这是一篇来自已证抗体库的有关人类 aggrecan的综述,是根据54篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合aggrecan 抗体。
aggrecan 同义词: AGC1; AGCAN; CSPG1; CSPGCP; MSK16; SEDK; SSOAOD

赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6a
赛默飞世尔 aggrecan抗体(Thermo Scientific, PA1-1746)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6a). Arthritis Rheumatol (2022) ncbi
小鼠 单克隆(BC-3)
  • 免疫细胞化学; 人类; 1:200; 图 1g
赛默飞世尔 aggrecan抗体(Thermo Fisher Scientific, MA3-16888)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1g). Cell Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1 ug/ml; 图 s3b
赛默飞世尔 aggrecan抗体(Thermo Fisher, PA1-1746)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 s3b). Arterioscler Thromb Vasc Biol (2019) ncbi
小鼠 单克隆(BC-3)
  • 免疫组化; 马; 1:30; 表 1
赛默飞世尔 aggrecan抗体(Affinity Bioreagents, MA3- 16888)被用于被用于免疫组化在马样本上浓度为1:30 (表 1). Tissue Eng Part A (2017) ncbi
小鼠 单克隆(969D4D11)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3p
赛默飞世尔 aggrecan抗体(Thermo Fisher, 969D4D11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3p). Tissue Eng Part C Methods (2016) ncbi
小鼠 单克隆(969D4D11)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2c
赛默飞世尔 aggrecan抗体(ThermoFisher Scientific, AHP0022)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2c). Tissue Eng Part A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3
赛默飞世尔 aggrecan抗体(Thermo Fisher Scientific, PA1-1746)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(BC-3)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 7
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 7
赛默飞世尔 aggrecan抗体(ThermoFisher Scientific, MA3-16888)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 7) 和 被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 7). Acta Biomater (2016) ncbi
小鼠 单克隆(BC-3)
  • 免疫组化-冰冻切片; pigs ; 1:100; 图 8
赛默飞世尔 aggrecan抗体(ThermoFisher, MA3-16888)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:100 (图 8). Tissue Eng Part A (2016) ncbi
小鼠 单克隆(BC-3)
  • 免疫组化-石蜡切片; 斑马鱼; 图 5
赛默飞世尔 aggrecan抗体(Thermo Scientific, MA3-16888)被用于被用于免疫组化-石蜡切片在斑马鱼样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(BC-3)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 9
  • 免疫组化-冰冻切片; pigs ; 1:100; 图 9
赛默飞世尔 aggrecan抗体(ThermoFisher, MA3-16888)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 9) 和 被用于免疫组化-冰冻切片在pigs 样本上浓度为1:100 (图 9). Ann Biomed Eng (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2
赛默飞世尔 aggrecan抗体(Thermo Scientific, PA1-1746)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2). Arthritis Rheumatol (2016) ncbi
小鼠 单克隆(BC-3)
  • 免疫组化-冰冻切片; 斑马鱼; 图 1c
赛默飞世尔 aggrecan抗体(Thermo Scientific, MA3-16888)被用于被用于免疫组化-冰冻切片在斑马鱼样本上 (图 1c). Gene Expr Patterns (2015) ncbi
小鼠 单克隆(969D4D11)
  • 抑制或激活实验; 人类
赛默飞世尔 aggrecan抗体(Invitrogen, AHP0022)被用于被用于抑制或激活实验在人类样本上. Osteoarthritis Cartilage (2015) ncbi
小鼠 单克隆(969D4D11)
  • 免疫细胞化学; 人类
赛默飞世尔 aggrecan抗体(Invitrogen, AHP0022)被用于被用于免疫细胞化学在人类样本上. Am J Sports Med (2015) ncbi
小鼠 单克隆(969D4D11)
  • 免疫组化-石蜡切片; 人类; 图 9
赛默飞世尔 aggrecan抗体(Invitrogen, AHP0022)被用于被用于免疫组化-石蜡切片在人类样本上 (图 9). Tissue Eng Part A (2015) ncbi
小鼠 单克隆(969D4D11)
  • 免疫细胞化学; 人类; 1:300
赛默飞世尔 aggrecan抗体(生活技术, 969D4D11)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(969D4D11)
  • 免疫组化-冰冻切片; 人类; 1:10,000
赛默飞世尔 aggrecan抗体(Biosource-C LuBioScience, AHP0022)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:10,000. Eur Cell Mater (2015) ncbi
小鼠 单克隆(969D4D11)
  • 免疫组化-冰冻切片; 人类; 1:300
赛默飞世尔 aggrecan抗体(Invitrogen, 969D4D11)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:300. PLoS ONE (2014) ncbi
