这是一篇来自已证抗体库的有关人类 肌动蛋白 (actin) 的综述,是根据499篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合肌动蛋白 抗体。
肌动蛋白 同义词: ACTA; ASMA; CFTD; CFTD1; CFTDM; MPFD; NEM1; NEM2; NEM3; SHPM

圣克鲁斯生物技术
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术肌动蛋白抗体(Santa, sc-8432)被用于被用于免疫印迹在人类样本上 (图 4g). Cell Cycle (2020) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 人类; 1:200; 图 1c
圣克鲁斯生物技术肌动蛋白抗体(Santa, CGA7)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1c). Science (2019) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图 2j
圣克鲁斯生物技术肌动蛋白抗体(Santa, sc-1616)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2j). Nat Commun (2019) ncbi
  • 免疫印迹; 人类; 1:1000; 图 5e
圣克鲁斯生物技术肌动蛋白抗体(Santa, I-19)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Front Immunol (2018) ncbi
  • 免疫印迹; 小鼠; 图 1d
圣克鲁斯生物技术肌动蛋白抗体(Santa, sc-1616)被用于被用于免疫印迹在小鼠样本上 (图 1d). J Biol Chem (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2e
圣克鲁斯生物技术肌动蛋白抗体(Santa, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 2e). Sci Rep (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 1d
圣克鲁斯生物技术肌动蛋白抗体(Santa, C-2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Nat Commun (2018) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 1:2500; 图 3a
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, Inc, sc-53142)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 3a). Mol Med Rep (2018) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2017) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫细胞化学; 小鼠; 1:100; 图 5a
  • 免疫印迹; 小鼠; 1:200; 图 5b
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-58671)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 5b). Am J Pathol (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 人类; 1:500
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-53015)被用于被用于免疫组化在人类样本上浓度为1:500. Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, SC-1616)被用于被用于免疫印迹在小鼠样本上 (图 5a). Vascul Pharmacol (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 1
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 6
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:200; 图 1
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, SC-8432)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 6
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, Sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Front Oncol (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
小鼠 单克隆(CGA7)
  • 免疫印迹; 人类; 1:1500; 图 2B
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-53015)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 2B). Mol Med Rep (2016) ncbi
小鼠 单克隆(NH3)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-58679)被用于被用于免疫印迹在人类样本上 (图 2). Biomed Rep (2016) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 小鼠; 图 8
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc53142)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:500; 图 3
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Biofactors (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Exp Ther Med (2016) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-53142)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2). Mol Med Rep (2016) ncbi
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, csc-1616)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(5C5)
  • 免疫印迹; 大鼠; 1:10,000; 图 1h
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-58670)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 1h). Diabetologia (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 2b). elife (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:2000; 图 3
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1000 ng/ml; 图 1
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1000 ng/ml (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(5C5)
  • 免疫组化; 小鼠; 1:100; 图 1
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-58670)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Genes Dev (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术肌动蛋白抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2A
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 2A). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:5000; 图 2
  • 免疫印迹; 大鼠; 1:5000; 图 1
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1). Biochemistry (2015) ncbi
小鼠 单克隆(5C5)
  • 免疫印迹; 小鼠; 1:200; 图 1B
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-58670)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1B). Autophagy (2016) ncbi
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc 1616)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(H-6)
  • 免疫印迹; 大鼠; 1:500; 图 4
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-376421)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 犬; 图 1b
  • 免疫印迹; 犬; 1:1000; 图 s1d
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫细胞化学在犬样本上 (图 1b) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 s1d). Mol Biol Cell (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 2). J Transl Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(NH3)
  • 免疫印迹; 人类; 1:1000; 图 8
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-58679)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 犬; 1:50,000; 图 1
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在犬样本上浓度为1:50,000 (图 1). BMC Cancer (2015) ncbi
  • 免疫印迹; 人类; 1:500; 图 s4
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc 1616)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s4). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 小鼠; 图 3d
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, SC-8432)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Cell Cycle (2015) ncbi
  • 免疫印迹; 人类; 1:2000; 图 4
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, SC1616)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Cell Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(C-2)
  • 染色质免疫沉淀 ; 人类; 图 5
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc8432)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 f6
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, C-2)被用于被用于免疫印迹在小鼠样本上 (图 f6). Sci Signal (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:4000
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 1g
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1g). Int J Obes (Lond) (2015) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(5C5)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-58670)被用于被用于免疫印迹在人类样本上 (图 2). EMBO Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Diabetes (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:3000; 图 6
  • 免疫印迹; 人类; 1:3000; 图 2
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:2000; 图 2
  • 免疫印迹; 人类; 1:2000; 图 1
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432HRP)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术肌动蛋白抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(5C5)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-58670)被用于被用于免疫细胞化学在人类样本上 (图 3). Cytotechnology (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 5
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, SC-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. FASEB J (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术肌动蛋白抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nat Commun (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术肌动蛋白抗体(SantaCruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 小鼠; 1:100; 图 4
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-53015)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术肌动蛋白抗体(santa cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上. Sci Rep (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Am J Respir Cell Mol Biol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotech, sc-8432)被用于被用于免疫印迹在人类样本上. Proteomics (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(5C5)
  • 免疫组化-冰冻切片; 大鼠; 图 3
圣克鲁斯生物技术肌动蛋白抗体(Santa, sc-58670)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 3). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化-石蜡切片; 豚鼠
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-53015)被用于被用于免疫组化-石蜡切片在豚鼠样本上 和 被用于免疫组化-石蜡切片在小鼠样本上. Am J Respir Cell Mol Biol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Cell Biol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:4000
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Exp Neurol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(5C5)
  • 免疫组化-冰冻切片; 大鼠
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz Biotechnology, sc-58670)被用于被用于免疫组化-冰冻切片在大鼠样本上. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上. J Cell Sci (2013) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:500. Eur J Hum Genet (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(B4)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc-53142)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术肌动蛋白抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
圣克鲁斯生物技术肌动蛋白抗体(Santa, Sc-58671)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Cell Death Differ (2012) ncbi
赛默飞世尔
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:4000; 图 1b
赛默飞世尔肌动蛋白抗体(Thermo fisher, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1b). Nature (2019) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:50; 图 2d
赛默飞世尔肌动蛋白抗体(Thermo, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 2d). Nat Commun (2018) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:1000; 图 2e
赛默飞世尔肌动蛋白抗体(Thermo Fisher, MS-1295-P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Nature (2017) ncbi
小鼠 单克隆(5C5.F8.C7 (alpha-Sr-1))
  • 免疫细胞化学; 小鼠; 1:500; 图 s1c
  • 免疫印迹; 小鼠; 1:2500; 图 3a
赛默飞世尔肌动蛋白抗体(Thermo Fisher Scientific, MA5-12542)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1c) 和 被用于免疫印迹在小鼠样本上浓度为1:2500 (图 3a). J Cell Biol (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; S. cerevisiae; 图 2c
赛默飞世尔肌动蛋白抗体(ThermoFisher, MA511866)被用于被用于免疫印迹在S. cerevisiae样本上 (图 2c). Mol Biol Cell (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 斑马鱼; 1:5000; 图 s2e
赛默飞世尔肌动蛋白抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在斑马鱼样本上浓度为1:5000 (图 s2e). Dis Model Mech (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:100; 图 1b
赛默飞世尔肌动蛋白抗体(Invitrogen, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1b). Clin Sci (Lond) (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 5g
赛默飞世尔肌动蛋白抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 5g). J Cell Physiol (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:300; 图 2
赛默飞世尔肌动蛋白抗体(Thermo Fisher Scientific, Ab-5)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; S. cerevisiae; 图 2
赛默飞世尔肌动蛋白抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在S. cerevisiae样本上 (图 2). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类; 1:500; 图 1a
赛默飞世尔肌动蛋白抗体(Pierce, MA1-744)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1a). DNA Repair (Amst) (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 1
赛默飞世尔肌动蛋白抗体(Neo Markers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫沉淀; 大鼠; 图 2
赛默飞世尔肌动蛋白抗体(Thermo scientific, MA1-744)被用于被用于免疫沉淀在大鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 拟南芥; 图 1
赛默飞世尔肌动蛋白抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在拟南芥样本上 (图 1). Plant Physiol (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 猪; 图 2c
赛默飞世尔肌动蛋白抗体(Thermo Scientific, mAbGEa)被用于被用于免疫印迹在猪样本上 (图 2c). PLoS ONE (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 3b
赛默飞世尔肌动蛋白抗体(Thermo Scientific, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 3b). Antimicrob Agents Chemother (2016) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; domestic rabbit; 1:4; 图 1
赛默飞世尔肌动蛋白抗体(ThermoFisher Scientific, MA5-14084)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:4 (图 1). Acta Histochem (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:3000; 图 3
  • 免疫印迹; 小鼠; 1:3000; 图 1
赛默飞世尔肌动蛋白抗体(Thermo Scientific, Ab-5)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1). elife (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; S. cerevisiae; 1:1000; 图 3
赛默飞世尔肌动蛋白抗体(Thermo Fisher scientific, mAbGEa)被用于被用于免疫印迹在S. cerevisiae样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 1
赛默飞世尔肌动蛋白抗体(Thermo Scientific, MS-1295-P1)被用于被用于免疫印迹在人类样本上 (图 1). J Virol (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 犬; 图 8
赛默飞世尔肌动蛋白抗体(Neomarkers, pan Ab-5)被用于被用于免疫印迹在犬样本上 (图 8). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔肌动蛋白抗体(Thermo Scientific, mAbGEa)被用于被用于免疫印迹在小鼠样本上 (图 2). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:10,000; 图 3
赛默飞世尔肌动蛋白抗体(Pierce Biotechnology, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔肌动蛋白抗体(Thermo Scientific, MA5-11869)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 黑腹果蝇; 1:4000; 图 9
赛默飞世尔肌动蛋白抗体(Thermo Scientific, MA5-11869))被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:4000 (图 9). PLoS Biol (2015) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; S. cerevisiae; 1:1000; 图 2, 4
赛默飞世尔肌动蛋白抗体(Fisher, MA1-744)被用于被用于免疫印迹在S. cerevisiae样本上浓度为1:1000 (图 2, 4). Nat Commun (2015) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 拟南芥; 1:1000; 图 1
赛默飞世尔肌动蛋白抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在拟南芥样本上浓度为1:1000 (图 1). Plant Physiol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:500; 图 5a
赛默飞世尔肌动蛋白抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Eur J Pharmacol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔肌动蛋白抗体(Lab Vision, Ab-5)被用于被用于免疫印迹在人类样本上. J Transl Med (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔肌动蛋白抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Ethnopharmacol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠
赛默飞世尔肌动蛋白抗体(Thermo Scientific, ACTN05)被用于被用于免疫印迹在小鼠样本上. Eur J Nutr (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类; 1:1000; 图 6
赛默飞世尔肌动蛋白抗体(Thermo Fisher, MA1-744)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(mAbGEa)
赛默飞世尔肌动蛋白抗体(Fisher, MA1-744)被用于. Traffic (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:10,000; 图 5
赛默飞世尔肌动蛋白抗体(分子探针, C4)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 1,2,3,4,5,6
赛默飞世尔肌动蛋白抗体(neomarkers, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 1,2,3,4,5,6). Breast Cancer Res (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔肌动蛋白抗体(NeoMarkers, ACTN05)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(MSA06 (HUC1-1))
  • 免疫组化-石蜡切片; 大西洋鲑鱼; 图 5a
赛默飞世尔肌动蛋白抗体(Thermo Fisher Scientific, MS-1296-P)被用于被用于免疫组化-石蜡切片在大西洋鲑鱼样本上 (图 5a). J Fish Dis (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 黑腹果蝇; 1:4000
赛默飞世尔肌动蛋白抗体(Thermo Scientific, MA5-11869)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:4000. Mech Dev (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 犬; 1:2000
赛默飞世尔肌动蛋白抗体(Thermo, MS-1295-P1)被用于被用于免疫印迹在犬样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
赛默飞世尔肌动蛋白抗体(Thermo Fisher Scientific, MS-1295-P1ABX)被用于. Am J Pathol (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔肌动蛋白抗体(NeoMarkers, MS-1295-P1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Cell Physiol (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔肌动蛋白抗体(Thermo Scientific, MS1295P1)被用于被用于免疫印迹在小鼠样本上 (图 1). Front Cell Infect Microbiol (2013) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠
赛默飞世尔肌动蛋白抗体(Thermo Fisher, ACTN05)被用于被用于免疫印迹在小鼠样本上. Cancer Prev Res (Phila) (2014) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类
赛默飞世尔肌动蛋白抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化; 人类; 1:100; 表 1
赛默飞世尔肌动蛋白抗体(Neomarker, HHF-35)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). Int J Surg Pathol (2014) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 非洲爪蛙
赛默飞世尔肌动蛋白抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在非洲爪蛙样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 3
赛默飞世尔肌动蛋白抗体(Lab Vision, Ab-5)被用于被用于免疫印迹在人类样本上 (图 3). Exp Cell Res (2010) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔肌动蛋白抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2010) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 8
赛默飞世尔肌动蛋白抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 8). Neuropathology (2009) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 4
赛默飞世尔肌动蛋白抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 4). Mol Hum Reprod (2008) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 大鼠; 1:1000
  • 免疫印迹; 人类; 1:1000
赛默飞世尔肌动蛋白抗体(LabVision, ACTN05)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Brain (2007) ncbi
艾博抗(上海)贸易有限公司
  • 免疫印迹; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司肌动蛋白抗体(Abcam, ab16039)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 家羊; 1:1000; 图 3
艾博抗(上海)贸易有限公司肌动蛋白抗体(Abcam, ab1801)被用于被用于免疫印迹在家羊样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫组化; 小鼠; 图 5
艾博抗(上海)贸易有限公司肌动蛋白抗体(Abcam, ab28052)被用于被用于免疫组化在小鼠样本上 (图 5). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司肌动蛋白抗体(Abcam, Ab1801)被用于被用于免疫印迹在人类样本上 (图 1). BMC Mol Biol (2016) ncbi
大鼠 单克隆(MAC 237)
  • 免疫组化; 小鼠; 1:300; 图 2
艾博抗(上海)贸易有限公司肌动蛋白抗体(Abcam, ab50591)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2). Stem Cell Reports (2015) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司肌动蛋白抗体(Abcam, alpha-Sr1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2015) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫细胞化学; 小鼠; 1:50
艾博抗(上海)贸易有限公司肌动蛋白抗体(Abcam, ab28052)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Methods Mol Biol (2015) ncbi
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司肌动蛋白抗体(Abcam, ab16039)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Ther Med (2015) ncbi
  • 免疫印迹; 人类; 1:200; 图 3
艾博抗(上海)贸易有限公司肌动蛋白抗体(Abcam, ab16039)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3). Oncol Lett (2015) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫印迹; 小鼠; 1:2000
艾博抗(上海)贸易有限公司肌动蛋白抗体(Abcam, ab28052)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Am J Physiol Heart Circ Physiol (2013) ncbi
大鼠 单克隆(MAC 237)
  • 免疫组化-石蜡切片; 美国蟑螂; 1:250
  • 免疫组化-石蜡切片; 歪尾派; 1:250
艾博抗(上海)贸易有限公司肌动蛋白抗体(Abcam, ab50591)被用于被用于免疫组化-石蜡切片在美国蟑螂样本上浓度为1:250 和 被用于免疫组化-石蜡切片在歪尾派样本上浓度为1:250. J Comp Neurol (2012) ncbi
Enzo Life Sciences
小鼠 单克隆(HHF35)
  • 免疫组化-冰冻切片; 人类; 图 4
Enzo Life Sciences肌动蛋白抗体(Enzo Diagnostics, ENZ-C34931)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; 人类; 1:20
Enzo Life Sciences肌动蛋白抗体(Enzo, HHF-35)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. World J Gastroenterol (2015) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化; 人类; 1:100
Enzo Life Sciences肌动蛋白抗体(Enzo Life Sciences, HHF35)被用于被用于免疫组化在人类样本上浓度为1:100. Head Neck Pathol (2015) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; 人类
Enzo Life Sciences肌动蛋白抗体(Enzo Life Sciences, ENZ-30931)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; 人类; 1:200
Enzo Life Sciences肌动蛋白抗体(Enzo Life Sciences, HHF35)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Pathol Int (2013) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化; 人类; 1:50
