这是一篇来自已证抗体库的有关人类 α微管蛋白 (alpha-tubulin) 的综述,是根据1323篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合α微管蛋白 抗体。
α微管蛋白 同义词: ALS22; H2-ALPHA; TUBA1; tubulin alpha-4A chain; tubulin H2-alpha; tubulin alpha-1 chain; tubulin, alpha 1 (testis specific)

基因敲除验证
艾博抗(上海)贸易有限公司小鼠 单克隆(DM1A)
  • 免疫组化 (基因敲除); 人类; 1:5000; 图s2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, Ab7291)被用于免疫组化 (基因敲除)在人类样品上浓度为1:5000 (图s2). PLoS ONE (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠; 图3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在大鼠样品上 (图3). Physiol Rep (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上 (图1). Cancer Cell Int (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图7
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于免疫印迹在小鼠样品上 (图7). Front Neurosci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, Sc-32293)被用于免疫印迹在人类样品上 (图1). F1000Res (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图s1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, TU-02)被用于免疫印迹在小鼠样品上 (图s1). Mol Cell Oncol (2016) ncbi
大鼠 单克隆(YL1/2)
  • 细胞化学; 小鼠; 图5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, YL1/2)被用于免疫细胞化学在小鼠样品上 (图5). J Cell Biol (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在人类样品上 (图5). Cell Death Dis (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在小鼠样品上 (图3). Sci Rep (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图5H
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上 (图5H). PLoS ONE (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上浓度为1:1000 (图2). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于免疫印迹在人类样品上 (图5). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(TU-02)
  • 细胞化学; 小鼠; 1:500; 图2b
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图2b). Peerj (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在人类样品上 (图6). PLoS Pathog (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠; 1:1000; 图5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5). Int J Med Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:200; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa-Cruz Biotechnology, sc-32293)被用于免疫印迹在小鼠样品上浓度为1:200 (图1). BMC Mol Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; common platanna; 1:500; 图s1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, 6-11B-1)被用于免疫组化在common platanna样品上浓度为1:500 (图s1). Sci Rep (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图1D
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在人类样品上 (图1D). Nucleic Acids Res (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠; 1:20,000; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, YL1/2)被用于免疫印迹在小鼠样品上浓度为1:20,000 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图5b
圣克鲁斯生物技术α微管蛋白抗体(santa cruz, sc-32293)被用于免疫印迹在小鼠样品上浓度为1:5000 (图5b). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1 ug/ml; 图5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-23950)被用于免疫印迹在小鼠样品上浓度为1 ug/ml (图5). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-32293)被用于免疫印迹在人类样品上 (图3). Cell Signal (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, TU-02)被用于免疫印迹在人类样品上浓度为1:1000 (图2). J Cell Sci (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc-8035)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-5286)被用于免疫印迹在小鼠样品上 (图4). Cell Death Dis (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图1
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc5286)被用于免疫印迹在小鼠样品上 (图1). elife (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图1b
圣克鲁斯生物技术α微管蛋白抗体(santa cruz, sc-8035)被用于免疫印迹在人类样品上 (图1b). J Cell Sci (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上 (图4). Oncotarget (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于免疫印迹在人类样品上 (图2). Sci Rep (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:500; 图3g
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在人类样品上浓度为1:500 (图3g). Am J Hum Genet (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Oncotarget (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上 (图4). J Cell Biol (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-32293)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图1). Mol Oncol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-23950)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图1). Mol Oncol (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:200; 图6
  • 免疫印迹; 小鼠; 1:200; 图6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上浓度为1:200 (图6) 和 在小鼠样品上浓度为1:200 (图6). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图s3
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc-8035)被用于免疫印迹在人类样品上浓度为1:1000 (图s3). Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:10,000; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnologies, sc-8035)被用于免疫印迹在大鼠样品上浓度为1:10,000 (图1). In Vitro Cell Dev Biol Anim (2016) ncbi
小鼠 单克隆(AA13)
  • 免疫印迹; 人类; 1:1000; 图2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-58668)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Mol Med Rep (2016) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫印迹; 小鼠; 图2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-53030)被用于免疫印迹在小鼠样品上 (图2). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在人类样品上 (图1). J Biol Chem (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在人类样品上 (图4). PLoS ONE (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:2000; 图4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在小鼠样品上浓度为1:2000 (图4). Nat Cell Biol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于免疫印迹在人类样品上 (图3). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图7
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, DM1A)被用于免疫印迹在小鼠样品上 (图7). Gene (2016) ncbi
小鼠 单克隆(4G1)
  • 免疫印迹; 人类; 图7b
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-58666)被用于免疫印迹在人类样品上 (图7b). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上 (图1). Oncotarget (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于免疫印迹在人类样品上 (图3). Oncotarget (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在人类样品上 (图1). Oncotarget (2015) ncbi
小鼠 单克隆(4G1)
  • 细胞化学; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-58666)被用于免疫细胞化学在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:500; 图6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于免疫印迹在人类样品上浓度为1:500 (图6). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在小鼠样品上. Biochem Pharmacol (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, TU-02)被用于免疫印迹在人类样品上 (图6). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于免疫印迹在小鼠样品上 (图2). PLoS Genet (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上. J Proteomics (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上. Leukemia (2016) ncbi
小鼠 单克隆(AA12)
  • 免疫印迹; 小鼠; 图7
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-58667)被用于免疫印迹在小鼠样品上 (图7). Mediators Inflamm (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:1000; 图5
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc-8035)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5). PLoS ONE (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:2000; 图3c
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-8035)被用于免疫印迹在人类样品上浓度为1:2000 (图3c). Bioorg Med Chem (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上 (图4). Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上 (图3). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图s1c
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-8035)被用于免疫印迹在人类样品上 (图s1c). Cell Death Differ (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于免疫印迹在人类样品上 (图1). Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:200; 图8
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在小鼠样品上浓度为1:200 (图8). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在小鼠样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图3
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc-5286)被用于免疫印迹在小鼠样品上 (图3). PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, SC-23950)被用于免疫印迹在小鼠样品上. Mol Oncol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, SC-32293)被用于免疫印迹在小鼠样品上. Mol Oncol (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图4b
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在人类样品上 (图4b). Cell Death Dis (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图1, 6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在小鼠样品上 (图1, 6). Autophagy (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图5
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc-5286)被用于免疫印迹在人类样品上 (图5). Oncotarget (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于免疫印迹在人类样品上. J Cell Sci (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上 (图3). Oncogene (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:10,000; 图3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在大鼠样品上浓度为1:10,000 (图3). BMC Gastroenterol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图f6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, DM1A)被用于免疫印迹在小鼠样品上 (图f6). Sci Signal (2015) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫印迹; 面包酵母; 图s4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-53030)被用于免疫印迹在面包酵母样品上 (图s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于免疫印迹在小鼠样品上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(B-7)圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, B-7)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 细胞化学; 人类; 2 ug/ml
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-8035)被用于免疫细胞化学在人类样品上浓度为2 ug/ml. Oncotarget (2015) ncbi
小鼠 单克隆(4G1)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-58666)被用于免疫印迹在大鼠样品上. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, DM1A)被用于免疫印迹在人类样品上. Sci Rep (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于免疫印迹在大鼠样品上. Physiol Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-32293)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在小鼠样品上浓度为1:1000. Cell Death Dis (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图5
圣克鲁斯生物技术α微管蛋白抗体(santa cruz, sc-5286)被用于免疫印迹在人类样品上 (图5). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于免疫细胞化学在人类样品上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, Sc-8035)被用于免疫印迹在人类样品上 (图1). J Cell Biochem (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图4c
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, DM1A)被用于免疫印迹在人类样品上 (图4c). Biochem J (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, B-7)被用于免疫印迹在小鼠样品上. Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在小鼠样品上. J Clin Invest (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-32293)被用于免疫印迹在人类样品上. J Virol (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa-Cruz, sc-5286)被用于免疫印迹在人类样品上 (图1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 人类; 1:400
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于免疫组化在人类样品上浓度为1:400. Respir Res (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:5000; 图3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上浓度为1:5000 (图3). J Cell Physiol (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于免疫印迹在人类样品上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在人类样品上 (图1). Cell Cycle (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上 (图1). Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上 和 在小鼠样品上. Prostate (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:3000
圣克鲁斯生物技术α微管蛋白抗体(Santacruz, TU-02)被用于免疫印迹在人类样品上浓度为1:3000. Cancer Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 白色念珠菌; 1:1000; 图9
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于免疫细胞化学在白色念珠菌样品上浓度为1:1000 (图9). Nat Commun (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-8035)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 克氏锥虫; 1:100
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, DM1A)被用于免疫细胞化学在克氏锥虫样品上浓度为1:100. Mem Inst Oswaldo Cruz (2014) ncbi
小鼠 单克隆(TU-02)圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于. Cell Death Dis (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在小鼠样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在小鼠样品上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上. Ann Neurol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 猕猴; 图2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc5286)被用于免疫印迹在猕猴样品上 (图2). Mol Endocrinol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于免疫印迹在小鼠样品上 (图4). J Immunol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于免疫印迹在小鼠样品上 (图4). J Immunol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology Inc, sc-5286)被用于免疫印迹在人类样品上. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
  • 细胞化学; 人类; 1:100
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc8035)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上浓度为1:100. J Proteome Res (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图2
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc-8035)被用于免疫印迹在人类样品上 (图2). Oncogene (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫组化; 大鼠; 1:500
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotech, TU-02)被用于免疫组化在大鼠样品上浓度为1:500. Exp Eye Res (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在小鼠样品上. J Innate Immun (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在人类样品上. Mol Cell Biol (2014) ncbi
大鼠 单克隆(3H3087)
  • 免疫印迹; budding yeasts
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnologies, sc-69971)被用于免疫印迹在budding yeasts样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-32293)被用于免疫细胞化学在人类样品上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在人类样品上. FEBS Lett (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 1:250
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于免疫印迹在人类样品上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:250
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在小鼠样品上 (图1). PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上 (图3). Oncogene (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; African green monkey; 1:16000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于免疫印迹在African green monkey样品上浓度为1:16000. Biol Reprod (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:2500
  • 免疫印迹; 小鼠; 1:2500
圣克鲁斯生物技术α微管蛋白抗体(SantaCruz, SC-5286)被用于免疫印迹在人类样品上浓度为1:2500 和 在小鼠样品上浓度为1:2500. Eur Respir J (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在人类样品上. Cell Death Dis (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-32293)被用于免疫印迹在人类样品上. Cell Death Dis (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在人类样品上浓度为1:1000. Hum Mol Genet (2014) ncbi
大鼠 单克隆(YL1/2)
  • 细胞化学; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-53029)被用于免疫细胞化学在小鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在小鼠样品上 (图5). Endocrinology (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于免疫细胞化学在人类样品上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, DM1A)被用于免疫细胞化学在人类样品上. Cell Cycle (2014) ncbi
小鼠 单克隆(AA13)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa-Cruz, sc-58668)被用于免疫印迹在大鼠样品上. Epilepsy Res (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:10,000; 图3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnologies, sc-8035)被用于免疫印迹在人类样品上浓度为1:10,000 (图3). In Vitro Cell Dev Biol Anim (2014) ncbi
小鼠 单克隆(AA12)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-58667)被用于免疫印迹在人类样品上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:8000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在小鼠样品上浓度为1:8000. Diabetes (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在人类样品上. J Dermatol Sci (2014) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫印迹; fission yeast
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-53030)被用于免疫印迹在fission yeast样品上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于免疫印迹在人类样品上 和 在小鼠样品上. Diabetologia (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology,, sc-5286)被用于免疫印迹在人类样品上 (图3). Oncogene (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa-Cruz, sc-8035)被用于免疫印迹在人类样品上. Cancer Res (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:2000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-23950)被用于免疫印迹在小鼠样品上浓度为1:2000. J Comp Neurol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在大鼠样品上. J Gerontol A Biol Sci Med Sci (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在大鼠样品上浓度为1:1000. Addict Biol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在小鼠样品上浓度为1:1000. Eur J Immunol (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(B-7)
  • 细胞化学; 鸡; 1:2500
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫细胞化学在鸡样品上浓度为1:2500. PLoS Genet (2013) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:10,000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz biotechnology, Sc-8035)被用于免疫印迹在小鼠样品上浓度为1:10,000. PLoS ONE (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于免疫印迹在大鼠样品上. Autophagy (2013) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-8035)被用于免疫印迹在人类样品上浓度为1:5000. PLoS ONE (2012) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, Sc 5286)被用于免疫印迹在人类样品上. PLoS ONE (2012) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, Sc-8035)被用于免疫印迹在人类样品上. Carcinogenesis (2013) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:1000; 图7
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于免疫印迹在小鼠样品上浓度为1:1000 (图7). BMC Dev Biol (2011) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于免疫印迹在人类样品上. J Biol Chem (2009) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, TU-02)被用于免疫印迹在人类样品上. Proc Natl Acad Sci U S A (2005) ncbi
赛默飞世尔
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
赛默飞世尔α微管蛋白抗体(LabVision, DM1A)被用于免疫印迹在人类样品上 (图1). J Inflamm (Lond) (2016) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠; 1:50; 图7
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫细胞化学在小鼠样品上浓度为1:50 (图7). Sci Rep (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图2
赛默飞世尔α微管蛋白抗体(Thermo Scientific, A-11126)被用于免疫印迹在人类样品上 (图2). PLoS Pathog (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
  • 细胞化学; 人类; 图1
赛默飞世尔α微管蛋白抗体(Thermo Scientific, MS-581-P)被用于免疫印迹在人类样品上 (图1) 和 免疫细胞化学在人类样品上 (图1). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图3
赛默飞世尔α微管蛋白抗体(ThermoFisher Scientific, MS-581-P1)被用于免疫印迹在小鼠样品上 (图3). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛默飞世尔α微管蛋白抗体(Pierce, PA1-38814)被用于免疫印迹在人类样品上 (图4). PLoS ONE (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图2
赛默飞世尔α微管蛋白抗体(Thermo Fisher Scientific, MA1 19401)被用于免疫印迹在人类样品上 (图2). J Virol (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化-F; 小鼠; 1:250; 图s5
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图s5). Development (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图1
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于免疫印迹在大鼠样品上 (图1). Anal Biochem (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图1
  • 免疫印迹; 小鼠; 1:1000; 图1
赛默飞世尔α微管蛋白抗体(Zymed Laboratories, 32-2500)被用于免疫印迹在人类样品上浓度为1:1000 (图1) 和 在小鼠样品上浓度为1:1000 (图1). J Biol Chem (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 鸡; 1:500; 图1
赛默飞世尔α微管蛋白抗体(生活技术, 32-2700)被用于免疫组化在鸡样品上浓度为1:500 (图1). J Cell Sci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图3
赛默飞世尔α微管蛋白抗体(生活技术, 32-2500)被用于免疫印迹在人类样品上 (图3). J Biol Chem (2016) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 杜氏利什曼原虫; 1:5000; 图2
赛默飞世尔α微管蛋白抗体(ThermoFisher, MA1-19162)被用于免疫印迹在杜氏利什曼原虫样品上浓度为1:5000 (图2). Arch Biochem Biophys (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图4b
赛默飞世尔α微管蛋白抗体(NeoMarkers, MS-581)被用于免疫印迹在人类样品上 (图4b). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2500; 图5
赛默飞世尔α微管蛋白抗体(Pierce, 62204)被用于免疫印迹在人类样品上浓度为1:2500 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图2
赛默飞世尔α微管蛋白抗体(NeoMarkers, MS-581-P0)被用于免疫印迹在人类样品上 (图2). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 婴儿利什曼原虫; 1:1000; 图4
赛默飞世尔α微管蛋白抗体(Neomarkers, DM1A)被用于免疫印迹在婴儿利什曼原虫样品上浓度为1:1000 (图4). PLoS Negl Trop Dis (2016) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠; 1:400; 图6
赛默飞世尔α微管蛋白抗体(生活技术, A11126)被用于免疫细胞化学在小鼠样品上浓度为1:400 (图6). Biol Reprod (2016) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; malaria parasite P. falciparum; 1:2000; 图3
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于免疫细胞化学在malaria parasite P. falciparum样品上浓度为1:2000 (图3). J Cell Sci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图s4
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于免疫印迹在小鼠样品上 (图s4). PLoS Pathog (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000; 图1c
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于免疫印迹在小鼠样品上浓度为1:2000 (图1c). J Cell Sci (2016) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 图8
赛默飞世尔α微管蛋白抗体(生活技术, 236?C10501)被用于免疫细胞化学在人类样品上 (图8). J Exp Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图7
赛默飞世尔α微管蛋白抗体(Thermo Scientific, MS-581-P0)被用于免疫印迹在人类样品上 (图7). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3
赛默飞世尔α微管蛋白抗体(Thermo Scientific, DM1A)被用于免疫印迹在人类样品上 (图3). Br J Cancer (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000; 图3
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于免疫组化在斑马鱼样品上浓度为1:1000 (图3). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图4c
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于免疫印迹在人类样品上浓度为1:10,000 (图4c). Oncogene (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于免疫印迹在小鼠样品上浓度为1:2000. Stem Cell Reports (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹 (基因敲减); 人类; 1:10,000; 图1
赛默飞世尔α微管蛋白抗体(生活技术, 32-2500)被用于免疫印迹 (基因敲减)在人类样品上浓度为1:10,000 (图1). Oncotarget (2015) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 1:1000
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫细胞化学在人类样品上浓度为1:1000. Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图2
  • 细胞化学; 小鼠; 图3
赛默飞世尔α微管蛋白抗体(Neomarkers, MS581P1)被用于免疫印迹在小鼠样品上 (图2) 和 免疫细胞化学在小鼠样品上 (图3). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔α微管蛋白抗体(Thermo Scientific, MS-581-P0)被用于免疫组化在小鼠样品上浓度为1:1000. Reproduction (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图2
赛默飞世尔α微管蛋白抗体(Lab Vision, DM1A)被用于免疫印迹在人类样品上 (图2). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 面包酵母; 1:200
赛默飞世尔α微管蛋白抗体(Invitrogen, 322500)被用于免疫细胞化学在面包酵母样品上浓度为1:200. PLoS ONE (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500
赛默飞世尔α微管蛋白抗体(Thermo, PA5-19489)被用于免疫细胞化学在人类样品上浓度为1:500. elife (2015) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 1:1000; 图1
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫细胞化学在人类样品上浓度为1:1000 (图1). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔α微管蛋白抗体(Fisher Scientific, DM1A)被用于免疫印迹在人类样品上浓度为1:2000. Integr Biol (Camb) (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Thermo Scientific, MS-581-P1)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠
赛默飞世尔α微管蛋白抗体(Invitrogen LifeTechnologies, A11126)被用于免疫细胞化学在小鼠样品上. Cell Death Dis (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上. Acta Neuropathol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
赛默飞世尔α微管蛋白抗体(Neomarker, MS-581-P1)被用于免疫印迹在人类样品上 (图1). Oncotarget (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 图3
