这是一篇来自已证抗体库的有关人类 ZEB1的综述,是根据80篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ZEB1 抗体。
ZEB1 同义词: AREB6; BZP; DELTAEF1; FECD6; NIL2A; PPCD3; TCF8; ZFHEP; ZFHX1A

艾博抗(上海)贸易有限公司
小鼠 单克隆(2A8A6)
  • 免疫细胞化学; 人类; 图 a12s8b
艾博抗(上海)贸易有限公司 ZEB1抗体(Abcam, ab181451)被用于被用于免疫细胞化学在人类样本上 (图 a12s8b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(EPR17375)
  • 免疫印迹; 人类; 1:1000; 图 s3a
艾博抗(上海)贸易有限公司 ZEB1抗体(Abcam, ab203829)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3a). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 s1d
艾博抗(上海)贸易有限公司 ZEB1抗体(Abcam, ab228986)被用于被用于免疫印迹在人类样本上 (图 s1d). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(EPR17375)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司 ZEB1抗体(Abcam, ab203829)被用于被用于免疫印迹在人类样本上 (图 2d). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR17375)
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司 ZEB1抗体(Abcam, ab203829)被用于被用于免疫印迹在人类样本上 (图 2b). Theranostics (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 e6e
艾博抗(上海)贸易有限公司 ZEB1抗体(Abcam, ab87280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 e6e). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1i
艾博抗(上海)贸易有限公司 ZEB1抗体(Abcam, ab124512)被用于被用于免疫印迹在人类样本上 (图 1i). Biosci Rep (2017) ncbi
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 ZEB1抗体(Abcam, ab81972)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司 ZEB1抗体(Abcam, ab87280)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
北京傲锐东源
小鼠 单克隆(OTI7E12)
  • 免疫印迹; 人类; 1:500; 图 3a
北京傲锐东源 ZEB1抗体(OriGene Technologies, TA802313)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Anticancer Res (2016) ncbi
小鼠 单克隆(OTI7E12)
  • 免疫印迹; 人类; 1:500; 图 5
北京傲锐东源 ZEB1抗体(OriGene Technologies, TA802313)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Int J Mol Sci (2016) ncbi
小鼠 单克隆(OTI3G6)
  • 免疫印迹; 人类; 1:2000; 表 4
北京傲锐东源 ZEB1抗体(Origene, TA802298)被用于被用于免疫印迹在人类样本上浓度为1:2000 (表 4). Sci Rep (2015) ncbi
赛默飞世尔
小鼠 单克隆(3G6)
  • 免疫组化-石蜡切片; 小鼠; 图 s4c
赛默飞世尔 ZEB1抗体(eBioscience, 14-9741-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4c). Cell (2019) ncbi
Novus Biologicals
domestic rabbit 多克隆(10C2)
  • 免疫印迹; 人类; 1:1000; 图 1a
Novus Biologicals ZEB1抗体(Novus Biologicals, NBP1-88845)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆(10C2)
  • 免疫印迹; 人类; 1:1000; 图 s4a
Novus Biologicals ZEB1抗体(Novus, NBP1-88845)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a). Sci Rep (2019) ncbi
圣克鲁斯生物技术
小鼠 单克隆(416A7H10)
  • 免疫印迹; 人类; 1:500; 图 5b
圣克鲁斯生物技术 ZEB1抗体(Santa Cruz, sc-81428)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5b). Cancer Lett (2015) ncbi
小鼠 单克隆(416A7H10)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ZEB1抗体(Santa Cruz Biotechnology, sc-81428)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Death Dis (2014) ncbi
安迪生物R&D
小鼠 单克隆(639914)
  • 流式细胞仪; 人类; 图 1f
安迪生物R&D ZEB1抗体(Bio-Techne, MAB6708)被用于被用于流式细胞仪在人类样本上 (图 1f). Cell (2018) ncbi
BioLegend
小鼠 单克隆(P82A8A6)
  • 免疫印迹; 人类; 1:500; 图 1d
BioLegend ZEB1抗体(BioLegend, 685602)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1d). Biochem Biophys Res Commun (2017) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(4C4)
  • 免疫印迹; 人类; 图 5b
亚诺法生技股份有限公司 ZEB1抗体(Abnova, 4C4)被用于被用于免疫印迹在人类样本上 (图 5b). Mol Cell Biol (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 10c
赛信通(上海)生物试剂有限公司 ZEB1抗体(CST, 3396)被用于被用于免疫印迹在人类样本上 (图 10c). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 6c, 6f
赛信通(上海)生物试剂有限公司 ZEB1抗体(CST, 3396)被用于被用于免疫印迹在人类样本上 (图 6c, 6f). Mol Ther Nucleic Acids (2021) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Commun Biol (2021) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 2g: 2h, 2i
赛信通(上海)生物试剂有限公司 ZEB1抗体(CST, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g: 2h, 2i). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2020) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling Technology, 3396S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 4b, s1b
赛信通(上海)生物试剂有限公司 ZEB1抗体(CST, 3396S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b, s1b). Biol Open (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ZEB1抗体(CST, 3396)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 ZEB1抗体(CST, 3396)被用于被用于免疫印迹在人类样本上 (图 3d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上 (图 2a). elife (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:500; 图 s2a
