这是一篇来自已证抗体库的有关人类 ZETA相关蛋白 (ZAP 70) 的综述,是根据80篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ZETA相关蛋白 抗体。
ZETA相关蛋白 同义词: ADMIO2; IMD48; SRK; STCD; STD; TZK; ZAP-70

赛默飞世尔
小鼠 单克隆(n3kobu5)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔ZETA相关蛋白抗体(eBioscience, n3kobu5)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Front Immunol (2017) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔ZETA相关蛋白抗体(eBioscience, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 4). J Exp Med (2016) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔ZETA相关蛋白抗体(eBioscience, 1E7.2)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2014) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔ZETA相关蛋白抗体(eBioscience, clone 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 1). Cytometry B Clin Cytom (2014) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 2). Hematology (2012) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔ZETA相关蛋白抗体(Invitrogen, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 1). Hematol Rep (2010) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 小鼠
赛默飞世尔ZETA相关蛋白抗体(eBioscience, 1E7.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
小鼠 单克隆(1E7.2)
赛默飞世尔ZETA相关蛋白抗体(Invitrogen, 1E7.2)被用于. Cytometry B Clin Cytom (2011) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔ZETA相关蛋白抗体(Invitrogen, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 2). Cytometry B Clin Cytom (2011) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 表 4
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上 (表 4). Leuk Lymphoma (2011) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔ZETA相关蛋白抗体(Caltag, clone 1E7.2)被用于被用于流式细胞仪在人类样本上 (表 1). Leukemia (2011) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 2). Leuk Res (2011) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 2). Immunol Lett (2011) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 1). J Transl Med (2010) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 2). Eur J Haematol (2010) ncbi
小鼠 单克隆(1E7.2)
  • 免疫细胞化学; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于免疫细胞化学在人类样本上. Leukemia (2010) ncbi
小鼠 单克隆(1E7.2)
  • 免疫沉淀; 小鼠
赛默飞世尔ZETA相关蛋白抗体(eBioscience, 1E7.2)被用于被用于免疫沉淀在小鼠样本上. Int Immunol (2009) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag Laboratories, 1E7.2)被用于被用于流式细胞仪在人类样本上. J Immunol (2008) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔ZETA相关蛋白抗体(Invitrogen, 1E7.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2008) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上. Haematologica (2008) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔ZETA相关蛋白抗体(Invitrogen, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 5). Blood (2008) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(eBioscience, 1E7.2)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2008) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 200 ug/ml; 图 2
赛默飞世尔ZETA相关蛋白抗体(Caltag Laboratories, 1E7.2)被用于被用于流式细胞仪在人类样本上浓度为200 ug/ml (图 2). Cytometry B Clin Cytom (2008) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag Laboratories, 1E7.2)被用于被用于流式细胞仪在人类样本上. Leuk Res (2007) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上 (表 2). Am J Clin Pathol (2007) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 3). Leukemia (2007) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(eBioscience, 1E7.2)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2007) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag Laboratories, 1E7.2)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 1). Ann Hematol (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上 (表 1). Cancer (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag, MHZAP7020)被用于被用于流式细胞仪在人类样本上. Blood (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 1). Leukemia (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在小鼠样本上 (表 1). Blood (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔ZETA相关蛋白抗体(Caltag, IE7.2)被用于被用于流式细胞仪在人类样本上 (表 1). J Cell Physiol (2006) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔ZETA相关蛋白抗体(Caltag, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 1). Clin Lab Haematol (2005) ncbi
