这是一篇来自已证抗体库的有关人类 XIAP的综述,是根据44篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合XIAP 抗体。
XIAP 同义词: API3; BIRC4; IAP-3; ILP1; MIHA; XLP2; hIAP-3; hIAP3

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司 XIAP抗体(Abcam, ab21278)被用于被用于免疫印迹在人类样本上 (图 4d). Cells (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司 XIAP抗体(Abcam, ab21278)被用于被用于免疫印迹在人类样本上 (图 4b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 XIAP抗体(Abcam, ab21278)被用于被用于免疫印迹在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400; 图 6
  • 免疫印迹; 人类; 1:2000; 图 1
艾博抗(上海)贸易有限公司 XIAP抗体(abcam, ab21278)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
艾博抗(上海)贸易有限公司 XIAP抗体(Abcam, ab21278)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 XIAP抗体(Abcam, ab21278)被用于被用于免疫印迹在人类样本上 (图 5). J Cancer (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-7)
  • 免疫印迹; 人类; 图 10
圣克鲁斯生物技术 XIAP抗体(Santa Cruz Biotechnology, sc-55550)被用于被用于免疫印迹在人类样本上 (图 10). Biomolecules (2019) ncbi
小鼠 单克隆(E-2)
  • 免疫印迹基因敲除验证; 人类; 图 3c
  • 免疫组化-石蜡切片; 人类; 图 1a, 1b
  • 免疫细胞化学; 人类; 图 s3a, s3b
  • 免疫印迹; 人类; 图 3b, 3a, 3c
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术 XIAP抗体(Santa, sc-55551)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 3c), 被用于免疫组化-石蜡切片在人类样本上 (图 1a, 1b), 被用于免疫细胞化学在人类样本上 (图 s3a, s3b), 被用于免疫印迹在人类样本上 (图 3b, 3a, 3c) 和 被用于免疫印迹在小鼠样本上 (图 4b). Oncogene (2019) ncbi
小鼠 单克隆(E-2)
  • 免疫印迹; 人类; 图 4b
  • 免疫印迹; 小鼠; 图 4a, 4b
圣克鲁斯生物技术 XIAP抗体(Santa Cruz, E-2)被用于被用于免疫印迹在人类样本上 (图 4b) 和 被用于免疫印迹在小鼠样本上 (图 4a, 4b). Oncogene (2018) ncbi
小鼠 单克隆(E-2)
  • 免疫细胞化学; 人类; 图 1
圣克鲁斯生物技术 XIAP抗体(Santa Cruz Biotechnology, sc-55551)被用于被用于免疫细胞化学在人类样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(E-2)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 XIAP抗体(Santa, sc-55551)被用于被用于免疫印迹在小鼠样本上 (图 4). Endocrinology (2012) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫印迹; 人类; 图 3
安迪生物R&D XIAP抗体(R&D systems, AF8221)被用于被用于免疫印迹在人类样本上 (图 3). Onco Targets Ther (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8d
赛信通(上海)生物试剂有限公司 XIAP抗体(CST, 2042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8d). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100; 图 3a
赛信通(上海)生物试剂有限公司 XIAP抗体(CST, 2042)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 3a). Mol Brain (2021) ncbi
domestic rabbit 单克隆(3B6)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2045)被用于被用于免疫印迹在人类样本上 (图 6a). Oncogenesis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6a
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2042)被用于被用于免疫印迹在人类样本上 (图 s6a). Sci Adv (2021) ncbi
domestic rabbit 单克隆(3B6)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell signaling, 2045)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(D2Z8W)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 4e
  • 免疫沉淀; 人类; 图 4i
  • 免疫印迹; 人类; 1:1000; 图 4e, 6d
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 XIAP抗体(CST, 14334S)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 4e), 被用于免疫沉淀在人类样本上 (图 4i), 被用于免疫印迹在人类样本上浓度为1:1000 (图 4e, 6d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2042)被用于被用于免疫印迹在人类样本上 (图 3d). Mol Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 XIAP抗体(CST, 2042)被用于被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell signaling technology, 2042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 4f
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2042)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4f). Nat Commun (2018) ncbi
domestic rabbit 单克隆(3B6)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 XIAP抗体(cell signalling, 2045)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(D2Z8W)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6F
  • 免疫印迹; 人类; 1:1000; 图 1E; 1G; S1B; S5E