赛默飞世尔α微管蛋白抗体(Invitrogen, 322700)被用于免疫细胞化学在小鼠样品上 (图3). Dev Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图2
赛默飞世尔α微管蛋白抗体(NeoMarkers, DM1A)被用于免疫印迹在人类样品上浓度为1:5000 (图2). Oncotarget (2015) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠; 1:200
赛默飞世尔α微管蛋白抗体(生活技术, A11126)被用于免疫细胞化学在小鼠样品上浓度为1:200. Development (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图1
赛默飞世尔α微管蛋白抗体(Neomarkers, DM1A)被用于免疫印迹在小鼠样品上 (图1). Nature (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于免疫组化在小鼠样品上浓度为1:300. Hum Mol Genet (2015) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 1:400
  • 免疫印迹; 小鼠; 1:400
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫印迹在人类样品上浓度为1:400 和 在小鼠样品上浓度为1:400. J Gastroenterol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图2
赛默飞世尔α微管蛋白抗体(Thermo Fisher Scientific, MS-581-P0)被用于免疫印迹在小鼠样品上 (图2). Int J Mol Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图9
赛默飞世尔α微管蛋白抗体(Thermo Scientific, 62204)被用于免疫印迹在人类样品上 (图9). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于免疫印迹在大鼠样品上. Mol Neurobiol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3a
赛默飞世尔α微管蛋白抗体(Thermo, DM-1A)被用于免疫印迹在人类样品上 (图3a). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于免疫印迹在人类样品上. Infect Immun (2014) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; African green monkey
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫细胞化学在African green monkey样品上. Soft Matter (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3
赛默飞世尔α微管蛋白抗体(Thermo Fisher Scientific, MS581P)被用于免疫印迹在人类样品上 (图3). PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; common platanna; 图2
赛默飞世尔α微管蛋白抗体(Neomarkers, MS-581-P0)被用于免疫印迹在common platanna样品上 (图2). PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:500
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于免疫印迹在人类样品上浓度为1:500. J Cell Biochem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图5
赛默飞世尔α微管蛋白抗体(Neomarkers, DM1A)被用于免疫印迹在人类样品上 (图5). PLoS Genet (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3
赛默飞世尔α微管蛋白抗体(Lab Vision, DM1A)被用于免疫印迹在人类样品上 (图3). J Proteome Res (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠
赛默飞世尔α微管蛋白抗体(生活技术, A11126)被用于免疫印迹在小鼠样品上. J Peripher Nerv Syst (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 狗; 1:150; 图1c
  • 免疫印迹; 狗; 1:1000; 图1b
赛默飞世尔α微管蛋白抗体(Zymed, 32?C2500)被用于免疫细胞化学在狗样品上浓度为1:150 (图1c) 和 免疫印迹在狗样品上浓度为1:1000 (图1b). Tissue Barriers (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 鸡; 1:300
赛默飞世尔α微管蛋白抗体(生活技术, 32-2700)被用于免疫细胞化学在鸡样品上浓度为1:300. J Neurosci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
赛默飞世尔α微管蛋白抗体(Thermo, MS-581-P0)被用于免疫印迹在小鼠样品上. J Radiat Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
赛默飞世尔α微管蛋白抗体(NeoMarkers, MS-581-P)被用于免疫印迹在小鼠样品上. Nat Commun (2014) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Zymed Laboratories, TU-01)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化-P; 人类; 0.5 ug/ml
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫组化-石蜡切片在人类样品上浓度为0.5 ug/ml. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 图1
赛默飞世尔α微管蛋白抗体(Zymed, 32-2700)被用于免疫组化在人类样品上 (图1). Cell Med (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Invitrogen, B-5-1-2)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. elife (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 牛; 图5, 6
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫印迹在牛样品上 (图5, 6). Endocrinology (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图1
赛默飞世尔α微管蛋白抗体(ThermoFisher, MS-581-P1)被用于免疫印迹在小鼠样品上 (图1). PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 2 ug/ml; 图3
赛默飞世尔α微管蛋白抗体(Zymed Laboratories, 32-2500)被用于免疫印迹在人类样品上浓度为2 ug/ml (图3). Cell Immunol (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Neomarkers, MS-581-PO)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔α微管蛋白抗体(NeoMarkers, DM1A)被用于免疫印迹在人类样品上浓度为1:5000. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-P; 人类; 1:2000; 图4
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于免疫组化-石蜡切片在人类样品上浓度为1:2000 (图4). Spinal Cord (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图3
赛默飞世尔α微管蛋白抗体(Thermo Scientific, MS-581-P0)被用于免疫印迹在小鼠样品上 (图3). Int J Mol Sci (2013) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类
赛默飞世尔α微管蛋白抗体(生活技术, noca)被用于免疫细胞化学在人类样品上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(TU-01)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔α微管蛋白抗体(Pierce, MA1-19162)被用于免疫组化在小鼠样品上浓度为1:100. Cell Death Differ (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; Arthrotardigrada; 1:300
赛默飞世尔α微管蛋白抗体(Invitrogen Corporation, 32-2700)被用于免疫组化在Arthrotardigrada样品上浓度为1:300. J Morphol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
赛默飞世尔α微管蛋白抗体(Invitrogen, B-5-1-2)被用于免疫印迹在人类样品上 (图1). Autophagy (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图1
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于免疫印迹在人类样品上浓度为1:1000 (图1). PLoS ONE (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图4
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上 (图4). PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 仓鼠
  • 细胞化学; 小鼠
赛默飞世尔α微管蛋白抗体(Invitrogen, DM1A)被用于免疫细胞化学在仓鼠样品上 和 在小鼠样品上. Neurobiol Aging (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图2
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上 (图2). Int J Biochem Cell Biol (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; Ilyanassa obsoleta; 1:50; 图1
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于免疫组化在Ilyanassa obsoleta样品上浓度为1:50 (图1). Dev Genes Evol (2013) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; Cyrtanthus mackenii; 1 ug/ml; 图3
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于免疫细胞化学在Cyrtanthus mackenii样品上浓度为1 ug/ml (图3). AoB Plants (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图2
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上 (图2). PLoS ONE (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上 (图1). Cell Signal (2013) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠; 1:200
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫细胞化学在小鼠样品上浓度为1:200. J Neurosci (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图1
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫印迹在人类样品上 (图1). J Biol Chem (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 狗; 1:250; 图2
赛默飞世尔α微管蛋白抗体(Zymed, 32-2700)被用于免疫细胞化学在狗样品上浓度为1:250 (图2). Cilia (2012) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 1 ug/ml; 图5
  • 免疫印迹; 人类; 1:1000; 图s5
赛默飞世尔α微管蛋白抗体(分子探针, A-11126)被用于免疫细胞化学在人类样品上浓度为1 ug/ml (图5) 和 免疫印迹在人类样品上浓度为1:1000 (图s5). BMC Cancer (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图1). Biochem Res Int (2012) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 牛; 1:200
赛默飞世尔α微管蛋白抗体(Invitrogen, 236-10501)被用于免疫细胞化学在牛样品上浓度为1:200. Reprod Biol Endocrinol (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(NeoMarkers, MS-581-P1)被用于免疫印迹在人类样品上. Int J Cancer (2013) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 1:200; 图4
赛默飞世尔α微管蛋白抗体(Invitrogen, 236-10501)被用于免疫细胞化学在人类样品上浓度为1:200 (图4). Gynecol Oncol (2012) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠
赛默飞世尔α微管蛋白抗体(Invitrogen/Life Technologies, A11126)被用于免疫细胞化学在小鼠样品上. Mol Biol Cell (2012) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 图s7
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫细胞化学在人类样品上 (图s7). PLoS ONE (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; common platanna; 1:5000; 图1e
赛默飞世尔α微管蛋白抗体(Neomarker, DM1A)被用于免疫印迹在common platanna样品上浓度为1:5000 (图1e). PLoS ONE (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于免疫印迹在人类样品上 (图1). Cell Rep (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; 大鼠; 1:50; 图6
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫组化在大鼠样品上浓度为1:50 (图6). J Histochem Cytochem (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫印迹在人类样品上. PLoS ONE (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 图5
赛默飞世尔α微管蛋白抗体(Invitrogen, 6-11B-1)被用于免疫细胞化学在人类样品上 (图5). Hum Mol Genet (2012) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图5
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫印迹在人类样品上 (图5). Liver Int (2012) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 图2
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于免疫细胞化学在人类样品上 (图2). Cancer Genet (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上 (图1). Mol Biol Cell (2011) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:500; 图s4
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于免疫组化在斑马鱼样品上浓度为1:500 (图s4). Dev Biol (2011) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 大鼠; 1:20; 图5
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于免疫细胞化学在大鼠样品上浓度为1:20 (图5). Bone (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图7
赛默飞世尔α微管蛋白抗体(Neomarkers, DM1A)被用于免疫印迹在人类样品上 (图7). Cell Death Dis (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图5b
赛默飞世尔α微管蛋白抗体(Invitrogen, 23610501)被用于免疫印迹在人类样品上 (图5b). PLoS ONE (2011) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:500; 图s2
赛默飞世尔α微管蛋白抗体(Zymed, 32-2700)被用于免疫印迹在小鼠样品上浓度为1:500 (图s2). Nat Cell Biol (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图4
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于免疫印迹在人类样品上 (图4). FASEB J (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上 (图1). J Mol Biol (2011) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 图s1
赛默飞世尔α微管蛋白抗体(Invitrogen, 236-10501)被用于免疫细胞化学在人类样品上 (图s1). PLoS ONE (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-P; 人类; 1:200; 图s1
  • 免疫组化-P; 小鼠; 1:200; 图s1
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图s1) 和 在小鼠样品上浓度为1:200 (图s1). J Cell Biol (2011) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠; 图2
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于免疫细胞化学在小鼠样品上 (图2). J Biol Chem (2011) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:2000; 图1
赛默飞世尔α微管蛋白抗体(NeoMarkers, DM1A)被用于免疫细胞化学在人类样品上浓度为1:2000 (图1). Mol Biol Cell (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图1
赛默飞世尔α微管蛋白抗体(分子探针, 236?C10501)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 狗; 1:100; 图4
赛默飞世尔α微管蛋白抗体(Zymed, 32-2500)被用于免疫细胞化学在狗样品上浓度为1:100 (图4). Mol Membr Biol (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 仓鼠; 图4
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫印迹在仓鼠样品上 (图4). Biochim Biophys Acta (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 2.5 mg/ml; 图1
赛默飞世尔α微管蛋白抗体(分子探针, 322500)被用于免疫细胞化学在人类样品上浓度为2.5 mg/ml (图1). Biomaterials (2011) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图4
  • 细胞化学; 人类; 图6
  • 免疫沉淀; 人类; 图5
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫印迹在人类样品上 (图4), 免疫细胞化学在人类样品上 (图6), 和 免疫沉淀在人类样品上 (图5). Exp Cell Res (2010) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 仓鼠; 图4
  • 免疫印迹; 仓鼠; 图8
赛默飞世尔α微管蛋白抗体(分子探针, A-11126)被用于免疫细胞化学在仓鼠样品上 (图4) 和 免疫印迹在仓鼠样品上 (图8). PLoS Pathog (2010) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 图5
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫细胞化学在人类样品上 (图5). Eur J Cancer (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上 (图1). Biochem Biophys Res Commun (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图2
赛默飞世尔α微管蛋白抗体(Invitrogen, 236-10501)被用于免疫印迹在人类样品上 (图2). J Biol Chem (2010) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:200; 图3
  • 细胞化学; 狗; 1:200; 图3
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于免疫细胞化学在人类样品上浓度为1:200 (图3) 和 在狗样品上浓度为1:200 (图3). Biotechnol Bioeng (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; Cyrtanthus mackenii; 1 ug/ml; 图2
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于免疫组化在Cyrtanthus mackenii样品上浓度为1 ug/ml (图2). Sex Plant Reprod (2010) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图3
赛默飞世尔α微管蛋白抗体(Zymed, 32-2500)被用于免疫印迹在人类样品上 (图3). J Dermatol Sci (2010) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2
赛默飞世尔α微管蛋白抗体(Zymed, 32-2500)被用于免疫印迹在人类样品上 (图2). J Mol Endocrinol (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图1c
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上 (图1c). Cell Cycle (2010) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; 小鼠; 1:1000
赛默飞世尔α微管蛋白抗体(Zymed, 6-11B-1)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. Nat Genet (2010) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图2
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫印迹在人类样品上 (图2). Toxicol Mech Methods (2008) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠; 1:200
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于免疫细胞化学在小鼠样品上浓度为1:200. Development (2009) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:500; 图1
赛默飞世尔α微管蛋白抗体(Zymed, 32-2700)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图1). Nat Med (2009) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图2
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫印迹在人类样品上 (图2). Hum Pathol (2009) ncbi
小鼠 单克隆(TU-01)
  • 细胞化学; 人类
赛默飞世尔α微管蛋白抗体(Zymed Laboratories, TU-01)被用于免疫细胞化学在人类样品上. Biochem Biophys Res Commun (2009) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫印迹在人类样品上. Mol Cell Biochem (2009) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 图1
赛默飞世尔α微管蛋白抗体(Invitrogen, 236-10501)被用于免疫细胞化学在人类样品上 (图1). Bull Exp Biol Med (2008) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类
赛默飞世尔α微管蛋白抗体(Zymed, 32-2500)被用于免疫细胞化学在人类样品上. Cell Cycle (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图3
赛默飞世尔α微管蛋白抗体(Invitrogen, 236-10501)被用于免疫印迹在人类样品上 (图3). Aging Cell (2008) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 1:200; 图7
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于免疫细胞化学在人类样品上浓度为1:200 (图7). Analyst (2008) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 小鼠; 1:500; 图3
赛默飞世尔α微管蛋白抗体(Zymed, 32-2700)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图3). Am J Hum Genet (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 1 ug/ml; 图3
赛默飞世尔α微管蛋白抗体(ZYMED, TU-01)被用于免疫印迹在人类样品上浓度为1 ug/ml (图3). Cancer Res (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图4
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫印迹在人类样品上 (图4). Lab Invest (2008) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图7
  • 免疫印迹; 小鼠; 图7
赛默飞世尔α微管蛋白抗体(Lab Vision, DM1A)被用于免疫印迹在人类样品上 (图7) 和 在小鼠样品上 (图7). Cancer Cell (2008) ncbi
小鼠 单克隆(TU-01)
  • 细胞化学; 人类; 1:100; 图4
赛默飞世尔α微管蛋白抗体(Invitrogen, TU-01)被用于免疫细胞化学在人类样品上浓度为1:100 (图4). Am J Pathol (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠; 图1
赛默飞世尔α微管蛋白抗体(Zymed, 236-10501)被用于免疫印迹在小鼠样品上 (图1). J Biol Chem (2008) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图s4
赛默飞世尔α微管蛋白抗体(Zymed, 32-2500)被用于免疫印迹在人类样品上 (图s4). Nature (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图2
赛默飞世尔α微管蛋白抗体(Zymed Laboratories, TU-01)被用于免疫印迹在人类样品上 (图2). J Pharmacol Sci (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化-F; 大鼠
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于免疫组化-冰冻切片在大鼠样品上. Dev Neurobiol (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫组化; 小鼠; 图1
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫组化在小鼠样品上 (图1). Exp Cell Res (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图1
赛默飞世尔α微管蛋白抗体(Zymed, tu-01)被用于免疫印迹在人类样品上 (图1). FEBS Lett (2007) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠; 1:40; 图3
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫细胞化学在小鼠样品上浓度为1:40 (图3). In Vitro Cell Dev Biol Anim (2007) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 1:400
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于免疫细胞化学在人类样品上浓度为1:400. FASEB J (2008) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔α微管蛋白抗体(NeoMarkers, MS-581-P1)被用于免疫印迹在小鼠样品上浓度为1:2000. Neurochem Int (2008) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; kangaroo; 2 ug/ml
赛默飞世尔α微管蛋白抗体(Invitrogen, noca)被用于免疫细胞化学在kangaroo样品上浓度为2 ug/ml. Biophys J (2007) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 1:200; 图3
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于免疫细胞化学在人类样品上浓度为1:200 (图3). FEBS Lett (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 表1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上 (表1). Ann N Y Acad Sci (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; Flanders poppy; 1:200; 图8
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫组化在Flanders poppy样品上浓度为1:200 (图8). Planta (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上 (图1). Cell Signal (2007) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Lab Vision, DM1A)被用于免疫印迹在人类样品上. Blood (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在小鼠样品上. Stem Cells (2007) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 兔; 图1
赛默飞世尔α微管蛋白抗体(Zymed, 32-2500)被用于免疫印迹在兔样品上 (图1). Cell Signal (2007) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图2
赛默飞世尔α微管蛋白抗体(Neomarkers, DM1A)被用于免疫印迹在人类样品上 (图2). Mol Cell Biol (2007) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 1 ug/ml; 图1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10,501)被用于免疫细胞化学在人类样品上浓度为1 ug/ml (图1). Cancer Chemother Pharmacol (2007) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 利什曼原虫; 1:1000; 图3
赛默飞世尔α微管蛋白抗体(分子探针, noca)被用于免疫细胞化学在利什曼原虫样品上浓度为1:1000 (图3). J Biol Chem (2006) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:200; 图3
赛默飞世尔α微管蛋白抗体(Zymed, 32-2700)被用于免疫细胞化学在人类样品上浓度为1:200 (图3). ASAIO J (2006) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫印迹在小鼠样品上. Genes Cells (2006) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠; 1:200; 图1
赛默飞世尔α微管蛋白抗体(分子探针, A-11126)被用于免疫细胞化学在小鼠样品上浓度为1:200 (图1). J Biol Chem (2006) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔α微管蛋白抗体(Invitrogen Corporation, 32-2500)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Stem Cells (2006) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠; 图6
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于免疫细胞化学在小鼠样品上 (图6). J Cell Sci (2005) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:800; 图3
赛默飞世尔α微管蛋白抗体(Neomarkers, MS-581-P1)被用于免疫印迹在人类样品上浓度为1:800 (图3). Pediatr Blood Cancer (2006) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 人类; 图1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫细胞化学在人类样品上 (图1). J Cell Sci (2005) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔α微管蛋白抗体(Zymed, Tu-01)被用于免疫印迹在人类样品上浓度为1:1000. Mol Cell Biol (2004) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠
赛默飞世尔α微管蛋白抗体(分子探针, noca)被用于免疫细胞化学在小鼠样品上. Nat Immunol (2004) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫印迹在小鼠样品上. J Biol Chem (2004) ncbi
小鼠 单克隆(TU-01)
  • 细胞化学; African green monkey; 图4
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫细胞化学在African green monkey样品上 (图4). J Biol Chem (2004) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; common platanna; 图2
赛默飞世尔α微管蛋白抗体(noco, noca)被用于免疫细胞化学在common platanna样品上 (图2). Annu Rev Cell Dev Biol (2003) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 图7
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫印迹在小鼠样品上 (图7). J Biol Chem (2003) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 0.4 ug/ml; 图2
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上浓度为0.4 ug/ml (图2). Proteomics (2003) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图2b
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫印迹在人类样品上 (图2b). Oral Oncol (2003) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图6
赛默飞世尔α微管蛋白抗体(noco, A11126)被用于免疫印迹在人类样品上 (图6). J Biol Chem (2003) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 大鼠; 图3
赛默飞世尔α微管蛋白抗体(Affinity BioReagents, A11126)被用于免疫印迹在大鼠样品上 (图3). J Cell Biol (2002) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; African green monkey; 1:250; 图3
赛默飞世尔α微管蛋白抗体(分子探针, noca)被用于免疫细胞化学在African green monkey样品上浓度为1:250 (图3). Hum Mol Genet (2002) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠; 1:20,000; 图6g
赛默飞世尔α微管蛋白抗体(Zymed, noca)被用于免疫细胞化学在小鼠样品上浓度为1:20,000 (图6g). Exp Cell Res (2001) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 小鼠
赛默飞世尔α微管蛋白抗体(分子探针, noca)被用于免疫细胞化学在小鼠样品上. J Cell Biol (2001) ncbi
小鼠 单克隆(TU-01)
  • 免疫沉淀; common platanna; 图2
赛默飞世尔α微管蛋白抗体(Zymed, clone TU-01)被用于免疫沉淀在common platanna样品上 (图2). Mol Reprod Dev (2001) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 1:200; 图1
赛默飞世尔α微管蛋白抗体(Zymed, B-5-1-2)被用于免疫细胞化学在人类样品上浓度为1:200 (图1). J Biol Chem (2001) ncbi
小鼠 单克隆(236-10501)
  • 细胞化学; 仓鼠; 图6
赛默飞世尔α微管蛋白抗体(noco, noca)被用于免疫细胞化学在仓鼠样品上 (图6). Mol Biol Cell (2000) ncbi
小鼠 单克隆(TU-01)
  • 细胞化学; 大鼠; 图2
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫细胞化学在大鼠样品上 (图2). J Neurochem (2000) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 1:20,000
赛默飞世尔α微管蛋白抗体(noco, noca)被用于免疫印迹在人类样品上浓度为1:20,000. J Biol Chem (2000) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图4
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于免疫印迹在人类样品上 (图4). J Biol Chem (2000) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠; 1:500; 图5
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于免疫印迹在小鼠样品上浓度为1:500 (图5). Anal Biochem (1999) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 1:100
赛默飞世尔α微管蛋白抗体(noco, B-5-1-2)被用于免疫细胞化学在人类样品上浓度为1:100. J Biol Chem (1999) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 大鼠; 1:12,000; 图4
  • 细胞化学; 大鼠; 1:200; 图2
赛默飞世尔α微管蛋白抗体(noco, noca)被用于免疫印迹在大鼠样品上浓度为1:12,000 (图4) 和 免疫细胞化学在大鼠样品上浓度为1:200 (图2). Mol Biol Cell (1999) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; 牛; 图7
赛默飞世尔α微管蛋白抗体(分子探针, noco)被用于免疫组化在牛样品上 (图7). J Histochem Cytochem (1999) ncbi
小鼠 单克隆(TU-01)
  • 细胞化学; 大鼠; 图2
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于免疫细胞化学在大鼠样品上 (图2). J Neurosci (1999) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:100
赛默飞世尔α微管蛋白抗体(noco, DM1a)被用于免疫细胞化学在人类样品上浓度为1:100. Mol Biol Cell (1999) ncbi
小鼠 单克隆(236-10501)
  • FC; 人类; 1:10
赛默飞世尔α微管蛋白抗体(Zymed, noca)被用于流式细胞仪在人类样品上浓度为1:10. Cytometry (1998) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; 果蝇; 图4
赛默飞世尔α微管蛋白抗体(noco, noca)被用于免疫组化在果蝇样品上 (图4). Development (1992) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图5
艾博抗(上海)贸易有限公司α微管蛋白抗体(abcam, ab7291)被用于免疫印迹在人类样品上浓度为1:5000 (图5). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab4074)被用于免疫印迹在大鼠样品上浓度为1:2000 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 4074)被用于免疫印迹在小鼠样品上 (图2). PLoS ONE (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100; 图s2
艾博抗(上海)贸易有限公司α微管蛋白抗体(abcam, ab15246)被用于免疫细胞化学在人类样品上浓度为1:100 (图s2). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:1000; 图5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图s1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, DM1A)被用于免疫印迹在人类样品上 (图s1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图s7
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab4074)被用于免疫印迹在人类样品上浓度为1:2000 (图s7). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:500; 图6