小鼠 单克隆(969D4D11)
  • 免疫印迹; 人类; 1:500
赛默飞世尔 aggrecan抗体(Biosource, AHP0022)被用于被用于免疫印迹在人类样本上浓度为1:500. Eur Cell Mater (2014) ncbi
小鼠 单克隆(969D4D11)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 aggrecan抗体(BioSource, 969D4D11)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(969D4D11)
  • 免疫沉淀; 人类; 图 1
赛默飞世尔 aggrecan抗体(nvitrogen, AHP0022)被用于被用于免疫沉淀在人类样本上 (图 1). Osteoarthritis Cartilage (2014) ncbi
小鼠 单克隆(969D4D11)
  • 免疫组化-冰冻切片; 人类; 图 5
赛默飞世尔 aggrecan抗体(Biosource, clone 969D4D11)被用于被用于免疫组化-冰冻切片在人类样本上 (图 5). Spine J (2014) ncbi
小鼠 单克隆(969D4D11)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 aggrecan抗体(BioSource, 969D4D11)被用于被用于免疫细胞化学在人类样本上 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(969D4D11)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔 aggrecan抗体(Invitrogen, AHP0022)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Osteoarthritis Cartilage (2012) ncbi
小鼠 单克隆(969D4D11)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 aggrecan抗体(Invitrogen, 969D4D11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Biomaterials (2012) ncbi
小鼠 单克隆(969D4D11)
  • 酶联免疫吸附测定; 人类; 图 3
赛默飞世尔 aggrecan抗体(Invitrogen, clone AHP0022)被用于被用于酶联免疫吸附测定在人类样本上 (图 3). Osteoarthritis Cartilage (2012) ncbi
小鼠 单克隆(969D4D11)
  • 酶联免疫吸附测定; 人类; 图 4
赛默飞世尔 aggrecan抗体(Invitrogen, 969D4D11)被用于被用于酶联免疫吸附测定在人类样本上 (图 4). Connect Tissue Res (2012) ncbi
小鼠 单克隆(969D4D11)
  • 免疫印迹; 人类; 1:500; 图 2
赛默飞世尔 aggrecan抗体(Invitrogen, AHP0022)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Arthritis Res Ther (2010) ncbi
小鼠 单克隆(969D4D11)
  • 酶联免疫吸附测定; 人类; 表 2
赛默飞世尔 aggrecan抗体(Invitrogen, AHP0022)被用于被用于酶联免疫吸附测定在人类样本上 (表 2). Arthritis Res Ther (2010) ncbi
小鼠 单克隆(969D4D11)
  • 免疫组化; 人类; 1:20,000; 图 2
赛默飞世尔 aggrecan抗体(Biosource Europe, (clone 969D4D11)被用于被用于免疫组化在人类样本上浓度为1:20,000 (图 2). Histochem Cell Biol (2010) ncbi
小鼠 单克隆(969D4D11)
  • 酶联免疫吸附测定; 人类; 1:8000; 图 6
赛默飞世尔 aggrecan抗体(Invitrogen, AHP0022)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:8000 (图 6). Osteoarthritis Cartilage (2010) ncbi
小鼠 单克隆(969D4D11)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔 aggrecan抗体(Invitrogen, AHP0022)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Osteoarthritis Cartilage (2010) ncbi
小鼠 单克隆(969D4D11)
  • 免疫组化-石蜡切片; 家羊; 1:20,000
赛默飞世尔 aggrecan抗体(Biosource, 969D4D11)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:20,000. Biotech Histochem (2008) ncbi
小鼠 单克隆(969D4D11)
  • 免疫组化-冰冻切片; 人类; 2 ug/ml; 图 9
赛默飞世尔 aggrecan抗体(Biosource, 969D4D11)被用于被用于免疫组化-冰冻切片在人类样本上浓度为2 ug/ml (图 9). J Mater Sci Mater Med (2008) ncbi
小鼠 单克隆(969D4D11)
  • 免疫组化; 人类; 图 1
赛默飞世尔 aggrecan抗体(BIOSOURCE, 969D4D11)被用于被用于免疫组化在人类样本上 (图 1). J Biol Chem (2006) ncbi
小鼠 单克隆(969D4D11)
  • 免疫组化-石蜡切片; 家羊; 1:1000; 图 4
赛默飞世尔 aggrecan抗体(Biosource, 969D4D11)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:1000 (图 4). Histochem Cell Biol (2005) ncbi
小鼠 单克隆(969D4D11)
  • 流式细胞仪; 人类
赛默飞世尔 aggrecan抗体(Biosource, 969D4D11)被用于被用于流式细胞仪在人类样本上. Osteoarthritis Cartilage (2005) ncbi
小鼠 单克隆(969D4D11)
  • 免疫细胞化学; 人类
赛默飞世尔 aggrecan抗体(Biosource, 969D4D11)被用于被用于免疫细胞化学在人类样本上. Ann Rheum Dis (2001) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR14664)
  • 免疫组化; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 aggrecan抗体(Abcam, ab186414)被用于被用于免疫组化在小鼠样本上 (图 4b). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(BC-3)
  • 免疫组化; 小鼠; 1:200; 图 3f
艾博抗(上海)贸易有限公司 aggrecan抗体(Abcam, ab3773)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3f). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR14664)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1e