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 14334)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6F) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1E; 1G; S1B; S5E). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2042)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D2Z8W)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell signaling, 14334)被用于被用于免疫印迹在人类样本上 (图 2a). Front Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2042)被用于被用于免疫印迹在人类样本上 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2042)被用于被用于免疫印迹在人类样本上 (图 3a). Cancer Gene Ther (2016) ncbi
domestic rabbit 单克隆(3B6)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2045)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(3B6)
  • 免疫印迹; 人类; 图 4.d,e,f
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2045)被用于被用于免疫印迹在人类样本上 (图 4.d,e,f). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(3B6)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2045)被用于被用于免疫印迹在人类样本上 (图 1d). Cell Death Discov (2016) ncbi
domestic rabbit 单克隆(3B6)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2045)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Cell Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2042)被用于被用于免疫印迹在人类样本上. Cell Microbiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling Technology, 2042)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2042)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(3B6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2045)被用于被用于免疫印迹在人类样本上. J Biol Chem (2016) ncbi
domestic rabbit 单克隆(3B6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2045)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
domestic rabbit 单克隆(3B6)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 XIAP抗体(Cell Signaling, 2045)被用于被用于免疫印迹在人类样本上 (图 5). Mol Carcinog (2014) ncbi
碧迪BD
小鼠 单克隆(48/hILP/XIAP)
  • 免疫印迹; 人类; 图 6g
碧迪BD XIAP抗体(BD Biosciences, 610,763)被用于被用于免疫印迹在人类样本上 (图 6g). BMC Cancer (2021) ncbi
小鼠 单克隆(48/hILP/XIAP)
  • 免疫印迹; 人类; 图 2a
碧迪BD XIAP抗体(BD Biosciences, 610,763)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Adh Migr (2019) ncbi
小鼠 单克隆(48/hILP/XIAP)
  • 免疫印迹; 人类; 1:4000
碧迪BD XIAP抗体(BD-Biosciences, 48/hILP/XIAP)被用于被用于免疫印迹在人类样本上浓度为1:4000. Alcohol Clin Exp Res (2014) ncbi
小鼠 单克隆(48/hILP/XIAP)
  • 免疫印迹基因敲除验证; 小鼠; 图 1
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 1
碧迪BD XIAP抗体(BD Biosciences, 610763)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1), 被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). EMBO J (2014) ncbi
MBL International
小鼠 单克隆(2F1)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
MBL International XIAP抗体(MBL, M044-3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Immunity (2022) ncbi
小鼠 单克隆(2F1)
  • 免疫印迹; 人类; 图 1c
MBL International XIAP抗体(MBL, M044-3)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Death Differ (2017) ncbi
文章列表
  1. Simpson D, Pang J, Weir A, Kong I, Fritsch M, Rashidi M, et al. Interferon-γ primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity. 2022;55:423-441.e9 pubmed 出版商
  2. Supper E, Rudat S, Iyer V, Droop A, Wong K, Spinella J, et al. Cut-like homeobox 1 (CUX1) tumor suppressor gene haploinsufficiency induces apoptosis evasion to sustain myeloid leukemia. Nat Commun. 2021;12:2482 pubmed 出版商
  3. Sowa A, Popova T, Harmuth T, Weber J, Pereira Sena P, Schmidt J, et al. Neurodegenerative phosphoprotein signaling landscape in models of SCA3. Mol Brain. 2021;14:57 pubmed 出版商
  4. Nagamura Y, Miyazaki M, Nagano Y, Yuki M, Fukami K, Yanagihara K, et al. PLEKHA5 regulates the survival and peritoneal dissemination of diffuse-type gastric carcinoma cells with Met gene amplification. Oncogenesis. 2021;10:25 pubmed 出版商
  5. Kitamura Y, Kanaya N, Moleirinho S, Du W, Reinshagen C, Attia N, et al. Anti-EGFR VHH-armed death receptor ligand-engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. Sci Adv. 2021;7: pubmed 出版商