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2a). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 3b). J Cell Mol Med (2018) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 s6i
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6i). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 7j
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7j). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 ex7b
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell signaling, D80D3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ex7b). Nature (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 2e). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Vis (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫细胞化学; 人类; 1:100; 图 3b
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). Nature (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上. Neoplasia (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signalling, 3396)被用于被用于免疫印迹在人类样本上 (图 7d). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫组化; 小鼠; 图 8l
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫组化在小鼠样本上 (图 8l). Oncogene (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Science (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, D80D3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 8b
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 8b). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在小鼠样本上 (图 1d). Oncogene (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上 (图 7a). Oncogene (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, D80D3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 其他; 人类; 图 4a, 4d
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于其他在人类样本上 (图 4a, 4d). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling Technologies, 3396)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上. Cancer Cell (2014) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling Technologies, 3396)被用于被用于免疫印迹在小鼠样本上 (图 2e). Oncogene (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396p)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ZEB1抗体(Cell Signaling, 3396S)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
Genway Biotech
小鼠 单克隆(416A7H10)
  • 免疫组化; 人类; 1:20; 图 1
Genway Biotech ZEB1抗体(Genway Biotech, GWB-B65B99)被用于被用于免疫组化在人类样本上浓度为1:20 (图 1). J Clin Pathol (2016) ncbi
小鼠 单克隆(416A7H10)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3a
Genway Biotech ZEB1抗体(GenWay, 416A7H10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3a). Histol Histopathol (2013) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2b
西格玛奥德里奇 ZEB1抗体(Sigma-Aldrich, HPA027524)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4a, 4b, 4c
西格玛奥德里奇 ZEB1抗体(Sigma-Aldrich, HPA027524)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a, 4b, 4c). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 ZEB1抗体(Sigma, HPA027524)被用于被用于免疫印迹在人类样本上 (图 4a). Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6c
  • 免疫印迹; 人类; 图 1g
西格玛奥德里奇 ZEB1抗体(Sigma, HPA027524)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6c) 和 被用于免疫印迹在人类样本上 (图 1g). J Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学基因敲除验证; 小鼠; 图 2a
  • 免疫组化基因敲除验证; 小鼠; 图 3a
  • 免疫印迹基因敲除验证; 小鼠; 1:5000; 图 2c
  • 免疫组化-石蜡切片; 小鼠; 图 3a
西格玛奥德里奇 ZEB1抗体(Sigma Prestige, HPA027524)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上 (图 2a), 被用于免疫组化基因敲除验证在小鼠样本上 (图 3a), 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:5000 (图 2c) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Genesis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 ZEB1抗体(Sigma, HPA027524)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2
西格玛奥德里奇 ZEB1抗体(Sigma, HPA027524)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 5
西格玛奥德里奇 ZEB1抗体(Sigma, HPA027524)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 5). J Nephrol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 ZEB1抗体(Sigma, HPA027524)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:800; 图 1a
西格玛奥德里奇 ZEB1抗体(Sigma, HPA027524)被用于被用于免疫组化在人类样本上浓度为1:800 (图 1a). Tumour Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 4