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫细胞化学在人类样品上浓度为1:500 (图6). Sci Rep (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 图4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 15246)被用于免疫细胞化学在人类样品上 (图4). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab4074)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Diabetes (2016) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 1:1000; 图2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7750)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上 (图2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:50,000; 图st2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上浓度为1:50,000 (图st2). Transl Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在小鼠样品上 (图2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(4G1)
  • 免疫印迹; 小鼠; 图2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab28439)被用于免疫印迹在小鼠样品上 (图2). Toxicol Appl Pharmacol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于免疫印迹在人类样品上 (图1). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab4074-100)被用于免疫印迹在人类样品上浓度为1:10,000 (图1). Cell Rep (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫细胞化学在人类样品上 (图1). Cell Div (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:25,000; 图s18
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于免疫印迹在人类样品上浓度为1:25,000 (图s18). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于免疫印迹在人类样品上浓度为1:1000 (图1). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于免疫印迹在人类样品上浓度为1:10,000 (图4). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
艾博抗(上海)贸易有限公司α微管蛋白抗体(AbCam, Ab18251)被用于免疫印迹在人类样品上 (图5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab126165)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图s5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, DM1A)被用于免疫印迹在人类样品上 (图s5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图s1
艾博抗(上海)贸易有限公司α微管蛋白抗体(abcam, ab4074)被用于免疫印迹在人类样品上浓度为1:5000 (图s1). EMBO Mol Med (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-P; 大鼠; 1:500; 图6
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图6). Endocrinology (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 大鼠; 1:400; 图5
  • 免疫印迹; 大鼠; 1:10,000; 图2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫细胞化学在大鼠样品上浓度为1:400 (图5) 和 免疫印迹在大鼠样品上浓度为1:10,000 (图2). Cell Signal (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化 (基因敲除); 人类; 1:5000; 图s2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, Ab7291)被用于免疫组化 (基因敲除)在人类样品上浓度为1:5000 (图s2). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在小鼠样品上 (图1). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
  • 免疫印迹; 小鼠; 图4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于免疫印迹在人类样品上 (图4) 和 在小鼠样品上 (图4). Cell Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:6000; 图6a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上浓度为1:6000 (图6a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab126165)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). EMBO J (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
艾博抗(上海)贸易有限公司α微管蛋白抗体(abcam, ab126165)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Nat Commun (2015) ncbi
兔 单克隆(EP1332Y)
  • 免疫印迹; 小鼠; 1:5000; 图3A
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab52866)被用于免疫印迹在小鼠样品上浓度为1:5000 (图3A). Int J Mol Sci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图5
艾博抗(上海)贸易有限公司α微管蛋白抗体(abcam, ab7291)被用于免疫印迹在人类样品上 (图5). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上浓度为1:10,000 (图2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于免疫印迹在人类样品上 (图5). PLoS ONE (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫细胞化学在人类样品上 (图1). PLoS Genet (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上 (图2). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图4
艾博抗(上海)贸易有限公司α微管蛋白抗体(abcam, ab125267)被用于免疫印迹在大鼠样品上浓度为1:5000 (图4). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫印迹在人类样品上 (图1). Genetics (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫印迹在人类样品上浓度为1:200. Mol Brain (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:200; 图3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫细胞化学在大鼠样品上浓度为1:200 (图3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图6
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫印迹在小鼠样品上浓度为1:5000 (图6). Reprod Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在小鼠样品上. Cardiovasc Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 金鱼; 1:200; 图3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫细胞化学在金鱼样品上浓度为1:200 (图3). J Gen Physiol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, DM1A+DM1B)被用于免疫印迹在人类样品上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上 (图4). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上. Cell Death Dis (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于免疫细胞化学在人类样品上浓度为1:100. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上. Cancer Lett (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100; 图3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫细胞化学在人类样品上浓度为1:100 (图3). J Surg Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上浓度为1:5000 (图3). FEBS Lett (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:600
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫细胞化学在人类样品上浓度为1:600. Biomaterials (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫印迹在小鼠样品上. Biochem Biophys Res Commun (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图7
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, Ab18251)被用于免疫细胞化学在小鼠样品上 (图7). Dev Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6
艾博抗(上海)贸易有限公司α微管蛋白抗体(abcam, Ab18251)被用于免疫印迹在小鼠样品上 (图6). PLoS Genet (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图s4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上浓度为1:10,000 (图s4). Cell (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:3000; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫组化在人类样品上浓度为1:3000 (图1). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图6
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 7291)被用于免疫印迹在小鼠样品上浓度为1:5000 (图6). Am J Physiol Endocrinol Metab (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图7
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫组化在小鼠样品上浓度为1:200 (图7). J Neurosci Methods (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上浓度为1:2000 (图4). Toxicol Lett (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于免疫细胞化学在小鼠样品上. Blood (2015) ncbi
小鼠 单克隆(4G1)
  • 免疫印迹; 人类; 图3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 4G1)被用于免疫印迹在人类样品上 (图3). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图2, 3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上浓度为1:10,000 (图2, 3). Cell Cycle (2015) ncbi
兔 多克隆
  • 免疫印迹; 羊; 1 ug/ml; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(AbCam, ab4074)被用于免疫印迹在羊样品上浓度为1 ug/ml (图1). Int J Biochem Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 羊; 1:10,000; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(AbCam, ab7291)被用于免疫印迹在羊样品上浓度为1:10,000 (图1). Int J Biochem Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在小鼠样品上 (图5). Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图s9
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上 (图s9). Nature (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫细胞化学在人类样品上浓度为1:200. Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫印迹在人类样品上浓度为1:2000 (图1). Nucleus (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-P; 大鼠; 1:500
  • 免疫组化-F; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500, 免疫组化-冰冻切片在大鼠样品上浓度为1:500, 和 免疫印迹在大鼠样品上浓度为1:1000. Endocrinology (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图4c
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, AB4074)被用于免疫印迹在人类样品上浓度为1:10,000 (图4c). Hum Mol Genet (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 0.02 ug/ml
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于免疫印迹在人类样品上浓度为0.02 ug/ml. Histochem Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab40742)被用于免疫印迹在人类样品上. Cancer Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:2000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于免疫印迹在大鼠样品上浓度为1:2000. Neurobiol Dis (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, Ab7291)被用于免疫印迹在人类样品上. Eur J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab4074)被用于免疫印迹在小鼠样品上 (图4a). Exp Cell Res (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫细胞化学在人类样品上. Cardiovasc Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上. J Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫细胞化学在人类样品上浓度为1:200. Int J Mol Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab4074)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫细胞化学在人类样品上. Stem Cell Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab125267)被用于免疫印迹在小鼠样品上浓度为1:1000. Hippocampus (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫细胞化学在人类样品上. Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab4074)被用于免疫印迹在小鼠样品上浓度为1:2000. Lipids Health Dis (2014) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:1000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于免疫细胞化学在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于免疫印迹在人类样品上浓度为1:10000. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab 7291)被用于免疫印迹在小鼠样品上. J Appl Physiol (1985) (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, AB4074)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:1000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫细胞化学在人类样品上浓度为1:1000. Cancer Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上浓度为1:5000. Methods Mol Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图s5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上浓度为1:5000 (图s5). Nat Chem Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 7291)被用于免疫印迹在小鼠样品上 (图3). EMBO Mol Med (2014) ncbi
兔 单克隆(EP1332Y)
  • 免疫印迹; 小鼠; 1:2000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab52866)被用于免疫印迹在小鼠样品上浓度为1:2000. Stem Cells (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上浓度为1:2000. Reprod Toxicol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:5000; 图3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, Ab7291)被用于免疫印迹在大鼠样品上浓度为1:5000 (图3). J Bioenerg Biomembr (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上. J Dermatol Sci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
  • 细胞化学; 人类
  • 细胞化学; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, AB7291)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上 和 在小鼠样品上. J Clin Invest (2013) ncbi
兔 单克隆(EP1332Y)
  • 免疫组化-P; 人类; 1:200
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab52866)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Eur J Cancer (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab4074)被用于免疫印迹在人类样品上浓度为1:1000. Osteoarthritis Cartilage (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab4074)被用于免疫印迹在人类样品上, 在小鼠样品上, 和 在大鼠样品上. Nature (2013) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫细胞化学在小鼠样品上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab40742)被用于免疫印迹在小鼠样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 单克隆(EP1332Y)
  • 细胞化学; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab52866)被用于免疫细胞化学在人类样品上. Cell Cycle (2013) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫细胞化学在人类样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab4074)被用于免疫印迹在小鼠样品上浓度为1:5000. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, AB15246)被用于免疫印迹在小鼠样品上. FASEB J (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在人类样品上. Nat Genet (2011) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:2500
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于免疫印迹在大鼠样品上浓度为1:2500. J Comp Neurol (2008) ncbi
GeneTex
兔 多克隆
  • 免疫印迹; 小鼠; 图2
GeneTexα微管蛋白抗体(GeneTex, GTX112141)被用于免疫印迹在小鼠样品上 (图2). PLoS ONE (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 图3
GeneTexα微管蛋白抗体(Gene Tex, GTX112141)被用于免疫细胞化学在人类样品上 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图2
GeneTexα微管蛋白抗体(Genetex, GTX112141)被用于免疫印迹在人类样品上浓度为1:1000 (图2). PLoS ONE (2015) ncbi
未注明
  • 免疫印迹; 人类
为研究铁转运蛋白与Jak2的结合及相互作用在hepcidin诱导的铁转运蛋白的细胞内摄作用中所发挥的角色,将GeneTex提供的小鼠抗tubulin抗体应用于蛋白免疫印迹实验中。Proc Natl Acad Sci U S A (2009) ncbi
武汉三鹰
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图2
武汉三鹰α微管蛋白抗体(Proteintech, 10759-1-AP)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Sci Rep (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3
  • 免疫印迹; 小鼠; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图3) 和 在小鼠样品上 (图6). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2
  • 免疫印迹; 小鼠; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图2) 和 在小鼠样品上 (图6). elife (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图2
  • 免疫印迹; 中国人仓鼠; 1:5000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在人类样品上浓度为1:5000 (图2) 和 在中国人仓鼠样品上浓度为1:5000 (图1). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在人类样品上浓度为1:500. Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • PLA; 小鼠; 1:20; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于proximity ligation assay在小鼠样品上浓度为1:20 (图4). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3
  • 免疫印迹; 大鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图3) 和 在大鼠样品上 (图1). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在人类样品上浓度为1:10,000 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图s8
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:10,000 (图s8). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图6). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图2c
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上浓度为1:1000 (图2c). BMC Cancer (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图7
  • 免疫印迹; 小鼠; 1:5000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上浓度为1:5000 (图7) 和 在小鼠样品上浓度为1:5000 (图3). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 小鼠; 1:50; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:50 (图5). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-F; 小鼠; 图11
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T-6199)被用于免疫组化-冰冻切片在小鼠样品上 (图11). Mol Vis (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 果蝇; 1:2000; 图5
  • 免疫印迹; 果蝇; 1:5000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫细胞化学在果蝇样品上浓度为1:2000 (图5) 和 免疫印迹在果蝇样品上浓度为1:5000 (图4). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在小鼠样品上 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma, T-9026)被用于免疫印迹在人类样品上 (图s1). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fission yeast; 1:5000; 图9
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在fission yeast样品上浓度为1:5000 (图9). PLoS Genet (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:2000; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫印迹在小鼠样品上浓度为1:2000 (图6). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图7b
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上 (图7b). elife (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图s2
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000 (图s2). PLoS Genet (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图7
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上 (图7). Front Neurosci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图3). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T 5168)被用于免疫印迹在小鼠样品上浓度为1:2000 (图2). Cell Death Dis (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图4). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:1000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T 6199)被用于免疫印迹在大鼠样品上浓度为1:1000 (图4). elife (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:50,000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上浓度为1:50,000 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上 (图3). BMC Cancer (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图2
  • 细胞化学; 人类; 1:5000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上浓度为1:5000 (图2) 和 免疫细胞化学在人类样品上浓度为1:5000 (图4). J Cell Biol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 1:50; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, F2168)被用于免疫细胞化学在小鼠样品上浓度为1:50 (图2). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:10,000 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:200; 图s8
  • 免疫印迹; 小鼠; 1:1000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:200 (图s8) 和 在小鼠样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Stem Cells (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图2). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图4g
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4g). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图1). Genom Data (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图s3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上 (图s3). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; African green monkey; 1:5000; 图1
  • 免疫印迹; 小鼠; 1:5000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在African green monkey样品上浓度为1:5000 (图1) 和 在小鼠样品上浓度为1:5000 (图3). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 图3d
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在大鼠样品上 (图3d). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2
  • 细胞化学; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在人类样品上 (图2) 和 免疫细胞化学在人类样品上 (图1). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫细胞化学在人类样品上 (图5). Cell Signal (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 斑马鱼; 1:20,000; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在斑马鱼样品上浓度为1:20,000 (图6). Nat Med (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上浓度为1:10,000 (图3). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上浓度为1:5000 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 斑马鱼; 1:400; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在斑马鱼样品上浓度为1:400 (图2). Development (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 果蝇; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫组化在果蝇样品上 (图3). Development (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:1000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在大鼠样品上浓度为1:1000 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
  • 免疫沉淀; 人类; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图1) 和 免疫沉淀在人类样品上 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; 狗; 1:500; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化-石蜡切片在狗样品上浓度为1:500 (图2). Brain Behav (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2
  • 细胞化学; 人类; 图s4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上 (图2) 和 免疫细胞化学在人类样品上 (图s4). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 1:1000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图2). Nat Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上浓度为1:10,000 (图4). Cell Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图6
  • 免疫印迹; 小鼠; 1:5000; 图s2
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:5000 (图6) 和 在小鼠样品上浓度为1:5000 (图s2). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fission yeast; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, B5-1-2)被用于免疫印迹在fission yeast样品上 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 面包酵母; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, F2168)被用于免疫细胞化学在面包酵母样品上 (图3). Mol Biol Cell (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:600; 图4e
  • 细胞化学; African green monkey; 1:600; 图S1B
  • 细胞化学; 人类; 1:600; 图2a
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上浓度为1:600 (图4e) 和 免疫细胞化学在African green monkey样品上浓度为1:600 (图S1B) 和 在人类样品上浓度为1:600 (图2a). Nat Commun (2016) ncbi
小鼠 单克隆(B3)
  • 免疫组化; 人类; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9822)被用于免疫组化在人类样品上 (图4). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:4000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在人类样品上浓度为1:4000 (图4). J Mol Biol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000 (图4). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Genes Dev (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图2). Cancer Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上 (图6). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:1000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在人类样品上浓度为1:1000 (图1). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:100; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在人类样品上浓度为1:100 (图4). J Cell Sci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图s7
  • 免疫印迹; 大鼠; 1:10,000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图s7) 和 在大鼠样品上浓度为1:10,000 (图3). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:500; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在人类样品上浓度为1:500 (图s1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 小鼠; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫细胞化学在小鼠样品上 (图2). J Vis Exp (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上浓度为1:5000 (图1). Theranostics (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图1). J Clin Invest (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:300; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在小鼠样品上浓度为1:300 (图1). Genome Biol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000 (图4). Cell Cycle (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在小鼠样品上浓度为1:2000 (图1). PLoS Genet (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图s4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在小鼠样品上 (图s4). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上 (图6). J Virol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上 (图1). elife (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:500; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化在小鼠样品上浓度为1:500 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图6
西格玛奥德里奇α微管蛋白抗体(SIGMA-Aldrich, T-9026)被用于免疫印迹在人类样品上浓度为1:5000 (图6). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上浓度为1:10,000 (图6). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图7
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图7). J Tissue Eng Regen Med (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图3). Traffic (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上浓度为1:10,000 (图4). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上 (图6). Autophagy (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图6
  • 免疫印迹; 小鼠; 1:1000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T-9026)被用于免疫印迹在人类样品上浓度为1:1000 (图6) 和 在小鼠样品上浓度为1:1000 (图1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:1000; 图2
  • 免疫组化; 小鼠; 1:1000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图2) 和 免疫组化在小鼠样品上浓度为1:1000 (图2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在小鼠样品上 (图4). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:25,000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在小鼠样品上浓度为1:25,000 (图1). Am J Pathol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:1000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在人类样品上浓度为1:1000 (图1). Cell Cycle (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:500; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化在斑马鱼样品上浓度为1:500 (图2). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:1000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在大鼠样品上浓度为1:1000 (图1). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 果蝇; 1:100; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫组化在果蝇样品上浓度为1:100 (图1). Development (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:2500; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上浓度为1:2500 (图4). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:200; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, F2168)被用于免疫细胞化学在人类样品上浓度为1:200 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; axolotl; 1:100; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化在axolotl样品上浓度为1:100 (图2). elife (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图1). Oncogenesis (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000 (图1). Eur J Neurosci (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 1:500; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图2). Hepatology (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图3). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图11