Enzo Life Sciences肌动蛋白抗体(Enzo Life Sciences, HHF35)被用于被用于免疫组化在人类样本上浓度为1:50. Pathol Int (2011) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(C4)
  • 免疫印迹; 日本脑炎病毒; 图 3
亚诺法生技股份有限公司肌动蛋白抗体(Abnova, MAB8172)被用于被用于免疫印迹在日本脑炎病毒样本上 (图 3). J Virol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:10,000
亚诺法生技股份有限公司肌动蛋白抗体(Abnova, MAB8172)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:10,000. EMBO J (2014) ncbi
Novus Biologicals
小鼠 单克隆(mAbGEa)
Novus Biologicals肌动蛋白抗体(Novus, NB100-74340)被用于. PLoS ONE (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇肌动蛋白抗体(Sigma, A-3853)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2020) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:20,000; 图 4e
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 4e). Sci Adv (2019) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇肌动蛋白抗体(Millipore, A3853)被用于被用于免疫印迹在人类样本上 (图 3c). Cell (2019) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s3a
西格玛奥德里奇肌动蛋白抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 s3a). PLoS Pathog (2018) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:10,000; 图 1c
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1c). Autophagy (2018) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在人类样本上浓度为1:10,000. BMC Biol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在人类样本上 (图 2). J Virol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:2000; 图 2a
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, A3853)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:3000; 图 s3
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇肌动蛋白抗体(Sigma, A-3853)被用于被用于免疫印迹在人类样本上 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:2000; 图 3
西格玛奥德里奇肌动蛋白抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 5
  • 免疫印迹; 小鼠; 1:10,000; 图 4
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:500; 图 2
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, A3853)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Arthritis Res Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7
西格玛奥德里奇肌动蛋白抗体(Sigma, A2668)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Theranostics (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在人类样本上 (图 4). Osteoarthritis Cartilage (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇肌动蛋白抗体(Sigma Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在人类样本上 (图 3). Nature (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:10,000; 图 s6
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(MM2/193)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇肌动蛋白抗体(Sigma, SAB4200248)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4
西格玛奥德里奇肌动蛋白抗体(Sigma, A2668)被用于被用于免疫印迹在小鼠样本上 (图 s4). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 4d
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在小鼠样本上 (图 4d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 表 1
西格玛奥德里奇肌动蛋白抗体(Sigma, A2668)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (表 1). J Alzheimers Dis (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 s1
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:5000; 图 2
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
西格玛奥德里奇肌动蛋白抗体(Sigma, A2668)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Int J Biochem Cell Biol (2016) ncbi
小鼠 单克隆(AC-40)
  • 其他; 人类; 图 st1
西格玛奥德里奇肌动蛋白抗体(SIGMA, AC-40)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇肌动蛋白抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:30,000; 图 1
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在小鼠样本上浓度为1:30,000 (图 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇肌动蛋白抗体(Sigma Aldrich, ac-40)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Oncol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 鸡; 1:6000; 图 9
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, A3853)被用于被用于免疫印迹在鸡样本上浓度为1:6000 (图 9). Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 犬; 1:1000; 图 2
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, A3853)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 2). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在人类样本上 (图 2). Sci Adv (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇肌动蛋白抗体(Sigma, AC-40)被用于被用于免疫印迹在小鼠样本上 (图 7). Am J Physiol Renal Physiol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:5000; 图 1
  • 免疫印迹; 大鼠; 1:5000; 图 3
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 s7
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上 (图 s7). Nat Immunol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 2
西格玛奥德里奇肌动蛋白抗体(Sigma, A 3853)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 非洲爪蛙; 1:800; 图 3
西格玛奥德里奇肌动蛋白抗体(Sigma, Ac-40)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:800 (图 3). Protoplasma (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇肌动蛋白抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS Pathog (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, A3853)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:10000
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在小鼠样本上浓度为1:10000. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在大鼠样本上 (图 3). BMC Neurosci (2015) ncbi
小鼠 单克隆(HHF-35)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇肌动蛋白抗体(Sigma, HHF-35)被用于被用于免疫组化-石蜡切片在人类样本上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cell Biol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 s5
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000; 图 4
西格玛奥德里奇肌动蛋白抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在人类样本上. Hum Mol Genet (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, A3853)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich-Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上. J Am Soc Nephrol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在人类样本上 (图 4). Cell Death Dis (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:500; 图 8
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8). J Cell Biol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇肌动蛋白抗体(Sigma, A 3853)被用于被用于免疫印迹在小鼠样本上 (图 1). J Vasc Surg (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neuropharmacology (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 s5
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在小鼠样本上 (图 s5). Sci Transl Med (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s3
西格玛奥德里奇肌动蛋白抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 s3). Aging Cell (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇肌动蛋白抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:20000
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, AC40)被用于被用于免疫印迹在小鼠样本上浓度为1:20000. Neurobiol Dis (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇肌动蛋白抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上 (图 6). Oncogene (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, A3853)被用于被用于免疫印迹在人类样本上浓度为1:2000. Int J Cancer (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, AC40)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇肌动蛋白抗体(Sigma Aldrich, #AC40)被用于被用于免疫印迹在小鼠样本上 (图 4). Cancer Med (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:2500; 图 1
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, A3853)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 1). Neuroreport (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇肌动蛋白抗体(Sigma Aldrich, A3853)被用于被用于免疫印迹在人类样本上. Neuro Oncol (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇肌动蛋白抗体(Sigma, A3853)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, AC40)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Mol Cells (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:25000
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, A3853)被用于被用于免疫印迹在小鼠样本上浓度为1:25000. Liver Int (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:250; 图 4
西格玛奥德里奇肌动蛋白抗体(Sigma-Aldrich, A3853)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (图 4). PLoS ONE (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠
西格玛奥德里奇肌动蛋白抗体(Sigma, AC40)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 斑马鱼; 1:1000
西格玛奥德里奇肌动蛋白抗体(Sigma, AC40)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000. Dev Biol (2012) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(Alpha-Sr-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 st1
  • 免疫组化-石蜡切片; 大鼠; 1:10; 图 st1
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, M0874)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 st1) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:10 (图 st1). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 st1
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st1
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, M0635)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 st1) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st1). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(Alpha-Sr-1)
  • 免疫细胞化学; 人类; 图 5c
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(DAKO, M0874)被用于被用于免疫细胞化学在人类样本上 (图 5c). Cell Cycle (2017) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; 人类; 图 5A
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, M-0635)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5A). PLoS Genet (2016) ncbi
小鼠 单克隆(Alpha-Sr-1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 2
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako Cytomation, M0874)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化; 大鼠; 图 4
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, M0635)被用于被用于免疫组化在大鼠样本上 (图 4). Injury (2016) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; domestic rabbit
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, M0635)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上. Clin Exp Pharmacol Physiol (2015) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-冰冻切片; 小鼠; 图 10
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(DAKO, M0635)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 10). Dev Biol (2015) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(DakoCytomation, M0635)被用于被用于免疫组化在人类样本上浓度为1:100. Histopathology (2015) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, M0635)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100. Int J Exp Pathol (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, HHF35)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Nat Genet (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, M0635)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Exp Mol Med (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(DAKO, HHF35)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Neuropathology (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; 牛
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, M0635)被用于被用于免疫组化-石蜡切片在牛样本上. Int J Mol Sci (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化; domestic rabbit; 1:200
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, HHF-35)被用于被用于免疫组化在domestic rabbit样本上浓度为1:200. Hum Gene Ther Methods (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, HHF35)被用于被用于免疫组化在人类样本上浓度为1:50. Fetal Pediatr Pathol (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, M-0635)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Hum Genet (2013) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; 大鼠; 1:300; 表 3
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(dako, M0635)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (表 3). Dis Model Mech (2013) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, HHF35)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Surg Pathol (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司肌动蛋白抗体(Dako, HHF35)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Surg Pathol (2009) ncbi
Phosphosolutions
  • 免疫印迹; 人类
Phosphosolutions肌动蛋白抗体(Phosphosolutions, 125-ACT)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
Bioworld
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 1
Bioworld肌动蛋白抗体(Bioworld Technology Inc., BS1002)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1). Mol Med Rep (2016) ncbi
默克密理博中国
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1b
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 1b). Breast Cancer Res (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 s6b
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6b). Sci Adv (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10,000; 图 6s1b
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6s1b). elife (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2000; 图 5k
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5k). Nat Cell Biol (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
默克密理博中国肌动蛋白抗体(Merck Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Nat Commun (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:5000; 图 3b
默克密理博中国肌动蛋白抗体(millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3b). Sci Rep (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; root; 图 5b
默克密理博中国肌动蛋白抗体(Milipore, MAB1501)被用于被用于免疫印迹在root样本上 (图 5b). Exp Eye Res (2018) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3f
默克密理博中国肌动蛋白抗体(Calbiochem, CP01)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3f). J Clin Invest (2018) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5A
默克密理博中国肌动蛋白抗体(Millipore, MAB 1501R)被用于被用于免疫印迹在人类样本上 (图 5A). BMC Med Genomics (2017) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 7f
默克密理博中国肌动蛋白抗体(EMD Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上 (图 7f). J Cell Biol (2017) ncbi
小鼠 单克隆(C4)
  • 免疫沉淀; 人类; 图 3a
  • 免疫印迹; 人类; 图 1b
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫沉淀在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 2). Int J Mol Sci (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 s2
默克密理博中国肌动蛋白抗体(millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上 (图 s2). Cell (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 s1
默克密理博中国肌动蛋白抗体(millipore, MAB1501R)被用于被用于免疫印迹在人类样本上 (图 s1). Cell (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:10,000; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10,000; 图 4
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10,000; 图 4
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). Free Radic Biol Med (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 空肠弯曲杆菌; 1:2000; 图 4
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在空肠弯曲杆菌样本上浓度为1:2000 (图 4). mSphere (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫印迹在小鼠样本上 (图 1). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
默克密理博中国肌动蛋白抗体(Chemicon, 1501)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Cell Int (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 5
默克密理博中国肌动蛋白抗体(Calbiochem, CP01)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 5). Oncogenesis (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 3
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫印迹在人类样本上 (图 1). J Virol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:20,000; 图 1
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501R)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5000; 图 3
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Ann Clin Transl Neurol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 3). Onco Targets Ther (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 7
默克密理博中国肌动蛋白抗体(millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 7). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:4000; 图 9
默克密理博中国肌动蛋白抗体(merck Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 9). PLoS ONE (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 黑腹果蝇; 1:5000; 图 1
默克密理博中国肌动蛋白抗体(Merk Millipore, AB1501R)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:5000 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在大鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2
默克密理博中国肌动蛋白抗体(EMD Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上 (图 2). Endocrinology (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 6
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 6). Mol Cell Biol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 6
  • 免疫印迹; 小鼠; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
默克密理博中国肌动蛋白抗体(millipore, C4)被用于被用于免疫印迹在人类样本上 (图 2). Mol Biol Cell (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2000; 图 4
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). BMC Biol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 1). Front Pharmacol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:10,000; 图 2
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 2). Int J Mol Sci (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2
默克密理博中国肌动蛋白抗体(Calbiochem, cp01)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(C4)
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于. elife (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 1). Int J Cancer (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Death Differ (2016) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 人类; 图 s5
默克密理博中国肌动蛋白抗体(Merck Millipore, JLA20)被用于被用于免疫印迹在人类样本上 (图 s5). Oncotarget (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1a
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501R)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Cell Sci (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 3e
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上 (图 3e). Mol Metab (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 4
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5000; 图 3
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). J Neurochem (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:20,000; 图 4b
默克密理博中国肌动蛋白抗体(Chemicon Int, mAB1501)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 4b). Nat Commun (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:50,000; 图 1
  • 免疫印迹; 小鼠; 1:50,000; 图 7
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 7). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:5000; 图 1
默克密理博中国肌动蛋白抗体(Calbiochem, CP01)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 仓鼠; 1:5000; 图 5
  • 免疫印迹; 大鼠; 1:5000; 图 4
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在仓鼠样本上浓度为1:5000 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4). Int J Neuropsychopharmacol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:10,000; 图 3
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3). Int J Cancer (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(Millipore, CP01)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Sci (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在人类样本上 (图 3). J Mol Cell Biol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2
默克密理博中国肌动蛋白抗体(Merck Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5
默克密理博中国肌动蛋白抗体(Chemicon, MAB 150 1R)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 人类; 图 2
  • 免疫印迹; 小鼠; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MABT219)被用于被用于免疫印迹在人类样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 s4