  6. Chi R, van der Watt P, Wei W, Birrer M, Leaner V. Inhibition of Kpnβ1 mediated nuclear import enhances cisplatin chemosensitivity in cervical cancer. BMC Cancer. 2021;21:106 pubmed 出版商
  7. Chandrasekaran B, Dahiya N, Tyagi A, Kolluru V, Saran U, Baby B, et al. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23 pubmed 出版商
  8. Liao Y, Zhao J, Bulek K, Tang F, Chen X, Cai G, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun. 2020;11:900 pubmed 出版商
  9. Ali R, Alabdullah M, Miligy I, Normatova M, Babaei Jadidi R, Nateri A, et al. ATM Regulated PTEN Degradation Is XIAP E3 Ubiquitin Ligase Mediated in p85α Deficient Cancer Cells and Influence Platinum Sensitivity. Cells. 2019;8: pubmed 出版商
  10. Thangaraj K, Balasubramanian B, Park S, Natesan K, Liu W, Manju V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules. 2019;9: pubmed 出版商
  11. Jin H, Xue L, Mo L, Zhang D, Guo X, Xu J, et al. Downregulation of miR-200c stabilizes XIAP mRNA and contributes to invasion and lung metastasis of bladder cancer. Cell Adh Migr. 2019;13:236-248 pubmed 出版商
  12. Fang D, Wang H, Li M, Wei W. α-bisabolol enhances radiotherapy-induced apoptosis in endometrial cancer cells by reducing the effect of XIAP on inhibiting caspase-3. Biosci Rep. 2019;39: pubmed 出版商
  13. Lee S, Mayr C. Gain of Additional BIRC3 Protein Functions through 3'-UTR-Mediated Protein Complex Formation. Mol Cell. 2019;: pubmed 出版商
  14. Gennaro V, Wedegaertner H, McMahon S. Interaction between the BAG1S isoform and HSP70 mediates the stability of anti-apoptotic proteins and the survival of osteosarcoma cells expressing oncogenic MYC. BMC Cancer. 2019;19:258 pubmed 出版商
  15. Baranov S, Baranova O, Yablonska S, Suofu Y, Vazquez A, Kozai T, et al. Mitochondria modulate programmed neuritic retraction. Proc Natl Acad Sci U S A. 2019;116:650-659 pubmed 出版商
  16. Panda S, Gekara N. The deubiquitinase MYSM1 dampens NOD2-mediated inflammation and tissue damage by inactivating the RIP2 complex. Nat Commun. 2018;9:4654 pubmed 出版商
  17. Huang X, Wang X, Yuan X, Wu W, Lobie P, Wu Z. XIAP facilitates breast and colon carcinoma growth via promotion of p62 depletion through ubiquitination-dependent proteasomal degradation. Oncogene. 2019;38:1448-1460 pubmed 出版商
  18. Mangolini M, Götte F, Moore A, Ammon T, Oelsner M, Lutzny Geier G, et al. Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia. Nat Commun. 2018;9:3839 pubmed 出版商
  19. Comiskey D, Jacob A, Sanford B, Montes M, Goodwin A, Steiner H, et al. A novel mouse model of rhabdomyosarcoma underscores the dichotomy of MDM2-ALT1 function in vivo. Oncogene. 2018;37:95-106 pubmed 出版商
  20. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  21. Wu Q, Yan H, Tao S, Wang X, Mou L, Chen P, et al. XIAP 3'-untranslated region as a ceRNA promotes FSCN1 function in inducing the progression of breast cancer by binding endogenous miR-29a-5p. Oncotarget. 2017;8:16784-16800 pubmed 出版商
  22. Tanzer M, Khan N, Rickard J, Etemadi N, Lalaoui N, Spall S, et al. Combination of IAP antagonist and IFNγ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death Differ. 2017;24:481-491 pubmed 出版商
  23. Ren Z, Aerts J, Vandenplas H, Wang J, Gorbenko O, Chen J, et al. Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death Dis. 2016;7:e2560 pubmed 出版商
  24. Ma W, Tummers B, van Esch E, Goedemans R, Melief C, Meyers C, et al. Human Papillomavirus Downregulates the Expression of IFITM1 and RIPK3 to Escape from IFN?- and TNF?-Mediated Antiproliferative Effects and Necroptosis. Front Immunol. 2016;7:496 pubmed
  25. Martínez Castillo M, Bonilla Moreno R, Alemán Lazarini L, Meraz Rios M, Orozco L, Cedillo Barron L, et al. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe. PLoS ONE. 2016;11:e0165971 pubmed 出版商