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上 (图11). J Virol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 表3
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在大鼠样品上 (表3). Toxicol Sci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; common platanna; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于免疫印迹在common platanna样品上 (图2). Sci Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图2
  • 细胞化学; 小鼠; 1:1000; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化在小鼠样品上浓度为1:1000 (图2) 和 免疫细胞化学在小鼠样品上浓度为1:1000 (图5). Hum Mol Genet (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:3000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在小鼠样品上浓度为1:3000 (图4). Dev Cell (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图1). Biol Open (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000 (图1). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图4). J Virol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上浓度为1:2000 (图2). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 小鼠; 图7
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在小鼠样品上 (图7). Acta Neuropathol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 图7
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在小鼠样品上 (图7). Acta Neuropathol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 1:3000; 图5
  • 免疫印迹; 人类; 1:3000; 图9
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在人类样品上浓度为1:3000 (图5) 和 免疫印迹在人类样品上浓度为1:3000 (图9). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 衣藻; 1:40,000; 图s4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于免疫印迹在衣藻样品上浓度为1:40,000 (图s4). elife (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:5000 (图1). FEBS Lett (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在人类样品上 (图2). Open Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:10,000 (图2). elife (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 小鼠; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化-冰冻切片在小鼠样品上 (图s1). Nature (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在小鼠样品上 (图s1). J Cell Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 图s2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, 6-11B-1)被用于免疫细胞化学在小鼠样品上 (图s2). J Cell Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:500; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图3). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:1000; 图s3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图s3). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:500; 图3
  • 细胞化学; 人类; 1:500; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, F2168)被用于免疫印迹在人类样品上浓度为1:500 (图3) 和 免疫细胞化学在人类样品上浓度为1:500 (图3). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图3
  • 细胞化学; 人类; 1:1000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上浓度为1:1000 (图3) 和 免疫细胞化学在人类样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上浓度为1:10,000 (图2). Nature (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图s3f
西格玛奥德里奇α微管蛋白抗体(Sigma., T6074)被用于免疫印迹在小鼠样品上 (图s3f). Immunity (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T-6199)被用于免疫印迹在小鼠样品上 (图1). Skelet Muscle (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; African green monkey; 图1
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, 6-11B-1)被用于免疫细胞化学在African green monkey样品上 (图1) 和 免疫印迹在人类样品上 (图1). J Pharmacol Exp Ther (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上浓度为1:5000. Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:800; 表1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化在小鼠样品上浓度为1:800 (表1). J Vis Exp (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T-9026)被用于免疫印迹在人类样品上 (图5). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:4000; 图1d
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在小鼠样品上浓度为1:4000 (图1d). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma, T 6199)被用于免疫印迹在人类样品上 (图s1). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上 (图6). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在小鼠样品上 (图2). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:500; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上浓度为1:500 (图5). Acta Neuropathol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上浓度为1:5000 (图3). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图4). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图1c
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:5000 (图1c). J Biol Chem (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:2000; 图4h
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在人类样品上浓度为1:2000 (图4h). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:20,000; 图3g
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:20,000 (图3g). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图7f
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图7f). elife (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图2). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在小鼠样品上 (图5). Mol Metab (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). Stem Cell Reports (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上浓度为1:5000 (图2). Front Pharmacol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:1000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在人类样品上浓度为1:1000 (图4). Front Pharmacol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图2). EMBO J (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图s5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上浓度为1:5000 (图s5). J Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图s11
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图s11). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图8
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图8). Mol Syst Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图4b
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T5168)被用于免疫印迹在小鼠样品上浓度为1:5000 (图4b). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图3). J Neurosci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM-1A)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图3). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图4
  • 免疫印迹; 仓鼠; 1:10,000; 图7
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上浓度为1:10,000 (图4) 和 在仓鼠样品上浓度为1:10,000 (图7). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在人类样品上 (图1). elife (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 图7
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在小鼠样品上 (图7). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T5168)被用于免疫印迹在人类样品上. Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1 ug/ml; 图4f
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上浓度为1 ug/ml (图4f). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫细胞化学在人类样品上 (图6). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在大鼠样品上 (图3). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图3c
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在小鼠样品上 (图3c). elife (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 图3
  • 免疫印迹; 小鼠; 1:5000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在小鼠样品上 (图3) 和 免疫印迹在小鼠样品上浓度为1:5000 (图1). J Cell Biol (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 秀丽隐杆线虫; 图2
  • 细胞化学; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫细胞化学在秀丽隐杆线虫样品上 (图2) 和 在人类样品上 (图1). elife (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; inshore hagfish; 1:1000; 图3a
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化-石蜡切片在inshore hagfish样品上浓度为1:1000 (图3a). Nature (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:500; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫细胞化学在人类样品上浓度为1:500 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上浓度为1:5000 (图2). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, F-2168)被用于免疫细胞化学在小鼠样品上 (图5). Oncogene (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上 (图1). Oncogene (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在大鼠样品上 (图1). Cell Stress Chaperones (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T5168)被用于免疫印迹在小鼠样品上 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:4000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-5-1-2)被用于免疫印迹在人类样品上浓度为1:4000 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹 (基因敲减); 人类; 图3b
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹 (基因敲减)在人类样品上 (图3b). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化在斑马鱼样品上浓度为1:1000 (图2). Genesis (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 大鼠; 1:3000; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫细胞化学在大鼠样品上浓度为1:3000 (图5). Cell Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, F2168)被用于免疫细胞化学在小鼠样品上 (图4). J Biol Chem (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; Japanese lancelet; 1:200; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫组化在Japanese lancelet样品上浓度为1:200 (图5). Zoological Lett (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图3). Sci Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 图8d
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在人类样品上 (图8d). PLoS Pathog (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上 (图6). PLoS Genet (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图2a
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上 (图2a). Mol Metab (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图2a
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6199)被用于免疫印迹在人类样品上 (图2a). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上 (图1). Mol Cancer (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在人类样品上浓度为1:5000 (图6). Mol Biol Cell (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 秀丽隐杆线虫; 1:5000; 图1
  • 免疫组化; 秀丽隐杆线虫; 1:200; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在秀丽隐杆线虫样品上浓度为1:5000 (图1) 和 免疫组化在秀丽隐杆线虫样品上浓度为1:200 (图3). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图7
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图7). Diabetes (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图8
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上 (图8). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 大鼠; 图6i
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫细胞化学在大鼠样品上 (图6i). J Neurosci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上浓度为1:5000 (图2). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; longfin inshore squid; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在longfin inshore squid样品上 (图1). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:10,000 (图1). Oncotarget (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化在小鼠样品上浓度为1:1000 (图2). elife (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 小鼠; 1:1000; 图2
  • 免疫印迹; 小鼠; 1:3000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫组化在小鼠样品上浓度为1:1000 (图2) 和 免疫印迹在小鼠样品上浓度为1:3000 (图2). elife (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图1a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026-2ML)被用于免疫印迹在人类样品上浓度为1:10,000 (图1a). Mol Oncol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 鸡; 1:2000; 图2
  • 细胞化学; 鸡; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B512)被用于免疫印迹在鸡样品上浓度为1:2000 (图2) 和 免疫细胞化学在鸡样品上 (图3). Open Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 小鼠; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于免疫细胞化学在小鼠样品上 (图4). J Cell Physiol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 图s4d
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6793)被用于免疫细胞化学在人类样品上 (图s4d). Biomaterials (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图4
  • 细胞化学; 小鼠; 1:200; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4) 和 免疫细胞化学在小鼠样品上浓度为1:200 (图4). Nature (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图s2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上 (图s2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s1). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 狗; 1:200; 图4
  • 免疫印迹; 人类; 1:4000; 图s4
  • 免疫印迹; 狗; 1:4000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫细胞化学在狗样品上浓度为1:200 (图4) 和 免疫印迹在人类样品上浓度为1:4000 (图s4) 和 在狗样品上浓度为1:4000 (图4). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 狗; 1:4000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫印迹在狗样品上浓度为1:4000 (图4). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图1). Nat Med (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在小鼠样品上 (图4). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:25,000; 图s4c
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在小鼠样品上浓度为1:25,000 (图s4c). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图1). Cell Death Dis (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图s2
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在小鼠样品上 (图s2). Cell Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图3). Cell Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Cell Mol Gastroenterol Hepatol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图1). J Cell Sci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图1c
西格玛奥德里奇α微管蛋白抗体(Sigma., T5168)被用于免疫印迹在小鼠样品上 (图1c). PLoS Genet (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 果蝇; 图2
  • 免疫印迹; 果蝇; 1:2000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫细胞化学在果蝇样品上 (图2) 和 免疫印迹在果蝇样品上浓度为1:2000 (图3). J Cell Sci (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:3000; 图1
  • 免疫组化; 人类; 1:3000; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在人类样品上浓度为1:3000 (图1) 和 免疫组化在人类样品上浓度为1:3000 (图6). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B5-1-2)被用于免疫印迹在人类样品上浓度为1:500. Nature (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫组化在小鼠样品上 (图1). J Neurosci (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:250
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫细胞化学在人类样品上浓度为1:250 和 免疫印迹在人类样品上浓度为1:5000. EMBO Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Nature (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图2). Neuron (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:500; 图7
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在人类样品上浓度为1:500 (图7). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图2). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T-6199)被用于免疫印迹在小鼠样品上. Nature (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:8000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:8000 (图4). Nature (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图4). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上 (图3). Genes Dev (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于免疫印迹在人类样品上 (图4). Int J Biol Sci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-5-1-2)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图1). PLoS Genet (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上浓度为1:5000 (图2). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上 (图4). Int J Mol Sci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 小鼠; 1:500; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图1). Sci Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图2). elife (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图4a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于免疫印迹在人类样品上 (图4a). BMC Cancer (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:5000; 图s6
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在大鼠样品上浓度为1:5000 (图s6). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上 (图4). J Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2500
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:2500. Brain Behav (2015) ncbi
小鼠 单克隆(TUB-1A2)
  • 细胞化学; 小鼠; 1:400; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9028)被用于免疫细胞化学在小鼠样品上浓度为1:400 (图1). Brain Behav (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1500; 图1
  • 细胞化学; 人类; 1:1500; 图1
  • 细胞化学; 小鼠; 1:1500; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:1500 (图1) 和 免疫细胞化学在人类样品上浓度为1:1500 (图1) 和 在小鼠样品上浓度为1:1500 (图5). Mol Biol Cell (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在小鼠样品上 (图s1). J Clin Invest (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图7
  • 免疫印迹; 小鼠; 图10
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于免疫印迹在人类样品上 (图7) 和 在小鼠样品上 (图10). J Clin Invest (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000. Brain (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图2). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图4b
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图4b). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图1e
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在小鼠样品上 (图1e). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 1:2000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于免疫细胞化学在人类样品上浓度为1:2000 (图1). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上浓度为1:5000 (图3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 斑马鱼; 1:10,000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在斑马鱼样品上浓度为1:10,000 (图1). Mol Neurodegener (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:30,000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:30,000 (图4). Mol Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上 (图4). Nat Immunol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹 (基因敲减); 人类; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹 (基因敲减)在人类样品上 (图6). FASEB J (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:5000 (图6). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫细胞化学在人类样品上 (图2). Sci Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 1:10,000; 图s2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫细胞化学在人类样品上浓度为1:10,000 (图s2). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:300; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫细胞化学在人类样品上浓度为1:300 (图2). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在大鼠样品上 (图3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图2a
西格玛奥德里奇α微管蛋白抗体(Sigma, 9026)被用于免疫印迹在小鼠样品上 (图2a). EMBO Mol Med (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上 (图1). Int J Mol Sci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上 (图1). J Reprod Dev (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上浓度为1:10,000 (图2). J Clin Invest (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上 (图2). elife (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 大豆; 1:800
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫组化在大豆样品上浓度为1:800. Front Plant Sci (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 大豆; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫印迹在大豆样品上浓度为1:2000. Front Plant Sci (2015) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫印迹; 大豆; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9028)被用于免疫印迹在大豆样品上浓度为1:5000. Front Plant Sci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图4). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上 (图1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-P; 果蝇; 1:500; 图s5f
  • 免疫印迹; 果蝇; 1:1000; 图s5a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫组化-石蜡切片在果蝇样品上浓度为1:500 (图s5f) 和 免疫印迹在果蝇样品上浓度为1:1000 (图s5a). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图1a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在小鼠样品上 (图1a). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 鸡; 1:1000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在鸡样品上浓度为1:1000 (图3). Mol Biol Cell (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 图s3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T-6793)被用于免疫细胞化学在小鼠样品上 (图s3). Mol Biol Cell (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 小鼠; 图12
  • 免疫印迹; 小鼠; 图12
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫细胞化学在小鼠样品上 (图12) 和 免疫印迹在小鼠样品上 (图12). Mol Biol Cell (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图1c
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在人类样品上浓度为1:2000 (图1c). Eur J Immunol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫组化在小鼠样品上浓度为1:1000 (图5). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上 (图1). Oncogene (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-aldrich, DM1A)被用于免疫细胞化学在小鼠样品上 (图2). PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T-7451)被用于免疫组化在小鼠样品上浓度为1:1000. J Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠
西格玛奥德里奇α微管蛋白抗体(Sigma?CAldrich, T9026)被用于免疫印迹在大鼠样品上. Neuroscience (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图ev3
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:10,000 (图ev3). EMBO Mol Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1c
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图1c). elife (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图s4
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T5168)被用于免疫印迹在人类样品上. J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图4d
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上浓度为1:1000 (图4d). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • PLA; 人类; 图7
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于proximity ligation assay在人类样品上 (图7). J Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在小鼠样品上 (图4). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM-1A)被用于免疫印迹在小鼠样品上 (图2). Nat Immunol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫细胞化学在人类样品上 (图2). PLoS Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图s7
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-5-1-2)被用于免疫印迹在人类样品上 (图s7). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:1000; 图2
  • 细胞化学; 小鼠; 图s3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在人类样品上浓度为1:1000 (图2) 和 在小鼠样品上 (图s3). J Med Genet (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:50,000; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:50,000 (图6). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 小鼠; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫细胞化学在小鼠样品上 (图3). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图6b
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在小鼠样品上浓度为1:5000 (图6b). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 果蝇; 1:50; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫细胞化学在果蝇样品上浓度为1:50 (图s1). PLoS Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T 6074)被用于免疫印迹在人类样品上 (图1). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 图8