艾博抗(上海)贸易有限公司 aggrecan抗体(Abcam, ab186414)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1e). Cells (2020) ncbi
小鼠 单克隆(BC-3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5j
艾博抗(上海)贸易有限公司 aggrecan抗体(Abcam, ab3773)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5j). JCI Insight (2020) ncbi
小鼠 单克隆(BC-3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4b
艾博抗(上海)贸易有限公司 aggrecan抗体(Abcam, ab3773)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4b). Cell Death Dis (2018) ncbi
小鼠 单克隆(BC-3)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 aggrecan抗体(Abcam, ab3773)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(BC-3)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司 aggrecan抗体(Abcam, ab3773)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Biomaterials (2015) ncbi
小鼠 单克隆(BC-3)
  • 免疫组化-冰冻切片; 牛; 1:250; 图 5
艾博抗(上海)贸易有限公司 aggrecan抗体(Abcam, ab3773-1)被用于被用于免疫组化-冰冻切片在牛样本上浓度为1:250 (图 5). Tissue Eng Part A (2015) ncbi
小鼠 单克隆(BC-3)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 aggrecan抗体(Abcam, ab3773)被用于被用于免疫印迹在人类样本上. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(BC-3)
  • 免疫组化-石蜡切片; 人类; 1:40
艾博抗(上海)贸易有限公司 aggrecan抗体(Abcam, ab3773)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Arthritis Res Ther (2013) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(7D4)
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 图 3b
伯乐(Bio-Rad)公司 aggrecan抗体(AbD Serotec, MCA1454G)被用于被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 3b). Sci Rep (2016) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5c
Novus Biologicals aggrecan抗体(Novus, NB100-74350)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5c). Commun Biol (2022) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 1f
西格玛奥德里奇 aggrecan抗体(Sigma-Aldrich, SAB4500662)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 1f). Front Mol Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇 aggrecan抗体(Sigma, SAB4500662)被用于被用于免疫印迹在大鼠样本上 (图 1). Cell Stress Chaperones (2016) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(12/21/1-C-6)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
Developmental Studies Hybridoma Bank aggrecan抗体(Developmental Studies Hybridoma Bank, 12/21/1-C-6)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a). Biol Open (2017) ncbi
文章列表
  1. Liu N, Lin Y, Li L, Lu J, Geng D, Zhang J, et al. gp130/STAT3 signaling is required for homeostatic proliferation and anabolism in postnatal growth plate and articular chondrocytes. Commun Biol. 2022;5:64 pubmed 出版商
  2. Li X, Zhu X, Wu H, Van Dyke T, Xu X, Morgan E, et al. Roles and Mechanisms of Irisin in Attenuating Pathological Features of Osteoarthritis. Front Cell Dev Biol. 2021;9:703670 pubmed 出版商
  3. Novais E, Tran V, Johnston S, Darris K, Roupas A, Sessions G, et al. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun. 2021;12:5213 pubmed 出版商
  4. Coveney C, Zhu L, Miotla Zarebska J, Stott B, Parisi I, Batchelor V, et al. Role of Ciliary Protein Intraflagellar Transport Protein 88 in the Regulation of Cartilage Thickness and Osteoarthritis Development in Mice. Arthritis Rheumatol. 2022;74:49-59 pubmed 出版商
  5. Wu J, Song D, Li Z, Guo B, Xiao Y, Liu W, et al. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res. 2020;30:794-809 pubmed 出版商
  6. Lo Monaco M, Gervois P, Beaumont J, Clegg P, Bronckaers A, Vandeweerd J, et al. Therapeutic Potential of Dental Pulp Stem Cells and Leukocyte- and Platelet-Rich Fibrin for Osteoarthritis. Cells. 2020;9: pubmed 出版商
