这是一篇来自已证抗体库的有关人类 VSX2的综述,是根据13篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合VSX2 抗体。
VSX2 同义词: CHX10; HOX10; MCOP2; MCOPCB3; RET1

圣克鲁斯生物技术
小鼠 单克隆(D-11)
  • 流式细胞仪; 小鼠; 图 3c
  • 免疫细胞化学; 小鼠; 1:1000; 图 3d
圣克鲁斯生物技术 VSX2抗体(Santa Cruz, sc-374151)被用于被用于流式细胞仪在小鼠样本上 (图 3c) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3d). Exp Neurol (2016) ncbi
艾博抗(上海)贸易有限公司
家羊 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 VSX2抗体(abcam, ab16141)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Sci Rep (2016) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 2A
Novus Biologicals VSX2抗体(Novus, NBP184476)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2A). PLoS ONE (2017) ncbi
Exalpha Biologicals
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 2h
Exalpha Biologicals VSX2抗体(Exalpha, X1180-P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 2h). elife (2020) ncbi
  • 免疫细胞化学; 小鼠; 1:200; 图 s3
  • 免疫组化; 小鼠; 1:200; 图 s1
Exalpha Biologicals VSX2抗体(Exalpha Biological, X1180P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s3) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 s1). Oncogenesis (2020) ncbi
  • 免疫组化; 小鼠; 1:1000; 图 s2e
Exalpha Biologicals VSX2抗体(Exalpha, X1180P)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s2e). Dev Biol (2017) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:200; 表 2
Exalpha Biologicals VSX2抗体(Exalpha Biologicals, X1180P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (表 2). Mol Vis (2016) ncbi
  • 免疫细胞化学; 人类; 1:100; 图 2
Exalpha Biologicals VSX2抗体(Exalpha Biologicals, X1180P)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
  • 免疫组化; 小鼠; 1:100; 图 4
Exalpha Biologicals VSX2抗体(Exalpha, X1180P)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). PLoS Genet (2015) ncbi
  • 免疫组化; 小鼠; 1:1600
Exalpha Biologicals VSX2抗体(Exalpha, x1180p)被用于被用于免疫组化在小鼠样本上浓度为1:1600. Mol Brain (2015) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:600; 图 4h
Exalpha Biologicals VSX2抗体(Exalpha Biologicals, X1180P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600 (图 4h). Dev Dyn (2015) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:300
Exalpha Biologicals VSX2抗体(Exalpha, X1180P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300. J Comp Neurol (2009) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:300
Exalpha Biologicals VSX2抗体(Exalpha, X1180P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300. J Comp Neurol (2008) ncbi
文章列表
  1. Vigouroux R, Cesar Q, Chedotal A, Nguyen Ba Charvet K. Revisiting the role of Dcc in visual system development with a novel eye clearing method. elife. 2020;9: pubmed 出版商
  2. Zocchi L, Mehta A, Wu S, Wu J, Gu Y, Wang J, et al. Chromatin remodeling protein HELLS is critical for retinoblastoma tumor initiation and progression. Oncogenesis. 2020;9:25 pubmed 出版商
  3. Remez L, Onishi A, Menuchin Lasowski Y, Biran A, Blackshaw S, Wahlin K, et al. Pax6 is essential for the generation of late-born retinal neurons and for inhibition of photoreceptor-fate during late stages of retinogenesis. Dev Biol. 2017;432:140-150 pubmed 出版商
  4. Geng Z, Walsh P, Truong V, Hill C, Ebeling M, Kapphahn R, et al. Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. PLoS ONE. 2017;12:e0173575 pubmed 出版商
  5. Chaney S, Mukherjee S, Giddabasappa A, Rueda E, Hamilton W, Johnson J, et al. Increased proliferation of late-born retinal progenitor cells by gestational lead exposure delays rod and bipolar cell differentiation. Mol Vis. 2016;22:1468-1489 pubmed
  6. Wiley L, Burnight E, DeLuca A, Anfinson K, Cranston C, Kaalberg E, et al. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Sci Rep. 2016;6:30742 pubmed 出版商
  7. Hughes S, Rodgers J, Hickey D, Foster R, Peirson S, Hankins M. Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways. Sci Rep. 2016;6:28086 pubmed 出版商
  8. Iyer N, Huettner J, Butts J, Brown C, Sakiyama Elbert S. Generation of highly enriched V2a interneurons from mouse embryonic stem cells. Exp Neurol. 2016;277:305-316 pubmed 出版商
  9. Preuße K, Tveriakhina L, Schuster Gossler K, Gaspar C, Rosa A, Henrique D, et al. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet. 2015;11:e1005328 pubmed 出版商
  10. Jin K, Jiang H, Xiao D, Zou M, Zhu J, Xiang M. Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Mol Brain. 2015;8:28 pubmed 出版商
  11. Zou M, Luo H, Xiang M. Selective neuronal lineages derived from Dll4-expressing progenitors/precursors in the retina and spinal cord. Dev Dyn. 2015;244:86-97 pubmed 出版商
  12. Voinescu P, Emanuela P, Kay J, Sanes J. Birthdays of retinal amacrine cell subtypes are systematically related to their molecular identity and soma position. J Comp Neurol. 2009;517:737-50 pubmed 出版商
  13. Poche R, Furuta Y, Chaboissier M, Schedl A, Behringer R. Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller glial cell development. J Comp Neurol. 2008;510:237-50 pubmed 出版商