默克密理博中国肌动蛋白抗体(calbiochem, CP01)被用于被用于免疫印迹在人类样本上 (图 s4). Nature (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 5a
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上 (图 5a). ScientificWorldJournal (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上 (图 1). Dev Dyn (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. Nature (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Sci (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 2
默克密理博中国肌动蛋白抗体(Merk Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(Merck-Milipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 1). Arthritis Res Ther (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 黑腹果蝇; 1:10,000; 图 s3i
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:10,000 (图 s3i). PLoS Genet (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 6f
默克密理博中国肌动蛋白抗体(EMD Millipore, C4)被用于被用于免疫印迹在人类样本上 (图 6f). MBio (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5000; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Mol Neurodegener (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 s8
默克密理博中国肌动蛋白抗体(Millipore, MAB 1501R)被用于被用于免疫印迹在小鼠样本上 (图 s8). Sci Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; domestic rabbit; 1:5000; 图 2
默克密理博中国肌动蛋白抗体(Merck-Millipore, MAB1501)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:5000 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 6
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Mol Neurodegener (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:10,000; 图 2b
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2b). Endocrinology (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(EMD Millipore, C4)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫细胞化学; 人类; 1:700; 图 5
  • 免疫印迹; 人类; 1:500; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫细胞化学在人类样本上浓度为1:700 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Int J Oncol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫细胞化学; 大鼠; 1:250; 图 1b
  • 免疫印迹; 大鼠; 1:500; 图 5f
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 1b) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 5f). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在人类样本上 (图 5). PLoS Genet (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 图 5
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在大鼠样本上 (图 5). Nutr Neurosci (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10,000; 图 5
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(Millipore, JLA20)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:2000; 图 2e
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2e). Front Behav Neurosci (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10,000; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). J Pineal Res (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:1000; 图 5
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Am J Physiol Renal Physiol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 3
  • 免疫印迹; 人类; 图 3
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 5). Nat Cell Biol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2a
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 2a). Epigenetics (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
默克密理博中国肌动蛋白抗体(Merck Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上. Nutrients (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:700
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:700. Biomed Res Int (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1
默克密理博中国肌动蛋白抗体(Chemicon, 1501)被用于被用于免疫印迹在小鼠样本上 (图 1). Drug Metab Dispos (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫细胞化学; 人类; 1:100
默克密理博中国肌动蛋白抗体(EMD Millipore, MAB1501R)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Cell Mol Bioeng (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
默克密理博中国肌动蛋白抗体(EMD Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 s7
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 s7). Nature (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在大鼠样本上. Cell Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫细胞化学; 小鼠; 图 6
默克密理博中国肌动蛋白抗体(Chemicon International, C4)被用于被用于免疫细胞化学在小鼠样本上 (图 6). Mol Biol Cell (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5c
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在人类样本上 (图 5c). PLoS Pathog (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 表 s3
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫印迹在人类样本上 (表 s3). Cell Death Dis (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5
默克密理博中国肌动蛋白抗体(Chemicon, C4)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Res (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:500; 图 3
  • 免疫印迹; 人类; 1:500; 图 7
默克密理博中国肌动蛋白抗体(Calbiochem, CP01)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10,000; 图 2
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Cancer Gene Ther (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10,000; 图 2
默克密理博中国肌动蛋白抗体(MP Biomedicals, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Am J Physiol Gastrointest Liver Physiol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). BMC Neurosci (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(EMD Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 4g
  • 免疫印迹; 人类; 图 3c
默克密理博中国肌动蛋白抗体(Chemicon International, MAB1501R)被用于被用于免疫印迹在小鼠样本上 (图 4g) 和 被用于免疫印迹在人类样本上 (图 3c). J Clin Invest (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(EMD Millipore, C4)被用于被用于免疫印迹在人类样本上 (图 1). Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5000; 图 s7
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s7). Nature (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 s4
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在人类样本上 (图 s4). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:20000
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫印迹在小鼠样本上浓度为1:20000. Neuropharmacology (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:7500; 表 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在大鼠样本上浓度为1:7500 (表 1). Alcohol Clin Exp Res (2015) ncbi
小鼠 单克隆(C4)
  • 免疫细胞化学; 人类; 1:700; 图 4
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫细胞化学在人类样本上浓度为1:700 (图 4). Tumour Biol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:10000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在大鼠样本上浓度为1:10000. J Neurosci (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 4
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上 (图 4). Chem Biol Interact (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫印迹在人类样本上 (图 2). Cell Signal (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 5). Biomed Res Int (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(Merck Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 1). Oncol Lett (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:5000
默克密理博中国肌动蛋白抗体(Merck Millipore, CP01-1EA)被用于被用于免疫印迹在人类样本上浓度为1:5000. Chembiochem (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:10000. Oncoscience (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 1). J Virol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:500; 图 4
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). J Leukoc Biol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
默克密理博中国肌动蛋白抗体(Millipore, MAB 1501)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. DNA Repair (Amst) (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:100000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:100000. J Neurosci (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
默克密理博中国肌动蛋白抗体(millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 仓鼠
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在仓鼠样本上. Front Cell Infect Microbiol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫印迹在人类样本上 (图 5). J Neurosci (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 7
默克密理博中国肌动蛋白抗体(EMD Millipore, C4)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Neurosci (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Neurosci (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 4
默克密理博中国肌动蛋白抗体(EMD Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上 (图 4). Cell Death Dis (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:10,000
默克密理博中国肌动蛋白抗体(Millipore, MAb1501)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. J Biol Chem (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; redtail notho; 1:10000
默克密理博中国肌动蛋白抗体(Chemicon, mab1501)被用于被用于免疫印迹在redtail notho样本上浓度为1:10000. Rejuvenation Res (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:10000. Oncotarget (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 3
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上 (图 3). Front Aging Neurosci (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:2,000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在大鼠样本上浓度为1:2,000. J Comp Neurol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 仓鼠; 1:5000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在仓鼠样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 黑腹果蝇; 图 3
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在黑腹果蝇样本上 (图 3). Dis Model Mech (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:50,000; 图 1
默克密理博中国肌动蛋白抗体(Merck Millipore, MAB 1501)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 1). Nat Commun (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上. Mol Cell Neurosci (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:10000
默克密理博中国肌动蛋白抗体(Millipore, MAB 1501R)被用于被用于免疫印迹在小鼠样本上浓度为1:10000. BMC Neurosci (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 0.2 ug/ml; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为0.2 ug/ml (图 1). Nat Commun (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:40000
  • 免疫印迹; 人类; 1:40000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在大鼠样本上浓度为1:40000 和 被用于免疫印迹在人类样本上浓度为1:40000. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在大鼠样本上. Basic Res Cardiol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:10000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在大鼠样本上浓度为1:10000. Mol Pain (2014) ncbi
小鼠 单克隆(C4)
  • 流式细胞仪; 人类; 1:10000
  • 免疫沉淀; 人类; 1:10000
  • 免疫印迹; 人类; 1:10000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于流式细胞仪在人类样本上浓度为1:10000, 被用于免疫沉淀在人类样本上浓度为1:10000 和 被用于免疫印迹在人类样本上浓度为1:10000. Nat Commun (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:5,000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:5,000. Sci Rep (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:4000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. Hippocampus (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10000
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫印迹在人类样本上浓度为1:10000. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国肌动蛋白抗体(EDM Millipore, AB1501R)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Mol Sci (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:5000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:20000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:20000. J Neurosci (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. Proteomics (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1i
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在人类样本上 (图 1i). J Biol Chem (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:5000
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. BMC Complement Altern Med (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:100000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:100000. Nat Commun (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 黑腹果蝇
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在黑腹果蝇样本上. Hum Mol Genet (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. Exp Cell Res (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:500
默克密理博中国肌动蛋白抗体(Merck Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Lab Invest (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. Blood (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Neurosci (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5000
默克密理博中国肌动蛋白抗体(Chemicon International, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Int J Cancer (2014) ncbi
小鼠 单克隆(C4)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在人类样本上. Cell (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在小鼠样本上. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:3000000
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在大鼠样本上浓度为1:3000000. PLoS ONE (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:3000000
默克密理博中国肌动蛋白抗体(Merck Millipore, MAB1501)被用于被用于免疫印迹在大鼠样本上浓度为1:3000000. Anim Sci J (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:10,000; 图 4
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). J Biol Chem (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:1000. Virology (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:10,000
默克密理博中国肌动蛋白抗体(Chemicon, mAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Brain Struct Funct (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000
  • 免疫印迹; African green monkey; 1:1000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 和 被用于免疫印迹在African green monkey样本上浓度为1:1000. J Biol Chem (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 s1
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上. ACS Chem Biol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在大鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(C4)
  • 免疫组化-石蜡切片; 小鼠; 1:500
默克密理博中国肌动蛋白抗体(Millipore, C4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. J Comp Neurol (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:6000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501R)被用于被用于免疫印迹在小鼠样本上浓度为1:6000. J Biol Chem (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(CHEMICON International, C4)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(C4)
  • 免疫组化; 大鼠; 1:5000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫组化在大鼠样本上浓度为1:5000. Eur J Neurosci (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Exp Cell Res (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上 (图 1). Diabetes (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1,000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:1,000. Am J Physiol Renal Physiol (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. Evid Based Complement Alternat Med (2012) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 5a
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上 (图 5a). Wound Repair Regen (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Chemicon International, MAB 1501)被用于被用于免疫印迹在人类样本上. Neuro Oncol (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5000
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Radiother Oncol (2012) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:20000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:20000. PLoS ONE (2012) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5000; 图 1
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). J Biol Chem (2012) ncbi
小鼠 单克隆(C4)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1,000
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上浓度为1:1,000. Invest Ophthalmol Vis Sci (2012) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上 (图 2). J Virol (2011) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2011) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 猪; 图 4
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在猪样本上 (图 4). Mol Cell Proteomics (2011) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫印迹在人类样本上. Am J Physiol Endocrinol Metab (2011) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
默克密理博中国肌动蛋白抗体(Millipore, mab1501)被用于被用于免疫印迹在人类样本上. Cell Res (2011) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:20000
默克密理博中国肌动蛋白抗体(Chemicon, MAB1501)被用于被用于免疫印迹在小鼠样本上浓度为1:20000. J Comp Neurol (2010) ncbi
小鼠 单克隆(C4)
  • 免疫组化-石蜡切片; marine lamprey
默克密理博中国肌动蛋白抗体(Millipore, MAB1501)被用于被用于免疫组化-石蜡切片在marine lamprey样本上. J Comp Neurol (2009) ncbi
碧迪BD
小鼠 单克隆(C4/actin)
  • 免疫印迹; 小鼠; 图 7a
碧迪BD肌动蛋白抗体(BD Transduction Laboratories, 612657)被用于被用于免疫印迹在小鼠样本上 (图 7a). PLoS ONE (2016) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 小鼠; 图 3
碧迪BD肌动蛋白抗体(BD Transduction Laboratories, 612656)被用于被用于免疫印迹在小鼠样本上 (图 3). Autophagy (2016) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 人类; 1:30,000; 图 1
碧迪BD肌动蛋白抗体(BD Biosciences, 612656)被用于被用于免疫印迹在人类样本上浓度为1:30,000 (图 1). J Natl Cancer Inst (2016) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 小鼠; 1:5000; 图 1
碧迪BD肌动蛋白抗体(BD Transduction Laboratories, 612657)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). J Lipid Res (2016) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 人类; 1:5000; 图 4
碧迪BD肌动蛋白抗体(BD, 612656)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Front Pharmacol (2016) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 人类; 图 1
碧迪BD肌动蛋白抗体(BD Biosciences, 612656)被用于被用于免疫印迹在人类样本上 (图 1). Mol Autism (2015) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 小鼠; 图 1
碧迪BD肌动蛋白抗体(Becton Dickinson, 612656)被用于被用于免疫印迹在小鼠样本上 (图 1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 鸡; 1:1000
碧迪BD肌动蛋白抗体(BD Bioscience, 612656)被用于被用于免疫印迹在鸡样本上浓度为1:1000. Biosci Biotechnol Biochem (2015) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 人类; 图 5
碧迪BD肌动蛋白抗体(BD Transduction Laboratories, 612656)被用于被用于免疫印迹在人类样本上 (图 5). BMC Genomics (2015) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 人类; 1:1000; 图 2b
碧迪BD肌动蛋白抗体(BD Scientific, 612656)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2015) ncbi
小鼠 单克隆(C4/actin)
  • 其他; 人类; 图 2
碧迪BD肌动蛋白抗体(BD Biosciences, 612656)被用于被用于其他在人类样本上 (图 2). J Extracell Vesicles (2015) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 人类; 1:2000
碧迪BD肌动蛋白抗体(BD Biosciences, 612656)被用于被用于免疫印迹在人类样本上浓度为1:2000. Br J Pharmacol (2015) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 小鼠; 1:5000; 图 1
碧迪BD肌动蛋白抗体(BD Transduction Laboratories, 612657)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 人类
碧迪BD肌动蛋白抗体(BD Biosciences, 612656)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 人类
碧迪BD肌动蛋白抗体(BD Biosciences, 612656)被用于被用于免疫印迹在人类样本上. Angiogenesis (2014) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 小鼠
碧迪BD肌动蛋白抗体(BD, 612656)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 人类; 1:1000
碧迪BD肌动蛋白抗体(BD, 612656)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Virol (2013) ncbi
小鼠 单克隆(C4/actin)
  • 免疫印迹; 小鼠
碧迪BD肌动蛋白抗体(BD Biosciences, 612656)被用于被用于免疫印迹在小鼠样本上. Exp Cell Res (2013) ncbi
MBL International
  • 免疫印迹; 人类; 图 1b
MBL International肌动蛋白抗体(MBL, M177-3)被用于被用于免疫印迹在人类样本上 (图 1b). Cancers (Basel) (2020) ncbi
  • 免疫印迹; 人类; 1:2000; 图 s10
MBL International肌动蛋白抗体(MBL, M177-3)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s10). Nat Commun (2015) ncbi
文章列表
  1. González Rodríguez P, Engskog Vlachos P, Zhang H, Murgoci A, Zerdes I, Joseph B. SETD2 mutation in renal clear cell carcinoma suppress autophagy via regulation of ATG12. Cell Death Dis. 2020;11:69 pubmed 出版商