  • 免疫印迹; 人类; 图 1c
西格玛奥德里奇 ZEB1抗体(Sigma-Aldrich, HPA027524)被用于被用于免疫组化在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 1c). Oncogene (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 ZEB1抗体(Sigma Prestige, HPA027524)被用于. Int J Cancer (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 ZEB1抗体(Sigma, HPA027524)被用于. EMBO Mol Med (2015) ncbi
ProSci
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 5
ProSci ZEB1抗体(ProSci Inc, 5825)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 5). elife (2016) ncbi
文章列表
  1. Li K, Wu R, Zhou M, Tong H, Luo K. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265 pubmed 出版商
  2. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  3. Sun Z, Sun D, Feng Y, Zhang B, Sun P, Zhou B, et al. Exosomal linc-ROR mediates crosstalk between cancer cells and adipocytes to promote tumor growth in pancreatic cancer. Mol Ther Nucleic Acids. 2021;26:253-268 pubmed 出版商
  4. Wang X, Li X, Lin F, Sun H, Lin Y, Wang Z, et al. The lnc-CTSLP8 upregulates CTSL1 as a competitive endogenous RNA and promotes ovarian cancer metastasis. J Exp Clin Cancer Res. 2021;40:151 pubmed 出版商
  5. Kariya Y, Oyama M, Suzuki T, Kariya Y. αvβ3 Integrin induces partial EMT independent of TGF-β signaling. Commun Biol. 2021;4:490 pubmed 出版商
  6. Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 2021;40:13 pubmed 出版商
  7. Li M, Wu P, Yang Z, Deng S, Ni L, Zhang Y, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res. 2020;10:38-59 pubmed
  8. Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis. BMC Cancer. 2019;19:1157 pubmed 出版商
  9. Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed 出版商
  10. Tan P, Xu Y, Du Y, Wu L, Guo B, Huang S, et al. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis. 2019;10:794 pubmed 出版商
  11. Tian M, Gong W, Guo J. Long non-coding RNA SNHG1 indicates poor prognosis and facilitates disease progression in acute myeloid leukemia. Biol Open. 2019;8: pubmed 出版商
  12. Bi J, Yang S, Li L, Dai Q, Borcherding N, Wagner B, et al. Metadherin enhances vulnerability of cancer cells to ferroptosis. Cell Death Dis. 2019;10:682 pubmed 出版商
  13. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  14. Wei C, Zhu M, Zhang P, Yang X, Wang L, Ying J, et al. Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY). 2019;11:6273-6285 pubmed 出版商
  15. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed 出版商
  16. Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, et al. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 2019;9:3879-3902 pubmed 出版商
  17. Smestad J, Maher L. Master regulator analysis of paragangliomas carrying SDHx, VHL, or MAML3 genetic alterations. BMC Cancer. 2019;19:619 pubmed 出版商
  18. Adams C, Htwe H, Marsh T, Wang A, Montoya M, Subbaraj L, et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. elife. 2019;8: pubmed 出版商
  19. Sonego M, Pellarin I, Costa A, Vinciguerra G, Coan M, Kraut A, et al. USP1 links platinum resistance to cancer cell dissemination by regulating Snail stability. Sci Adv. 2019;5:eaav3235 pubmed 出版商
  20. Shi Y, Gao W, Lytle N, Huang P, Yuan X, Dann A, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569:131-135 pubmed 出版商
  21. Vanneste M, Huang Q, Li M, Moose D, Zhao L, STAMNES M, et al. High content screening identifies monensin as an EMT-selective cytotoxic compound. Sci Rep. 2019;9:1200 pubmed 出版商
  22. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  23. Asnaghi L, White D, Key N, Choi J, Mahale A, Alkatan H, et al. ACVR1C/SMAD2 signaling promotes invasion and growth in retinoblastoma. Oncogene. 2019;38:2056-2075 pubmed 出版商
  24. Kinchen J, Chen H, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner Corbett D, et al. Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease. Cell. 2018;175:372-386.e17 pubmed 出版商
  25. Vl kov K, Vachtenheim J, R da J, Hor k P, Ondru ov L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J Cell Mol Med. 2018;22:2240-2251 pubmed 出版商
  26. Wang J, Ye Q, Cao Y, Guo Y, Huang X, Mi W, et al. Snail determines the therapeutic response to mTOR kinase inhibitors by transcriptional repression of 4E-BP1. Nat Commun. 2017;8:2207 pubmed 出版商