小鼠 单克隆(ZAP-70-6F7)
  • 免疫沉淀; 小鼠; 图 3
赛默飞世尔ZETA相关蛋白抗体(Caltag, Zap-70-6F7)被用于被用于免疫沉淀在小鼠样本上 (图 3). Nature (2001) ncbi
圣克鲁斯生物技术
小鼠 单克隆(1E7.2)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
圣克鲁斯生物技术ZETA相关蛋白抗体(Santa Cruz, 32760)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). PLoS Biol (2021) ncbi
小鼠 单克隆(1E7.2)
  • 免疫沉淀; 人类; 图 8
  • 免疫印迹; 人类; 图 8
  • 免疫沉淀; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术ZETA相关蛋白抗体(Santa Cruz, 1E7.2)被用于被用于免疫沉淀在人类样本上 (图 8), 被用于免疫印迹在人类样本上 (图 8), 被用于免疫沉淀在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 5). J Exp Med (2016) ncbi
小鼠 单克隆(1E7.2)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术ZETA相关蛋白抗体(SCBT, 1E7.2)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(1E7.2)
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术ZETA相关蛋白抗体(Santa Cruz Biotechnology, 1E7.2)被用于被用于免疫印迹在小鼠样本上 (图 6a). J Exp Med (2015) ncbi
小鼠 单克隆(4H386)
  • 免疫印迹; 人类
圣克鲁斯生物技术ZETA相关蛋白抗体(Santa Cruz Biotechnology, 4H386)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(1E7.2)
  • 免疫印迹; 人类
圣克鲁斯生物技术ZETA相关蛋白抗体(Santa Cruz Biotechnologies, 1E7.2)被用于被用于免疫印迹在人类样本上. FEBS J (2014) ncbi
BioLegend
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 人类; 图 1a
BioLegendZETA相关蛋白抗体(BioLegend, 1E7.2)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2018) ncbi
小鼠 单克隆(1E7.2)
  • 免疫印迹; 小鼠; 图 s1
BioLegendZETA相关蛋白抗体(BioLegend, 1E7.2)被用于被用于免疫印迹在小鼠样本上 (图 s1). J Clin Invest (2018) ncbi
小鼠 单克隆(1E7.2)
  • 流式细胞仪; 小鼠; 图 2c
BioLegendZETA相关蛋白抗体(BioLegend, 1E7.2)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Front Immunol (2017) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 图 4d
艾博抗(上海)贸易有限公司ZETA相关蛋白抗体(Abcam, ab32410)被用于被用于免疫印迹在小鼠样本上 (图 4d). Front Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s7b
艾博抗(上海)贸易有限公司ZETA相关蛋白抗体(Abcam, ab60970)被用于被用于免疫印迹在人类样本上 (图 s7b). Science (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(99F2)
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling, 2705S)被用于被用于免疫印迹在小鼠样本上 (图 7e). Nucleic Acids Res (2021) ncbi
domestic rabbit 单克隆(D1C10E)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling, 3165)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). EMBO Mol Med (2020) ncbi
domestic rabbit 单克隆(99F2)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell signaling technology, 2705)被用于被用于免疫印迹在人类样本上 (图 7a). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell signaling technology, 2704)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cell Rep (2019) ncbi
domestic rabbit 单克隆(99F2)
  • 免疫组化; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling, 99F2)被用于被用于免疫组化在小鼠样本上 (图 2d). J Immunol (2019) ncbi
domestic rabbit 单克隆(99F2)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling, 2705)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling, 2704S)被用于被用于免疫印迹在人类样本上 (图 6f). Cell Rep (2018) ncbi
domestic rabbit 单克隆(99F2)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling, 2705)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 9a
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling, 2704)被用于被用于免疫印迹在人类样本上 (图 9a). J Mol Biol (2017) ncbi
小鼠 单克隆(L1E5)
  • 免疫印迹; 人类; 图 9a
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling, 2709)被用于被用于免疫印迹在人类样本上 (图 9a). J Mol Biol (2017) ncbi
domestic rabbit 单克隆(99F2)
  • 免疫印迹; 人类; 图 9a
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling, 2705)被用于被用于免疫印迹在人类样本上 (图 9a). J Mol Biol (2017) ncbi
domestic rabbit 单克隆(D1C10E)