  2. Teng J, Mei Q, Zhou X, Tang Y, Xiong R, Qiu W, et al. Polyphyllin VI Induces Caspase-1-Mediated Pyroptosis via the Induction of ROS/NF-κB/NLRP3/GSDMD Signal Axis in Non-Small Cell Lung Cancer. Cancers (Basel). 2020;12: pubmed 出版商
  3. Singh V, Khalil M, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle. 2020;19:363-375 pubmed 出版商
  4. Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn Ng I, et al. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci Adv. 2019;5:eaax2705 pubmed 出版商
  5. Zoi I, Karamouzis M, Xingi E, Sarantis P, Thomaidou D, Lembessis P, et al. Combining RANK/RANKL and ERBB-2 targeting as a novel strategy in ERBB-2-positive breast carcinomas. Breast Cancer Res. 2019;21:132 pubmed 出版商
  6. Wegmann S, Bennett R, Delorme L, Robbins A, Hu M, McKenzie D, et al. Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv. 2019;5:eaaw6404 pubmed 出版商
  7. Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, et al. Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. Science. 2019;: pubmed 出版商
  8. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell S, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature. 2019;: pubmed 出版商
  9. Cho C, Wang Y, Smallwood P, Williams J, Nathans J. Dlg1 activates beta-catenin signaling to regulate retinal angiogenesis and the blood-retina and blood-brain barriers. elife. 2019;8: pubmed 出版商
  10. Ast T, Meisel J, Patra S, Wang H, Grange R, Kim S, et al. Hypoxia Rescues Frataxin Loss by Restoring Iron Sulfur Cluster Biogenesis. Cell. 2019;: pubmed 出版商
  11. A M, Fung T, Kettenbach A, Chakrabarti R, Higgs H. A complex containing lysine-acetylated actin inhibits the formin INF2. Nat Cell Biol. 2019;21:592-602 pubmed 出版商
  12. Saito T, Kuma A, Sugiura Y, Ichimura Y, Obata M, Kitamura H, et al. Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nat Commun. 2019;10:1567 pubmed 出版商
  13. Tsai C, Tsai C, Yi J, Kao H, Huang Y, Wang C, et al. Activin A regulates the epidermal growth factor receptor promoter by activating the PI3K/SP1 pathway in oral squamous cell carcinoma cells. Sci Rep. 2019;9:5197 pubmed 出版商
  14. Fan J, Liu L, Liu Q, Cui Y, Yao B, Zhang M, et al. CKIP-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of Oct-1 by REGγ. Nat Commun. 2019;10:425 pubmed 出版商
  15. Seeholzer T, Kurz S, Schlauderer F, Woods S, Gehring T, Widmann S, et al. BCL10-CARD11 Fusion Mimics an Active CARD11 Seed That Triggers Constitutive BCL10 Oligomerization and Lymphocyte Activation. Front Immunol. 2018;9:2695 pubmed 出版商
  16. Godfrey T, Wildman B, Beloti M, Kemper A, Ferraz E, Roy B, et al. The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. J Biol Chem. 2018;293:17646-17660 pubmed 出版商
  17. Rodríguez Baena F, Redondo García S, Peris Torres C, Martino Echarri E, Fernández Rodríguez R, Plaza Calonge M, et al. ADAMTS1 protease is required for a balanced immune cell repertoire and tumour inflammatory response. Sci Rep. 2018;8:13103 pubmed 出版商
  18. Urata S, Kenyon E, Nayak D, Cubitt B, Kurosaki Y, Yasuda J, et al. BST-2 controls T cell proliferation and exhaustion by shaping the early distribution of a persistent viral infection. PLoS Pathog. 2018;14:e1007172 pubmed 出版商
  19. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  20. Barbero Camps E, Roca Agujetas V, Bartolessis I, de Dios C, Fernandez Checa J, Mari M, et al. Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy. 2018;14:1129-1154 pubmed 出版商
  21. Ashok A, Karmakar S, Chandel R, Ravikumar R, Dalal S, Kong Q, et al. Prion protein modulates iron transport in the anterior segment: Implications for ocular iron homeostasis and prion transmission. Exp Eye Res. 2018;175:1-13 pubmed 出版商
  22. Zhang Y, Xia F, Liu X, Yu Z, Xie L, Liu L, et al. JAM3 maintains leukemia-initiating cell self-renewal through LRP5/AKT/?-catenin/CCND1 signaling. J Clin Invest. 2018;128:1737-1751 pubmed 出版商
  23. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  24. Li T, Zhao J. Knockdown of elF3a inhibits TGF??1?induced extracellular matrix protein expression in keloid fibroblasts. Mol Med Rep. 2018;17:4057-4061 pubmed 出版商
  25. Aguado L, Schmid S, May J, Sabin L, Panis M, Blanco Melo D, et al. RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature. 2017;547:114-117 pubmed 出版商
  26. Celiku O, Tandle A, Chung J, Hewitt S, Camphausen K, Shankavaram U. Computational analysis of the mesenchymal signature landscape in gliomas. BMC Med Genomics. 2017;10:13 pubmed 出版商
  27. Chen S, Wang Y, Zhang W, Dong M, Zhang J. Sclareolide enhances gemcitabine?induced cell death through mediating the NICD and Gli1 pathways in gemcitabine?resistant human pancreatic cancer. Mol Med Rep. 2017;15:1461-1470 pubmed 出版商
  28. Moradi M, Sivadasan R, Saal L, Lüningschrör P, Dombert B, Rathod R, et al. Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons. J Cell Biol. 2017;216:793-814 pubmed 出版商
  29. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  30. Schatton D, Pla Martín D, Marx M, Hansen H, Mourier A, Nemazanyy I, et al. CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs. J Cell Biol. 2017;216:675-693 pubmed 出版商
  31. Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed 出版商
  32. Weisshaar N, Welsch H, Guerra Moreno A, Hanna J. Phospholipase Lpl1 links lipid droplet function with quality control protein degradation. Mol Biol Cell. 2017;28:716-725 pubmed 出版商
  33. Vélez P, Ocaranza Sánchez R, López Otero D, Grigorian Shamagian L, Rosa I, Guitián E, et al. Alteration of platelet GPVI signaling in ST-elevation myocardial infarction patients demonstrated by a combination of proteomic, biochemical, and functional approaches. Sci Rep. 2016;6:39603 pubmed 出版商
  34. Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly J, et al. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech. 2017;10:15-28 pubmed 出版商
  35. Jørgensen L, Jepsen P, Boysen A, Dalgaard L, Hvid L, Ørtenblad N, et al. SPARC Interacts with Actin in Skeletal Muscle in Vitro and in Vivo. Am J Pathol. 2017;187:457-474 pubmed 出版商
  36. Chen Z, Tang C, Zhu Y, Xie M, He D, Pan Q, et al. TrpC5 regulates differentiation through the Ca2+/Wnt5a signalling pathway in colorectal cancer. Clin Sci (Lond). 2017;131:227-237 pubmed 出版商
  37. He M, Yuan H, Tan B, Bai R, Kim H, Bae S, et al. SIRT1-mediated downregulation of p27Kip1 is essential for overcoming contact inhibition of Kaposi's sarcoma-associated herpesvirus transformed cells. Oncotarget. 2016;7:75698-75711 pubmed 出版商
  38. Sun K, Xu S, Chen J, Liu G, Shen X, Wu X. Atypical presentation of a gastric stromal tumor masquerading as a giant intraabdominal cyst: A case report. Oncol Lett. 2016;12:3018-3020 pubmed
  39. Romeo S, Conti A, Polito F, Tomasello C, Barresi V, La Torre D, et al. miRNA regulation of Sirtuin-1 expression in human astrocytoma. Oncol Lett. 2016;12:2992-2998 pubmed
  40. Matos M, Lapyckyj L, Rosso M, Besso M, Mencucci M, Briggiler C, et al. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol. 2017;232:1368-1386 pubmed 出版商
  41. Prasad A, Ketsawatsomkron P, Nuno D, Koval O, Dibbern M, Venema A, et al. Role of CaMKII in Ang-II-dependent small artery remodeling. Vascul Pharmacol. 2016;87:172-179 pubmed 出版商
  42. Zhou S, Han Q, Wang R, Li X, Wang Q, Wang H, et al. PRDX2 protects hepatocellular carcinoma SMMC-7721 cells from oxidative stress. Oncol Lett. 2016;12:2217-2221 pubmed
  43. Sousa A, Rei M, Freitas R, Ricardo S, Caffrey T, David L, et al. Effect of MUC1/?-catenin interaction on the tumorigenic capacity of pancreatic CD133+ cells. Oncol Lett. 2016;12:1811-1817 pubmed
  44. Lee J, Chiang K, Feng T, Chen Y, Chuang S, Tsui K, et al. The Iron Chelator, Dp44mT, Effectively Inhibits Human Oral Squamous Cell Carcinoma Cell Growth in Vitro and in Vivo. Int J Mol Sci. 2016;17: pubmed 出版商
  45. Abraham K, Chan J, Salvi J, Ho B, Hall A, Vidya E, et al. Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA-DNA hybrids. Nucleic Acids Res. 2016;44:8870-8884 pubmed
  46. Pourcelot M, Zemirli N, Silva da Costa L, Loyant R, Garcin D, Vitour D, et al. The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing. BMC Biol. 2016;14:69 pubmed 出版商
  47. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed 出版商
  48. Surtees R, Dowall S, Shaw A, Armstrong S, Hewson R, Carroll M, et al. Heat Shock Protein 70 Family Members Interact with Crimean-Congo Hemorrhagic Fever Virus and Hazara Virus Nucleocapsid Proteins and Perform a Functional Role in the Nairovirus Replication Cycle. J Virol. 2016;90:9305-16 pubmed 出版商
  49. Hammers D, Sleeper M, Forbes S, Shima A, Walter G, Sweeney H. Tadalafil Treatment Delays the Onset of Cardiomyopathy in Dystrophin-Deficient Hearts. J Am Heart Assoc. 2016;5: pubmed 出版商
  50. Toledo D, Roque N, Teixeira L, Milán Garcés E, Carneiro A, Almeida M, et al. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism. PLoS ONE. 2016;11:e0160433 pubmed 出版商
  51. Fritzen R, Delbos F, De Smet A, Palancade B, Canman C, Aoufouchi S, et al. A single aspartate mutation in the conserved catalytic site of Rev3L generates a hypomorphic phenotype in vivo and in vitro. DNA Repair (Amst). 2016;46:37-46 pubmed 出版商
  52. Hjerpe R, Bett J, Keuss M, Solovyova A, McWilliams T, Johnson C, et al. UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome. Cell. 2016;166:935-949 pubmed 出版商
  53. Das S, Rehman I, Ghosh A, Sengupta S, Majumdar P, Jana B, et al. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res. 2016;44:8363-75 pubmed 出版商
  54. Yang X, Zhou X, Tone P, Durkin M, Popescu N. Cooperative antiproliferative effect of coordinated ectopic expression of DLC1 tumor suppressor protein and silencing of MYC oncogene expression in liver cancer cells: Therapeutic implications. Oncol Lett. 2016;12:1591-1596 pubmed
  55. Shi K, Qian J, Qi L, Mao D, Chen Y, Zhu Y, et al. Atorvastatin antagonizes the visfatin-induced expression of inflammatory mediators via the upregulation of NF-?B activation in HCAECs. Oncol Lett. 2016;12:1438-1444 pubmed
  56. Jin Z, Yan W, Jin H, Ge C, Xu Y. Psoralidin inhibits proliferation and enhances apoptosis of human esophageal carcinoma cells via NF-?B and PI3K/Akt signaling pathways. Oncol Lett. 2016;12:971-976 pubmed
  57. Pan B, Huang X, Deng C. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep. 2016;6:30040 pubmed 出版商
  58. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  59. Dorland Y, Malinova T, van Stalborch A, Grieve A, van Geemen D, Jansen N, et al. The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions. Nat Commun. 2016;7:12210 pubmed 出版商
  60. Yang W, Ng F, Chan K, Pu X, Poston R, Ren M, et al. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction. PLoS Genet. 2016;12:e1006127 pubmed 出版商
  61. Huang C, Lee C, Lin H, Chang J. Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep. 2016;6:29256 pubmed 出版商
  62. Espinoza I, Sakiyama M, Ma T, Fair L, Zhou X, Hassan M, et al. Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells. Front Oncol. 2016;6:144 pubmed 出版商
  63. Lu R, Hu X, Zhou J, Sun J, Zhu A, Xu X, et al. COPS5 amplification and overexpression confers tamoxifen-resistance in ER?-positive breast cancer by degradation of NCoR. Nat Commun. 2016;7:12044 pubmed 出版商
  64. Tuncbag N, Milani P, Pokorny J, Johnson H, Sio T, Dalin S, et al. Network Modeling Identifies Patient-specific Pathways in Glioblastoma. Sci Rep. 2016;6:28668 pubmed 出版商
  65. Lange S, Gehmlich K, Lun A, Blondelle J, Hooper C, Dalton N, et al. MLP and CARP are linked to chronic PKC? signalling in dilated cardiomyopathy. Nat Commun. 2016;7:12120 pubmed 出版商
  66. Deguise M, Boyer J, McFall E, Yazdani A, De Repentigny Y, Kothary R. Differential induction of muscle atrophy pathways in two mouse models of spinal muscular atrophy. Sci Rep. 2016;6:28846 pubmed 出版商
  67. Baksi S, Tripathi A, Singh N. Alpha-synuclein modulates retinal iron homeostasis by facilitating the uptake of transferrin-bound iron: Implications for visual manifestations of Parkinson's disease. Free Radic Biol Med. 2016;97:292-306 pubmed 出版商
  68. Werner A, Herzog B, Frey S, Pöggeler S. Autophagy-Associated Protein SmATG12 Is Required for Fruiting-Body Formation in the Filamentous Ascomycete Sordaria macrospora. PLoS ONE. 2016;11:e0157960 pubmed 出版商
  69. Tsai K, Leung C, Lo Y, Chen T, Chan W, Yu S, et al. Arm Selection Preference of MicroRNA-193a Varies in Breast Cancer. Sci Rep. 2016;6:28176 pubmed 出版商
  70. Faber E, Gripp E, Maurischat S, Kaspers B, Tedin K, Menz S, et al. Novel Immunomodulatory Flagellin-Like Protein FlaC in Campylobacter jejuni and Other Campylobacterales. mSphere. 2016;1: pubmed 出版商
  71. Bosch C, Muhaisen A, Pujadas L, Soriano E, MARTINEZ A. Reelin Exerts Structural, Biochemical and Transcriptional Regulation Over Presynaptic and Postsynaptic Elements in the Adult Hippocampus. Front Cell Neurosci. 2016;10:138 pubmed 出版商
  72. Tagscherer K, Fassl A, Sinkovic T, Richter J, Schecher S, Macher Goeppinger S, et al. MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen. Cancer Cell Int. 2016;16:42 pubmed 出版商
  73. Ambrosi C, Ren C, Spagnol G, Cavin G, CONE A, Grintsevich E, et al. Connexin43 Forms Supramolecular Complexes through Non-Overlapping Binding Sites for Drebrin, Tubulin, and ZO-1. PLoS ONE. 2016;11:e0157073 pubmed 出版商
  74. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  75. Tejada T, Tan L, Torres R, Calvert J, Lambert J, Zaidi M, et al. IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction. Proc Natl Acad Sci U S A. 2016;113:6949-54 pubmed 出版商
  76. Ikeuchi M, Fukumoto Y, Honda T, Kuga T, Saito Y, Yamaguchi N, et al. v-Src Causes Chromosome Bridges in a Caffeine-Sensitive Manner by Generating DNA Damage. Int J Mol Sci. 2016;17: pubmed 出版商
  77. Duran C, Lee D, Jung J, Ravi S, Pogue C, Toussaint L, et al. NIK regulates MT1-MMP activity and promotes glioma cell invasion independently of the canonical NF-?B pathway. Oncogenesis. 2016;5:e231 pubmed 出版商
  78. Morisaki Y, Niikura M, Watanabe M, Onishi K, Tanabe S, Moriwaki Y, et al. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9. Sci Rep. 2016;6:27354 pubmed 出版商
  79. Gilson T, Blanchette P, Ballmann M, Papp T, Pénzes J, BenkÅ‘ M, et al. Using the E4orf6-Based E3 Ubiquitin Ligase as a Tool To Analyze the Evolution of Adenoviruses. J Virol. 2016;90:7350-7367 pubmed 出版商
  80. Kool M, van de Bree J, Bodde H, Elgersma Y, van Woerden G. The molecular, temporal and region-specific requirements of the beta isoform of Calcium/Calmodulin-dependent protein kinase type 2 (CAMK2B) in mouse locomotion. Sci Rep. 2016;6:26989 pubmed 出版商
  81. Mabb A, Simon J, KING I, Lee H, An L, Philpot B, et al. Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms. PLoS ONE. 2016;11:e0156439 pubmed 出版商
  82. Genç B, Jara J, Schultz M, Manuel M, Stanford M, Gautam M, et al. Absence of UCHL 1 function leads to selective motor neuropathy. Ann Clin Transl Neurol. 2016;3:331-45 pubmed 出版商
  83. Lin K, Cheng S, Tsai S, Tsai J, Lin C, Cheung C. Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: a proof-of-concept study. Onco Targets Ther. 2016;9:2601-13 pubmed 出版商
  84. Stampfl H, Fritz M, Dal Santo S, Jonak C. The GSK3/Shaggy-Like Kinase ASKα Contributes to Pattern-Triggered Immunity. Plant Physiol. 2016;171:1366-77 pubmed 出版商
  85. Speer S, Li Z, Buta S, Payelle Brogard B, Qian L, Vigant F, et al. ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun. 2016;7:11496 pubmed 出版商
  86. Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, et al. LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial?mesenchymal transition in retinal pigment epithelium cells. Mol Med Rep. 2016;14:145-50 pubmed 出版商
  87. Yu P, Ji L, Lee K, Yu M, He C, Ambati S, et al. Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine. PLoS ONE. 2016;11:e0154949 pubmed 出版商
  88. Pastore N, Brady O, Diab H, Martina J, Sun L, Huynh T, et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 2016;12:1240-58 pubmed 出版商
  89. Pethő Z, Tanner M, Tajhya R, Huq R, Laragione T, Panyi G, et al. Different expression of ? subunits of the KCa1.1 channel by invasive and non-invasive human fibroblast-like synoviocytes. Arthritis Res Ther. 2016;18:103 pubmed 出版商
  90. Rubio Navarro A, Carril M, Padro D, Guerrero Hue M, Tarin C, Samaniego R, et al. CD163-Macrophages Are Involved in Rhabdomyolysis-Induced Kidney Injury and May Be Detected by MRI with Targeted Gold-Coated Iron Oxide Nanoparticles. Theranostics. 2016;6:896-914 pubmed 出版商
  91. Hsu C, Hsu C, Hsueh C, Wang C, Wu Y, Wu C, et al. Identification and Characterization of Potential Biomarkers by Quantitative Tissue Proteomics of Primary Lung Adenocarcinoma. Mol Cell Proteomics. 2016;15:2396-410 pubmed 出版商
  92. Rosiak K, Smolarz M, Stec W, Peciak J, Grzela D, Winiecka Klimek M, et al. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis. PLoS ONE. 2016;11:e0154726 pubmed 出版商
  93. Passalacqua K, Charbonneau M, Donato N, Showalter H, Sun D, Wen B, et al. Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens. Antimicrob Agents Chemother. 2016;60:4183-96 pubmed 出版商
  94. Mao Y, Tamura T, Yuki Y, Abe D, Tamada Y, Imoto S, et al. The hnRNP-Htt axis regulates necrotic cell death induced by transcriptional repression through impaired RNA splicing. Cell Death Dis. 2016;7:e2207 pubmed 出版商
  95. Yao J, Wang Y, Fang B, Zhang S, Cheng B. piR-651 and its function in 95-D lung cancer cells. Biomed Rep. 2016;4:546-550 pubmed
  96. Kim S, Choi K, Cho S, Yun S, Jeon J, Koh Y, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933 pubmed 出版商
  97. Novaira H, Graceli J, Capellino S, Schoeffield A, Hoffman G, Wolfe A, et al. Development and Characterization of Novel Rat Anti-mER? Sera. Endocrinology. 2016;157:2844-52 pubmed 出版商
  98. Kumar A, Chalamalasetty R, Kennedy M, Thomas S, Inala S, Garriock R, et al. Zfp703 Is a Wnt/?-Catenin Feedback Suppressor Targeting the ?-Catenin/Tcf1 Complex. Mol Cell Biol. 2016;36:1793-802 pubmed 出版商
  99. Dinger K, Kasper P, Hucklenbruch Rother E, Vohlen C, Jobst E, Janoschek R, et al. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci Rep. 2016;6:24168 pubmed 出版商
  100. Kruzliak P, Hare D, Sabaka P, Delev D, Gaspar L, Rodrigo L, et al. Evidence for CD34/SMA positive cells in the left main coronary artery in atherogenesis. Acta Histochem. 2016;118:413-7 pubmed 出版商
  101. Nagashima H, Okuyama Y, Hayashi T, Ishii N, So T. TNFR-Associated Factors 2 and 5 Differentially Regulate the Instructive IL-6 Receptor Signaling Required for Th17 Development. J Immunol. 2016;196:4082-9 pubmed 出版商
  102. Simon N, Antignani A, Sarnovsky R, Hewitt S, Fitzgerald D. Targeting a Cancer-Specific Epitope of the Epidermal Growth Factor Receptor in Triple-Negative Breast Cancer. J Natl Cancer Inst. 2016;108: pubmed 出版商
