Dutta D. Histone Chaperone HIRA in Regulation of Transcription Factor RUNX1. J Biol Chem. 2015;290:13053-63 pubmed 出版商
  106. Khayati F, Pérez Cano L, Maouche K, Sadoux A, Boutalbi Z, Podgorniak M, et al. EMMPRIN/CD147 is a novel coreceptor of VEGFR-2 mediating its activation by VEGF. Oncotarget. 2015;6:9766-80 pubmed
  107. Lee I, Hüttemann M, Kruger A, Bollig Fischer A, Malek M. (-)-Epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice. Front Pharmacol. 2015;6:43 pubmed 出版商
  108. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  109. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  110. Coon B, Baeyens N, Han J, Budatha M, Ross T, Fang J, et al. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J Cell Biol. 2015;208:975-86 pubmed 出版商
  111. Shi X, Zirbes K, Rasmussen T, Ferdous A, Garry M, Koyano Nakagawa N, et al. The transcription factor Mesp1 interacts with cAMP-responsive element binding protein 1 (Creb1) and coactivates Ets variant 2 (Etv2) gene expression. J Biol Chem. 2015;290:9614-25 pubmed 出版商
  112. Lin S, Huang S, Kuo H, Chen C, Ma Y, Chu T, et al. Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway. Mar Drugs. 2015;13:861-78 pubmed 出版商
  113. Choi S, Lee H, Choi J, Kim J, Park C, Joo H, et al. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS ONE. 2015;10:e0117410 pubmed 出版商
  114. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet A, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212:139-48 pubmed 出版商
  115. Li Z, Liu Y, Liu X, Xue Y, Wang P, Liu L. Low-dose endothelial monocyte-activating polypeptide-II increases permeability of blood-tumor barrier via a PKC-ζ/PP2A-dependent signaling mechanism. Exp Cell Res. 2015;331:257-66 pubmed 出版商
  116. Cao H, Zheng L, Wang N, Wang L, Li Y, Li D, et al. Src blockage by siRNA inhibits VEGF-induced vascular hyperpemeability and osteoclast activity - an in vitro mechanism study for preventing destructive repair of osteonecrosis. Bone. 2015;74:58-68 pubmed 出版商
  117. Lee S, Lee K, Lee J, Kang S, Kim H, Asahara T, et al. Selective Interference Targeting of Lnk in Umbilical Cord-Derived Late Endothelial Progenitor Cells Improves Vascular Repair, Following Hind Limb Ischemic Injury, via Regulation of JAK2/STAT3 Signaling. Stem Cells. 2015;33:1490-500 pubmed 出版商
  118. Ozmen A, Unek G, Kipmen Korgun D, Cetinkaya B, Avcil Z, Korgun E. Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta. Ann Anat. 2015;198:34-40 pubmed 出版商
  119. Aggarwal P, Veron D, Thomas D, Siegel D, Moeckel G, Kashgarian M, et al. Semaphorin3a promotes advanced diabetic nephropathy. Diabetes. 2015;64:1743-59 pubmed 出版商
  120. Guzmán E, Maers K, Roberts J, Kemami Wangun H, Harmody D, Wright A. The marine natural product microsclerodermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. Invest New Drugs. 2015;33:86-94 pubmed 出版商
  121. Gaumann A, Drexler H, Lang S, Stoeltzing O, Diermeier Daucher S, Buchdunger E, et al. The inhibition of tyrosine kinase receptor signalling in leiomyosarcoma cells using the small molecule kinase inhibitor PTK787/ZK222584 (Vatalanib®). Int J Oncol. 2014;45:2267-77 pubmed 出版商
  122. Pinheiro C, Garcia E, Morais Santos F, Scapulatempo Neto C, Mafra A, Steenbergen R, et al. Lactate transporters and vascular factors in HPV-induced squamous cell carcinoma of the uterine cervix. BMC Cancer. 2014;14:751 pubmed 出版商
  123. Hamdollah Zadeh M, Amin E, Hoareau Aveilla C, Domingo E, Symonds K, Ye X, et al. Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance. Mol Oncol. 2015;9:167-78 pubmed 出版商
  124. Scotti L, Abramovich D, Pascuali N, Irusta G, Meresman G, Tesone M, et al. Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome. J Steroid Biochem Mol Biol. 2014;144 Pt B:392-401 pubmed 出版商
  125. Shen W, Chung S, Irhimeh M, Li S, Lee S, Gillies M. Systemic administration of erythropoietin inhibits retinopathy in RCS rats. PLoS ONE. 2014;9:e104759 pubmed 出版商