  • 免疫印迹; 小鼠; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell signaling, 3165)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5a). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s7b
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling, 2704)被用于被用于免疫印迹在人类样本上 (图 s7b). Science (2017) ncbi
domestic rabbit 单克隆(99F2)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling, 99F2)被用于被用于免疫印迹在人类样本上 (图 6c). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(D1C10E)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Signaling Technologies, D1C10E)被用于被用于免疫印迹在人类样本上 (图 4b). Mol Cell Proteomics (2017) ncbi
domestic rabbit 单克隆(99F2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling, 99F2)被用于被用于免疫印迹在人类样本上. PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D1C10E)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(cell signalling, D1C10E)被用于被用于免疫印迹在小鼠样本上 (图 7). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(99F2)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling, 2705)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Immunol (2016) ncbi
domestic rabbit 单克隆(D1C10E)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signal, 3165P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling Technology, 2704S)被用于被用于免疫印迹在人类样本上 (图 3d). J Exp Med (2016) ncbi
domestic rabbit 单克隆(99F2)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling Technology, 99F2)被用于被用于免疫细胞化学在人类样本上 (图 5). Retrovirology (2015) ncbi
domestic rabbit 单克隆(99F2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling Technology., 2705)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
domestic rabbit 单克隆(99F2)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司ZETA相关蛋白抗体(Cell Signaling Technologies, 2705)被用于被用于免疫印迹在人类样本上 (图 s1). Mol Cell (2014) ncbi
碧迪BD
小鼠 单克隆(17A/P-ZAP70)
  • 流式细胞仪; 小鼠; 图 3f
碧迪BDZETA相关蛋白抗体(BD Biosciences, 557881)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Immunol (2022) ncbi
小鼠 单克隆(17A/P-ZAP70)
  • 流式细胞仪; 小鼠; 1:10; 图 2k
碧迪BDZETA相关蛋白抗体(BD Biosciences, 557881)被用于被用于流式细胞仪在小鼠样本上浓度为1:10 (图 2k). Nat Immunol (2019) ncbi
小鼠 单克隆(17A/P-ZAP70)
  • 流式细胞仪; 小鼠; 图 6e
碧迪BDZETA相关蛋白抗体(BD Biosciences, 557817)被用于被用于流式细胞仪在小鼠样本上 (图 6e). Cell Rep (2018) ncbi
小鼠 单克隆(17A/P-ZAP70)
  • 流式细胞仪; 小鼠; 图 3e
碧迪BDZETA相关蛋白抗体(BD, 17A/P-ZAP70)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2017) ncbi
小鼠 单克隆(17A/P-ZAP70)
  • 流式细胞仪; 人类; 图 4b
碧迪BDZETA相关蛋白抗体(BD, 557881)被用于被用于流式细胞仪在人类样本上 (图 4b). Clin Transl Immunology (2016) ncbi
小鼠 单克隆(29/ZAP70 Kinase)
  • 其他; 人类; 图 st1
碧迪BDZETA相关蛋白抗体(BD, 29)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(29/ZAP70 Kinase)
  • 免疫印迹; 人类; 图 4
碧迪BDZETA相关蛋白抗体(BD Biosciences, 610240)被用于被用于免疫印迹在人类样本上 (图 4). Nat Immunol (2015) ncbi
小鼠 单克隆(29/ZAP70 Kinase)
  • 免疫印迹; 小鼠; 图 2
碧迪BDZETA相关蛋白抗体(BD, 610239)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(17A/P-ZAP70)
  • 流式细胞仪; 人类
碧迪BDZETA相关蛋白抗体(BD Biosciences, 17A/P-ZAP70)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2006) ncbi
小鼠 单克隆(29/ZAP70 Kinase)
  • 免疫沉淀; 人类
碧迪BDZETA相关蛋白抗体(Transduction Laboratories, 29)被用于被用于免疫沉淀在人类样本上. Blood (2002) ncbi
文章列表
  1. Wemlinger S, Parker Harp C, Yu B, Hardy I, Seefeldt M, Matsuda J, et al. Preclinical Analysis of Candidate Anti-Human CD79 Therapeutic Antibodies Using a Humanized CD79 Mouse Model. J Immunol. 2022;208:1566-1584 pubmed 出版商
  2. Kim C, Park S, Lee S, Kim Y, Jang S, Woo S, et al. NSrp70 is a lymphocyte-essential splicing factor that controls thymocyte development. Nucleic Acids Res. 2021;49:5760-5778 pubmed 出版商
  3. Sripada A, Sirohi K, Michalec L, Guo L, McKay J, Yadav S, et al. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol. 2021;19:e3001063 pubmed 出版商
  4. Fan Z, Tian Y, Chen Z, Liu L, Zhou Q, He J, et al. Blocking interaction between SHP2 and PD-1 denotes a novel opportunity for developing PD-1 inhibitors. EMBO Mol Med. 2020;12:e11571 pubmed 出版商