  103. Nivon M, Fort L, Muller P, Richet E, Simon S, Guey B, et al. NF?B is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation. Mol Biol Cell. 2016;27:1712-27 pubmed 出版商
  104. Carrió E, Magli A, Muñoz M, Peinado M, Perlingeiro R, Suelves M. Muscle cell identity requires Pax7-mediated lineage-specific DNA demethylation. BMC Biol. 2016;14:30 pubmed 出版商
  105. Walia M, Ho P, Taylor S, Ng A, Gupte A, Chalk A, et al. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. elife. 2016;5: pubmed 出版商
  106. Miao Y, Han X, Zheng L, Xie Y, Mu Y, Yates J, et al. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast. Nat Commun. 2016;7:11265 pubmed 出版商
  107. Lee J, Kuo C, Tsai S, Cheng S, Chen S, Chan H, et al. Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells. Front Pharmacol. 2016;7:81 pubmed 出版商
  108. Gandolfi B, Alamri S, Darby W, Adhikari B, Lattimer J, Malik R, et al. A dominant TRPV4 variant underlies osteochondrodysplasia in Scottish fold cats. Osteoarthritis Cartilage. 2016;24:1441-50 pubmed 出版商
  109. Körber N, Stein V. In vivo imaging demonstrates dendritic spine stabilization by SynCAM 1. Sci Rep. 2016;6:24241 pubmed 出版商
  110. Jiang L, Shestov A, Swain P, Yang C, Parker S, Wang Q, et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature. 2016;532:255-8 pubmed 出版商
  111. Hattori K, Naguro I, Okabe K, Funatsu T, Furutani S, Takeda K, et al. ASK1 signalling regulates brown and beige adipocyte function. Nat Commun. 2016;7:11158 pubmed 出版商
  112. Pan B, Huang X, Deng C. Aripiprazole and Haloperidol Activate GSK3?-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats. Int J Mol Sci. 2016;17:459 pubmed 出版商
  113. Negis Y, Karabay A. Expression of cell cycle proteins in cortical neurons-Correlation with glutamate-induced neurotoxicity. Biofactors. 2016;42:358-67 pubmed 出版商
  114. Beltrami Moreira M, Vromman A, Sukhova G, Folco E, Libby P. Redundancy of IL-1 Isoform Signaling and Its Implications for Arterial Remodeling. PLoS ONE. 2016;11:e0152474 pubmed 出版商
  115. Strickland S, Vande Pol S. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol. 2016;90:5611-5621 pubmed 出版商
  116. Braley A, Kwak T, Jules J, Harja E, Landgraf R, Hudson B. Regulation of Receptor for Advanced Glycation End Products (RAGE) Ectodomain Shedding and Its Role in Cell Function. J Biol Chem. 2016;291:12057-73 pubmed 出版商
  117. Margaryan N, Gilgur A, Seftor E, Purnell C, Arva N, Gosain A, et al. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi. Int J Mol Sci. 2016;17:418 pubmed 出版商
  118. Tao W, Moore R, Meng Y, Smith E, Xu X. Endocytic adaptors Arh and Dab2 control homeostasis of circulatory cholesterol. J Lipid Res. 2016;57:809-17 pubmed 出版商
  119. Wu J, Ivanov A, Fisher P, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. elife. 2016;5: pubmed 出版商
  120. Liu L, Bai Z, Ma X, Wang T, Yang Y, Zhang Z. Effects of taxol resistance gene 1 expression on the chemosensitivity of SGC-7901 cells to oxaliplatin. Exp Ther Med. 2016;11:846-852 pubmed
  121. Ananthula S, Sinha A, El Gassim M, Batth S, Marshall G, Gardner L, et al. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers. Oncotarget. 2016;7:20869-89 pubmed 出版商
  122. Jo D, Bae J, Chae S, Kim J, Han J, Hwang D, et al. Quantitative Proteomics Reveals β2 Integrin-mediated Cytoskeletal Rearrangement in Vascular Endothelial Growth Factor (VEGF)-induced Retinal Vascular Hyperpermeability. Mol Cell Proteomics. 2016;15:1681-91 pubmed 出版商
  123. Beaumatin F, El Dhaybi M, Lasserre J, Salin B, Moyer M, Verdier M, et al. N52 monodeamidated Bcl‑xL shows impaired oncogenic properties in vivo and in vitro. Oncotarget. 2016;7:17129-43 pubmed 出版商
  124. Yeo S, Itahana Y, Guo A, Han R, Iwamoto K, Nguyen H, et al. Transglutaminase 2 contributes to a TP53-induced autophagy program to prevent oncogenic transformation. elife. 2016;5:e07101 pubmed 出版商
  125. Wang X, Chen L, Liu J, Yan T, Wu G, Xia Y, et al. In vivo treatment of rat arterial adventitia with interleukin‑1β induces intimal proliferation via the JAK2/STAT3 signaling pathway. Mol Med Rep. 2016;13:3451-8 pubmed 出版商
  126. Ruf M, Moch H, Schraml P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer. 2016;139:396-403 pubmed 出版商
  127. Li T, Liu X, Jiang L, MANFREDI J, Zha S, Gu W. Loss of p53-mediated cell-cycle arrest, senescence and apoptosis promotes genomic instability and premature aging. Oncotarget. 2016;7:11838-49 pubmed 出版商
  128. Barroso González J, Auclair S, Luan S, Thomas L, Atkins K, Aslan J, et al. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 2016;23:1448-57 pubmed 出版商
  129. Bach F, Zhang Y, Miranda Bedate A, Verdonschot L, Bergknut N, Creemers L, et al. Increased caveolin-1 in intervertebral disc degeneration facilitates repair. Arthritis Res Ther. 2016;18:59 pubmed 出版商
  130. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  131. Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, et al. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget. 2016;7:15065-92 pubmed 出版商
  132. Cho C, Lee K, Chen W, Wang C, Chang Y, Huang H, et al. MST3 promotes proliferation and tumorigenicity through the VAV2/Rac1 signal axis in breast cancer. Oncotarget. 2016;7:14586-604 pubmed 出版商
  133. Keuss M, Thomas Y, Mcarthur R, Wood N, Knebel A, Kurz T. Characterization of the mammalian family of DCN-type NEDD8 E3 ligases. J Cell Sci. 2016;129:1441-54 pubmed 出版商
  134. Vukićević T, Schulz M, Faust D, Klussmann E. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells-a Potential Target for Pharmacological Intervention in Cardiovascular Diseases. Front Pharmacol. 2016;7:23 pubmed 出版商
  135. Stojcheva N, Schechtmann G, Sass S, Roth P, Florea A, Stefanski A, et al. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM. Oncotarget. 2016;7:12937-50 pubmed 出版商
  136. Sparks L, Gemmink A, Phielix E, Bosma M, Schaart G, Moonen Kornips E, et al. ANT1-mediated fatty acid-induced uncoupling as a target for improving myocellular insulin sensitivity. Diabetologia. 2016;59:1030-9 pubmed 出版商
  137. Malecova B, Dall Agnese A, Madaro L, Gatto S, Coutinho Toto P, Albini S, et al. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. elife. 2016;5: pubmed 出版商
  138. Awate S, De Benedetti A. TLK1B mediated phosphorylation of Rad9 regulates its nuclear/cytoplasmic localization and cell cycle checkpoint. BMC Mol Biol. 2016;17:3 pubmed 出版商
  139. Kim J, Kim E, Lee B, Min J, Song D, Lim J, et al. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells. Int J Mol Med. 2016;37:649-58 pubmed 出版商
  140. Le Pen J, Maillet L, Sarosiek K, Vuillier C, Gautier F, Montessuit S, et al. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis. 2016;7:e2083 pubmed 出版商
  141. Stine R, Shapira S, Lim H, Ishibashi J, Harms M, Won K, et al. EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Mol Metab. 2016;5:57-65 pubmed 出版商
  142. Tai D, Liu Y, Hsu W, Ma Y, Cheng S, Liu S, et al. MeCP2 SUMOylation rescues Mecp2-mutant-induced behavioural deficits in a mouse model of Rett syndrome. Nat Commun. 2016;7:10552 pubmed 出版商
  143. Jacob F, Yonis A, Cuello F, Luther P, Schulze T, Eder A, et al. Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue. PLoS ONE. 2016;11:e0145937 pubmed 出版商
  144. Lyons M, Chen L, Deng J, Finn C, Pfenning A, Sabhlok A, et al. The transcription factor calcium-response factor limits NMDA receptor-dependent transcription in the developing brain. J Neurochem. 2016;137:164-76 pubmed 出版商
  145. Walter D, Hoffmann S, Komseli E, Rappsilber J, Gorgoulis V, Sørensen C. SCF(Cyclin F)-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun. 2016;7:10530 pubmed 出版商
  146. Heemskerk N, Schimmel L, Oort C, van Rijssel J, Yin T, Ma B, et al. F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling. Nat Commun. 2016;7:10493 pubmed 出版商
  147. Tokuda E, Brännström T, Andersen P, Marklund S. Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase. Acta Neuropathol Commun. 2016;4:6 pubmed 出版商
  148. Torres G, Morales P, García Miguel M, Norambuena Soto I, Cartes Saavedra B, Vidal Peña G, et al. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation. Biochem Pharmacol. 2016;104:52-61 pubmed 出版商
  149. Matzkin M, Miquet J, Fang Y, Hill C, Turyn D, Calandra R, et al. Alterations in oxidative, inflammatory and apoptotic events in short-lived and long-lived mice testes. Aging (Albany NY). 2016;8:95-110 pubmed
  150. Krishnan B. Amygdala-Hippocampal Phospholipase D (PLD) Signaling As Novel Mechanism of Cocaine-Environment Maladaptive Conditioned Responses. Int J Neuropsychopharmacol. 2016;: pubmed 出版商
  151. Jiang C, Fang X, Jiang Y, Shen F, Hu Z, Li X, et al. TNF-α induces vascular endothelial cells apoptosis through overexpressing pregnancy induced noncoding RNA in Kawasaki disease model. Int J Biochem Cell Biol. 2016;72:118-124 pubmed 出版商
  152. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  153. Allaire J, Roy S, Ouellet C, Lemieux Ã, Jones C, Paquet M, et al. Bmp signaling in colonic mesenchyme regulates stromal microenvironment and protects from polyposis initiation. Int J Cancer. 2016;138:2700-12 pubmed 出版商
  154. Dave J, Abbey C, Duran C, Seo H, Johnson G, Bayless K. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci. 2016;129:743-56 pubmed 出版商
  155. Ray S, Thormann U, Sommer U, Khassawna T, Hundgeburth M, Henß A, et al. Effects of macroporous, strontium loaded xerogel-scaffolds on new bone formation in critical-size metaphyseal fracture defects in ovariectomized rats. Injury. 2016;47 Suppl 1:S52-61 pubmed 出版商
  156. Kuo C, Li X, Stark J, Shih H, Ann D. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner. Cell Cycle. 2016;15:787-98 pubmed 出版商
  157. Zhang Q, Wan M, Shi J, Horita D, Miller L, Kute T, et al. Yin Yang 1 promotes mTORC2-mediated AKT phosphorylation. J Mol Cell Biol. 2016;8:232-43 pubmed 出版商
  158. Kitayama M, Mizutani K, Maruoka M, Mandai K, Sakakibara S, Ueda Y, et al. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development. J Biol Chem. 2016;291:5817-31 pubmed 出版商
  159. Merk H, Zhang S, Lehr T, Müller C, Ulrich M, Bibb J, et al. Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-productive angiogenesis. Oncotarget. 2016;7:6088-104 pubmed 出版商
  160. Umazume T, Thomas W, Campbell S, Aluri H, Thotakura S, Zoukhri D, et al. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci. 2015;56:8392-402 pubmed 出版商
  161. Suzuki Y, Chin W, Han Q, Ichiyama K, Lee C, Eyo Z, et al. Characterization of RyDEN (C19orf66) as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus Replication. PLoS Pathog. 2016;12:e1005357 pubmed 出版商
  162. Quesseveur G, Portal B, Basile J, Ezan P, Mathou A, Halley H, et al. Attenuated Levels of Hippocampal Connexin 43 and its Phosphorylation Correlate with Antidepressant- and Anxiolytic-Like Activities in Mice. Front Cell Neurosci. 2015;9:490 pubmed 出版商
  163. Hrstka R, Bouchalova P, Michalová E, Matoulkova E, Muller P, Coates P, et al. AGR2 oncoprotein inhibits p38 MAPK and p53 activation through a DUSP10-mediated regulatory pathway. Mol Oncol. 2016;10:652-62 pubmed 出版商
  164. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  165. Wang Y, Hou H, Li M, Yang Y, Sun L. Anticancer effect of eupatilin on glioma cells through inhibition of the Notch-1 signaling pathway. Mol Med Rep. 2016;13:1141-6 pubmed 出版商
  166. Chen Y, Tsou B, Hu S, Ma H, Liu X, Yen Y, et al. Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells. Oncotarget. 2016;7:1984-99 pubmed 出版商
  167. de Wispelaere M, Khou C, Frenkiel M, Desprès P, Pardigon N. A Single Amino Acid Substitution in the M Protein Attenuates Japanese Encephalitis Virus in Mammalian Hosts. J Virol. 2015;90:2676-89 pubmed 出版商
  168. Orthwein A, Noordermeer S, Wilson M, Landry S, Enchev R, Sherker A, et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature. 2015;528:422-6 pubmed 出版商
  169. Tu Q, Xiong Y, Fan L, Qiao B, Xia Z, Hu L, et al. Peroxiredoxin 6 attenuates ischemia‑ and hypoxia‑induced liver damage of brain‑dead donors. Mol Med Rep. 2016;13:753-61 pubmed 出版商
  170. Nielsen C, Huttner D, Bizard A, Hirano S, Li T, Palmai Pallag T, et al. PICH promotes sister chromatid disjunction and co-operates with topoisomerase II in mitosis. Nat Commun. 2015;6:8962 pubmed 出版商
  171. Eckharter C, Junker N, Winter L, Fischer I, Fogli B, Kistner S, et al. Schwann Cell Expressed Nogo-B Modulates Axonal Branching of Adult Sensory Neurons Through the Nogo-B Receptor NgBR. Front Cell Neurosci. 2015;9:454 pubmed 出版商
  172. Brai E, Marathe S, Astori S, Fredj N, Perry E, Lamy C, et al. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling. Front Cell Neurosci. 2015;9:447 pubmed 出版商
  173. Holvoet B, Quattrocelli M, Belderbos S, Pollaris L, Wolfs E, Gheysens O, et al. Sodium Iodide Symporter PET and BLI Noninvasively Reveal Mesoangioblast Survival in Dystrophic Mice. Stem Cell Reports. 2015;5:1183-1195 pubmed 出版商
  174. Dinh C, Szabo A, Yu Y, Camer D, Wang H, Huang X. Bardoxolone Methyl Prevents Mesenteric Fat Deposition and Inflammation in High-Fat Diet Mice. ScientificWorldJournal. 2015;2015:549352 pubmed 出版商
  175. Kim Y, Jo S, Kim W, Kweon O. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther. 2015;6:229 pubmed 出版商
  176. Leshchyns ka I, Liew H, Shepherd C, Halliday G, Stevens C, Ke Y, et al. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun. 2015;6:8836 pubmed 出版商
  177. Han X, Liu Z, Jo M, Zhang K, Li Y, Zeng Z, et al. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci Adv. 2015;1:e1500454 pubmed 出版商
  178. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed 出版商
  179. Hunt L, Xu B, Finkelstein D, Fan Y, Carroll P, Cheng P, et al. The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling. Genes Dev. 2015;29:2475-89 pubmed 出版商
  180. Cao J, Zhang X, Wang Q, Qiu G, Hou C, Wang J, et al. Smad4 represses the generation of memory-precursor effector T cells but is required for the differentiation of central memory T cells. Cell Death Dis. 2015;6:e1984 pubmed 出版商
  181. Wang W, Liu H, Dai X, Fang S, Wang X, Zhang Y, et al. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis. Sci Rep. 2015;5:16900 pubmed 出版商
  182. Hu Z, Hu J, Shen W, Kraemer F, Azhar S. A Novel Role of Salt-Inducible Kinase 1 (SIK1) in the Post-Translational Regulation of Scavenger Receptor Class B Type 1 Activity. Biochemistry. 2015;54:6917-30 pubmed 出版商
  183. Sin J, Andres A, Taylor D, Weston T, Hiraumi Y, Stotland A, et al. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy. 2016;12:369-80 pubmed 出版商
  184. Alnasser H, Guan Q, Zhang F, Gleave M, Nguan C, Du C. Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells. Am J Physiol Renal Physiol. 2016;310:F160-73 pubmed 出版商
  185. Pajoohesh Ganji A, Pal Ghosh S, Tadvalkar G, Stepp M. K14 + compound niches are present on the mouse cornea early after birth and expand after debridement wounds. Dev Dyn. 2016;245:132-43 pubmed 出版商
  186. Zhang P, Fu W, Fu A, Ip N. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength. Nat Commun. 2015;6:8665 pubmed 出版商
  187. Thorslund T, Ripplinger A, Hoffmann S, Wild T, Uckelmann M, Villumsen B, et al. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature. 2015;527:389-93 pubmed 出版商
  188. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  189. Wang P, Lin M, Pedrosa E, Hrabovsky A, Zhang Z, Guo W, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol Autism. 2015;6:55 pubmed 出版商
  190. Eino A, Kageyama S, Uemura T, Annoh H, Saito T, Narita I, et al. Sqstm1-GFP knock-in mice reveal dynamic actions of Sqstm1 during autophagy and under stress conditions in living cells. J Cell Sci. 2015;128:4453-61 pubmed 出版商
  191. Strizzi L, Sandomenico A, Margaryan N, Focà A, Sanguigno L, Bodenstine T, et al. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget. 2015;6:34071-86 pubmed 出版商
  192. Zhang W, Pelicano H, Yin R, Zeng J, Wen T, Ding L, et al. Effective elimination of chronic lymphocytic leukemia cells in the stromal microenvironment by a novel drug combination strategy using redox-mediated mechanisms. Mol Med Rep. 2015;12:7374-88 pubmed 出版商
  193. Fidaleo M, Svetoni F, Volpe E, Miñana B, Caporossi D, Paronetto M. Genotoxic stress inhibits Ewing sarcoma cell growth by modulating alternative pre-mRNA processing of the RNA helicase DHX9. Oncotarget. 2015;6:31740-57 pubmed 出版商
  194. Min M, Mevissen T, De Luca M, Komander D, Lindon C. Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages. Mol Biol Cell. 2015;26:4325-32 pubmed 出版商
  195. Mehner C, Oberg A, Kalli K, Nassar A, Hockla A, Pendlebury D, et al. Serine protease inhibitor Kazal type 1 (SPINK1) drives proliferation and anoikis resistance in a subset of ovarian cancers. Oncotarget. 2015;6:35737-54 pubmed 出版商
  196. Choulaki C, Papadaki G, Repa A, Kampouraki E, Kambas K, Ritis K, et al. Enhanced activity of NLRP3 inflammasome in peripheral blood cells of patients with active rheumatoid arthritis. Arthritis Res Ther. 2015;17:257 pubmed 出版商
  197. Sirohi K, Kumari A, Radha V, Swarup G. A Glaucoma-Associated Variant of Optineurin, M98K, Activates Tbk1 to Enhance Autophagosome Formation and Retinal Cell Death Dependent on Ser177 Phosphorylation of Optineurin. PLoS ONE. 2015;10:e0138289 pubmed 出版商
  198. Imai Y, Kobayashi Y, Inoshita T, Meng H, Arano T, Uemura K, et al. The Parkinson's Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway. PLoS Genet. 2015;11:e1005503 pubmed 出版商
  199. Yao J, Zheng K, Zhang X. Rosiglitazone exerts neuroprotective effects via the suppression of neuronal autophagy and apoptosis in the cortex following traumatic brain injury. Mol Med Rep. 2015;12:6591-7 pubmed 出版商
  200. Selleck E, Orchard R, Lassen K, Beatty W, Xavier R, Levine B, et al. A Noncanonical Autophagy Pathway Restricts Toxoplasma gondii Growth in a Strain-Specific Manner in IFN-γ-Activated Human Cells. MBio. 2015;6:e01157-15 pubmed 出版商
  201. Choudhury S, Liu Y, Clark A, Pang I. Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death. Mol Neurodegener. 2015;10:40 pubmed 出版商
  202. Fu Y, Cruz Monserrate Z, Helen Lin H, Chung Y, Ji B, Lin S, et al. Ductal activation of oncogenic KRAS alone induces sarcomatoid phenotype. Sci Rep. 2015;5:13347 pubmed 出版商
  203. Varela A, Piperi C, Sigala F, Agrogiannis G, Davos C, Andri M, et al. Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity. Sci Rep. 2015;5:13461 pubmed 出版商
  204. Popugaeva E, Pchitskaya E, Speshilova A, Alexandrov S, Zhang H, Vlasova O, et al. STIM2 protects hippocampal mushroom spines from amyloid synaptotoxicity. Mol Neurodegener. 2015;10:37 pubmed 出版商
  205. Archibald A, Al Masri M, Liew Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578-95 pubmed 出版商
  206. Morancho B, Martínez Barriocanal Ã, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res. 2015;17:106 pubmed 出版商
  207. Levi M, Hasky N, Stemmer S, Shalgi R, Ben Aharon I. Anti-Müllerian Hormone Is a Marker for Chemotherapy-Induced Testicular Toxicity. Endocrinology. 2015;156:3818-27 pubmed 出版商