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫细胞化学在人类样品上 (图8). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:2000; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上浓度为1:2000 (图6). FEBS J (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 图s9
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫细胞化学在人类样品上 (图s9). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图2b
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-5-1-2)被用于免疫印迹在人类样品上浓度为1:1000 (图2b). PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 衣藻; 1:3000; 图5
  • 免疫印迹; 衣藻; 1:10,000; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在衣藻样品上浓度为1:3000 (图5) 和 免疫印迹在衣藻样品上浓度为1:10,000 (图5). Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000 (图6). Nat Commun (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化在斑马鱼样品上 (图1). Antioxid Redox Signal (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在小鼠样品上 (图4). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图7b
西格玛奥德里奇α微管蛋白抗体(SIGMA, DM1A)被用于免疫印迹在人类样品上 (图7b). Mol Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图2). Oncogene (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:2000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:2000 (图3). PLoS Pathog (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在人类样品上 (图1). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 果蝇; 1:10,000; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在果蝇样品上浓度为1:10,000 (图5). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:2000 (图4). Redox Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 果蝇; 1:3000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在果蝇样品上浓度为1:3000 (图4). Biol Open (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化在小鼠样品上浓度为1:1000 (图2). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 果蝇; 1:10,000; 图3a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1a)被用于免疫印迹在果蝇样品上浓度为1:10,000 (图3a). Dis Model Mech (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6199)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Autophagy (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:10,000; 图6a
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在人类样品上浓度为1:10,000 (图6a). Nat Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图7a
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图7a). Oncogene (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000 (图1). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:1000. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫细胞化学在小鼠样品上. elife (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图s4c
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上浓度为1:5000 (图s4c). Lab Chip (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. Oncogene (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:30,000; 图3c
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, B-5-1-2)被用于免疫印迹在人类样品上浓度为1:30,000 (图3c). Cancer Res (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图5f,1
  • 免疫组化; 小鼠; 1:200; 图6a
西格玛奥德里奇α微管蛋白抗体(sigma, T6074)被用于免疫印迹在小鼠样品上浓度为1:5000 (图5f,1) 和 免疫组化在小鼠样品上浓度为1:200 (图6a). Endocrinology (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图1c
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在人类样品上浓度为1:1000 (图1c). PLoS Genet (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫细胞化学在小鼠样品上 (图3). J Cell Sci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图2d
  • 免疫印迹; 小鼠; 1:5000; 图s4c
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上浓度为1:5000 (图2d) 和 在小鼠样品上浓度为1:5000 (图s4c). Nat Chem Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图s2
  • 细胞化学; 人类; 1:4000; 图s2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1alpha)被用于免疫印迹在人类样品上浓度为1:10,000 (图s2) 和 免疫细胞化学在人类样品上浓度为1:4000 (图s2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图4). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图1). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图1). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:1000; 图2a
  • 细胞化学; 小鼠; 1:1000; 图2a
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6199)被用于免疫细胞化学在人类样品上浓度为1:1000 (图2a) 和 在小鼠样品上浓度为1:1000 (图2a). J Immunol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 兔; 1:20000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于免疫印迹在兔样品上浓度为1:20000. J Cell Mol Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图5
  • 免疫印迹; 小鼠; 1:1000; 图5
  • 细胞化学; 人类; 1:1000; 图2a
  • 细胞化学; 小鼠; 1:1000; 图2a
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6199)被用于免疫印迹在人类样品上浓度为1:1000 (图5) 和 在小鼠样品上浓度为1:1000 (图5) 和 免疫细胞化学在人类样品上浓度为1:1000 (图2a) 和 在小鼠样品上浓度为1:1000 (图2a). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:4000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:4000 (图1). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图1g
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图1g). RNA (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T-6074)被用于免疫印迹在人类样品上 (图3). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:8000; 图10a
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:8000 (图10a). J Biol Chem (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 狗; 1:10,000; 图1a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在狗样品上浓度为1:10,000 (图1a). Mol Biol Cell (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T 6793)被用于免疫细胞化学在人类样品上. Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在小鼠样品上浓度为1:2000. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫印迹在小鼠样品上浓度为1:1000. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:400
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化在斑马鱼样品上浓度为1:400. Dev Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:5000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在大鼠样品上浓度为1:5000 (图3). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 1:500; 图3
  • 免疫印迹; 小鼠; 1:5000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1 alpha)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图3) 和 免疫印迹在小鼠样品上浓度为1:5000 (图4). Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:3000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上浓度为1:3000. Biol Reprod (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫组化在小鼠样品上. J Neurosci (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:2000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫细胞化学在人类样品上浓度为1:2000 (图4). Nat Commun (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, 6-11B-1)被用于免疫组化在小鼠样品上浓度为1:1000 (图3). FASEB J (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3d
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图3d). Infect Immun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1c
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上 (图1c). Leukemia (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在大鼠样品上 (图3). Nutr Neurosci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图1). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在人类样品上 和 在小鼠样品上. Cell Res (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图s8
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在人类样品上浓度为1:1000 (图s8). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在大鼠样品上浓度为1:2000. J Proteome Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:7500; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上浓度为1:7500 (图4). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 小鼠; 1:1000; 图3c
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫组化在小鼠样品上浓度为1:1000 (图3c). Methods Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上浓度为1:5000 (图2). J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 仓鼠; 1:5000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在仓鼠样品上浓度为1:5000 (图2). J Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图s6m
西格玛奥德里奇α微管蛋白抗体(Sigma., B-5-1-2)被用于免疫印迹在人类样品上 (图s6m). Mol Cell (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, 6-11B-1)被用于免疫细胞化学在人类样品上. Am J Hum Genet (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上 (图2). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:50000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在小鼠样品上浓度为1:50000. J Biol Chem (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, 6-11B-1)被用于免疫组化在人类样品上 (图6). Sci Rep (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:8000
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在小鼠样品上浓度为1:8000. PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在人类样品上 (图s1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图4b
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图4b). ASN Neuro (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫沉淀; 人类; 图3
  • 免疫印迹; 人类; 图3
  • 细胞化学; 人类; 1:200; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫沉淀在人类样品上 (图3), 免疫印迹在人类样品上 (图3), 和 免疫细胞化学在人类样品上浓度为1:200 (图3). Oncotarget (2015) ncbi
小鼠 单克隆(TUB-1A2)
  • 细胞化学; 金鱼; 1:200; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9028)被用于免疫细胞化学在金鱼样品上浓度为1:200 (图3). J Gen Physiol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上. Nat Neurosci (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 小鼠; 1:1000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图1). Cell Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T-5168)被用于免疫印迹在人类样品上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在人类样品上 (图3). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上 (图4). Int J Mol Sci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图1g
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在人类样品上浓度为1:5000 (图1g). J Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上 (图4). Mol Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上 (图1). Oncogene (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. Int J Oncol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在人类样品上 (图2). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在人类样品上 (图6). Cell Cycle (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在大鼠样品上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图5d
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上 (图5d). Blood (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:5000 (图2). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:2500; 图7
  • 免疫印迹; 人类; 1:5000; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在人类样品上浓度为1:2500 (图7) 和 免疫印迹在人类样品上浓度为1:5000 (图6). Nat Commun (2015) ncbi
小鼠 单克隆(6-11B-1)西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图1e
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于免疫印迹在大鼠样品上 (图1e). J Clin Invest (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:250
西格玛奥德里奇α微管蛋白抗体(Sigma, 6-11B-1)被用于免疫细胞化学在人类样品上浓度为1:250. Cell Biol Int (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 1:1500; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫细胞化学在人类样品上浓度为1:1500 (图5). Brain (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:5000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在大鼠样品上浓度为1:5000 (图2). J Diabetes Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:10,000 (图4). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:400; 图s1
  • 免疫印迹; 人类; 1:10,000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在人类样品上浓度为1:400 (图s1) 和 免疫印迹在人类样品上浓度为1:10,000 (图4). Infect Immun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图5). J Biol Chem (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 果蝇; 1:2000000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫印迹在果蝇样品上浓度为1:2000000. PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:1000; 图5a
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图5a). Cancer Sci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在小鼠样品上. J Biol Chem (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:2500; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1a)被用于免疫细胞化学在人类样品上浓度为1:2500 (图3). Sci Rep (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; 小鼠; 1:1000; 图1
  • 细胞化学; 小鼠; 1:1000; 图s3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, 6-11B-1)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图1) 和 免疫细胞化学在小鼠样品上浓度为1:1000 (图s3). Dis Model Mech (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; 小鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(sigma, T6793)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000. Dev Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:5000 (图2). Cell Cycle (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 1:1000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在人类样品上浓度为1:1000 (图4). PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:1000; 图5a
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图5a). Development (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:3000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上浓度为1:3000. Cell Signal (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上 (图4). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上. Genes Cancer (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T5168)被用于免疫印迹在人类样品上. PLoS Pathog (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫印迹在小鼠样品上 (图3). Mol Biol Cell (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 鸡
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化在鸡样品上 和 在小鼠样品上浓度为1:1000. Development (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在小鼠样品上 (图2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 狗
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在狗样品上. J Cell Sci (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 狗
  • 免疫印迹; 狗
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在狗样品上 和 免疫印迹在狗样品上. J Cell Sci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上浓度为1:10,000 (图1). J Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:1000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫细胞化学在人类样品上浓度为1:1000 (图4). J Cell Biol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:2000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫细胞化学在人类样品上浓度为1:2000 (图1). J Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上浓度为1:1000. Oncogene (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上浓度为1:1000 (图5). J Biol Chem (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图1). PLoS Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 狗; 图1
  • 细胞化学; 小鼠; 图1
  • 免疫印迹; 狗; 图1
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在狗样品上 (图1) 和 在小鼠样品上 (图1) 和 免疫印迹在狗样品上 (图1) 和 在小鼠样品上 (图1). BMC Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; common platanna; 1:20000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在common platanna样品上浓度为1:20000. Mol Biol Cell (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:200,000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上浓度为1:200,000 (图2). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上 (图1). Nat Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 1:200; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, F2168)被用于免疫细胞化学在小鼠样品上浓度为1:200 (图3). Cell Cycle (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图s3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-512)被用于免疫印迹在人类样品上 (图s3). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在小鼠样品上 (图3). J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
  • 细胞化学; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, clone B-5-1-2)被用于免疫印迹在人类样品上 (图1) 和 免疫细胞化学在人类样品上 (图1). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s1). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图3). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图5). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; California sea hare; 1:200
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫组化在California sea hare样品上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; California sea hare; 1:200
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化在California sea hare样品上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫组化; California sea hare; 1:200
西格玛奥德里奇α微管蛋白抗体(Sigma, T9028)被用于免疫组化在California sea hare样品上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上浓度为1:5000 (图2). J Cell Biol (2015) ncbi
小鼠 单克隆(TUB-1A2)
  • 细胞化学; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T9028)被用于免疫细胞化学在小鼠样品上 和 免疫印迹在小鼠样品上. J Biol Chem (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠
  • 细胞化学; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫印迹在小鼠样品上 和 免疫细胞化学在小鼠样品上. J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上 (图1). Mol Cell Proteomics (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上 (图1). Am J Transl Res (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图s7
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T9026)被用于免疫印迹在人类样品上 (图s7). PLoS Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图5a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上 (图5a). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化在斑马鱼样品上. Dev Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2500; 图s4e
西格玛奥德里奇α微管蛋白抗体(Sigma, T-9026)被用于免疫印迹在人类样品上浓度为1:2500 (图s4e). Mol Cancer (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:2000 (图4). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-5-1-2)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在人类样品上 (图3). PLoS Pathog (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图5). MBio (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; amphioxus; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫组化在amphioxus样品上浓度为1:500. J Comp Neurol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图s6
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B512)被用于免疫印迹在人类样品上 (图s6). J Clin Invest (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上浓度为1:2000. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫细胞化学在小鼠样品上浓度为1:1000. Development (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:250
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在人类样品上浓度为1:250. Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 0.5 ug/ml; 图1
  • 免疫印迹; 小鼠; 0.5 ug/ml; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上浓度为0.5 ug/ml (图1) 和 在小鼠样品上浓度为0.5 ug/ml (图1). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1.2 ug/ml
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1.2 ug/ml. J Comp Neurol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000. Genes Cancer (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 人类; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫组化在人类样品上 (图6). Nat Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上浓度为1:5000 (图6). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在人类样品上. J Immunol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在人类样品上浓度为1:10000. Cancer Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 果蝇; 图s3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在果蝇样品上 (图s3). Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在大鼠样品上浓度为1:1000. Neuroscience (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在人类样品上. J Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图s9
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s9). Nature (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上. Oncogene (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上浓度为1:2000. FASEB J (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:30000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:30000. PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:5000 (图1). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上 (图1). Cell Cycle (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫细胞化学在人类样品上 (图2). Cell Cycle (2015) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫组化-P; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9028)被用于免疫组化-石蜡切片在小鼠样品上. J Neurosci (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫组化-石蜡切片在小鼠样品上. J Neurosci (2015) ncbi
小鼠 单克隆(B3)
  • 免疫组化-P; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9822)被用于免疫组化-石蜡切片在小鼠样品上. J Neurosci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-P; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于免疫组化-石蜡切片在小鼠样品上. J Neurosci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 斑马鱼; 1:10,000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在斑马鱼样品上浓度为1:10,000 (图1). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图s24
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图s24). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:2000 (图5). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, 6074)被用于免疫印迹在人类样品上 (图1). Cell Host Microbe (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 10 ug/ml
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在人类样品上浓度为10 ug/ml. Oncotarget (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:200
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在小鼠样品上浓度为1:200. Cytoskeleton (Hoboken) (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在小鼠样品上 (图1). PLoS Genet (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图1). Sci Signal (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在小鼠样品上 (图3). EMBO J (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫细胞化学在人类样品上浓度为1:2000. J Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上浓度为1:10000. J Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫沉淀; 人类; 图s3
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫沉淀在人类样品上 (图s3). Nat Struct Mol Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在人类样品上. Biol Open (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 人类; 1:3000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫组化在人类样品上浓度为1:3000 (图3). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在人类样品上浓度为1:1000. Br J Cancer (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在人类样品上. PLoS Med (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:5000 (图5). J Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上. J Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • ChIP; 人类; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于染色质免疫沉淀 在人类样品上浓度为1:10000. J Immunol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:200
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6793)被用于免疫组化在斑马鱼样品上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. Sci Rep (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:1600
  • 细胞化学; 小鼠; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫印迹在小鼠样品上浓度为1:1600 和 免疫细胞化学在小鼠样品上浓度为1:500. Toxicol Lett (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图2). Biol Open (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图6,7
西格玛奥德里奇α微管蛋白抗体(sigma aldrich, DM1A)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6,7). Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图4). Proteomics (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在小鼠样品上. Cell Signal (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, 6-11B-1)被用于免疫细胞化学在小鼠样品上浓度为1:1000 和 免疫印迹在小鼠样品上浓度为1:500. FASEB J (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-P; 人类; 1:750; 图5