  5. Verma V, Shrimali R, Ahmad S, Dai W, Wang H, Lu S, et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat Immunol. 2019;20:1231-1243 pubmed 出版商
  6. Celis Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Gregoire C, et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019;27:3315-3330.e7 pubmed 出版商
  7. Obino D, Fetler L, Soza A, Malbec O, Saez J, Labarca M, et al. Galectin-8 Favors the Presentation of Surface-Tethered Antigens by Stabilizing the B Cell Immune Synapse. Cell Rep. 2018;25:3110-3122.e6 pubmed 出版商
  8. Sorrelle N, Ganguly D, Dominguez A, Zhang Y, Huang H, Dahal L, et al. Improved Multiplex Immunohistochemistry for Immune Microenvironment Evaluation of Mouse Formalin-Fixed, Paraffin-Embedded Tissues. J Immunol. 2019;202:292-299 pubmed 出版商
  9. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  10. Zhao Y, Harrison D, Song Y, Ji J, Huang J, Hui E. Antigen-Presenting Cell-Intrinsic PD-1 Neutralizes PD-L1 in cis to Attenuate PD-1 Signaling in T Cells. Cell Rep. 2018;24:379-390.e6 pubmed 出版商
  11. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  12. Liang W, Mao S, Sun S, Li M, Li Z, Yu R, et al. Core Fucosylation of the T Cell Receptor Is Required for T Cell Activation. Front Immunol. 2018;9:78 pubmed 出版商
  13. Pugh J, Nemat Gorgani N, Norman P, Guethlein L, Parham P. Human NK Cells Downregulate Zap70 and Syk in Response to Prolonged Activation or DNA Damage. J Immunol. 2018;200:1146-1158 pubmed 出版商
  14. Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest. 2018;128:415-426 pubmed 出版商
  15. Kükenshöner T, Schmit N, Bouda E, Sha F, Pojer F, Koide A, et al. Selective Targeting of SH2 Domain-Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies. J Mol Biol. 2017;429:1364-1380 pubmed 出版商
  16. Getahun A, Wemlinger S, Rudra P, Santiago M, van Dyk L, Cambier J. Impaired B cell function during viral infections due to PTEN-mediated inhibition of the PI3K pathway. J Exp Med. 2017;214:931-941 pubmed 出版商
  17. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed 出版商
  18. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  19. Hui E, Cheung J, Zhu J, Su X, Taylor M, Wallweber H, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355:1428-1433 pubmed 出版商
  20. Heim K, Dälken B, Faust S, Rharbaoui F, Engling A, Wallmeier H, et al. High thioredoxin-1 levels in rheumatoid arthritis patients diminish binding and signalling of the monoclonal antibody Tregalizumab. Clin Transl Immunology. 2016;5:e121 pubmed 出版商
  21. Kinosada H, Yasunaga J, Shimura K, Miyazato P, Onishi C, Iyoda T, et al. HTLV-1 bZIP Factor Enhances T-Cell Proliferation by Impeding the Suppressive Signaling of Co-inhibitory Receptors. PLoS Pathog. 2017;13:e1006120 pubmed 出版商
  22. Van Puyenbroeck V, Claeys E, Schols D, Bell T, Vermeire K. A Proteomic Survey Indicates Sortilin as a Secondary Substrate of the ER Translocation Inhibitor Cyclotriazadisulfonamide (CADA). Mol Cell Proteomics. 2017;16:157-167 pubmed 出版商
  23. Gusscott S, Jenkins C, Lam S, Giambra V, Pollak M, Weng A. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias. PLoS ONE. 2016;11:e0161158 pubmed 出版商
  24. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  25. Naik E, Dixit V. Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCβ Kinase Activity. J Immunol. 2016;196:3438-51 pubmed 出版商
  26. Woo J, Srikanth S, Nishi M, Ping P, Takeshima H, Gwack Y. Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci U S A. 2016;113:2762-7 pubmed 出版商
  27. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  28. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  29. Chan A, Punwani D, Kadlecek T, Cowan M, Olson J, Mathes E, et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med. 2016;213:155-65 pubmed 出版商