  7. Yu Z, Chen N, Hu D, Chen W, Yuan Y, Meng S, et al. Decreased Density of Perineuronal Net in Prelimbic Cortex Is Linked to Depressive-Like Behavior in Young-Aged Rats. Front Mol Neurosci. 2020;13:4 pubmed 出版商
  8. Tessier S, Doolittle A, Sao K, Rotty J, Bear J, Ulici V, et al. Arp2/3 inactivation causes intervertebral disc and cartilage degeneration with dysregulated TonEBP-mediated osmoadaptation. JCI Insight. 2020;5: pubmed 出版商
  9. Yin 殷晓科 X, Wanga S, Fellows A, Barallobre Barreiro J, Lu R, Davaapil H, et al. Glycoproteomic Analysis of the Aortic Extracellular Matrix in Marfan Patients. Arterioscler Thromb Vasc Biol. 2019;39:1859-1873 pubmed 出版商
  10. Gorth D, Shapiro I, Risbud M. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10:7 pubmed 出版商
  11. Whitaker A, Berthet E, Cantu A, Laird D, Alliston T. Smad4 regulates growth plate matrix production and chondrocyte polarity. Biol Open. 2017;6:358-364 pubmed 出版商
  12. Kremer A, Ribitsch I, Reboredo J, Dürr J, Egerbacher M, Jenner F, et al. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix-A Pilot Study Toward Equine Meniscus Tissue Engineering. Tissue Eng Part A. 2017;23:390-402 pubmed 出版商
  13. Gilbert H, Hodson N, Baird P, Richardson S, Hoyland J. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target. Sci Rep. 2016;6:37360 pubmed 出版商
  14. Akbari P, Waldman S, Propst E, Cushing S, Weber J, Yeger H, et al. Generating Mechanically Stable, Pediatric, and Scaffold-Free Nasal Cartilage Constructs In Vitro. Tissue Eng Part C Methods. 2016;22:1077-1084 pubmed
  15. Bianchi V, Weber J, Waldman S, Backstein D, Kandel R. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes. Tissue Eng Part A. 2017;23:156-165 pubmed 出版商
  16. Lu W, Shi J, Zhang J, Lv Z, Guo F, Huang H, et al. CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model. Int J Mol Sci. 2016;17: pubmed
  17. Mével E, Merceron C, Vinatier C, Krisa S, Richard T, Masson M, et al. Olive and grape seed extract prevents post-traumatic osteoarthritis damages and exhibits in vitro anti IL-1? activities before and after oral consumption. Sci Rep. 2016;6:33527 pubmed 出版商
  18. Beck E, Barragan M, Tadros M, Gehrke S, Detamore M. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomater. 2016;38:94-105 pubmed 出版商
  19. Beck E, Barragan M, Libeer T, Kieweg S, Converse G, Hopkins R, et al. Chondroinduction from Naturally Derived Cartilage Matrix: A Comparison Between Devitalized and Decellularized Cartilage Encapsulated in Hydrogel Pastes. Tissue Eng Part A. 2016;22:665-79 pubmed 出版商
  20. Govindan J, Tun K, Iovine M. Cx43-Dependent Skeletal Phenotypes Are Mediated by Interactions between the Hapln1a-ECM and Sema3d during Fin Regeneration. PLoS ONE. 2016;11:e0148202 pubmed 出版商
  21. Beck E, Barragan M, Tadros M, Kiyotake E, Acosta F, Kieweg S, et al. Chondroinductive Hydrogel Pastes Composed of Naturally Derived Devitalized Cartilage. Ann Biomed Eng. 2016;44:1863-80 pubmed 出版商
  22. Ismail H, Miotla Zarebska J, Troeberg L, Tang X, Stott B, Yamamoto K, et al. Brief Report: JNK-2 Controls Aggrecan Degradation in Murine Articular Cartilage and the Development of Experimental Osteoarthritis. Arthritis Rheumatol. 2016;68:1165-71 pubmed 出版商
  23. Yuan F, Zhao M, Jiang D, Jin C, Liu H, XU M, et al. Involvement of acid-sensing ion channel 1a in matrix metabolism of endplate chondrocytes under extracellular acidic conditions through NF-κB transcriptional activity. Cell Stress Chaperones. 2016;21:97-104 pubmed 出版商