  • 细胞化学; 人类; 1:1000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1alpha)被用于免疫组化-石蜡切片在人类样品上浓度为1:750 (图5) 和 免疫细胞化学在人类样品上浓度为1:1000 (图1). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在人类样品上 (图4). Mol Syst Biol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; 人类; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Dev Neurobiol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:2000. J Cell Physiol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图5). Aging Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 果蝇; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫组化在果蝇样品上浓度为1:2000. J Neurosci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Chemical Co., T 5168)被用于免疫印迹在人类样品上. Int J Mol Med (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. Mitochondrion (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上. Mol Carcinog (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 大鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫细胞化学在大鼠样品上. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T-6074)被用于免疫印迹在人类样品上. Clin Exp Metastasis (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 牛; 图s4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在牛样品上 (图s4). Nature (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:8000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T-5168)被用于免疫印迹在小鼠样品上浓度为1:8000 (图2). Sci Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 图s4
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(SIGMA, T5168)被用于免疫细胞化学在人类样品上 (图s4) 和 免疫印迹在人类样品上 (图1). Cell Cycle (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图3). Ann Surg Oncol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:2000. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T 6199)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上 (图1). Mol Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:4000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上浓度为1:4000 (图1). Mol Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图1A
  • 细胞化学; 人类; 1:1000; 图4B
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:1000 (图1A) 和 免疫细胞化学在人类样品上浓度为1:1000 (图4B). Cell Cycle (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6793)被用于免疫组化在小鼠样品上浓度为1:1000. Nat Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在大鼠样品上浓度为1:10000. Psychopharmacology (Berl) (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上 (图2). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 猕猴; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T-5168)被用于免疫细胞化学在猕猴样品上 (图2). Nature (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图8
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, clone DM1A)被用于免疫印迹在人类样品上 (图8). Cell Cycle (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化在斑马鱼样品上浓度为1:1000. Dev Neurobiol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图s2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上 (图s2). Autophagy (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T619)被用于免疫印迹在人类样品上 (图1). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在小鼠样品上浓度为1:1000 和 免疫印迹在小鼠样品上浓度为1:5000. Nature (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫沉淀; 小鼠; 1:2000-1:4000; 图5
西格玛奥德里奇α微管蛋白抗体(SIGMA, DM1A)被用于免疫沉淀在小鼠样品上浓度为1:2000-1:4000 (图5). Nat Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:5000 (图6). Nature (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图5
  • 免疫印迹; 大鼠; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上 (图5) 和 在大鼠样品上 (图5). J Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. Cancer Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图1c
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1c). EMBO Mol Med (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Nat Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 鸡; 1:1000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在鸡样品上浓度为1:1000 (图3). PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:4000
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T5168)被用于免疫印迹在小鼠样品上浓度为1:4000. Mol Immunol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:1000; 图1b
  • 免疫印迹; 人类; 1:3000; 图6a
西格玛奥德里奇α微管蛋白抗体(sigma, T7451)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图1b) 和 免疫印迹在人类样品上浓度为1:3000 (图6a). PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000 (图6). Cell Cycle (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. Cell Cycle (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图2). Autophagy (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上 (图4). Autophagy (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在小鼠样品上. Cell Cycle (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 秀丽隐杆线虫; 1:1500; 图s4
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6074)被用于免疫印迹在秀丽隐杆线虫样品上浓度为1:1500 (图s4). PLoS ONE (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, cat# T6793)被用于免疫组化-石蜡切片在人类样品上. J Med Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图3). J Cell Sci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:8000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:8000 (图1). Nature (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:20,000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于. Nature (2015) ncbi
小鼠 单克隆(DM1A)西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于. Cell (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图2). Oncotarget (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在小鼠样品上浓度为1:5000. Toxicol Appl Pharmacol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; starlet sea anemone
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在starlet sea anemone样品上. BMC Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上. Hum Reprod (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6074)被用于免疫印迹在人类样品上浓度为1:10000. J Appl Physiol (1985) (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 1:20000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在大鼠样品上浓度为1:20000. Dev Neurobiol (2015) ncbi
小鼠 单克隆(B3)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, B3)被用于免疫印迹在小鼠样品上 (图1). J Biol Chem (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上浓度为1:10000. J Cell Physiol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在小鼠样品上浓度为1:10000. J Proteome Res (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:4000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在小鼠样品上浓度为1:4000 (图1). Nat Commun (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10000; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上浓度为1:10000 (图s1). Nat Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T-5168)被用于免疫印迹在人类样品上 和 在小鼠样品上. Nat Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 果蝇; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在果蝇样品上 (图1). elife (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:5000 (图5). Mol Biol Cell (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上 (图2). Cardiovasc Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; African green monkey; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1a)被用于免疫印迹在African green monkey样品上 (图4). Biochemistry (Mosc) (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2500
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在小鼠样品上浓度为1:2500. FASEB J (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000 (图3). elife (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:4000; 图f7s2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上浓度为1:4000 (图f7s2). elife (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 果蝇; 1:2000
西格玛奥德里奇α微管蛋白抗体(SIGMA, B512)被用于免疫印迹在果蝇样品上浓度为1:2000. Open Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在人类样品上 (图1). Mol Cancer Res (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:1000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在人类样品上浓度为1:1000 (图1). Nat Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000. FASEB J (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 猪; 图2
  • 细胞化学; 小鼠; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫细胞化学在猪样品上 (图2) 和 在小鼠样品上 (图5). J Clin Invest (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 1:1000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫细胞化学在人类样品上浓度为1:1000 (图2). Hum Reprod (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:20000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫细胞化学在小鼠样品上浓度为1:20000. Nat Protoc (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫组化在斑马鱼样品上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. Stem Cells (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; Hydractinia echinata; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在Hydractinia echinata样品上浓度为1:1000. Evol Dev (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-P; 小鼠; 1:5000
  • 细胞化学; 人类; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000 和 免疫细胞化学在人类样品上浓度为1:500. Cell Res (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图3c
西格玛奥德里奇α微管蛋白抗体(Sigma, 6-11B-1)被用于免疫印迹在小鼠样品上 (图3c). J Neurosci (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上 (图s1). Oncogene (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上 (图3). J Biol Chem (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图5
  • 免疫印迹; 小鼠; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上 (图5) 和 在小鼠样品上 (图2). Blood (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:4000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:4000. J Extracell Vesicles (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:3000
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T7451)被用于免疫细胞化学在人类样品上浓度为1:3000. Methods Mol Biol (2016) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在人类样品上浓度为1:1000 和 免疫印迹在人类样品上浓度为1:1000. PLoS Genet (2014) ncbi
小鼠 单克隆(TUB-1A2)
  • 细胞化学; 小鼠; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9028)被用于免疫细胞化学在小鼠样品上 (图5). Nat Protoc (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1
  • 免疫组化; 小鼠; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图1) 和 免疫组化在小鼠样品上 (图2). elife (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在小鼠样品上 (图4). elife (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; Rhynchospora tenuis; 1:40; 图s2
  • 免疫组化; Rhynchospora pubera
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫组化在Rhynchospora tenuis样品上浓度为1:40 (图s2) 和 在Rhynchospora pubera样品上. Nat Commun (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:500; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化在小鼠样品上浓度为1:500 (图5). Development (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:2000; 图s10
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在小鼠样品上浓度为1:2000 (图s10). Hum Mol Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上 (图2). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上 (图4). J Exp Med (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在人类样品上 (图4). BMC Cancer (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T-6793)被用于免疫印迹在人类样品上. FEBS Lett (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上浓度为1:5000 (图2). Oncotarget (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Genome Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 小鼠; 1:300
西格玛奥德里奇α微管蛋白抗体(Sigma, F2168)被用于免疫组化在小鼠样品上浓度为1:300. Genesis (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图1). EMBO J (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上. Cell Death Differ (2015) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 图2
西格玛奥德里奇α微管蛋白抗体(sigma, F2168)被用于免疫细胞化学在小鼠样品上 (图2). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma Chemical, T7451)被用于免疫印迹在小鼠样品上. Mol Reprod Dev (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 七鳃鳗目; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化在七鳃鳗目样品上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图3
  • 细胞化学; 人类; 1:5000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:5000 (图3) 和 免疫细胞化学在人类样品上浓度为1:5000 (图1). Nat Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上浓度为1:2000. Int J Mol Sci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:2500
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在大鼠样品上浓度为1:2500. Mol Hum Reprod (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在人类样品上. Cancer Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上. BMC Genomics (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫沉淀; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫沉淀在人类样品上 (图3). Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫组化在小鼠样品上. Biol Open (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上. J Nutr Biochem (2014) ncbi
小鼠 单克隆(TUB-1A2)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, TUB-1A2)被用于免疫细胞化学在人类样品上. Eur J Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠; 1:100; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图5). J Biol Chem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T-9026)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:2000; 图1-s3
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在人类样品上浓度为1:2000 (图1-s3). elife (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上浓度为1:5000. Mol Oncol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在小鼠样品上 (图3). Nature (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在人类样品上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图1
  • 免疫印迹; 小鼠; 1:10,000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:10,000 (图1) 和 在小鼠样品上浓度为1:10,000 (图2). Nat Med (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; Aspergillus sp.; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在Aspergillus sp.样品上浓度为1:1000. Genetics (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于免疫印迹在人类样品上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-5-1-2)被用于免疫印迹在人类样品上 和 在小鼠样品上. Oncogene (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; common platanna; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫组化在common platanna样品上 (图2). J Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 1:100
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在人类样品上浓度为1:100. FEBS Lett (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:2000; 图s3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫细胞化学在人类样品上浓度为1:2000 (图s3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在人类样品上. Cell Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:2000. Nat Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图s1). Mol Biol Cell (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; Atlantic halibut; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫细胞化学在Atlantic halibut样品上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫沉淀; 人类
  • 免疫沉淀; 小鼠
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
  • 细胞化学; 人类
  • 细胞化学; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫沉淀在人类样品上 和 在小鼠样品上, 免疫印迹在人类样品上 和 在小鼠样品上, 和 免疫细胞化学在人类样品上 和 在小鼠样品上. FEBS J (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 果蝇; 1:5000; 图s1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1a)被用于免疫印迹在果蝇样品上浓度为1:5000 (图s1). Mol Biol Cell (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:20,000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:20,000 (图3). Skelet Muscle (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. Oncogene (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; western mosquitofish; 1:1000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6793)被用于免疫印迹在western mosquitofish样品上浓度为1:1000 (图3). Front Neural Circuits (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 斑马鱼; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在斑马鱼样品上浓度为1:500. Cell (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000. Nat Neurosci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图4). PLoS Genet (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6074)被用于免疫印迹在人类样品上 (图2). Nat Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:5000. Biomed Res Int (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; 小鼠; 1:20000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:20000. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上 (图1). EMBO J (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在小鼠样品上. EMBO Mol Med (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 狗; 1:1000; 图7
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在狗样品上浓度为1:1000 (图7). Cell Microbiol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫组化在人类样品上 (图3). PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T-5168)被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B512)被用于免疫印迹在人类样品上. J Virol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:200
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793-2ML)被用于免疫细胞化学在人类样品上浓度为1:200. Open Biol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图s7
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化在小鼠样品上浓度为1:1000 (图s7). Nat Commun (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:1000. Neurobiol Dis (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在人类样品上 (图5). J Cell Sci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(TUB-1A2)
  • 细胞化学; African green monkey; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, TUB-1A2)被用于免疫细胞化学在African green monkey样品上浓度为1:10000. Nat Neurosci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 猪; 1:10000
  • 细胞化学; African green monkey; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在猪样品上浓度为1:10000 和 免疫细胞化学在African green monkey样品上浓度为1:10000. Nat Neurosci (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; African green monkey; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, 6-11B-1)被用于免疫细胞化学在African green monkey样品上浓度为1:10000. Nat Neurosci (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫细胞化学在人类样品上. Exp Cell Res (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; red seabream; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T-6793)被用于免疫组化在red seabream样品上浓度为1:1000. Aquat Toxicol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; common platanna
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫组化-冰冻切片在common platanna样品上. J Comp Neurol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上. PLoS Genet (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-P; 小鼠; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. elife (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; African green monkey
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫细胞化学在African green monkey样品上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于免疫印迹在人类样品上浓度为1:10000. J Biol Chem (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上 和 在小鼠样品上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上浓度为1:5000. Prostate (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:15000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:15000. Nat Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:1000; 图2
  • 免疫印迹; 人类; 1:10,000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫细胞化学在人类样品上浓度为1:1000 (图2) 和 免疫印迹在人类样品上浓度为1:10,000 (图2). Nat Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上. Nat Commun (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:5000. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; budding yeasts
  • 免疫印迹; fission yeast
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B5-1-2)被用于免疫印迹在budding yeasts样品上 和 在fission yeast样品上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(6-11B-1)
  • IHC-Free; common platanna; 1:500
  • 免疫印迹; common platanna
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于immunohistochemistry - free floating section在common platanna样品上浓度为1:500 和 免疫印迹在common platanna样品上. J Comp Neurol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T9026)被用于免疫印迹在人类样品上. Breast Cancer Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T9026)被用于免疫印迹在人类样品上. World J Gastroenterol (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 仓鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫细胞化学在仓鼠样品上浓度为1:1000. Biophys J (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫细胞化学在人类样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上浓度为1:5000. Traffic (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在大鼠样品上. Neuroscience (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. Chromosoma (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 小鼠; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫细胞化学在小鼠样品上浓度为1:500. Mol Endocrinol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在小鼠样品上. J Clin Invest (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. J Clin Invest (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 大鼠; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T607)被用于免疫细胞化学在大鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:1000. Endocrinology (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上. Biol Reprod (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图1). FASEB J (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:200
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫细胞化学在人类样品上浓度为1:200 和 免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:1000. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. J Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T9026)被用于免疫细胞化学在人类样品上. Histochem Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6199)被用于免疫细胞化学在人类样品上浓度为1:100 和 免疫印迹在人类样品上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, 611B1)被用于免疫组化-冰冻切片在小鼠样品上. Cytoskeleton (Hoboken) (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类
  • 免疫印迹; 猪
西格玛奥德里奇α微管蛋白抗体(Sigma, 6-11B-1)被用于免疫印迹在人类样品上 和 在猪样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
  • 免疫印迹; 猪
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1-A)被用于免疫印迹在人类样品上 和 在猪样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:100
西格玛奥德里奇α微管蛋白抗体(SIGMA, T7451)被用于免疫细胞化学在小鼠样品上浓度为1:100. Differentiation (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:100
西格玛奥德里奇α微管蛋白抗体(Sigma, T-6793)被用于免疫组化在斑马鱼样品上浓度为1:100. J Biol Chem (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 酶联免疫吸附测定; 小鼠
  • 细胞化学; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, 611B1)被用于酶联免疫吸附测定在小鼠样品上 和 免疫细胞化学在小鼠样品上. PLoS Genet (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图6
  • 免疫印迹; 小鼠; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在人类样品上 (图6) 和 在小鼠样品上 (图6). PLoS Pathog (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10000; 图2f
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上浓度为1:10000 (图2f). Nat Neurosci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. Am J Hum Genet (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在人类样品上. FEBS Lett (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在人类样品上. RNA (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上. Electrophoresis (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6199)被用于免疫印迹在人类样品上. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图6
  • 免疫印迹; 小鼠; 图5
西格玛奥德里奇α微管蛋白抗体(Sigma, T-6199)被用于免疫印迹在人类样品上 (图6) 和 在小鼠样品上 (图5). Nature (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在大鼠样品上. Carcinogenesis (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6199)被用于免疫印迹在人类样品上. BMC Cancer (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化在斑马鱼样品上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6199)被用于免疫印迹在人类样品上. Mol Oncol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图10