  30. Cleret Buhot A, Zhang Y, Planas D, Goulet J, Monteiro P, Gosselin A, et al. Identification of novel HIV-1 dependency factors in primary CCR4(+)CCR6(+)Th17 cells via a genome-wide transcriptional approach. Retrovirology. 2015;12:102 pubmed 出版商
  31. Klammt C, Novotná L, Li D, Wolf M, Blount A, Zhang K, et al. T cell receptor dwell times control the kinase activity of Zap70. Nat Immunol. 2015;16:961-9 pubmed 出版商
  32. Zou Q, Jin J, Xiao Y, Hu H, Zhou X, Jie Z, et al. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. J Exp Med. 2015;212:1323-36 pubmed 出版商
  33. Silva O, Crocetti J, Humphries L, Burkhardt J, Miceli M. Discs Large Homolog 1 Splice Variants Regulate p38-Dependent and -Independent Effector Functions in CD8+ T Cells. PLoS ONE. 2015;10:e0133353 pubmed 出版商
  34. Roffé M, Lupinacci F, Soares L, Hajj G, Martins V. Two widely used RSK inhibitors, BI-D1870 and SL0101, alter mTORC1 signaling in a RSK-independent manner. Cell Signal. 2015;27:1630-42 pubmed 出版商
  35. Gasser J, Inuzuka H, Lau A, Wei W, Beroukhim R, Toker A. SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer. Mol Cell. 2014;56:595-607 pubmed 出版商
  36. Alsadeq A, Hobeika E, Medgyesi D, Kläsener K, Reth M. The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. J Immunol. 2014;193:268-76 pubmed 出版商
  37. Kloog Y, Mor A. Cytotoxic-T-lymphocyte antigen 4 receptor signaling for lymphocyte adhesion is mediated by C3G and Rap1. Mol Cell Biol. 2014;34:978-88 pubmed 出版商
  38. Luis B, Carpino N. Insights into the suppressor of T-cell receptor (TCR) signaling-1 (Sts-1)-mediated regulation of TCR signaling through the use of novel substrate-trapping Sts-1 phosphatase variants. FEBS J. 2014;281:696-707 pubmed 出版商
  39. Monserrat J, Sanchez M, de Paz R, Diaz D, Mur S, Reyes E, et al. Distinctive patterns of naïve/memory subset distribution and cytokine expression in CD4 T lymphocytes in ZAP-70 B-chronic lymphocytic patients. Cytometry B Clin Cytom. 2014;86:32-43 pubmed 出版商
  40. Vroblova V, Smolej L, Krejsek J. Pitfalls and limitations of ZAP-70 detection in chronic lymphocytic leukemia. Hematology. 2012;17:268-74 pubmed 出版商
  41. Erdfelder F, Hertweck M, Filipovich A, Uhrmacher S, Kreuzer K. High lymphoid enhancer-binding factor-1 expression is associated with disease progression and poor prognosis in chronic lymphocytic leukemia. Hematol Rep. 2010;2:e3 pubmed 出版商
  42. Deswal S, Schulze A, Hofer T, Schamel W. Quantitative analysis of protein phosphorylations and interactions by multi-colour IP-FCM as an input for kinetic modelling of signalling networks. PLoS ONE. 2011;6:e22928 pubmed 出版商
  43. Degheidy H, Venzon D, Farooqui M, Abbasi F, Arthur D, Wilson W, et al. Improved ZAP-70 assay using two clones, multiple methods of analysis and clinical correlation. Cytometry B Clin Cytom. 2011;80:309-17 pubmed 出版商
  44. Degheidy H, Venzon D, Farooqui M, Abbasi F, Arthur D, Wilson W, et al. Methodological comparison of two anti-ZAP-70 antibodies. Cytometry B Clin Cytom. 2011;80:300-8 pubmed 出版商
  45. Oliveira A, de la Banda E, Domingo Domenech E, Encuentra M, Mercadal S, Domingo A, et al. Prospective study of clinical and biological prognostic factors at diagnosis in patients with early stage B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2011;52:429-35 pubmed 出版商
  46. Huber S, Oelsner M, Decker T, Zum Büschenfelde C, Wagner M, Lutzny G, et al. Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1. Leukemia. 2011;25:838-47 pubmed 出版商
  47. Friedrichs B, Siegel S, Reimer R, Barsoum A, Coggin J, Kabelitz D, et al. High expression of the immature laminin receptor protein correlates with mutated IGVH status and predicts a favorable prognosis in chronic lymphocytic leukemia. Leuk Res. 2011;35:721-9 pubmed 出版商