  208. Khan I, Zakaria M, Kumar M, Mani P, Chattopadhyay P, Sarkar D, et al. A novel placental like alkaline phosphatase promoter driven transcriptional silencing combined with single chain variable fragment antibody based virosomal delivery for neoplastic cell targeting [corrected]. J Transl Med. 2015;13:254 pubmed 出版商
  209. Nezich C, Wang C, Fogel A, Youle R. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol. 2015;210:435-50 pubmed 出版商
  210. Maugeri G, D Amico A, Magro G, Salvatorelli L, Barbagallo G, Saccone S, et al. Expression profile of parkin isoforms in human gliomas. Int J Oncol. 2015;47:1282-92 pubmed 出版商
  211. Ohnishi T, Yanazawa M, Sasahara T, Kitamura Y, Hiroaki H, Fukazawa Y, et al. Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly. Proc Natl Acad Sci U S A. 2015;112:E4465-74 pubmed 出版商
  212. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, et al. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell. 2015;26:3489-503 pubmed 出版商
  213. Hamazaki J, Hirayama S, Murata S. Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis. PLoS Genet. 2015;11:e1005401 pubmed 出版商
  214. Xie X, Hsu F, Gao X, Xu W, Ni J, Xing Y, et al. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol. 2015;13:e1002207 pubmed 出版商
  215. DubiÅ„ska Magiera M, Chmielewska M, KozioÅ‚ K, Machowska M, Hutchison C, Goldberg M, et al. Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability. Protoplasma. 2016;253:943-56 pubmed 出版商
  216. Chesser A, Ganeshan V, Yang J, Johnson G. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci. 2016;19:21-31 pubmed 出版商
  217. Chung D, Chan J, Strecker J, Zhang W, Ebrahimi Ardebili S, Lu T, et al. Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat Commun. 2015;6:7742 pubmed 出版商
  218. Zhao L, Tang M, Hu Z, Yan B, Pi W, Li Z, et al. miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma. Oncotarget. 2015;6:15995-6018 pubmed
  219. Sloan E, Tatham M, Groslambert M, Glass M, Orr A, Hay R, et al. Analysis of the SUMO2 Proteome during HSV-1 Infection. PLoS Pathog. 2015;11:e1005059 pubmed 出版商
  220. Cho M, Park J, Choi H, Park M, Won H, Park Y, et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 2015;6:7821 pubmed 出版商
  221. Fufa T, Byun J, Wakano C, Fernandez A, Pise Masison C, Gardner K. The Tax oncogene enhances ELL incorporation into p300 and P-TEFb containing protein complexes to activate transcription. Biochem Biophys Res Commun. 2015;465:5-11 pubmed 出版商
  222. Li W, Qiu Y, Zhang H, Tian X, Fang W. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway. PLoS ONE. 2015;10:e0133165 pubmed 出版商
  223. Navarro F, Lieberman J. miR-34 and p53: New Insights into a Complex Functional Relationship. PLoS ONE. 2015;10:e0132767 pubmed 出版商
  224. Chugh D, Ali I, Bakochi A, Bahonjic E, Etholm L, Ekdahl C. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2. PLoS ONE. 2015;10:e0132366 pubmed 出版商
  225. Khan M, Dhammu T, Matsuda F, Singh A, Singh I. Blocking a vicious cycle nNOS/peroxynitrite/AMPK by S-nitrosoglutathione: implication for stroke therapy. BMC Neurosci. 2015;16:42 pubmed 出版商
  226. Jones M, Hu W, Litthauer S, Lagarias J, Harmer S. A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light. Plant Physiol. 2015;169:814-25 pubmed 出版商
  227. Chen K, Tsai M, Wu C, Jou M, Wei I, Huang C. AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role. Front Behav Neurosci. 2015;9:162 pubmed 出版商
  228. Lee J, Kim H, Han J, Kim Y, Son C. Anti-fatigue effect of Myelophil in a chronic forced exercise mouse model. Eur J Pharmacol. 2015;764:100-8 pubmed 出版商
  229. Liu R, Fan M, Candas D, Qin L, Zhang X, Eldridge A, et al. CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Mol Cancer Ther. 2015;14:2090-102 pubmed 出版商
  230. Ueda S, Kokaji Y, Simizu S, Honda K, Yoshino K, Kamisoyama H, et al. Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscle. Biosci Biotechnol Biochem. 2015;79:1867-75 pubmed 出版商
  231. Panmanee J, Nopparat C, Chavanich N, Shukla M, Mukda S, Song W, et al. Melatonin regulates the transcription of βAPP-cleaving secretases mediated through melatonin receptors in human neuroblastoma SH-SY5Y cells. J Pineal Res. 2015;59:308-20 pubmed 出版商
  232. Madrigal Matute J, Fernandez García C, Blanco Colio L, Burillo E, Fortuño A, Martinez Pinna R, et al. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis. Free Radic Biol Med. 2015;86:352-61 pubmed 出版商
  233. Masotti A, Donninelli G, Da Sacco L, Varano B, Del Cornò M, Gessani S. HIV-1 gp120 influences the expression of microRNAs in human monocyte-derived dendritic cells via STAT3 activation. BMC Genomics. 2015;16:480 pubmed 出版商
  234. Cipolletta E, Rusciano M, Maione A, Santulli G, Sorriento D, Del Giudice C, et al. Targeting the CaMKII/ERK Interaction in the Heart Prevents Cardiac Hypertrophy. PLoS ONE. 2015;10:e0130477 pubmed 出版商
  235. Liu K, Chuang S, Long C, Lee Y, Wang C, Lu M, et al. Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Renal Physiol. 2015;309:F318-31 pubmed 出版商
  236. Dombernowsky S, Samsøe Petersen J, Petersen C, Instrell R, Hedegaard A, Thomas L, et al. The sorting protein PACS-2 promotes ErbB signalling by regulating recycling of the metalloproteinase ADAM17. Nat Commun. 2015;6:7518 pubmed 出版商
  237. Nadeau M, Rico C, Tsoi M, Vivancos M, Filimon S, Paquet M, et al. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells. BMC Cancer. 2015;15:479 pubmed 出版商
  238. Verma S, Mohapatra G, Ahmad S, Rana S, Jain S, Khalsa J, et al. Salmonella Engages Host MicroRNAs To Modulate SUMOylation: a New Arsenal for Intracellular Survival. Mol Cell Biol. 2015;35:2932-46 pubmed 出版商
  239. Hu G, McQuiston T, Bernard A, Park Y, Qiu J, Vural A, et al. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol. 2015;17:930-942 pubmed 出版商
  240. Krishnan S, Szabo E, Burghardt I, Frei K, Tabatabai G, Weller M. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition. Oncotarget. 2015;6:22480-95 pubmed
  241. Mercer J, Argus J, Crabtree D, KEENAN M, Wilks M, Chi J, et al. Modulation of PICALM Levels Perturbs Cellular Cholesterol Homeostasis. PLoS ONE. 2015;10:e0129776 pubmed 出版商
  242. Gagnon J, Daou S, Zamorano N, Iannantuono N, Hammond Martel I, Mashtalir N, et al. Undetectable histone O-GlcNAcylation in mammalian cells. Epigenetics. 2015;10:677-91 pubmed 出版商
  243. Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. Biochim Biophys Acta. 2015;1853:2296-305 pubmed 出版商
  244. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed 出版商
  245. Yan R, Zhang Y, Cai D, Liu Y, Cuconati A, Guo H. Spinoculation Enhances HBV Infection in NTCP-Reconstituted Hepatocytes. PLoS ONE. 2015;10:e0129889 pubmed 出版商
  246. Dinh C, Szabo A, Yu Y, Camer D, Zhang Q, Wang H, et al. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet. Nutrients. 2015;7:4705-23 pubmed 出版商
  247. Gulino R, Parenti R, Gulisano M. Novel Mechanisms of Spinal Cord Plasticity in a Mouse Model of Motoneuron Disease. Biomed Res Int. 2015;2015:654637 pubmed 出版商
  248. Cui W, Sun M, Galeva N, Williams T, Azuma Y, Staudinger J. SUMOylation and Ubiquitylation Circuitry Controls Pregnane X Receptor Biology in Hepatocytes. Drug Metab Dispos. 2015;43:1316-25 pubmed 出版商
  249. Neo S, Itahana Y, Alagu J, Kitagawa M, Guo A, Lee S, et al. TRIM28 Is an E3 Ligase for ARF-Mediated NPM1/B23 SUMOylation That Represses Centrosome Amplification. Mol Cell Biol. 2015;35:2851-63 pubmed 出版商
  250. Zhang T, Zhou Y, Qi S, Wang Z, Qian W, Ouyang Y, et al. Nuf2 is required for chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle. 2015;14:2701-10 pubmed 出版商
  251. Barr A, Bakal C. A sensitised RNAi screen reveals a ch-TOG genetic interaction network required for spindle assembly. Sci Rep. 2015;5:10564 pubmed 出版商
  252. Hämäläinen R, Ahlqvist K, Ellonen P, Lepistö M, Logan A, Otonkoski T, et al. mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling. Cell Rep. 2015;11:1614-24 pubmed 出版商
  253. Zarkoob H, Bodduluri S, Ponnaluri S, Selby J, Sander E. Substrate Stiffness Affects Human Keratinocyte Colony Formation. Cell Mol Bioeng. 2015;8:32-50 pubmed
  254. O Callaghan K, Palagano E, Butini S, Campiani G, Williams D, Zisterer D, et al. Induction of apoptosis in oral squamous carcinoma cells by pyrrolo-1,5-benzoxazepines. Mol Med Rep. 2015;12:3748-3754 pubmed 出版商
  255. Webb B, Forouhar F, Szu F, Seetharaman J, Tong L, Barber D. Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations. Nature. 2015;523:111-4 pubmed 出版商
  256. Pan D, Jiang C, Ma Z, Blonska M, You M, Lin X. MALT1 is required for EGFR-induced NF-?B activation and contributes to EGFR-driven lung cancer progression. Oncogene. 2016;35:919-28 pubmed 出版商
  257. Calafate S, Buist A, Miskiewicz K, Vijayan V, Daneels G, De Strooper B, et al. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation. Cell Rep. 2015;11:1176-83 pubmed 出版商
  258. Kumar P, Gullberg U, Olsson I, Ajore R. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1. PLoS ONE. 2015;10:e0123725 pubmed 出版商
  259. Ketema M, Secades P, Kreft M, Nahidiazar L, Janssen H, Jalink K, et al. The rod domain is not essential for the function of plectin in maintaining tissue integrity. Mol Biol Cell. 2015;26:2402-17 pubmed 出版商
  260. Landais I, Pelton C, Streblow D, DeFilippis V, McWeeney S, Nelson J. Human Cytomegalovirus miR-UL112-3p Targets TLR2 and Modulates the TLR2/IRAK1/NFκB Signaling Pathway. PLoS Pathog. 2015;11:e1004881 pubmed 出版商
  261. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  262. Goldstein M, Kastan M. Repair versus Checkpoint Functions of BRCA1 Are Differentially Regulated by Site of Chromatin Binding. Cancer Res. 2015;75:2699-707 pubmed 出版商
  263. Tatti M, Motta M, Scarpa S, Di Bartolomeo S, Cianfanelli V, Tartaglia M, et al. BCM-95 and (2-hydroxypropyl)-β-cyclodextrin reverse autophagy dysfunction and deplete stored lipids in Sap C-deficient fibroblasts. Hum Mol Genet. 2015;24:4198-211 pubmed 出版商
  264. Sechler M, Borowicz S, Van Scoyk M, Avasarala S, Zerayesus S, Edwards M, et al. Novel Role for γ-Catenin in the Regulation of Cancer Cell Migration via the Induction of Hepatocyte Growth Factor Activator Inhibitor Type 1 (HAI-1). J Biol Chem. 2015;290:15610-20 pubmed 出版商
  265. Martínez A, Sesé M, Losa J, Robichaud N, Sonenberg N, Aasen T, et al. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches. PLoS ONE. 2015;10:e0123352 pubmed 出版商
  266. SCANLON C, Banerjee R, Inglehart R, Liu M, Russo N, Hariharan A, et al. Galanin modulates the neural niche to favour perineural invasion in head and neck cancer. Nat Commun. 2015;6:6885 pubmed 出版商
  267. Peiris Pagès M, Sotgia F, Lisanti M. Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells. Oncotarget. 2015;6:10728-45 pubmed
  268. Miracco C, Toscano M, Butorano M, Baldino G, Tacchini D, Barone A, et al. Unusual clear cell, lymphoplasmacyte-rich, dural-based tumor with divergent differentiation: a tricky case mimicking a meningioma. Hum Pathol. 2015;46:1050-6 pubmed 出版商
  269. Hung T, Li Y, Tseng C, Lan Y, Hsu S, Chen Y, et al. Knockdown of c-MET induced apoptosis in ABCB1-overexpressed multidrug-resistance cancer cell lines. Cancer Gene Ther. 2015;22:262-70 pubmed 出版商
  270. Alkhateeb A, Buckett P, Gardeck A, Kim J, Byrne S, Fraenkel P, et al. The small molecule ferristatin II induces hepatic hepcidin expression in vivo and in vitro. Am J Physiol Gastrointest Liver Physiol. 2015;308:G1019-26 pubmed 出版商
  271. Randles M, Woolf A, Huang J, Byron A, Humphries J, Price K, et al. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization. J Am Soc Nephrol. 2015;26:3021-34 pubmed 出版商
  272. Dilsizoglu Senol A, Tagliafierro L, Huguet L, Gorisse Hussonnois L, Chasseigneaux S, Allinquant B. PAT1 inversely regulates the surface Amyloid Precursor Protein level in mouse primary neurons. BMC Neurosci. 2015;16:10 pubmed 出版商
  273. Hotokezaka Y, Katayama I, van Leyen K, Nakamura T. GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses. Cell Death Dis. 2015;6:e1719 pubmed 出版商
  274. Chung J, Bauer D, Ghamari A, Nizzi C, Deck K, Kingsley P, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal. 2015;8:ra34 pubmed 出版商
  275. Zhang X, Liang D, Chi Z, Chu Q, Zhao C, Ma R, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35:1747-54 pubmed 出版商
  276. Pardo F, Silva L, Sáez T, Salsoso R, Gutiérrez J, Sanhueza C, et al. Human supraphysiological gestational weight gain and fetoplacental vascular dysfunction. Int J Obes (Lond). 2015;39:1264-73 pubmed 出版商
  277. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed 出版商
  278. Hong S, Lee J, Lee J, Lee H, Kim H, Lee S, et al. The traditional drug Gongjin-Dan ameliorates chronic fatigue in a forced-stress mouse exercise model. J Ethnopharmacol. 2015;168:268-78 pubmed 出版商
  279. Sheng X, Arnoldussen Y, Storm M, Tesikova M, Nenseth H, Zhao S, et al. Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol Med. 2015;7:788-801 pubmed 出版商
  280. Jørgensen M, Bæk R, Varming K. Potentials and capabilities of the Extracellular Vesicle (EV) Array. J Extracell Vesicles. 2015;4:26048 pubmed 出版商
  281. Fukumoto M, Kurisu S, Yamada T, Takenawa T. α-Actinin-4 enhances colorectal cancer cell invasion by suppressing focal adhesion maturation. PLoS ONE. 2015;10:e0120616 pubmed 出版商
  282. Simões A, Pereira D, Gomes S, Brito H, Carvalho T, French A, et al. Aberrant MEK5/ERK5 signalling contributes to human colon cancer progression via NF-κB activation. Cell Death Dis. 2015;6:e1718 pubmed 出版商
  283. Smith R, Klein R, Kruzliak P, Zulli A. Role of Peptide YY in blood vessel function and atherosclerosis in a rabbit model. Clin Exp Pharmacol Physiol. 2015;42:648-52 pubmed 出版商
  284. Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol. 2015;209:111-28 pubmed 出版商
  285. Amrutkar M, Cansby E, Chursa U, Nuñez Durán E, Chanclón B, StÃ¥hlman M, et al. Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model. Diabetes. 2015;64:2791-804 pubmed 出版商
  286. Wang L, Jirka G, Rosenberg P, Buckley A, Gomez J, Fields T, et al. Gq signaling causes glomerular injury by activating TRPC6. J Clin Invest. 2015;125:1913-26 pubmed 出版商
  287. Bergamo P, Palmieri G, Cocca E, Ferrandino I, Gogliettino M, Monaco A, et al. Adaptive response activated by dietary cis9, trans11 conjugated linoleic acid prevents distinct signs of gliadin-induced enteropathy in mice. Eur J Nutr. 2016;55:729-740 pubmed 出版商
  288. Sherry B. Generating primary cultures of murine cardiac myocytes and cardiac fibroblasts to study viral myocarditis. Methods Mol Biol. 2015;1299:1-16 pubmed 出版商
  289. Malchenko S, Sredni S, Hashimoto H, Kasai A, Nagayasu K, Xie J, et al. A mouse model of human primitive neuroectodermal tumors resulting from microenvironmentally-driven malignant transformation of orthotopically transplanted radial glial cells. PLoS ONE. 2015;10:e0121707 pubmed 出版商
  290. Lee S, Chang J, Wu J, Sheu D. Antineoplastic effect of a novel chemopreventive agent, neokestose, on the Caco-2 cell line via inhibition of expression of nuclear factor-κB and cyclooxygenase-2. Mol Med Rep. 2015;12:1114-8 pubmed 出版商
  291. Majumdar T, Chattopadhyay S, Ozhegov E, Dhar J, Goswami R, Sen G, et al. Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii. PLoS Pathog. 2015;11:e1004779 pubmed 出版商
  292. Leslie P, Ke H, Zhang Y. The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization. J Biol Chem. 2015;290:12941-50 pubmed 出版商
  293. Wang D, Chadha G, Feygin A, Ivanov A. F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells. Cell Mol Life Sci. 2015;72:3185-3200 pubmed 出版商
  294. Xu G, Chapman J, Brandsma I, Yuan J, Mistrik M, Bouwman P, et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature. 2015;521:541-544 pubmed 出版商
  295. Aoto K, Sandell L, Butler Tjaden N, Yuen K, Watt K, Black B, et al. Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells. Dev Biol. 2015;402:3-16 pubmed 出版商
  296. Qu D, Chen Y, Xu X, Zhang M, Zhang Y, Li S. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exp Ther Med. 2015;9:1265-1270 pubmed
  297. Seo H, Woo J, Shin Y, Ko S. Identification of biomarkers regulated by rexinoids (LGD1069, LG100268 and Ro25-7386) in human breast cells using Affymetrix microarray. Mol Med Rep. 2015;12:800-18 pubmed 出版商
  298. Hashimoto T, Chen L, Kimura H, Endler A, Koyama H, Miyata T, et al. Silencing of eIF3e promotes blood perfusion recovery after limb ischemia through stabilization of hypoxia-inducible factor 2α activity. J Vasc Surg. 2016;64:219-226.e3 pubmed 出版商
  299. Staudacher J, Naarmann de Vries I, Ujvari S, Klinger B, Kasim M, Benko E, et al. Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum. Nucleic Acids Res. 2015;43:3219-36 pubmed 出版商
  300. Yang Y, Deng Q, Feng X, Sun J. Use of the disulfiram/copper complex for breast cancer chemoprevention in MMTV-erbB2 transgenic mice. Mol Med Rep. 2015;12:746-52 pubmed 出版商
  301. Leirós M, Alonso E, Rateb M, Houssen W, Ebel R, Jaspars M, et al. Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacology. 2015;93:285-93 pubmed 出版商
  302. Pedro J, Wei Y, Sica V, Maiuri M, Zou Z, Kroemer G, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452-9 pubmed 出版商
  303. Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, et al. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget. 2015;6:5804-17 pubmed
  304. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253-70 pubmed 出版商
  305. TaÅŸlı P, DoÄŸan A, Demirci S, Åžahin F. Myogenic and neurogenic differentiation of human tooth germ stem cells (hTGSCs) are regulated by pluronic block copolymers. Cytotechnology. 2016;68:319-29 pubmed 出版商
  306. Van Skike C, Diaz Granados J, Matthews D. Chronic intermittent ethanol exposure produces persistent anxiety in adolescent and adult rats. Alcohol Clin Exp Res. 2015;39:262-71 pubmed 出版商
  307. Xing M, Yang M, Huo W, Feng F, Wei L, Jiang W, et al. Interactome analysis identifies a new paralogue of XRCC4 in non-homologous end joining DNA repair pathway. Nat Commun. 2015;6:6233 pubmed 出版商
  308. Lin S, Huang S, Kuo H, Chen C, Ma Y, Chu T, et al. Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway. Mar Drugs. 2015;13:861-78 pubmed 出版商
  309. Sabogal Guáqueta A, Muñoz Manco J, Ramírez Pineda J, Lamprea Rodriguez M, Osorio E, Cardona Gómez G. The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice. Neuropharmacology. 2015;93:134-45 pubmed 出版商
  310. D Amico A, Maugeri G, Magro G, Salvatorelli L, Drago F, D Agata V. Expression pattern of parkin isoforms in lung adenocarcinomas. Tumour Biol. 2015;36:5133-41 pubmed 出版商
  311. Briz V, Zhu G, Wang Y, Liu Y, Avetisyan M, Bi X, et al. Activity-dependent rapid local RhoA synthesis is required for hippocampal synaptic plasticity. J Neurosci. 2015;35:2269-82 pubmed 出版商