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在大鼠样品上 (图10). Nat Protoc (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在小鼠样品上. J Neurosci (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, B-5-1-2)被用于免疫印迹在人类样品上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 图1
  • 免疫印迹; 人类; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在人类样品上 (图1) 和 免疫印迹在人类样品上 (图1). Nano Lett (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图1, 2
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图1, 2). Cell Commun Signal (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在人类样品上. J Cell Biol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在人类样品上. J Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图5, 7
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上 (图5, 7). J Cell Sci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上. Oncogene (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图1j
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上 (图1j). Cell Rep (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在大鼠样品上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:500. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; 小鼠; 1:40000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:40000. Hum Mol Genet (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上. Exp Cell Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 秀丽隐杆线虫; 图6.5
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在秀丽隐杆线虫样品上 (图6.5). Methods Enzymol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫细胞化学在人类样品上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; African green monkey; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫细胞化学在African green monkey样品上浓度为1:2000. J Virol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上. FASEB J (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2b
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于免疫印迹在人类样品上 (图2b). Oncogene (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. J Virol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 小鼠; 1:100
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Dev Neurobiol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 斑马鱼; 1:1000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在斑马鱼样品上浓度为1:1000 (图3). J Neurosci Methods (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. Stem Cells Transl Med (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:1000. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上 (图6). Autophagy (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, 611B1)被用于免疫细胞化学在人类样品上浓度为1:500. Biol Open (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; common platanna
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于免疫印迹在common platanna样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fission yeast; 1:30000
西格玛奥德里奇α微管蛋白抗体(Sigma, T-5168)被用于免疫印迹在fission yeast样品上浓度为1:30000. Cell Cycle (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T 9026)被用于免疫印迹在大鼠样品上浓度为1:5000. Br J Pharmacol (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 果蝇; 1:250; 图s6
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, F2168)被用于免疫细胞化学在果蝇样品上浓度为1:250 (图s6). Development (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 大鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T-6793)被用于免疫组化在大鼠样品上. Dev Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在人类样品上. Cell Cycle (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5?C1?C2)被用于免疫印迹在人类样品上 (图2). Cell Death Differ (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(TUB-1A2)
  • 细胞化学; 人类; 1:800
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9028)被用于免疫细胞化学在人类样品上浓度为1:800. Biol Cell (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T6199)被用于免疫印迹在小鼠样品上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化-冰冻切片在小鼠样品上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. Methods Mol Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10 000
西格玛奥德里奇α微管蛋白抗体(Sigma-Chemical, 9026)被用于免疫印迹在小鼠样品上浓度为1:10 000. Free Radic Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 兔; 1:20000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于免疫印迹在兔样品上浓度为1:20000. Eur J Nutr (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫组化; Arthrotardigrada; 1:300
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9028)被用于免疫组化在Arthrotardigrada样品上浓度为1:300. J Morphol (2014) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. Cell Death Dis (2013) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫细胞化学在人类样品上. Cell Cycle (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类
  • 细胞化学; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫细胞化学在人类样品上 和 在小鼠样品上. J Clin Invest (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. PLoS Genet (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:200; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化在小鼠样品上浓度为1:200 (图1). Gastroenterology (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 大鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, 611B1)被用于免疫印迹在大鼠样品上. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, t7451)被用于免疫细胞化学在人类样品上. elife (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在人类样品上浓度为1:5000. Cell Cycle (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma Chemical, T6793)被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma Chemical, T5168)被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在人类样品上浓度为1:1000 和 免疫印迹在人类样品上浓度为1:1000. J Biol Chem (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 图3a
  • 免疫组化; 小鼠; 图3c
西格玛奥德里奇α微管蛋白抗体(Sigma, 6-11B-1)被用于免疫细胞化学在人类样品上 (图3a) 和 免疫组化在小鼠样品上 (图3c). Hum Mol Genet (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 大鼠; 1:1000; 图4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000 (图4). PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T 9026)被用于免疫印迹在小鼠样品上. DNA Repair (Amst) (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma-CAldrich, T9026)被用于免疫印迹在小鼠样品上浓度为1:10000. Exp Eye Res (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 金鱼; 1:100; 表1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化在金鱼样品上浓度为1:100 (表1). J Comp Neurol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图1a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上 (图1a). Oncogene (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, B512)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T5168)被用于免疫印迹在小鼠样品上. Cell Death Differ (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上浓度为1:500. Mol Vis (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; 斑马鱼; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化-石蜡切片在斑马鱼样品上浓度为1:500. PLoS Genet (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在人类样品上浓度为1:2000. Hum Mol Genet (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上. Nature (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. Nature (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; common platanna; 1 ug/ml
  • 细胞化学; common platanna; 1:100
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在common platanna样品上浓度为1 ug/ml 和 免疫细胞化学在common platanna样品上浓度为1:100. EMBO J (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图2a
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图2a). Nucleic Acids Res (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B512)被用于免疫印迹在大鼠样品上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, 611B1)被用于免疫印迹在小鼠样品上. Mol Cancer Ther (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在人类样品上 和 在小鼠样品上. J Neurosci (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在大鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图s4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000 (图s4). EMBO Rep (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 狗
  • 细胞化学; 狗; 1:3000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫印迹在狗样品上 和 免疫细胞化学在狗样品上浓度为1:3000. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10000
  • 免疫印迹; 小鼠; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上浓度为1:10000 和 在小鼠样品上浓度为1:10000. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上 (图3). Oncogene (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 1:10,000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在大鼠样品上浓度为1:10,000. Biomaterials (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图s11
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫印迹在小鼠样品上 (图s11). PLoS Genet (2013) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在小鼠样品上. Stem Cells (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:5000. Stem Cells Dev (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; common platanna; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫组化在common platanna样品上浓度为1:1000. Development (2013) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在小鼠样品上. Cell Cycle (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫细胞化学在小鼠样品上. Cell Cycle (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫细胞化学在小鼠样品上浓度为1:200 和 免疫印迹在小鼠样品上浓度为1:10000. J Neurosci (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类; 1:400
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T-5168)被用于免疫细胞化学在人类样品上浓度为1:400. PLoS ONE (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在大鼠样品上浓度为1:10000. J Neurosci (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 人类
  • 免疫组化-F; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化-冰冻切片在人类样品上 和 在小鼠样品上. Endocrinol Metab Clin North Am (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫细胞化学在小鼠样品上. Carcinogenesis (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 大鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T-6793)被用于免疫组化在大鼠样品上. Invest Ophthalmol Vis Sci (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, 611B1)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. Cilia (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 鸡; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于免疫细胞化学在鸡样品上浓度为1:2000. Cell Cycle (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T5168)被用于免疫印迹在人类样品上. Cell Cycle (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在大鼠样品上浓度为1:1000. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫细胞化学在人类样品上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. Biol Open (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 淡水涡虫;真涡虫; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化在淡水涡虫;真涡虫样品上浓度为1:1000. Development (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:800
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫组化在斑马鱼样品上浓度为1:800. Biol Open (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上. PLoS ONE (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫印迹在人类样品上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在人类样品上浓度为1:1000. PLoS ONE (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000
  • 细胞化学; 人类; 1:200
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上浓度为1:2000 和 免疫细胞化学在人类样品上浓度为1:200. Mutat Res (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫细胞化学在人类样品上. Carcinogenesis (2013) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:3000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫细胞化学在人类样品上浓度为1:3000. PLoS ONE (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fission yeast
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在fission yeast样品上. Nucleic Acids Res (2012) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫细胞化学在人类样品上浓度为1:500. J Virol (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 细胞化学; 人类; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫细胞化学在人类样品上浓度为1:2000. Cell Cycle (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫印迹在小鼠样品上浓度为1:5000. Neurobiol Dis (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T7451)被用于免疫印迹在人类样品上. PLoS ONE (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. PLoS ONE (2012) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫细胞化学在人类样品上. J Biol Chem (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:100
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化在小鼠样品上浓度为1:100. J Comp Neurol (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于免疫印迹在小鼠样品上浓度为1:1000. Development (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-P; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T7451)被用于免疫组化-石蜡切片在人类样品上. Am J Pathol (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; red rock crab; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, DM1A)被用于免疫组化在red rock crab样品上浓度为1:1000. PLoS ONE (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化在斑马鱼样品上浓度为1:1000. Dev Biol (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在小鼠样品上浓度为1:10000. Nucleic Acids Res (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在小鼠样品上浓度为1:5000 (图2). PLoS ONE (2012) ncbi
小鼠 单克隆(DM1A)
  • FC; 人类
西格玛奥德里奇α微管蛋白抗体(Sigm, T6199)被用于流式细胞仪在人类样品上. J Biol Chem (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上. Toxicol Appl Pharmacol (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫沉淀; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫沉淀在小鼠样品上. Nucleic Acids Res (2012) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1A)被用于免疫细胞化学在人类样品上. J Cell Sci (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. J Cell Biochem (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T-5168)被用于免疫印迹在人类样品上. Cancer Res (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在人类样品上. Blood (2012) ncbi
小鼠 单克隆(DM1A)
  • 细胞化学; 秀丽隐杆线虫; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma, DM1alpha)被用于免疫细胞化学在秀丽隐杆线虫样品上浓度为1:500. Development (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在小鼠样品上. Immunity (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 羊
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在羊样品上. Heart Rhythm (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 果蝇; 1:2,000
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在果蝇样品上浓度为1:2,000. Mol Cell Biol (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fission yeast
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在fission yeast样品上. ACS Chem Biol (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫印迹在人类样品上 (图6). Oncogene (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于免疫印迹在人类样品上浓度为1:10,000. Leuk Res (2012) ncbi
小鼠 单克隆(6-11B-1)
  • IHC-Free; 斑马鱼; 1:200; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T-6793)被用于immunohistochemistry - free floating section在斑马鱼样品上浓度为1:200 (图3). PLoS ONE (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:3000; 图1
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于免疫印迹在小鼠样品上浓度为1:3000 (图1). PLoS ONE (2011) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 图2
西格玛奥德里奇α微管蛋白抗体(Sigma, T-6793)被用于免疫组化在斑马鱼样品上 (图2). Cell Death Differ (2011) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; rye; 1:100
西格玛奥德里奇α微管蛋白抗体(Sigma, T 9026)被用于免疫组化在rye样品上浓度为1:100. Chromosome Res (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-F; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T5168)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 斑马鱼; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6793)被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:2000. J Comp Neurol (2010) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 猕猴; 图6
西格玛奥德里奇α微管蛋白抗体(Sigma, clone B-5-1-2)被用于免疫印迹在猕猴样品上 (图6). J Virol (2010) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 小鼠; 1:1000; 图3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图3). PLoS ONE (2009) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T9026)被用于免疫印迹在小鼠样品上浓度为1:5000. J Comp Neurol (2009) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-P; sea lamprey
西格玛奥德里奇α微管蛋白抗体(Sigma, T-9026)被用于免疫组化-石蜡切片在sea lamprey样品上. J Comp Neurol (2009) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
为了研究磷酸化-乙酰化开关在调控STAT1信号通路中的作用,采用了Sigma公司的Tubulin抗体产品,进行了免疫印迹实验。Genes Dev (2009) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 七鳃鳗目; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma, T6793)被用于免疫组化-冰冻切片在七鳃鳗目样品上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; sea lamprey; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma, 611B1)被用于免疫组化-冰冻切片在sea lamprey样品上浓度为1:500. J Comp Neurol (2008) ncbi
未注明
  • 细胞化学; 人类
为了研究survivin-Ran信号通路在肿瘤细胞纺锤体形成中的作用,采用了Sigma-Aldrich的抗人α-tubulin抗体进行免疫细胞化学实验。Mol Cell Biol (2008) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-F; 斑马鱼; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T-6793)被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, 611B1)被用于免疫印迹在人类样品上. J Cell Biol (2008) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T9026)被用于免疫印迹在人类样品上. Oncogene (2008) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; African green monkey
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T5168)被用于免疫印迹在African green monkey样品上. J Virol (2007) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:100
西格玛奥德里奇α微管蛋白抗体(Sigma, T 6793)被用于免疫组化在斑马鱼样品上浓度为1:100. J Comp Neurol (2007) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T-9026)被用于免疫印迹在人类样品上. J Biol Chem (2002) ncbi
文章列表
  1. Joanna D Nowacka et al. (2016). "MEK1 is required for the development of NRAS-driven leukemia".PMID 27741509
  2. Onur Cizmecioglu et al. (2016). "Rac1-mediated membrane raft localization of PI3K/p110β is required for its activation by GPCRs or PTEN loss".PMID 27700986
  3. Lei Qi et al. (2016). "Talin2-mediated traction force drives matrix degradation and cell invasion".PMID 27694340
  4. Danh Truong et al. (2016). "Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment".PMID 27678304
  5. Michaela Frolikova et al. (2016). "Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction".PMID 27666019
  6. Kristin Halvorsen Hortemo et al. (2016). "Exercise training increases protein O-GlcNAcylation in rat skeletal muscle".PMID 27664189
  7. Sangwook Park et al. (2016). "Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy".PMID 27631370
  8. Siying Zhu et al. (2016). "PERK Regulates Working Memory and Protein Synthesis-Dependent Memory Flexibility".PMID 27627766
  9. Mélissa Carbonneau et al. (2016). "The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway".PMID 27624942
  10. Ruo Chen et al. (2016). "CD147 promotes cell motility via upregulation of p190-B RhoGAP in hepatocellular carcinoma".PMID 27601938
  11. Inhee Chung et al. (2016). "High cell-surface density of HER2 deforms cell membranes".PMID 27599456
  12. S Agatheeswaran et al. (2016). "Identification and functional characterization of the miRNA-gene regulatory network in chronic myeloid leukemia lineage negative cells".PMID 27586591
  13. Narendra Padhan et al. (2016). "High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer".PMID 27562229
  14. Vanesa Fernández-Majada et al. (2016). "The tumour suppressor CYLD regulates the p53 DNA damage response".PMID 27561390
  15. Magdalena Zak et al. (2016). "LGR4 and LGR5 Regulate Hair Cell Differentiation in the Sensory Epithelium of the Developing Mouse Cochlea".PMID 27559308
  16. Paul Fitzgerald et al. (2016). "Expression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium".PMID 27559293
  17. Francesco Meghini et al. (2016). "Targeting of Fzr/Cdh1 for timely activation of the APC/C at the centrosome during mitotic exit".PMID 27558644
  18. Matteo Villa et al. (2016). "The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis".PMID 27554288
  19. Julia Naidenow et al. (2016). "Peroxisome proliferator-activated receptor (PPAR) α and δ activators induce ICAM-1 expression in quiescent non stimulated endothelial cells".PMID 27547125
  20. Annelise V Mowry et al. (2016). "Reproduction Does Not Adversely Affect Liver Mitochondrial Respiratory Function but Results in Lipid Peroxidation and Increased Antioxidants in House Mice".PMID 27537547
  21. Michiel Fokkelman et al. (2016). "Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour".PMID 27531518
  22. Mads Heilskov Rasmussen et al. (2016). "miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells".PMID 27526785
  23. Keshab Rijal et al. (2016). "Active Center Control of Termination by RNA Polymerase III and tRNA Gene Transcription Levels In Vivo".PMID 27518095
  24. Xing Hua Yao et al. (2016). "Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex".PMID 27510304
  25. Vânia L Batalha et al. (2016). "The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function".PMID 27510168
  26. Kasmir Ramo et al. (2016). "Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development".PMID 27504807
  27. Hatice Duygu Saatcioglu et al. (2016). "Control of Oocyte Reawakening by Kit".PMID 27500836
  28. B L Busse et al. (2016). "Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains".PMID 27499335
  29. Haitham E El-Sikhry et al. (2016). "Novel Roles of Epoxyeicosanoids in Regulating Cardiac Mitochondria".PMID 27494529
  30. Yusuke Furukawa et al. (2016). "Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period".PMID 27489535
  31. Ahmed E Dhamad et al. (2016). "Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ERα) and Biochemical Characterization of the ERα-Hsp70 Interaction".PMID 27483141
  32. Eunkyung Lie et al. (2016). "SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion".PMID 27480238
  33. S Di Siena et al. (2016). "Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury".PMID 27468693
  34. Jian Cao et al. (2016). "An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting".PMID 27458201
  35. Manon Torres et al. (2016). "Circadian RNA expression elicited by 3'-UTR IRAlu-paraspeckle associated elements".PMID 27441387
  36. Lei Li et al. (2016). "SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability".PMID 27436229
  37. Katharina Fritsch et al. (2016). "Galectin-3 interacts with components of the nuclear ribonucleoprotein complex".PMID 27435226
  38. Franz Meitinger et al. (2016). "53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration".PMID 27432897
  39. Felipe J Bodaleo et al. (2016). "Microtubule-associated protein 1B (MAP1B)-deficient neurons show structural presynaptic deficiencies in vitro and altered presynaptic physiology".PMID 27425640
  40. Abdellah Akil et al. (2016). "Septin 9 induces lipid droplets growth by a phosphatidylinositol-5-phosphate and microtubule-dependent mechanism hijacked by HCV".PMID 27417143
  41. Raffaella Belvedere et al. (2016). "Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway".PMID 27412958
  42. Yi Feng Yuan et al. (2016). "TRAIP is involved in chromosome alignment and SAC regulation in mouse oocyte meiosis".PMID 27405720
  43. Reet Kurg et al. (2016). "Biochemical and proteomic characterization of retrovirus Gag based microparticles carrying melanoma antigens".PMID 27403717
  44. Chi Chun Yang et al. (2016). "Claspin recruits Cdc7 kinase for initiation of DNA replication in human cells".PMID 27401717