  126. Dogan A, Demirci S, Sahin F. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int. 2015;39:94-103 pubmed 出版商
  127. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50:2336-50 pubmed 出版商
  128. Styring E, Seinen J, Dominguez Valentin M, Domanski H, Jonsson M, von Steyern F, et al. Key roles for MYC, KIT and RET signaling in secondary angiosarcomas. Br J Cancer. 2014;111:407-12 pubmed 出版商
  129. Wang H, Huang X, Zhang J, Shao N, Chen L, Ma D, et al. The expression of VEGF and Dll4/Notch pathway molecules in ovarian cancer. Clin Chim Acta. 2014;436:243-8 pubmed 出版商
  130. Mena H, Lokajczyk A, Dizier B, Strier S, Voto L, Boisson Vidal C, et al. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis. 2014;17:867-79 pubmed 出版商
  131. Caliceti C, Zambonin L, Rizzo B, Fiorentini D, Vieceli Dalla Sega F, Hrelia S, et al. Role of plasma membrane caveolae/lipid rafts in VEGF-induced redox signaling in human leukemia cells. Biomed Res Int. 2014;2014:857504 pubmed 出版商
  132. Chen P, Qin L, Zhuang Z, Tellides G, Lax I, Schlessinger J, et al. The docking protein FRS2? is a critical regulator of VEGF receptors signaling. Proc Natl Acad Sci U S A. 2014;111:5514-9 pubmed 出版商
  133. Pryzhkova M, Aria I, Cheng Q, Harris G, Zan X, Gharib M, et al. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials. 2014;35:5098-109 pubmed 出版商
  134. Ferreira C, Siqueira D, Romitti M, Ceolin L, Brasil B, Meurer L, et al. Role of VEGF-A and its receptors in sporadic and MEN2-associated pheochromocytoma. Int J Mol Sci. 2014;15:5323-36 pubmed 出版商
  135. Chlupác J, Filova E, Havlíkova J, Matejka R, Riedel T, Houska M, et al. The gene expression of human endothelial cells is modulated by subendothelial extracellular matrix proteins: short-term response to laminar shear stress. Tissue Eng Part A. 2014;20:2253-64 pubmed 出版商
  136. Fuchs K, Bize P, Dormond O, Denys A, Doelker E, Borchard G, et al. Drug-eluting beads loaded with antiangiogenic agents for chemoembolization: in vitro sunitinib loading and release and in vivo pharmacokinetics in an animal model. J Vasc Interv Radiol. 2014;25:379-87, 387.e1-2 pubmed 出版商
  137. Knösel T, Werner M, Jung A, Kirchner T, Dürr H. Dedifferentiated chondrosarcoma mimicking a giant cell tumor. Is this low grade dedifferentiated chondrosarcoma?. Pathol Res Pract. 2014;210:194-7 pubmed 出版商
  138. Zhong W, Gu B, Gu Y, Groome L, Sun J, Wang Y. Activation of vitamin D receptor promotes VEGF and CuZn-SOD expression in endothelial cells. J Steroid Biochem Mol Biol. 2014;140:56-62 pubmed 出版商
  139. Czeisler C, Mikawa T. Microtubules coordinate VEGFR2 signaling and sorting. PLoS ONE. 2013;8:e75833 pubmed 出版商
  140. Chatterjee S, Wang Y, Duncan M, Naik U. Junctional adhesion molecule-A regulates vascular endothelial growth factor receptor-2 signaling-dependent mouse corneal wound healing. PLoS ONE. 2013;8:e63674 pubmed 出版商
  141. Singh N, Tiem M, Watkins R, Cho Y, Wang Y, Olsen T, et al. Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity. Blood. 2013;121:4242-9 pubmed 出版商
  142. Rapraeger A, Ell B, Roy M, Li X, Morrison O, Thomas G, et al. Vascular endothelial-cadherin stimulates syndecan-1-coupled insulin-like growth factor-1 receptor and cross-talk between ?V?3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesi. FEBS J. 2013;280:2194-206 pubmed 出版商
  143. Cole C, Hansen S, Barath M, Rushton G, Gardiner J, Avizienyte E, et al. Synthetic heparan sulfate oligosaccharides inhibit endothelial cell functions essential for angiogenesis. PLoS ONE. 2010;5:e11644 pubmed 出版商
  144. Sase H, Watabe T, Kawasaki K, Miyazono K, Miyazawa K. VEGFR2-PLCgamma1 axis is essential for endothelial specification of VEGFR2+ vascular progenitor cells. J Cell Sci. 2009;122:3303-11 pubmed 出版商