  312. Fuji R, Flagella M, Baca M, Baptista M, Brodbeck J, Chan B, et al. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Sci Transl Med. 2015;7:273ra15 pubmed 出版商
  313. Loganzo F, Tan X, Sung M, Jin G, Myers J, Melamud E, et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther. 2015;14:952-63 pubmed 出版商
  314. Gibbs Seymour I, Markiewicz E, Bekker Jensen S, Mailand N, Hutchison C. Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Aging Cell. 2015;14:162-9 pubmed 出版商
  315. Kap M, Lam K, Ewing Graham P, Riegman P. A reference image-based method for optimization of clinical immunohistochemistry. Histopathology. 2015;67:193-205 pubmed 出版商
  316. Dinh C, Szabo A, Camer D, Yu Y, Wang H, Huang X. Bardoxolone methyl prevents fat deposition and inflammation in the visceral fat of mice fed a high-fat diet. Chem Biol Interact. 2015;229:1-8 pubmed 出版商
  317. Bilal M, Zhang E, Dinkel B, Hardy D, Yankee T, Houtman J. GADS is required for TCR-mediated calcium influx and cytokine release, but not cellular adhesion, in human T cells. Cell Signal. 2015;27:841-50 pubmed 出版商
  318. Huang P, Hung S, Pao C, Wang T. N-(1-pyrenyl) maleimide induces bak oligomerization and mitochondrial dysfunction in Jurkat Cells. Biomed Res Int. 2015;2015:798489 pubmed 出版商
  319. Yamada S, Nabeshima A, Noguchi H, Nawata A, Nishii H, Guo X, et al. Coincidence between malignant perivascular epithelioid cell tumor arising in the gastric serosa and lung adenocarcinoma. World J Gastroenterol. 2015;21:1349-56 pubmed 出版商
  320. Pinto A, Malacrida B, Oieni J, Serafini M, Davin A, Galbiati V, et al. DHEA modulates the effect of cortisol on RACK1 expression via interference with the splicing of the glucocorticoid receptor. Br J Pharmacol. 2015;172:2918-27 pubmed 出版商
  321. Suo H, Song J, Zhou Y, Liu Z, Yi R, Zhu K, et al. Induction of apoptosis in HCT-116 colon cancer cells by polysaccharide of Larimichthys crocea swim bladder. Oncol Lett. 2015;9:972-978 pubmed
  322. Wong E, Wong S, Chan C, Lam E, Ho L, Lau C, et al. TP53-induced glycolysis and apoptosis regulator promotes proliferation and invasiveness of nasopharyngeal carcinoma cells. Oncol Lett. 2015;9:569-574 pubmed
  323. Hamdi A, Lesnard A, Suzanne P, Robert T, Miteva M, Pellerano M, et al. Tampering with cell division by using small-molecule inhibitors of CDK-CKS protein interactions. Chembiochem. 2015;16:432-9 pubmed 出版商
  324. Feliciano D, Tolsma T, Farrell K, Aradi A, Di Pietro S. A second Las17 monomeric actin-binding motif functions in Arp2/3-dependent actin polymerization during endocytosis. Traffic. 2015;16:379-97 pubmed 出版商
  325. Amrutkar M, Cansby E, Nuñez Durán E, Pirazzi C, StÃ¥hlman M, Stenfeldt E, et al. Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH. FASEB J. 2015;29:1564-76 pubmed 出版商
  326. Barcus C, Holt E, Keely P, Eliceiri K, Schuler L. Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells. PLoS ONE. 2015;10:e0116891 pubmed 出版商
  327. Xue T, Wei L, Zha D, Qiao L, Lu L, Chen F, et al. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med. 2015;35:637-44 pubmed 出版商
  328. Ninio Many L, Grossman H, Levi M, Zilber S, Tsarfaty I, Shomron N, et al. MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells. Oncoscience. 2014;1:250-261 pubmed
  329. Hsu S, Su W, Jeng K, Lai M. A host susceptibility gene, DR1, facilitates influenza A virus replication by suppressing host innate immunity and enhancing viral RNA replication. J Virol. 2015;89:3671-82 pubmed 出版商
  330. Miyata M, Lee J, Susuki Miyata S, Wang W, Xu H, Kai H, et al. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat Commun. 2015;6:6062 pubmed 出版商
  331. Matsuda Y, Kobayashi Ishihara M, Fujikawa D, Ishida T, Watanabe T, Yamagishi M. Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep. 2015;5:7701 pubmed 出版商
  332. Xue C, Zhang J, Lv Z, Liu H, Huang C, Yang J, et al. Angiotensin II promotes differentiation of mouse c-kit-positive cardiac stem cells into pacemaker-like cells. Mol Med Rep. 2015;11:3249-58 pubmed 出版商
  333. Goossens S, Radaelli E, Blanchet O, Durinck K, Van der Meulen J, Peirs S, et al. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat Commun. 2015;6:5794 pubmed 出版商
  334. Naegelen I, Plançon S, Nicot N, Kaoma T, Muller A, Vallar L, et al. An essential role of syntaxin 3 protein for granule exocytosis and secretion of IL-1α, IL-1β, IL-12b, and CCL4 from differentiated HL-60 cells. J Leukoc Biol. 2015;97:557-71 pubmed 出版商
  335. Hasegawa H, Ishibashi K, Kubota S, Yamaguchi C, Yuki R, Nakajo H, et al. Cdk1-mediated phosphorylation of human ATF7 at Thr-51 and Thr-53 promotes cell-cycle progression into M phase. PLoS ONE. 2014;9:e116048 pubmed 出版商
  336. Gomez Bougie P, Halliez M, Maïga S, Godon C, Kervoëlen C, Pellat Deceunynck C, et al. Curcumin induces cell death of the main molecular myeloma subtypes, particularly the poor prognosis subgroups. Cancer Biol Ther. 2015;16:60-5 pubmed 出版商
  337. Chen J, Wang Z, Xu D, Liu Y, Gao Y. Aquaporin 3 promotes prostate cancer cell motility and invasion via extracellular signal-regulated kinase 1/2-mediated matrix metalloproteinase-3 secretion. Mol Med Rep. 2015;11:2882-8 pubmed 出版商
  338. Xue L, Furusawa Y, Okayasu R, Miura M, Cui X, Liu C, et al. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function. DNA Repair (Amst). 2015;25:72-83 pubmed 出版商
  339. Cho S, Yun S, Jo C, Lee D, Choi K, Song J, et al. SUMO1 promotes Aβ production via the modulation of autophagy. Autophagy. 2015;11:100-12 pubmed 出版商
  340. Hoon J, Li H, Koh C. POPX2 phosphatase regulates cell polarity and centrosome placement. Cell Cycle. 2014;13:2459-68 pubmed 出版商
  341. Izzo F, Mercogliano F, Venturutti L, Tkach M, Inurrigarro G, Schillaci R, et al. Progesterone receptor activation downregulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Res. 2014;16:491 pubmed 出版商
  342. Kim H, Li A, Ahn S, Song H, Zhang W. Inositol Polyphosphate-5-Phosphatase F (INPP5F) inhibits STAT3 activity and suppresses gliomas tumorigenicity. Sci Rep. 2014;4:7330 pubmed 出版商
  343. Hsiao Y, Hung H, Chen S, Gean P. Social interaction rescues memory deficit in an animal model of Alzheimer's disease by increasing BDNF-dependent hippocampal neurogenesis. J Neurosci. 2014;34:16207-19 pubmed 出版商
  344. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  345. Roufayel R, Johnston D, Mosser D. The elimination of miR-23a in heat-stressed cells promotes NOXA-induced cell death and is prevented by HSP70. Cell Death Dis. 2014;5:e1546 pubmed 出版商
  346. Lew Q, Chu K, Chia Y, Soo B, Ho J, Ng C, et al. GCN5 inhibits XBP-1S-mediated transcription by antagonizing PCAF action. Oncotarget. 2015;6:271-87 pubmed
  347. Hall J, Sun J, Slade J, Kintner J, Bambino M, Whittimore J, et al. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development. Front Cell Infect Microbiol. 2014;4:158 pubmed 出版商
  348. Dalum A, Tangen R, Falk K, Hordvik I, Rosenlund G, Torstensen B, et al. Coronary changes in the Atlantic salmon Salmo salar L: characterization and impact of dietary fatty acid compositions. J Fish Dis. 2016;39:41-54 pubmed 出版商
  349. Hung T, Hsu S, Cheng C, Choo K, Tseng C, Chen T, et al. Wnt5A regulates ABCB1 expression in multidrug-resistant cancer cells through activation of the non-canonical PKA/β-catenin pathway. Oncotarget. 2014;5:12273-90 pubmed
  350. Lan N, Luo G, Yang X, Cheng Y, Zhang Y, Wang X, et al. 25-Hydroxyvitamin D3-deficiency enhances oxidative stress and corticosteroid resistance in severe asthma exacerbation. PLoS ONE. 2014;9:e111599 pubmed 出版商
  351. Choi M, Nakamura T, Cho S, Han X, Holland E, Qu J, et al. Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in parkinson's disease models. J Neurosci. 2014;34:15123-31 pubmed 出版商
  352. Ho T, Zollinger D, Chang K, Xu M, Cooper E, Stankewich M, et al. A hierarchy of ankyrin-spectrin complexes clusters sodium channels at nodes of Ranvier. Nat Neurosci. 2014;17:1664-72 pubmed 出版商
  353. Chang K, Zollinger D, Susuki K, Sherman D, Makara M, Brophy P, et al. Glial ankyrins facilitate paranodal axoglial junction assembly. Nat Neurosci. 2014;17:1673-81 pubmed 出版商
  354. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  355. Bantikassegn A, Song X, Politi K. Isolation of epithelial, endothelial, and immune cells from lungs of transgenic mice with oncogene-induced lung adenocarcinomas. Am J Respir Cell Mol Biol. 2015;52:409-17 pubmed 出版商
  356. Lin H, Lin S, Chung Y, Vonderfecht S, Camden J, Flodby P, et al. Dynamic involvement of ATG5 in cellular stress responses. Cell Death Dis. 2014;5:e1478 pubmed 出版商
  357. Shiba Fukushima K, Inoshita T, Hattori N, Imai Y. Lysine 63-linked polyubiquitination is dispensable for Parkin-mediated mitophagy. J Biol Chem. 2014;289:33131-6 pubmed 出版商
  358. Dammer E, Lee A, Duong D, Gearing M, Lah J, Levey A, et al. Quantitative phosphoproteomics of Alzheimer's disease reveals cross-talk between kinases and small heat shock proteins. Proteomics. 2015;15:508-519 pubmed 出版商
  359. Wang X, Chang Q, Wang Y, Su F, Zhang S. Late-onset temperature reduction can retard the aging process in aged fish via a combined action of an anti-oxidant system and the insulin/insulin-like growth factor 1 signaling pathway. Rejuvenation Res. 2014;17:507-17 pubmed 出版商
  360. Bernard Marissal N, Sunyach C, Marissal T, Raoul C, Pettmann B. Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice. Neurobiol Dis. 2015;73:130-6 pubmed 出版商
  361. Wei H, Nickoloff J, Chen W, Liu H, Lo W, Chang Y, et al. FOXF1 mediates mesenchymal stem cell fusion-induced reprogramming of lung cancer cells. Oncotarget. 2014;5:9514-29 pubmed
  362. Sontag J, Wasek B, Taleski G, Smith J, Arning E, Sontag E, et al. Altered protein phosphatase 2A methylation and Tau phosphorylation in the young and aged brain of methylenetetrahydrofolate reductase (MTHFR) deficient mice. Front Aging Neurosci. 2014;6:214 pubmed 出版商
  363. Torsvik J, Johansson B, Dalva M, Marie M, Fjeld K, Johansson S, et al. Endocytosis of secreted carboxyl ester lipase in a syndrome of diabetes and pancreatic exocrine dysfunction. J Biol Chem. 2014;289:29097-111 pubmed 出版商
  364. Friedman L, Riemslagh F, Sullivan J, Mesias R, Williams F, Huntley G, et al. Cadherin-8 expression, synaptic localization, and molecular control of neuronal form in prefrontal corticostriatal circuits. J Comp Neurol. 2015;523:75-92 pubmed 出版商
  365. Thompson L, Bauer J, Chiosea S, McHugh J, Seethala R, Miettinen M, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9:181-95 pubmed 出版商
  366. Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS ONE. 2014;9:e104771 pubmed 出版商
  367. Wellbrock J, Sheikhzadeh S, Oliveira Ferrer L, Stamm H, Hillebrand M, Keyser B, et al. Overexpression of Gremlin-1 in patients with Loeys-Dietz syndrome: implications on pathophysiology and early disease detection. PLoS ONE. 2014;9:e104742 pubmed 出版商
  368. Bergström J, Berg K, Rodríguez Piñeiro A, Stecher B, Johansson M, Hansson G. AGR2, an endoplasmic reticulum protein, is secreted into the gastrointestinal mucus. PLoS ONE. 2014;9:e104186 pubmed 出版商
  369. Dutta B, Yan R, Lim S, Tam J, Sze S. Quantitative profiling of chromatome dynamics reveals a novel role for HP1BP3 in hypoxia-induced oncogenesis. Mol Cell Proteomics. 2014;13:3236-49 pubmed 出版商
  370. Izumi H, Kaneko Y. Trim32 facilitates degradation of MYCN on spindle poles and induces asymmetric cell division in human neuroblastoma cells. Cancer Res. 2014;74:5620-30 pubmed 出版商
  371. Zhang X, Ma W, Cui J, Yao H, Zhou H, Ge Y, et al. Regulation of p21 by TWIST2 contributes to its tumor-suppressor function in human acute myeloid leukemia. Oncogene. 2015;34:3000-10 pubmed 出版商
  372. Burman J, Itsara L, Kayser E, Suthammarak W, Wang A, Kaeberlein M, et al. A Drosophila model of mitochondrial disease caused by a complex I mutation that uncouples proton pumping from electron transfer. Dis Model Mech. 2014;7:1165-74 pubmed 出版商
  373. Althoff K, Lindner S, Odersky A, Mestdagh P, Beckers A, Karczewski S, et al. miR-542-3p exerts tumor suppressive functions in neuroblastoma by downregulating Survivin. Int J Cancer. 2015;136:1308-20 pubmed 出版商
  374. Legrand N, Araud T, Conne B, Kuijpers O, Jaquier Gubler P, Curran J. An AUG codon conserved for protein function rather than translational initiation: the story of the protein sElk1. PLoS ONE. 2014;9:e102890 pubmed 出版商
  375. Zheng Y, Hsu F, Xu W, Xie X, Ren X, Gao X, et al. A developmental genetic analysis of the lysine demethylase KDM2 mutations in Drosophila melanogaster. Mech Dev. 2014;133:36-53 pubmed 出版商
  376. Tavares C, Ferguson S, Giles D, Wang Q, Wellmann R, O Brien J, et al. The molecular mechanism of eukaryotic elongation factor 2 kinase activation. J Biol Chem. 2014;289:23901-16 pubmed 出版商
  377. Doceul V, Chauveau E, Lara E, Breard E, Sailleau C, Zientara S, et al. Dual modulation of type I interferon response by bluetongue virus. J Virol. 2014;88:10792-802 pubmed 出版商
  378. Kotak S, Busso C, GONCZY P. NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane. EMBO J. 2014;33:1815-30 pubmed 出版商
  379. Fernandez Vidal A, Guitton Sert L, Cadoret J, Drac M, Schwob E, Baldacci G, et al. A role for DNA polymerase ? in the timing of DNA replication. Nat Commun. 2014;5:4285 pubmed 出版商
  380. Wijayatunge R, Chen L, Cha Y, Zannas A, Frank C, West A. The histone lysine demethylase Kdm6b is required for activity-dependent preconditioning of hippocampal neuronal survival. Mol Cell Neurosci. 2014;61:187-200 pubmed 出版商
  381. Chasseigneaux S, Clamagirand C, Huguet L, Gorisse Hussonnois L, Rose C, Allinquant B. Cytoplasmic SET induces tau hyperphosphorylation through a decrease of methylated phosphatase 2A. BMC Neurosci. 2014;15:82 pubmed 出版商
  382. Cansby E, Nerstedt A, Amrutkar M, Durán E, Smith U, Mahlapuu M. Partial hepatic resistance to IL-6-induced inflammation develops in type 2 diabetic mice, while the anti-inflammatory effect of AMPK is maintained. Mol Cell Endocrinol. 2014;393:143-51 pubmed 出版商
  383. Yamamoto J, Hagiwara Y, Chiba K, Isobe T, Narita T, Handa H, et al. DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes. Nat Commun. 2014;5:4263 pubmed 出版商
  384. Hu Q, Dong J, DU H, Zhang D, Ren H, Ma M, et al. Constitutive G?i coupling activity of very large G protein-coupled receptor 1 (VLGR1) and its regulation by PDZD7 protein. J Biol Chem. 2014;289:24215-25 pubmed 出版商
  385. Habiyakare B, Alsaadon H, Mathai M, Hayes A, Zulli A. Reduction of angiotensin A and alamandine vasoactivity in the rabbit model of atherogenesis: differential effects of alamandine and Ang(1-7). Int J Exp Pathol. 2014;95:290-5 pubmed 出版商
  386. Rice M, Smith K, Roberts R, Perez Costas E, Melendez Ferro M. Assessment of cytochrome C oxidase dysfunction in the substantia nigra/ventral tegmental area in schizophrenia. PLoS ONE. 2014;9:e100054 pubmed 出版商
  387. Morgan K, Black L. Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function. J Tissue Eng Regen Med. 2017;11:342-353 pubmed 出版商
  388. Kopaliani I, Martin M, Zatschler B, Bortlik K, Müller B, Deussen A. Cell-specific and endothelium-dependent regulations of matrix metalloproteinase-2 in rat aorta. Basic Res Cardiol. 2014;109:419 pubmed 出版商
  389. Gracanin A, Timmermans Sprang E, van Wolferen M, Rao N, Grizelj J, Vince S, et al. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression. PLoS ONE. 2014;9:e98698 pubmed 出版商
  390. Barragán Iglesias P, Pineda Farias J, Cervantes Durán C, Bravo Hernández M, Rocha González H, Murbartián J, et al. Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells. Mol Pain. 2014;10:29 pubmed 出版商
  391. Wang X, Bledsoe K, Graham R, Asmann Y, Viswanatha D, Lewis J, et al. Recurrent PAX3-MAML3 fusion in biphenotypic sinonasal sarcoma. Nat Genet. 2014;46:666-8 pubmed 出版商
  392. Mena H, Lokajczyk A, Dizier B, Strier S, Voto L, Boisson Vidal C, et al. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis. 2014;17:867-79 pubmed 出版商
  393. Yuan B, Wan P, Chu D, Nie J, Cao Y, Luo W, et al. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. Am J Pathol. 2014;184:1967-80 pubmed 出版商
  394. Lohoefer F, Reeps C, Lipp C, Rudelius M, Haertl F, Matevossian E, et al. Quantitative expression and localization of cysteine and aspartic proteases in human abdominal aortic aneurysms. Exp Mol Med. 2014;46:e95 pubmed 出版商
  395. Cheng Y, Cao A, Zheng J, Wang H, Sun Y, Liu C, et al. Airway hyperresponsiveness induced by repeated esophageal infusion of HCl in guinea pigs. Am J Respir Cell Mol Biol. 2014;51:701-8 pubmed 出版商
  396. Mori F, Watanabe Y, Miki Y, Tanji K, Odagiri S, Eto K, et al. Ubiquitin-negative, eosinophilic neuronal cytoplasmic inclusions associated with stress granules and autophagy: an immunohistochemical investigation of two cases. Neuropathology. 2014;34:140-7 pubmed
  397. van de Weijer M, Bassik M, Luteijn R, Voorburg C, Lohuis M, Kremmer E, et al. A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation. Nat Commun. 2014;5:3832 pubmed 出版商
  398. McComb S, Shutinoski B, Thurston S, Cessford E, Kumar K, Sad S. Cathepsins limit macrophage necroptosis through cleavage of Rip1 kinase. J Immunol. 2014;192:5671-8 pubmed 出版商
  399. Li Y, Ehrhardt K, Zhang M, Bleris L. Assembly and validation of versatile transcription activator-like effector libraries. Sci Rep. 2014;4:4857 pubmed 出版商
  400. Bach F, Rutten K, Hendriks K, Riemers F, Cornelissen P, de Bruin A, et al. The paracrine feedback loop between vitamin D? (1,25(OH)?D?) and PTHrP in prehypertrophic chondrocytes. J Cell Physiol. 2014;229:1999-2014 pubmed 出版商
  401. Chuderland D, Ben Ami I, Friedler S, Hasky N, Ninio Many L, Goldberg K, et al. Hormonal regulation of pigment epithelium-derived factor (PEDF) expression in the endometrium. Mol Cell Endocrinol. 2014;390:85-92 pubmed 出版商
  402. Nikitczuk J, Patil S, Matikainen Ankney B, Scarpa J, Shapiro M, Benson D, et al. N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo. Hippocampus. 2014;24:943-962 pubmed 出版商
  403. Quintin J, Le Péron C, Palierne G, Bizot M, Cunha S, Sérandour A, et al. Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities. Mol Cell Biol. 2014;34:2418-36 pubmed 出版商
  404. Cooper M, Koleske A. Ablation of ErbB4 from excitatory neurons leads to reduced dendritic spine density in mouse prefrontal cortex. J Comp Neurol. 2014;522:3351-62 pubmed 出版商
  405. Ishikawa K, Saiki S, Furuya N, Yamada D, Imamichi Y, Li Y, et al. P150glued-associated disorders are caused by activation of intrinsic apoptotic pathway. PLoS ONE. 2014;9:e94645 pubmed 出版商
  406. Chauhan H, Killinger B, Miller C, Moszczynska A. Single and binge methamphetamine administrations have different effects on the levels of dopamine D2 autoreceptor and dopamine transporter in rat striatum. Int J Mol Sci. 2014;15:5884-906 pubmed 出版商