  24. Govindan J, Iovine M. Dynamic remodeling of the extra cellular matrix during zebrafish fin regeneration. Gene Expr Patterns. 2015;19:21-9 pubmed 出版商
  25. Luo Z, Jiang L, Xu Y, Li H, Xu W, Wu S, et al. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials. 2015;52:463-75 pubmed 出版商
  26. Shimomura K, Bean A, Lin H, Nakamura N, Tuan R. In Vitro Repair of Meniscal Radial Tear Using Aligned Electrospun Nanofibrous Scaffold. Tissue Eng Part A. 2015;21:2066-75 pubmed 出版商
  27. Larkin J, Lohr T, Elefante L, Shearin J, Matico R, Su J, et al. Translational development of an ADAMTS-5 antibody for osteoarthritis disease modification. Osteoarthritis Cartilage. 2015;23:1254-66 pubmed 出版商
  28. Ã…hlén M, Roshani L, Lidén M, Struglics A, RostgÃ¥rd Christensen L, Kartus J. Inflammatory cytokines and biomarkers of cartilage metabolism 8 years after anterior cruciate ligament reconstruction: results from operated and contralateral knees. Am J Sports Med. 2015;43:1460-6 pubmed 出版商
  29. Ismail H, Yamamoto K, Vincent T, Nagase H, Troeberg L, Saklatvala J. Interleukin-1 Acts via the JNK-2 Signaling Pathway to Induce Aggrecan Degradation by Human Chondrocytes. Arthritis Rheumatol. 2015;67:1826-36 pubmed 出版商
  30. Antunes J, Tsaryk R, Gonçalves R, Pereira C, Landes C, Brochhausen C, et al. Poly(γ-Glutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells. Tissue Eng Part A. 2015;21:1869-85 pubmed 出版商
  31. Schrobback K, Klein T, Woodfield T. The importance of connexin hemichannels during chondroprogenitor cell differentiation in hydrogel versus microtissue culture models. Tissue Eng Part A. 2015;21:1785-94 pubmed 出版商
  32. Bertolo A, Hafner S, Taddei A, Baur M, Pötzel T, Steffen F, et al. Injectable microcarriers as human mesenchymal stem cell support and their application for cartilage and degenerated intervertebral disc repair. Eur Cell Mater. 2015;29:70-80; discujssion 80-1 pubmed
  33. Levett P, Hutmacher D, Malda J, Klein T. Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. PLoS ONE. 2014;9:e113216 pubmed 出版商
  34. Capossela S, Schlafli P, Bertolo A, Janner T, Stadler B, Pötzel T, et al. Degenerated human intervertebral discs contain autoantibodies against extracellular matrix proteins. Eur Cell Mater. 2014;27:251-63; discussion 263 pubmed
  35. Olderøy M, Lilledahl M, Beckwith M, Melvik J, Reinholt F, Sikorski P, et al. Biochemical and structural characterization of neocartilage formed by mesenchymal stem cells in alginate hydrogels. PLoS ONE. 2014;9:e91662 pubmed 出版商
  36. Larsson S, Lohmander L, Struglics A. An ARGS-aggrecan assay for analysis in blood and synovial fluid. Osteoarthritis Cartilage. 2014;22:242-9 pubmed 出版商
  37. Bertolo A, Baur M, Aebli N, Ferguson S, Stoyanov J. Physiological testosterone levels enhance chondrogenic extracellular matrix synthesis by male intervertebral disc cells in vitro, but not by mesenchymal stem cells. Spine J. 2014;14:455-68 pubmed 出版商
  38. Fernandes A, Herlofsen S, Karlsen T, Küchler A, Fløisand Y, Brinchmann J. Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage. PLoS ONE. 2013;8:e62994 pubmed 出版商
  39. Hasegawa A, Nakahara H, Kinoshita M, Asahara H, Koziol J, Lotz M. Cellular and extracellular matrix changes in anterior cruciate ligaments during human knee aging and osteoarthritis. Arthritis Res Ther. 2013;15:R29 pubmed 出版商