  27. Yu R, Longo J, van Leeuwen J, Mullen P, Ba Alawi W, Haibe Kains B, et al. Statin-Induced Cancer Cell Death Can Be Mechanistically Uncoupled from Prenylation of RAS Family Proteins. Cancer Res. 2018;78:1347-1357 pubmed 出版商
  28. Caino M, Seo J, Wang Y, Rivadeneira D, Gabrilovich D, Kim E, et al. Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest. 2017;127:3755-3769 pubmed 出版商
  29. Ma X, Li L, Jia T, Chen M, Liu G, Li C, et al. miR-203a controls keratinocyte proliferation and differentiation via targeting the stemness-associated factor ?Np63 and establishing a regulatory circuit with SNAI2. Biochem Biophys Res Commun. 2017;491:241-249 pubmed 出版商
  30. Viswanathan V, Ryan M, Dhruv H, Gill S, Eichhoff O, Seashore Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453-457 pubmed 出版商
  31. Hiramoto H, Muramatsu T, Ichikawa D, Tanimoto K, Yasukawa S, Otsuji E, et al. miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep. 2017;7:4002 pubmed 出版商
  32. Al Khalaf H, Amir M, Al Mohanna F, Tulbah A, Al Sayed A, Aboussekhra A. Obesity and p16INK4A Downregulation Activate Breast Adipocytes and Promote Their Protumorigenicity. Mol Cell Biol. 2017;37: pubmed 出版商
  33. Samuel W, Jaworski C, Postnikova O, Kutty R, Duncan T, Tan L, et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis. 2017;23:60-89 pubmed
  34. Siddiqui A, Vazakidou M, Schwab A, Napoli F, Fernandez Molina C, Rapa I, et al. Thymidylate synthase is functionally associated with ZEB1 and contributes to the epithelial-to-mesenchymal transition of cancer cells. J Pathol. 2017;242:221-233 pubmed 出版商
  35. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  36. Li X, Liu W, Chen X, Wang Y, Shi D, Zhang H, et al. Overexpression of TMPRSS4 promotes tumor proliferation and aggressiveness in breast cancer. Int J Mol Med. 2017;39:927-935 pubmed 出版商
  37. Zhang L, Liu H, Mu X, Cui J, Peng Z. Dysregulation of Fra1 expression by Wnt/β-catenin signalling promotes glioma aggressiveness through epithelial-mesenchymal transition. Biosci Rep. 2017;37: pubmed 出版商
  38. Brabletz S, Lasierra Losada M, Schmalhofer O, Mitschke J, Krebs A, Brabletz T, et al. Generation and characterization of mice for conditional inactivation of Zeb1. Genesis. 2017;55: pubmed 出版商
  39. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  40. Fletcher C, Godfrey J, Shibakawa A, Bushell M, Bevan C. A novel role for GSK3? as a modulator of Drosha microprocessor activity and MicroRNA biogenesis. Nucleic Acids Res. 2016;: pubmed
  41. Koch K, Hartmann R, Schröter F, Suwala A, Maciaczyk D, Krüger A, et al. Reciprocal regulation of the cholinic phenotype and epithelial-mesenchymal transition in glioblastoma cells. Oncotarget. 2016;7:73414-73431 pubmed 出版商
  42. Chiang K, Hsu S, Lin S, Yeh C, Pang J, Wang S, et al. PTEN Insufficiency Increases Breast Cancer Cell Metastasis In Vitro and In Vivo in a Xenograft Zebrafish Model. Anticancer Res. 2016;36:3997-4005 pubmed
  43. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  44. Fessler E, Drost J, van Hooff S, Linnekamp J, Wang X, Jansen M, et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med. 2016;8:745-60 pubmed 出版商
  45. Chiang K, Yeh T, Chen S, Pang J, Yeh C, Hsu J, et al. The Vitamin D Analog, MART-10, Attenuates Triple Negative Breast Cancer Cells Metastatic Potential. Int J Mol Sci. 2016;17: pubmed 出版商
  46. Tomei P, Masola V, Granata S, Bellin G, Carratu P, Ficial M, et al. Everolimus-induced epithelial to mesenchymal transition (EMT) in bronchial/pulmonary cells: when the dosage does matter in transplantation. J Nephrol. 2016;29:881-891 pubmed
  47. Wu J, Ivanov A, Fisher P, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. elife. 2016;5: pubmed 出版商
  48. Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed 出版商
  49. Chung V, Tan T, Tan M, Wong M, Kuay K, Yang Z, et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep. 2016;6:19943 pubmed 出版商
  50. Haraguchi T, Kondo M, Uchikawa R, Kobayashi K, Hiramatsu H, Kobayashi K, et al. Dynamics and plasticity of the epithelial to mesenchymal transition induced by miR-200 family inhibition. Sci Rep. 2016;6:21117 pubmed 出版商