  407. Chou C, Huang N, Jhuang S, Pan H, Peng N, Cheng J, et al. Ubiquitin-conjugating enzyme UBE2C is highly expressed in breast microcalcification lesions. PLoS ONE. 2014;9:e93934 pubmed 出版商
  408. Deng J, Wan Y, Wang X, Cohen S, Wetsel W, Greenberg M, et al. MeCP2 phosphorylation limits psychostimulant-induced behavioral and neuronal plasticity. J Neurosci. 2014;34:4519-27 pubmed 出版商
  409. Lin Y, Kuo K, Wuputra K, Lin S, Ku C, Yang Y, et al. Bovine induced pluripotent stem cells are more resistant to apoptosis than testicular cells in response to mono-(2-ethylhexyl) phthalate. Int J Mol Sci. 2014;15:5011-31 pubmed 出版商
  410. Schroder W, Major L, Le T, Gardner J, Sweet M, Janciauskiene S, et al. Tumor cell-expressed SerpinB2 is present on microparticles and inhibits metastasis. Cancer Med. 2014;3:500-13 pubmed 出版商
  411. Yeh Y, Chen C, Huang P, Hsu C, Wu C, Wang T. Proteomic analyses of genes regulated by heterogeneous nuclear ribonucleoproteins A/B in Jurkat cells. Proteomics. 2014;14:1357-66 pubmed 出版商
  412. Fukumoto Y, Morii M, Miura T, Kubota S, Ishibashi K, Honda T, et al. Src family kinases promote silencing of ATR-Chk1 signaling in termination of DNA damage checkpoint. J Biol Chem. 2014;289:12313-29 pubmed 出版商
  413. Carloni S, Albertini M, Galluzzi L, Buonocore G, Proietti F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol. 2014;255:103-12 pubmed 出版商
  414. Cheng C, Lin J, Su S, Tang N, Kao S, Hsieh C. Electroacupuncture-like stimulation at Baihui and Dazhui acupoints exerts neuroprotective effects through activation of the brain-derived neurotrophic factor-mediated MEK1/2/ERK1/2/p90RSK/bad signaling pathway in mild transient focal cerebral ischemi. BMC Complement Altern Med. 2014;14:92 pubmed 出版商
  415. Pujadas L, Rossi D, Andres R, Teixeira C, Serra Vidal B, Parcerisas A, et al. Reelin delays amyloid-beta fibril formation and rescues cognitive deficits in a model of Alzheimer's disease. Nat Commun. 2014;5:3443 pubmed 出版商
  416. Zhang Y, Chen L, Shen G, Zhao Q, Shangguan L, He M. GRK5 dysfunction accelerates tau hyperphosphorylation in APP (swe) mice through impaired cholinergic activity. Neuroreport. 2014;25:542-7 pubmed 出版商
  417. Toyoshima D, Mandai K, Maruo T, Supriyanto I, Togashi H, Inoue T, et al. Afadin regulates puncta adherentia junction formation and presynaptic differentiation in hippocampal neurons. PLoS ONE. 2014;9:e89763 pubmed 出版商
  418. van Gent M, Braem S, de Jong A, Delagic N, Peeters J, Boer I, et al. Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog. 2014;10:e1003960 pubmed 出版商
  419. Machamer J, Collins S, Lloyd T. The ALS gene FUS regulates synaptic transmission at the Drosophila neuromuscular junction. Hum Mol Genet. 2014;23:3810-22 pubmed 出版商
  420. Ohshima J, Lee Y, Sasai M, Saitoh T, Su Ma J, Kamiyama N, et al. Role of mouse and human autophagy proteins in IFN-?-induced cell-autonomous responses against Toxoplasma gondii. J Immunol. 2014;192:3328-35 pubmed 出版商
  421. Boin A, Couvelard A, Couderc C, Brito I, Filipescu D, Kalamarides M, et al. Proteomic screening identifies a YAP-driven signaling network linked to tumor cell proliferation in human schwannomas. Neuro Oncol. 2014;16:1196-209 pubmed 出版商
  422. Guezguez A, Paré F, Benoit Y, Basora N, Beaulieu J. Modulation of stemness in a human normal intestinal epithelial crypt cell line by activation of the WNT signaling pathway. Exp Cell Res. 2014;322:355-64 pubmed 出版商
  423. Du L, Zhang J, De Meyer G, Flynn R, Dichek D. Improved animal models for testing gene therapy for atherosclerosis. Hum Gene Ther Methods. 2014;25:106-14 pubmed 出版商
  424. Dorn C, Engelmann J, Saugspier M, Koch A, Hartmann A, Müller M, et al. Increased expression of c-Jun in nonalcoholic fatty liver disease. Lab Invest. 2014;94:394-408 pubmed 出版商
  425. Stanevich V, Zheng A, Guo F, Jiang L, Wlodarchak N, Xing Y. Mechanisms of the scaffold subunit in facilitating protein phosphatase 2A methylation. PLoS ONE. 2014;9:e86955 pubmed 出版商
  426. Morgan K, Black L. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A. 2014;20:1654-67 pubmed 出版商
  427. Traer E, Javidi Sharifi N, Agarwal A, Dunlap J, English I, Martinez J, et al. Ponatinib overcomes FGF2-mediated resistance in CML patients without kinase domain mutations. Blood. 2014;123:1516-24 pubmed 出版商
  428. Portugal G, Al Hasani R, Fakira A, Gonzalez Romero J, Melyan Z, McCall J, et al. Hippocampal long-term potentiation is disrupted during expression and extinction but is restored after reinstatement of morphine place preference. J Neurosci. 2014;34:527-38 pubmed 出版商
  429. Zhou X, Han X, Zhao K, Du J, Evans S, Wang H, et al. Dispersed and conserved hydrophobic residues of HIV-1 Vif are essential for CBF? recruitment and A3G suppression. J Virol. 2014;88:2555-63 pubmed 出版商
  430. Bronner D, O Riordan M, He Y. Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis. Front Cell Infect Microbiol. 2013;3:83 pubmed 出版商
  431. Barras D, Lorusso G, Lhermitte B, Viertl D, Ruegg C, Widmann C. Fragment N2, a caspase-3-generated RasGAP fragment, inhibits breast cancer metastatic progression. Int J Cancer. 2014;135:242-7 pubmed 出版商
  432. Ushijima T, Okazaki K, Tsushima H, Iwamoto Y. CCAAT/enhancer-binding protein ? regulates the repression of type II collagen expression during the differentiation from proliferative to hypertrophic chondrocytes. J Biol Chem. 2014;289:2852-63 pubmed 出版商
  433. Bi J, Wang R, Zhang Y, Han X, Ampah K, Liu W, et al. Identification of nucleolin as a lipid-raft-dependent ?1-integrin-interacting protein in A375 cell migration. Mol Cells. 2013;36:507-17 pubmed 出版商
  434. Hasty P, Livi C, Dodds S, Jones D, Strong R, Javors M, et al. eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res (Phila). 2014;7:169-78 pubmed 出版商
  435. Praetorius C, Grill C, Stacey S, Metcalf A, Gorkin D, Robinson K, et al. A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway. Cell. 2013;155:1022-33 pubmed 出版商
  436. ElAli A, Theriault P, Prefontaine P, Rivest S. Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation. Acta Neuropathol Commun. 2013;1:75 pubmed 出版商
  437. Mizunoya W, Iwamoto Y, Shirouchi B, Sato M, Komiya Y, Razin F, et al. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle. PLoS ONE. 2013;8:e80152 pubmed 出版商
  438. Mizunoya W, Iwamoto Y, Sato Y, Tatsumi R, Ikeuchi Y. Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats. Anim Sci J. 2014;85:293-304 pubmed 出版商
  439. Su J, Gu Y, Pruijn F, Smaill J, Patterson A, Guise C, et al. Zinc finger nuclease knock-out of NADPH:cytochrome P450 oxidoreductase (POR) in human tumor cell lines demonstrates that hypoxia-activated prodrugs differ in POR dependence. J Biol Chem. 2013;288:37138-53 pubmed 出版商
  440. Almenar Queralt A, Kim S, Benner C, Herrera C, Kang D, Garcia Bassets I, et al. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation. J Biol Chem. 2013;288:35222-36 pubmed 出版商
  441. Bobinet M, Vignard V, Florenceau L, Lang F, Labarriere N, Moreau Aubry A. Overexpression of meloe gene in melanomas is controlled both by specific transcription factors and hypomethylation. PLoS ONE. 2013;8:e75421 pubmed 出版商
  442. Yu L, Cheng H, Yang S. Clinicopathological and extensive immunohistochemical study of a type II pleuropulmonary blastoma. Fetal Pediatr Pathol. 2014;33:1-8 pubmed 出版商
  443. Yu Y, Munger K. Human papillomavirus type 16 E7 oncoprotein inhibits the anaphase promoting complex/cyclosome activity by dysregulating EMI1 expression in mitosis. Virology. 2013;446:251-9 pubmed 出版商
  444. Kr cher T, Malinovskaja K, J rgenson M, Aonurm Helm A, Zharkovskaya T, Kalda A, et al. Schizophrenia-like phenotype of polysialyltransferase ST8SIA2-deficient mice. Brain Struct Funct. 2015;220:71-83 pubmed 出版商
  445. Hall B, Wankhade U, Konkel J, Cherukuri K, Nagineni C, Flanders K, et al. Transforming growth factor-?3 (TGF-?3) knock-in ameliorates inflammation due to TGF-?1 deficiency while promoting glucose tolerance. J Biol Chem. 2013;288:32074-92 pubmed 出版商
  446. Wittchen E, Nishimura E, McCloskey M, Wang H, Quilliam L, Chrzanowska Wodnicka M, et al. Rap1 GTPase activation and barrier enhancement in rpe inhibits choroidal neovascularization in vivo. PLoS ONE. 2013;8:e73070 pubmed 出版商
  447. Sollome J, Thavathiru E, Camenisch T, Vaillancourt R. HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal. 2014;26:70-82 pubmed 出版商
  448. Copeland A, Altamura L, Van Deusen N, Schmaljohn C. Nuclear relocalization of polyadenylate binding protein during rift valley fever virus infection involves expression of the NSs gene. J Virol. 2013;87:11659-69 pubmed 出版商
  449. Chastre A, Belanger M, Nguyen B, Butterworth R. Lipopolysaccharide precipitates hepatic encephalopathy and increases blood-brain barrier permeability in mice with acute liver failure. Liver Int. 2014;34:353-61 pubmed 出版商
  450. Zhang X, Meyn M, Smithgall T. c-Yes tyrosine kinase is a potent suppressor of ES cell differentiation and antagonizes the actions of its closest phylogenetic relative, c-Src. ACS Chem Biol. 2014;9:139-46 pubmed 出版商
  451. Gonzalez Silva C, Vera J, Bono M, Gonzalez Billault C, Baxter B, Hansen A, et al. Ca2+-activated Cl- channels of the ClCa family express in the cilia of a subset of rat olfactory sensory neurons. PLoS ONE. 2013;8:e69295 pubmed 出版商
  452. Kubota F, Matsuyama A, Shibuya R, Nakamoto M, Hisaoka M. Desmin-positivity in spindle cells: under-recognized immunophenotype of lipoblastoma. Pathol Int. 2013;63:353-7 pubmed 出版商
  453. Belzil C, Neumayer G, Vassilev A, Yap K, Konishi H, Rivest S, et al. A Ca2+-dependent mechanism of neuronal survival mediated by the microtubule-associated protein p600. J Biol Chem. 2013;288:24452-64 pubmed 出版商
  454. Lee P, Yau D, Lau P, Chan J. Plexiform fibromyxoma (plexiform angiomyxoid myofibroblastic tumor) of stomach: an unusual presentation as a fistulating abscess. Int J Surg Pathol. 2014;22:286-90 pubmed 出版商
  455. Chandra S, Priyadarshini R, Madhavan V, Tikoo S, Hussain M, Mudgal R, et al. Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation. J Cell Sci. 2013;126:3782-95 pubmed 出版商
  456. Milman P, Woulfe J. Novel variant of neuronal intranuclear rodlet immunoreactive for 40 kDa huntingtin associated protein and ubiquitin in the mouse brain. J Comp Neurol. 2013;521:3832-46 pubmed 出版商
  457. Choi J, Batchu V, Schubert M, Castellani R, Russell J. A novel PGC-1? isoform in brain localizes to mitochondria and associates with PINK1 and VDAC. Biochem Biophys Res Commun. 2013;435:671-7 pubmed 出版商
  458. Jacobi C, Rudigier L, Scholz H, Kirschner K. Transcriptional regulation by the Wilms tumor protein, Wt1, suggests a role of the metalloproteinase Adamts16 in murine genitourinary development. J Biol Chem. 2013;288:18811-24 pubmed 出版商
  459. Kubota S, Fukumoto Y, Aoyama K, Ishibashi K, Yuki R, Morinaga T, et al. Phosphorylation of KRAB-associated protein 1 (KAP1) at Tyr-449, Tyr-458, and Tyr-517 by nuclear tyrosine kinases inhibits the association of KAP1 and heterochromatin protein 1? (HP1?) with heterochromatin. J Biol Chem. 2013;288:17871-83 pubmed 出版商
  460. Medford H, Porter K, Marsh S. Immediate effects of a single exercise bout on protein O-GlcNAcylation and chromatin regulation of cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2013;305:H114-23 pubmed 出版商
  461. Pantaleo M, Astolfi A, Urbini M, Nannini M, Paterini P, Indio V, et al. Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur J Hum Genet. 2014;22:32-9 pubmed 出版商
  462. Sogn C, Puchades M, Gundersen V. Rare contacts between synapses and microglial processes containing high levels of Iba1 and actin--a postembedding immunogold study in the healthy rat brain. Eur J Neurosci. 2013;38:2030-40 pubmed 出版商
  463. Benoit Y, Witherspoon M, Laursen K, Guezguez A, Beauséjour M, Beaulieu J, et al. Pharmacological inhibition of polycomb repressive complex-2 activity induces apoptosis in human colon cancer stem cells. Exp Cell Res. 2013;319:1463-70 pubmed 出版商
  464. Song W, Mondal P, Li Y, Lee S, Hussain M. Pancreatic ?-cell response to increased metabolic demand and to pharmacologic secretagogues requires EPAC2A. Diabetes. 2013;62:2796-807 pubmed 出版商
  465. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  466. Xu J, Deng X, Tang M, Li L, Xiao L, Yang L, et al. Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma. PLoS ONE. 2013;8:e56114 pubmed 出版商
  467. Pu X, Xiao Q, Kiechl S, Chan K, Ng F, Gor S, et al. ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am J Hum Genet. 2013;92:366-74 pubmed 出版商
  468. McCoy F, Darbandi R, Chen S, Eckard L, Dodd K, Jones K, et al. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem. 2013;288:8838-48 pubmed 出版商
  469. El Achkar T, McCracken R, Liu Y, Heitmeier M, Bourgeois S, Ryerse J, et al. Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury. Am J Physiol Renal Physiol. 2013;304:F1066-75 pubmed 出版商
  470. Chen M, Huang C, Hsu S, Lin E, Ku C, Lin H, et al. Retinoic Acid Induces Apoptosis of Prostate Cancer DU145 Cells through Cdk5 Overactivation. Evid Based Complement Alternat Med. 2012;2012:580736 pubmed 出版商
  471. Sánchez Alvarez R, Martinez Outschoorn U, Lin Z, Lamb R, Hulit J, Howell A, et al. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. Cell Cycle. 2013;12:289-301 pubmed 出版商
  472. Tomasek J, Haaksma C, Schwartz R, Howard E. Whole animal knockout of smooth muscle alpha-actin does not alter excisional wound healing or the fibroblast-to-myofibroblast transition. Wound Repair Regen. 2013;21:166-76 pubmed 出版商
  473. Alimova I, Birks D, Harris P, Knipstein J, Venkataraman S, Marquez V, et al. Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro Oncol. 2013;15:149-60 pubmed 出版商
  474. Mathew J, Loranger A, Gilbert S, Faure R, Marceau N. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling. Exp Cell Res. 2013;319:474-86 pubmed 出版商
  475. Peddigari S, Li P, Rabe J, Martin S. hnRNPL and nucleolin bind LINE-1 RNA and function as host factors to modulate retrotransposition. Nucleic Acids Res. 2013;41:575-85 pubmed 出版商
  476. Chang Y, Lin L, Lou C, Chou C, Ch ang H. Bone marrow transplantation rescues intestinal mucosa after whole body radiation via paracrine mechanisms. Radiother Oncol. 2012;105:371-7 pubmed 出版商
  477. Chen Y, Wu K, Chen C. Methamphetamine reduces human influenza A virus replication. PLoS ONE. 2012;7:e48335 pubmed 出版商
  478. Henke N, Albrecht P, Pfeiffer A, Toutzaris D, Zanger K, Methner A. Stromal interaction molecule 1 (STIM1) is involved in the regulation of mitochondrial shape and bioenergetics and plays a role in oxidative stress. J Biol Chem. 2012;287:42042-52 pubmed 出版商
  479. Martin S, Fernandez Rojo M, Stanley A, Bastiani M, Okano S, Nixon S, et al. Caveolin-1 deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model. PLoS ONE. 2012;7:e46242 pubmed 出版商
  480. Fitzgerald A, Benz C, Clark A, Wordinger R. The effects of transforming growth factor-?2 on the expression of follistatin and activin A in normal and glaucomatous human trabecular meshwork cells and tissues. Invest Ophthalmol Vis Sci. 2012;53:7358-69 pubmed 出版商
  481. McCoy A, Besch Williford C, Franklin C, Weinstein E, Cui X. Creation and preliminary characterization of a Tp53 knockout rat. Dis Model Mech. 2013;6:269-78 pubmed 出版商
  482. Chen Y, Sundvik M, Rozov S, Priyadarshini M, Panula P. MANF regulates dopaminergic neuron development in larval zebrafish. Dev Biol. 2012;370:237-49 pubmed 出版商
  483. Wolff G, Harzsch S, Hansson B, Brown S, STRAUSFELD N. Neuronal organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus: correspondence with the mushroom body ground pattern. J Comp Neurol. 2012;520:2824-46 pubmed 出版商
  484. Yamada Y, Yamamoto H, Ohishi Y, Nishiyama K, Fukuhara M, Saitou T, et al. Sclerosing variant of perivascular epithelioid cell tumor in the female genital organs. Pathol Int. 2011;61:768-72 pubmed 出版商
  485. Su W, Chao T, Huang Y, Weng S, Jeng K, Lai M. Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol. 2011;85:10561-71 pubmed 出版商
  486. Sims J, Wade P. Mi-2/NuRD complex function is required for normal S phase progression and assembly of pericentric heterochromatin. Mol Biol Cell. 2011;22:3094-102 pubmed 出版商
  487. Yun Hong Y, Chih Fan C, Chia Wei C, Yen Chung C. A study of the spatial protein organization of the postsynaptic density isolated from porcine cerebral cortex and cerebellum. Mol Cell Proteomics. 2011;10:M110.007138 pubmed 出版商
  488. Kee H, Kim J, Joung H, Choe N, Lee S, Eom G, et al. Ret finger protein inhibits muscle differentiation by modulating serum response factor and enhancer of polycomb1. Cell Death Differ. 2012;19:121-31 pubmed 出版商
  489. Petrilli G, Lorenzi L, Paracchini R, Ubiali A, Schumacher R, Cabassa P, et al. Epstein-Barr virus-associated adrenal smooth muscle tumors and disseminated diffuse large B-cell lymphoma in a child with common variable immunodeficiency: a case report and review of the literature. Int J Surg Pathol. 2014;22:712-21 pubmed 出版商
  490. Hsu F, Yang M, Lin E, Tseng C, Lin H. The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells. Am J Physiol Endocrinol Metab. 2011;300:E902-8 pubmed 出版商
  491. Shi Chen Ou D, Lee S, Chu C, Chang L, Chung B, Juan L. Transcriptional activation of endoplasmic reticulum chaperone GRP78 by HCMV IE1-72 protein. Cell Res. 2011;21:642-53 pubmed 出版商
  492. Tai C, Shen S, Lee W, Liao C, Deng W, Chiou H, et al. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res. 2010;316:2969-81 pubmed 出版商
  493. Polo M, Arnoni M, Riggio M, Wargon V, Lanari C, Novaro V. Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PLoS ONE. 2010;5:e10786 pubmed 出版商
  494. Su J, Gorse K, Ramirez F, Fox M. Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses. J Comp Neurol. 2010;518:229-53 pubmed 出版商
  495. Jin L, Zhang G, Jamison C, Takano H, Haydon P, Selzer M. Axon regeneration in the absence of growth cones: acceleration by cyclic AMP. J Comp Neurol. 2009;515:295-312 pubmed 出版商
  496. Ryan P, Nguyen V, Gholoum S, Carpineta L, Abish S, Ahmed N, et al. Polypoid PEComa in the rectum of a 15-year-old girl: case report and review of PEComa in the gastrointestinal tract. Am J Surg Pathol. 2009;33:475-82 pubmed 出版商
  497. Holthouse D, Dallas P, Ford J, Fabian V, Murch A, Watson M, et al. Classic and desmoplastic medulloblastoma: complete case reports and characterizations of two new cell lines. Neuropathology. 2009;29:398-409 pubmed 出版商
  498. Marín Briggiler C, Veiga M, Matos M, Echeverría M, Furlong L, Vazquez Levin M. Expression of epithelial cadherin in the human male reproductive tract and gametes and evidence of its participation in fertilization. Mol Hum Reprod. 2008;14:561-71 pubmed 出版商
  499. Rigau V, Morin M, Rousset M, de Bock F, Lebrun A, Coubes P, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007;130:1942-56 pubmed