  26. Dey K, Bharti R, Dey G, Pal I, Rajesh Y, Chavan S, et al. S100A7 has an oncogenic role in oral squamous cell carcinoma by activating p38/MAPK and RAB2A signaling pathway. Cancer Gene Ther. 2016;23:382-391 pubmed 出版商
  27. Greene L, Nathwani S, Zisterer D. Inhibition of ?-secretase activity synergistically enhances tumour necrosis factor-related apoptosis-inducing ligand induced apoptosis in T-cell acute lymphoblastic leukemia cells via upregulation of death receptor 5. Oncol Lett. 2016;12:2900-2905 pubmed
  28. Klingbeil O, Lesche R, Gelato K, Haendler B, Lejeune P. Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents. Cell Death Dis. 2016;7:e2365 pubmed 出版商
  29. Jinesh G, Molina J, Huang L, Laing N, Mills G, Bar Eli M, et al. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis. Cell Death Discov. 2016;2:16003 pubmed 出版商
  30. Qin S, Yang C, Zhang B, Li X, Sun X, Li G, et al. XIAP inhibits mature Smac-induced apoptosis by degrading it through ubiquitination in NSCLC. Int J Oncol. 2016;49:1289-96 pubmed 出版商
  31. Wang C, Ma Y, Hu Q, Xie T, Wu J, Zeng F, et al. Bifidobacterial recombinant thymidine kinase-ganciclovir gene therapy system induces FasL and TNFR2 mediated antitumor apoptosis in solid tumors. BMC Cancer. 2016;16:545 pubmed 出版商
  32. Tagscherer K, Fassl A, Sinkovic T, Richter J, Schecher S, Macher Goeppinger S, et al. MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen. Cancer Cell Int. 2016;16:42 pubmed 出版商
  33. Lin K, Cheng S, Tsai S, Tsai J, Lin C, Cheung C. Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: a proof-of-concept study. Onco Targets Ther. 2016;9:2601-13 pubmed 出版商
  34. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  35. Waguia Kontchou C, Tzivelekidis T, Gentle I, Hacker G. Infection of epithelial cells with Chlamydia trachomatis inhibits TNF-induced apoptosis at the level of receptor internalization while leaving non-apoptotic TNF-signalling intact. Cell Microbiol. 2016;18:1583-1595 pubmed 出版商
  36. Afsar T, Trembley J, Salomon C, Razak S, Khan M, Ahmed K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci Rep. 2016;6:23077 pubmed 出版商
  37. Cousin F, Jouan Lanhouet S, Théret N, Brenner C, Jouan E, Le Moigne Muller G, et al. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer. Oncotarget. 2016;7:7161-78 pubmed 出版商
  38. Monian P, Jiang X. The Cellular Apoptosis Susceptibility Protein (CAS) Promotes Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-induced Apoptosis and Cell Proliferation. J Biol Chem. 2016;291:2379-88 pubmed 出版商
  39. Hamacher Brady A, Brady N. Bax/Bak-dependent, Drp1-independent Targeting of X-linked Inhibitor of Apoptosis Protein (XIAP) into Inner Mitochondrial Compartments Counteracts Smac/DIABLO-dependent Effector Caspase Activation. J Biol Chem. 2015;290:22005-18 pubmed 出版商
  40. Qiu J, Zhang Y, Li Y, Zhao J, Zhang W, Jiang Q, et al. Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter. Oncotarget. 2015;6:15494-509 pubmed
  41. Whittom A, Villarreal A, Soni M, Owusu Duku B, Meshram A, Rajkowska G, et al. Markers of apoptosis induction and proliferation in the orbitofrontal cortex in alcohol dependence. Alcohol Clin Exp Res. 2014;38:2790-9 pubmed 出版商
  42. Takeda A, Oberoi Khanuja T, Glatz G, Schulenburg K, Scholz R, Carpy A, et al. Ubiquitin-dependent regulation of MEKK2/3-MEK5-ERK5 signaling module by XIAP and cIAP1. EMBO J. 2014;33:1784-801 pubmed 出版商
  43. Brouxhon S, Kyrkanides S, Teng X, O Banion M, Clarke R, Byers S, et al. Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 2014;53:893-906 pubmed 出版商
  44. Lejonklou M, Barbu A, Stalberg P, Skogseid B. Accelerated proliferation and differential global gene expression in pancreatic islets of five-week-old heterozygous Men1 mice: Men1 is a haploinsufficient suppressor. Endocrinology. 2012;153:2588-98 pubmed 出版商