  40. Swärd P, Frobell R, Englund M, Roos H, Struglics A. Cartilage and bone markers and inflammatory cytokines are increased in synovial fluid in the acute phase of knee injury (hemarthrosis)--a cross-sectional analysis. Osteoarthritis Cartilage. 2012;20:1302-8 pubmed 出版商
  41. Chuang C, Shahin K, Lord M, Melrose J, Doran P, Whitelock J. The cartilage matrix molecule components produced by human foetal cartilage rudiment cells within scaffolds and the role of exogenous growth factors. Biomaterials. 2012;33:4078-88 pubmed 出版商
  42. Larsson S, Englund M, Struglics A, Lohmander L. The association between changes in synovial fluid levels of ARGS-aggrecan fragments, progression of radiographic osteoarthritis and self-reported outcomes: a cohort study. Osteoarthritis Cartilage. 2012;20:388-95 pubmed 出版商
  43. Lord M, Estrella R, Chuang C, Youssef P, Karlsson N, Flannery C, et al. Not all lubricin isoforms are substituted with a glycosaminoglycan chain. Connect Tissue Res. 2012;53:132-41 pubmed 出版商
  44. Larsson S, Englund M, Struglics A, Lohmander L. Association between synovial fluid levels of aggrecan ARGS fragments and radiographic progression in knee osteoarthritis. Arthritis Res Ther. 2010;12:R230 pubmed 出版商
  45. Catterall J, Stabler T, Flannery C, Kraus V. Changes in serum and synovial fluid biomarkers after acute injury (NCT00332254). Arthritis Res Ther. 2010;12:R229 pubmed 出版商
  46. Smith S, Shu C, Melrose J. Comparative immunolocalisation of perlecan with collagen II and aggrecan in human foetal, newborn and adult ovine joint tissues demonstrates perlecan as an early developmental chondrogenic marker. Histochem Cell Biol. 2010;134:251-63 pubmed 出版商
  47. Swearingen C, Carpenter J, Siegel R, Brittain I, Dotzlaf J, Durham T, et al. Development of a novel clinical biomarker assay to detect and quantify aggrecanase-generated aggrecan fragments in human synovial fluid, serum and urine. Osteoarthritis Cartilage. 2010;18:1150-8 pubmed 出版商
  48. Swearingen C, Chambers M, Lin C, Marimuthu J, Rito C, Carter Q, et al. A short-term pharmacodynamic model for monitoring aggrecanase activity: injection of monosodium iodoacetate (MIA) in rats and assessment of aggrecan neoepitope release in synovial fluid using novel ELISAs. Osteoarthritis Cartilage. 2010;18:1159-66 pubmed 出版商
  49. Melrose J, Smith S, Smith M, Little C. The use of Histochoice for histological examination of articular and growth plate cartilages, intervertebral disc and meniscus. Biotech Histochem. 2008;83:47-53 pubmed 出版商
  50. Gellynck K, Verdonk P, Van Nimmen E, Almqvist K, Gheysens T, Schoukens G, et al. Silkworm and spider silk scaffolds for chondrocyte support. J Mater Sci Mater Med. 2008;19:3399-409 pubmed 出版商
  51. Melrose J, Roughley P, Knox S, Smith S, Lord M, Whitelock J. The structure, location, and function of perlecan, a prominent pericellular proteoglycan of fetal, postnatal, and mature hyaline cartilages. J Biol Chem. 2006;281:36905-14 pubmed
  52. Melrose J, Smith S, Cake M, Read R, Whitelock J. Perlecan displays variable spatial and temporal immunolocalisation patterns in the articular and growth plate cartilages of the ovine stifle joint. Histochem Cell Biol. 2005;123:561-71 pubmed
  53. Verdonk P, Forsyth R, Wang J, Almqvist K, Verdonk R, Veys E, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthritis Cartilage. 2005;13:548-60 pubmed
  54. Almqvist K, Wang L, Wang J, Baeten D, Cornelissen M, Verdonk R, et al. Culture of chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks. Ann Rheum Dis. 2001;60:781-90 pubmed