  51. Liu L, Tong Q, Liu S, Cui J, Zhang Q, Sun W, et al. ZEB1 Upregulates VEGF Expression and Stimulates Angiogenesis in Breast Cancer. PLoS ONE. 2016;11:e0148774 pubmed 出版商
  52. Lehmann W, Mossmann D, Kleemann J, Mock K, Meisinger C, Brummer T, et al. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat Commun. 2016;7:10498 pubmed 出版商
  53. Fazio C, Piazzi G, Vitaglione P, Fogliano V, Munarini A, Prossomariti A, et al. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells. Sci Rep. 2016;6:20670 pubmed 出版商
  54. Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed 出版商
  55. Kulemann B, Liss A, Warshaw A, Seifert S, Bronsert P, Glatz T, et al. KRAS mutations in pancreatic circulating tumor cells: a pilot study. Tumour Biol. 2016;37:7547-54 pubmed 出版商
  56. Terashita K, Chuma M, Hatanaka Y, Hatanaka K, Mitsuhashi T, Yokoo H, et al. ZEB1 expression is associated with prognosis of intrahepatic cholangiocarcinoma. J Clin Pathol. 2016;69:593-9 pubmed 出版商
  57. Chen C, Zhu C, Huang J, Zhao X, Deng R, Zhang H, et al. SUMOylation of TARBP2 regulates miRNA/siRNA efficiency. Nat Commun. 2015;6:8899 pubmed 出版商
  58. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  59. Nath A, Li I, Roberts L, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752 pubmed 出版商
  60. Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, et al. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene. 2016;35:2893-901 pubmed 出版商
  61. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  62. Zhu C, Chen C, Huang J, Zhang H, Zhao X, Deng R, et al. SUMOylation at K707 of DGCR8 controls direct function of primary microRNA. Nucleic Acids Res. 2015;43:7945-60 pubmed 出版商
  63. Preca B, Bajdak K, Mock K, Sundararajan V, Pfannstiel J, Maurer J, et al. A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells. Int J Cancer. 2015;137:2566-77 pubmed 出版商
  64. Zucha M, Wu A, Lee W, Wang L, Lin W, Yuan C, et al. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer. Oncotarget. 2015;6:13255-68 pubmed
  65. Meidhof S, Brabletz S, Lehmann W, Preca B, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-47 pubmed 出版商
  66. Yamada A, Aki T, Unuma K, Funakoshi T, Uemura K. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells. PLoS ONE. 2015;10:e0120192 pubmed 出版商
  67. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  68. Knezevic J, Pfefferle A, Petrovic I, Greene S, Perou C, Rosen J. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene. 2015;34:5997-6006 pubmed 出版商
  69. Joseph J, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens Meijer E, et al. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α-ZEB1 axis. Cancer Lett. 2015;359:107-16 pubmed 出版商
  70. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  71. Tange S, Oktyabri D, Terashima M, Ishimura A, Suzuki T. JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PLoS ONE. 2014;9:e115684 pubmed 出版商
  72. Gong X, Yi J, Carmon K, Crumbley C, Xiong W, Thomas A, et al. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness. Oncogene. 2015;34:4692-701 pubmed 出版商
  73. Xu M, Zhu C, Zhao X, Chen C, Zhang H, Yuan H, et al. Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget. 2015;6:979-94 pubmed
  74. Joseph J, Conroy S, Tomar T, Eggens Meijer E, Bhat K, Copray S, et al. TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 2014;5:e1443 pubmed 出版商
  75. Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell. 2014;26:222-34 pubmed 出版商
  76. Subramani R, Lopez Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE. 2014;9:e97016 pubmed 出版商
  77. Feuerborn A, Mathow D, Srivastava P, Gretz N, Grone H. Basonuclin-1 modulates epithelial plasticity and TGF-?1-induced loss of epithelial cell integrity. Oncogene. 2015;34:1185-95 pubmed 出版商
  78. Wu K, Chen K, Wang C, Jiao X, Wang L, Zhou J, et al. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation. Cancer Res. 2014;74:829-39 pubmed 出版商
  79. Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, et al. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS ONE. 2013;8:e62757 pubmed 出版商
  80. Nordfors K, Haapasalo J, Sallinen P, Haapasalo H, Soini Y. Expression of claudins relates to tumour aggressivity, location and recurrence in ependymomas. Histol Histopathol. 2013;28:1137-46 pubmed 出版商