  48. Zucchetto A, Cattarossi I, Nanni P, Zaina E, Prato G, Gilestro M, et al. Cluster analysis of immunophenotypic data: the example of chronic lymphocytic leukemia. Immunol Lett. 2011;134:137-44 pubmed 出版商
  49. Rossi F, Del Principe M, Rossi D, Irno Consalvo M, Luciano F, Zucchetto A, et al. Prognostic impact of ZAP-70 expression in chronic lymphocytic leukemia: mean fluorescence intensity T/B ratio versus percentage of positive cells. J Transl Med. 2010;8:23 pubmed 出版商
  50. Vroblova V, Vrbacky F, Hrudkova M, Jankovicova K, Schmitzova D, Maly J, et al. Significant change in ZAP-70 expression during the course of chronic lymphocytic leukemia. Eur J Haematol. 2010;84:513-7 pubmed 出版商
  51. Zum Büschenfelde C, Wagner M, Lutzny G, Oelsner M, Feuerstacke Y, Decker T, et al. Recruitment of PKC-betaII to lipid rafts mediates apoptosis-resistance in chronic lymphocytic leukemia expressing ZAP-70. Leukemia. 2010;24:141-52 pubmed 出版商
  52. Imada M, Masuda K, Satoh R, Ito Y, Goto Y, Matsuoka T, et al. Ectopically expressed PIR-B on T cells constitutively binds to MHC class I and attenuates T helper type 1 responses. Int Immunol. 2009;21:1151-61 pubmed 出版商
  53. Friedrichs B, Siegel S, Kloess M, Barsoum A, Coggin J, Rohrer J, et al. Humoral immune responses against the immature laminin receptor protein show prognostic significance in patients with chronic lymphocytic leukemia. J Immunol. 2008;180:6374-84 pubmed
  54. Li F, Ding S, Pan J, Shakhmatov M, Kashentseva E, Wu J, et al. FCRL2 expression predicts IGHV mutation status and clinical progression in chronic lymphocytic leukemia. Blood. 2008;112:179-87 pubmed 出版商
  55. Gachard N, Salviat A, Boutet C, Arnoulet C, Durrieu F, Lenormand B, et al. Multicenter study of ZAP-70 expression in patients with B-cell chronic lymphocytic leukemia using an optimized flow cytometry method. Haematologica. 2008;93:215-23 pubmed 出版商
  56. Saddler C, Ouillette P, Kujawski L, Shangary S, Talpaz M, Kaminski M, et al. Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood. 2008;111:1584-93 pubmed
  57. Preobrazhensky S, Bahler D. Optimization of flow cytometric measurement of ZAP-70 in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2008;74:118-27 pubmed
  58. Bekkema R, Tadema A, Daenen S, Kluin Nelemans H, Mulder A. An improved flow cytometric method using FACS Lysing Solution for measurement of ZAP-70 expression in B-cell chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2008;74:40-4 pubmed
  59. Smolej L, Andrys C, Vroblova V. Modern prognostic factors and angiogenesis in chronic lymphocytic leukemia: more data needed. Leuk Res. 2007;31:1763-4 pubmed
  60. Aoun P, Zhou G, Chan W, Page C, Neth K, Pickering D, et al. Familial B-cell chronic lymphocytic leukemia: analysis of cytogenetic abnormalities, immunophenotypic profiles, and immunoglobulin heavy chain gene usage. Am J Clin Pathol. 2007;127:31-8 pubmed
  61. Zanotti R, Ambrosetti A, Lestani M, Ghia P, Pattaro C, Remo A, et al. ZAP-70 expression, as detected by immunohistochemistry on bone marrow biopsies from early-phase CLL patients, is a strong adverse prognostic factor. Leukemia. 2007;21:102-9 pubmed
  62. Le Garff Tavernier M, Ticchioni M, Brissard M, Salmon C, Raynaud S, Davi F, et al. National standardization of ZAP-70 determination by flow cytometry: the French experience. Cytometry B Clin Cytom. 2007;72:103-8 pubmed
  63. Letestu R, Rawstron A, Ghia P, Villamor N, Boeckx N, Leuven N, et al. Evaluation of ZAP-70 expression by flow cytometry in chronic lymphocytic leukemia: A multicentric international harmonization process. Cytometry B Clin Cytom. 2006;70:309-14 pubmed
  64. Zucchetto A, Bomben R, Bo M, Nanni P, Bulian P, Rossi F, et al. ZAP-70 expression in B-cell chronic lymphocytic leukemia: evaluation by external (isotypic) or internal (T/NK cells) controls and correlation with IgV(H) mutations. Cytometry B Clin Cytom. 2006;70:284-92 pubmed
  65. Rassenti L, Kipps T. Clinical utility of assessing ZAP-70 and CD38 in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2006;70:209-13 pubmed
  66. Shankey T, Forman M, Scibelli P, Cobb J, Smith C, Mills R, et al. An optimized whole blood method for flow cytometric measurement of ZAP-70 protein expression in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2006;70:259-69 pubmed
  67. Sheridan R, Mounajjed T, Ehrmann D, Hurtubise P, Schrager J. Comparison of bone marrow and peripheral blood ZAP-70 status examined by flow cytometric immunophenotyping in patients with chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2006;70:320-1 pubmed
  68. Bojarska Junak A, Giannopoulos K, Kowal M, Dmoszynska A, Rolinski J. Comparison of methods for determining zeta-chain associated protein - 70 (ZAP-70) expression in patients with B-cell chronic lymphocytic leukemia (B-CLL). Cytometry B Clin Cytom. 2006;70:293-301 pubmed
  69. Marti G, Orfao A, Goolsby C. ZAP-70 in CLL: towards standardization of a biomarker for patient management: history of clinical cytometry special issue. Cytometry B Clin Cytom. 2006;70:197-200 pubmed
  70. Best O, Ibbotson R, Parker A, Davis Z, Orchard J, Oscier D. ZAP-70 by flow cytometry: a comparison of different antibodies, anticoagulants, and methods of analysis. Cytometry B Clin Cytom. 2006;70:235-41 pubmed
  71. Passam F, Tachynopoulou V, Skoumi D, Tsompanakou A, Stavropoulos Giokas A, Vadikolia C, et al. Feasibility of an easily applicable method of ZAP-70 measurement in chronic lymphocytic leukemia in the routine flow cytometry setting: A methodological approach. Ann Hematol. 2006;85:795-805 pubmed
  72. Francis S, Karanth M, Pratt G, Starczynski J, Hooper L, Fegan C, et al. The effect of immunoglobulin VH gene mutation status and other prognostic factors on the incidence of major infections in patients with chronic lymphocytic leukemia. Cancer. 2006;107:1023-33 pubmed
  73. Del Principe M, Del Poeta G, Buccisano F, Maurillo L, Venditti A, Zucchetto A, et al. Clinical significance of ZAP-70 protein expression in B-cell chronic lymphocytic leukemia. Blood. 2006;108:853-61 pubmed
  74. Scielzo C, Camporeale A, Geuna M, Alessio M, Poggi A, Zocchi M, et al. ZAP-70 is expressed by normal and malignant human B-cell subsets of different maturational stage. Leukemia. 2006;20:689-95 pubmed
  75. de Totero D, Meazza R, Zupo S, Cutrona G, Matis S, Colombo M, et al. Interleukin-21 receptor (IL-21R) is up-regulated by CD40 triggering and mediates proapoptotic signals in chronic lymphocytic leukemia B cells. Blood. 2006;107:3708-15 pubmed
  76. Bakke A, Purtzer Z, Leis J, Huang J. A robust ratio metric method for analysis of Zap-70 expression in chronic lymphocytic leukemia (CLL). Cytometry B Clin Cytom. 2006;70:227-34 pubmed
  77. Zucchetto A, Bomben R, Dal Bo M, Sonego P, Nanni P, Rupolo M, et al. A scoring system based on the expression of six surface molecules allows the identification of three prognostic risk groups in B-cell chronic lymphocytic leukemia. J Cell Physiol. 2006;207:354-63 pubmed
  78. Gibbs G, Bromidge T, Howe D, Hopkins J, Johnson S. Comparison of flow cytometric methods for the measurement of ZAP-70 expression in a routine diagnostic laboratory. Clin Lab Haematol. 2005;27:258-66 pubmed
  79. Chen L, Widhopf G, Huynh L, Rassenti L, Rai K, Weiss A, et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2002;100:4609-14 pubmed
  80. Demetriou M, Granovsky M, Quaggin S, Dennis J. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature. 2001;409:733-9 pubmed