  45. Thomas Harwardt et al. (2016). "Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response".PMID 27387064
  46. Renquan Lu et al. (2016). "COPS5 amplification and overexpression confers tamoxifen-resistance in ERα-positive breast cancer by degradation of NCoR".PMID 27375289
  47. Hsuan Yu Peng et al. (2016). "MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma".PMID 27367272
  48. Ying Gao et al. (2016). "Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells".PMID 27358069
  49. Denise Catherine Miles et al. (2016). "TRIM28 is an Epigenetic Barrier to Induced Pluripotent Stem Cell Reprogramming".PMID 27350605
  50. André C Müller et al. (2016). "Identifying Kinase Substrates via a Heavy ATP Kinase Assay and Quantitative Mass Spectrometry".PMID 27346722
  51. Catherine Marquer et al. (2016). "Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism".PMID 27336679
  52. Dakai Yang et al. (2016). "MicroRNA-125b-5p mimic inhibits acute liver failure".PMID 27336362
  53. Deborah L Grainger et al. (2016). "Validation of a commercially available anti-REDD1 antibody using RNA interference and REDD1-/- mouse embryonic fibroblasts".PMID 27335637
  54. Daniel J Toft et al. (2016). "αB-crystallin and HspB2 deficiency is protective from diet-induced glucose intolerance".PMID 27330996
  55. Marcela A Bennesch et al. (2016). "LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP".PMID 27325688
  56. Wen cai Zhang et al. (2016). "Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression".PMID 27325363
  57. Kojiro Mukai et al. (2016). "Activation of STING requires palmitoylation at the Golgi".PMID 27324217
  58. Allyson N Hamlin et al. (2016). "LRP1 Protein Deficiency Exacerbates Palmitate-induced Steatosis and Toxicity in Hepatocytes".PMID 27317662
  59. Laura C Bott et al. (2016). "The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/C(Cdh1) ubiquitin ligase complex".PMID 27312068
  60. Renate Hvidsten Skoge et al. (2016). "SIRT2 inactivation reveals a subset of hyperacetylated perinuclear microtubules inaccessible to HDAC6".PMID 27311481
  61. Rubén Gómez-Sánchez et al. (2016). "PINK1 deficiency enhances autophagy and mitophagy induction".PMID 27308585
  62. Yaling Yin et al. (2016). "Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling".PMID 27298345
  63. Andrew Muroyama et al. (2016). "Divergent regulation of functionally distinct γ-tubulin complexes during differentiation".PMID 27298324
  64. Yao Wang et al. (2016). "Nek2A phosphorylates and stabilizes SuFu: A new strategy of Gli2/Hedgehog signaling regulatory mechanism".PMID 27297360
  65. Ruth Eichner et al. (2016). "Immunomodulatory drugs disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and teratogenicity".PMID 27294876
  66. Shigeru Matsumura et al. (2016). "Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1".PMID 27292265
  67. Yangfan Qi et al. (2016). "A splicing isoform of TEAD4 attenuates the Hippo-YAP signalling to inhibit tumour proliferation".PMID 27291620
  68. Junfeng Zhang et al. (2016). "Eph/ephrin signaling maintains the boundary of dorsal forerunner cell cluster during morphogenesis of the zebrafish embryonic left-right organizer".PMID 27287807
  69. Dan T Bergstralh et al. (2016). "Pins is not required for spindle orientation in the Drosophila wing disc".PMID 27287805
  70. Yaling Yin et al. (2016). "Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2".PMID 27277673
  71. Corinna Hintermair et al. (2016). "Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression".PMID 27264542
  72. Amitabha Mukhopadhyay et al. (2016). "14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression".PMID 27253419
  73. Z Xi et al. (2016). "Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation".PMID 27253416
  74. Ingo Spitzbarth et al. (2016). "Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis".PMID 27247850
  75. Kathrin Brunk et al. (2016). "Cep78 is a new centriolar protein involved in Plk4-induced centriole overduplication".PMID 27246242
  76. Vir B Singh et al. (2016). "Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice".PMID 27241024
  77. Janine H van Ree et al. (2016). "Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes".PMID 27240320
  78. Curtis A Nutter et al. (2016). "Dysregulation of RBFOX2 Is an Early Event in Cardiac Pathogenesis of Diabetes".PMID 27239029
  79. Panuwat Trairatphisan et al. (2016). "A Probabilistic Boolean Network Approach for the Analysis of Cancer-Specific Signalling: A Case Study of Deregulated PDGF Signalling in GIST".PMID 27232499
  80. Ran Brosh et al. (2016). "A dual molecular analogue tuner for dissecting protein function in mammalian cells".PMID 27230261
  81. Ning Ma et al. (2016). "The Loss of Lam2 and Npr2-Npr3 Diminishes the Vacuolar Localization of Gtr1-Gtr2 and Disinhibits TORC1 Activity in Fission Yeast".PMID 27227887
  82. Xingcheng Chen et al. (2016). "Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis".PMID 27226586
  83. Andrew S Lyon et al. (2016). "Higher-order oligomerization of Spc110p drives γ-tubulin ring complex assembly".PMID 27226487
  84. Bernadette M Derussy et al. (2016). "Human Cytomegalovirus pUL93 Links Nucleocapsid Maturation and Nuclear Egress".PMID 27226374
  85. Benayahu Elbaz et al. (2016). "Adenomatous polyposis coli regulates radial axonal sorting and myelination in the PNS".PMID 27226321
  86. Geethu E Thomas et al. (2016). "EB1 regulates attachment of Ska1 with microtubules by forming extended structures on the microtubule lattice".PMID 27225956
  87. Rannar Airik et al. (2016). "SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling".PMID 27224062
  88. Angelica P Lopez et al. (2016). "The Structure-Specific Recognition Protein 1 Associates with Lens Epithelium-Derived Growth Factor Proteins and Modulates HIV-1 Replication".PMID 27216501
  89. Eri H Kobayashi et al. (2016). "Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription".PMID 27211851
  90. Ivet Elias et al. (2016). "ALOX5AP Overexpression in Adipose Tissue Leads to LXA4 Production and Protection Against Diet-Induced Obesity and Insulin Resistance".PMID 27207555
  91. Tobias M Franks et al. (2016). "Evolution of a transcriptional regulator from a transmembrane nucleoporin".PMID 27198230
  92. Anna Guinot et al. (2016). "miR-17-92/p38α Dysregulation Enhances Wnt Signaling and Selects Lgr6+ Cancer Stem-like Cells during Lung Adenocarcinoma Progression".PMID 27197183
  93. Petrus R de Jong et al. (2016). "ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation".PMID 27187615
  94. Ching Wen Chang et al. (2016). "CEP295 interacts with microtubules and is required for centriole elongation".PMID 27185865
  95. Noel P Fusté et al. (2016). "Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin".PMID 27181366
  96. Sushma R Rao et al. (2016). "The Clathrin-dependent Spindle Proteome".PMID 27174698
  97. Ok Seon Kwon et al. (2016). "Induction of MiR-21 by Stereotactic Body Radiotherapy Contributes to the Pulmonary Fibrotic Response".PMID 27171163
  98. Sindhu Ramesh et al. (2016). "In Vitro Culture of Epicardial Cells From Mouse Embryonic Heart".PMID 27167492
  99. Nobuyuki Takenaka et al. (2016). "Rac1 Activation Caused by Membrane Translocation of a Guanine Nucleotide Exchange Factor in Akt2-Mediated Insulin Signaling in Mouse Skeletal Muscle".PMID 27163697
  100. Alfonso Rubio-Navarro et al. (2016). "CD163-Macrophages Are Involved in Rhabdomyolysis-Induced Kidney Injury and May Be Detected by MRI with Targeted Gold-Coated Iron Oxide Nanoparticles".PMID 27162559
  101. Rebecca Lock et al. (2016). "Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers".PMID 27159396
  102. Cameron Moshfegh et al. (2016). "A gonogenic stimulated transition of mouse embryonic stem cells with enhanced control of diverse differentiation pathways".PMID 27157261
  103. Hsiu Chuan Yen et al. (2016). "Disruption of the human COQ5-containing protein complex is associated with diminished coenzyme Q10 levels under two different conditions of mitochondrial energy deficiency".PMID 27155576
  104. Luca Pandolfini et al. (2016). "RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells".PMID 27154007
  105. Hadir Marei et al. (2016). "Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors".PMID 27152953
  106. Muhammad Riaz et al. (2016). "PABPN1-Dependent mRNA Processing Induces Muscle Wasting".PMID 27152426
  107. Yi Han Dai et al. (2016). "ON 01910.Na inhibits growth of diffuse large B-cell lymphoma by cytoplasmic sequestration of sumoylated C-MYB/TRAF6 complex".PMID 27150054
  108. Benoit Pourcet et al. (2016). "The nuclear receptor LXR modulates interleukin-18 levels in macrophages through multiple mechanisms".PMID 27149934
  109. Majid N Humoud et al. (2016). "Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage".PMID 27147742
  110. Lei Wang et al. (2016). "Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis".PMID 27146717
  111. Yutaka Takeo et al. (2016). "The G protein-coupled receptor GPR157 regulates neuronal differentiation of radial glial progenitors through the Gq-IP3 pathway".PMID 27142930
  112. S Marthandan et al. (2016). "Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq".PMID 27140416
  113. Eungi Yang et al. (2016). "Wnt pathway activation by ADP-ribosylation".PMID 27138857
  114. Ola M Maria et al. (2016). "The role of human fibronectin- or placenta basement membrane extract-based gels in favouring the formation of polarized salivary acinar-like structures".PMID 27138462
  115. Sara Ahrabi et al. (2016). "A role for human homologous recombination factors in suppressing microhomology-mediated end joining".PMID 27131361
  116. Yukihide Watanabe et al. (2016). "Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation".PMID 27129221
  117. Radu Rapiteanu et al. (2016). "A Genetic Screen Identifies a Critical Role for the WDR81-WDR91 Complex in the Trafficking and Degradation of Tetherin".PMID 27126989
  118. Abigail S Krall et al. (2016). "Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor".PMID 27126896
  119. Flavie Strappazzon et al. (2016). "Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis".PMID 27123694
  120. Andreza Cândido Matias et al. (2016). "Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation".PMID 27123155
  121. Kuan I Lee et al. (2016). "Role of transient receptor potential ankyrin 1 channels in Alzheimer's disease".PMID 27121378
  122. Kazuo Noda et al. (2016). "Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development".PMID 27118846
  123. Ruichao Li et al. (2016). "Effective protein inhibition in intact mouse oocytes through peptide nanoparticle-mediated antibody transfection".PMID 27114861
  124. Sunhyo Kim et al. (2016). "Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors".PMID 27112200
  125. Carlos J Rodriguez-Ortiz et al. (2016). "The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress".PMID 27106764
  126. Hye Jin Hwang et al. (2016). "Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome".PMID 27105554
  127. Anna Lena Jung et al. (2016). "Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages".PMID 27105429
  128. Vincent J Guen et al. (2016). "STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis".PMID 27104747
  129. Arminda Suli et al. (2016). "Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells".PMID 27103160
  130. Jorge Mata-Garrido et al. (2016). "Neuronal accumulation of unrepaired DNA in a novel specific chromatin domain: structural, molecular and transcriptional characterization".PMID 27102221
  131. Lucretia Kwenda et al. (2016). "Nucleolar activity and CENP-C regulate CENP-A and CAL1 availability for centromere assembly in meiosis".PMID 27095496
  132. Björn Papke et al. (2016). "Identification of pyrazolopyridazinones as PDEδ inhibitors".PMID 27094677
  133. Noelia Blas-Rus et al. (2016). "Aurora A drives early signalling and vesicle dynamics during T-cell activation".PMID 27091106
  134. Elizabeth M Sefton et al. (2016). "Evolution of the head-trunk interface in tetrapod vertebrates".PMID 27090084
  135. S Chaudhary et al. (2016). "Overexpression of caspase 7 is ERα dependent to affect proliferation and cell growth in breast cancer cells by targeting p21(Cip)".PMID 27089142
  136. Bianca Brüggen et al. (2016). "Defective ceramide synthases in mice cause reduced amplitudes in electroretinograms and altered sphingolipid composition in retina and cornea".PMID 27086873
  137. Orith Waisbourd-Zinman et al. (2016). "The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17".PMID 27081925
  138. Ting Wei Will Chiang et al. (2016). "CRISPR-Cas9(D10A) nickase-based genotypic and phenotypic screening to enhance genome editing".PMID 27079678
  139. Chao Hung Lai et al. (2016). "Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats".PMID 27076784
  140. Akatsuki Saito et al. (2016). "Roles of Capsid-Interacting Host Factors in Multimodal Inhibition of HIV-1 by PF74".PMID 27076642
  141. Sophia Pinz et al. (2016). "Signal transducer and activator of transcription STAT5 is recruited to c-Myc super-enhancer".PMID 27074708
  142. Keiko Taguchi et al. (2016). "Generation of a New Model Rat: Nrf2 Knockout Rats Are Sensitive to Aflatoxin B1 Toxicity".PMID 27071940
  143. Elisabeth Corcelle-Termeau et al. (2016). "Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure".PMID 27070082
  144. Anne E Conway et al. (2016). "Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival".PMID 27068461
  145. Chih Wen Chu et al. (2016). "Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth".PMID 27062996
  146. Marco Aurélio Salomão Fortes et al. (2016). "Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models?".PMID 27060530
  147. Bhupesh Kumar Thakur et al. (2016). "Physiological TLR5 expression in the intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms".PMID 27060138
  148. Sandra Hakim et al. (2016). "Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling".PMID 27056978
  149. Johnathan Canton et al. (2016). "Calcium-sensing receptors signal constitutive macropinocytosis and facilitate the uptake of NOD2 ligands in macrophages".PMID 27050483
  150. Gayan I Balasooriya et al. (2016). "An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium".PMID 27046834
  151. Kazuki Hattori et al. (2016). "ASK1 signalling regulates brown and beige adipocyte function".PMID 27045525
  152. Diego Guerrera et al. (2016). "PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins".PMID 27044745
  153. Gareth W Fearnley et al. (2016). "VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis".PMID 27044325
  154. Francisco Juárez-Vicente et al. (2016). "The Sumo protease Senp7 is required for proper neuronal differentiation".PMID 27039038
  155. Smita Amarnath et al. (2016). "Cell-cycle-dependent TGFβ-BMP antagonism regulates neural tube closure by modulating tight junctions".PMID 27034139
  156. E J Lawrence et al. (2016). "Mitochondria-cytoskeleton associations in mammalian cytokinesis".PMID 27030796
  157. Javier Prieto et al. (2016). "Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming".PMID 27030341
  158. Sydney Webb Strickland et al. (2016). "The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC".PMID 27030265
  159. Makoto Iimori et al. (2016). "Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability".PMID 27030108
  160. Preeti Yadav et al. (2016). "Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling".PMID 27021905
  161. Simon Stritt et al. (2016). "Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg(2+) homeostasis and cytoskeletal architecture".PMID 27020697
  162. Veronika Eisch et al. (2016). "Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts".PMID 27015553
  163. Yubing Li et al. (2016). "A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division".PMID 27015111
  164. Xingbo Xu et al. (2016). "Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells".PMID 27012941
  165. Scot R Kimball et al. (2016). "Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation".PMID 27010498
  166. Callum McKenzie et al. (2016). "Cross-regulation between Aurora B and Citron kinase controls midbody architecture in cytokinesis".PMID 27009191
  167. Michaela Gschweitl et al. (2016). "A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes".PMID 27008177
  168. M Delling et al. (2016). "Primary cilia are not calcium-responsive mechanosensors".PMID 27007841
  169. Tiphaine Douanne et al. (2016). "The paracaspase MALT1 cleaves the LUBAC subunit HOIL1 during antigen receptor signaling".PMID 27006117
  170. Kasturi Pal et al. (2016). "Smoothened determines β-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium".PMID 27002170
  171. Nathalie Sakakini et al. (2016). "A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells".PMID 27002148
  172. David W Salzman et al. (2016). "miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage".PMID 26996824
  173. Xue Yuan et al. (2016). "Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation".PMID 26996322
  174. Valerie N Babinsky et al. (2016). "Allosteric Modulation of the Calcium-sensing Receptor Rectifies Signaling Abnormalities Associated with G-protein α-11 Mutations Causing Hypercalcemic and Hypocalcemic Disorders".PMID 26994139
  175. Daichi Kamiyama et al. (2016). "Versatile protein tagging in cells with split fluorescent protein".PMID 26988139
  176. Pavithra L Chavali et al. (2016). "A CEP215-HSET complex links centrosomes with spindle poles and drives centrosome clustering in cancer".PMID 26987684
  177. Adrien Decorsière et al. (2016). "Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor".PMID 26983541
  178. Katerina Vlantis et al. (2016). "NEMO Prevents RIP Kinase 1-Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF-κB-Dependent and -Independent Functions".PMID 26982364
  179. Jessica Segalés et al. (2016). "Chromatin-wide and transcriptome profiling integration uncovers p38α MAPK as a global regulator of skeletal muscle differentiation".PMID 26981231
  180. Jane Kovalevich et al. (2016). "Characterization of Brain-Penetrant Pyrimidine-Containing Molecules with Differential Microtubule-Stabilizing Activities Developed as Potential Therapeutic Agents for Alzheimer's Disease and Related Tauopathies".PMID 26980057
  181. Seung Yoon Park et al. (2016). "Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration".PMID 26972991
  182. Yuming Wang et al. (2016). "Pharmacological Bypass of Cockayne Syndrome B Function in Neuronal Differentiation".PMID 26972010
  183. Federica Mori et al. (2016). "Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects".PMID 26967561
  184. Helen May-Simera et al. (2016). "Evaluation of Planar-Cell-Polarity Phenotypes in Ciliopathy Mouse Mutant Cochlea".PMID 26966880
  185. Jone Mitxelena et al. (2016). "E2F7 regulates transcription and maturation of multiple microRNAs to restrain cell proliferation".PMID 26961310
  186. Valeria Crippa et al. (2016). "Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases".PMID 26961006
  187. Judit Remenyi et al. (2016). "The loop structure and the RNA helicase p72/DDX17 influence the processing efficiency of the mice miR-132".PMID 26947125
  188. Samantha Swenson et al. (2016). "Analysis of Oligomerization Properties of Heme a Synthase Provides Insights into Its Function in Eukaryotes".PMID 26940873
  189. Vishruti Makani et al. (2016). "BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR".PMID 26939023
  190. Marion Gilormini et al. (2016). "Preferential targeting of cancer stem cells in the radiosensitizing effect of ABT-737 on HNSCC".PMID 26934442
  191. Stefanie Gurnik et al. (2016). "Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling".PMID 26932603
  192. Ruchika Bhardwaj et al. (2016). "Understanding the importance of conservative hypothetical protein LdBPK_070020 in Leishmania donovani and its role in subsistence of the parasite".PMID 26926257
  193. Olga Moiseeva et al. (2016). "Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase".PMID 26922519
  194. Ren Hui Chen et al. (2016). "ISG15 predicts poor prognosis and promotes cancer stem cell phenotype in nasopharyngeal carcinoma".PMID 26919245
  195. Robert Nakayama et al. (2016). "Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma".PMID 26918731
  196. Johanna Eriksson et al. (2016). "Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression".PMID 26918341
  197. Dylan McLaughlin et al. (2016). "Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo".PMID 26917720
  198. Qingwen Xu et al. (2016). "Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis".PMID 26916822
  199. Sitt Wai Fong et al. (2016). "CPEB3 Deficiency Elevates TRPV1 Expression in Dorsal Root Ganglia Neurons to Potentiate Thermosensation".PMID 26915043
  200. Seung Hyun Ro et al. (2016). "Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis".PMID 26913956
  201. F Marchildon et al. (2016). "CCAAT/enhancer binding protein beta protects muscle satellite cells from apoptosis after injury and in cancer cachexia".PMID 26913600
  202. Gina A Smith et al. (2016). "Extracellular and Luminal pH Regulation by Vacuolar H+-ATPase Isoform Expression and Targeting to the Plasma Membrane and Endosomes".PMID 26912656
  203. Luying Jia et al. (2016). "The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation".PMID 26912231
  204. Agnieszka M Kabat et al. (2016). "The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation".PMID 26910010
  205. Mario Ost et al. (2016). "Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action".PMID 26909316
  206. Juyeong Hong et al. (2016). "Telomerase activates transcription of cyclin D1 gene through an interaction with NOL1".PMID 26906424
  207. Steven A Jackson et al. (2016). "Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage".PMID 26905202
  208. Tanja Vukićević et al. (2016). "The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells-a Potential Target for Pharmacological Intervention in Cardiovascular Diseases".PMID 26903868
  209. Rene Ladurner et al. (2016). "Sororin actively maintains sister chromatid cohesion".PMID 26903600
  210. Candia M Kenific et al. (2016). "NBR1 enables autophagy-dependent focal adhesion turnover".PMID 26903539
  211. Ignacio Sancho-Martinez et al. (2016). "Establishment of human iPSC-based models for the study and targeting of glioma initiating cells".PMID 26899176
  212. Jana Sieber et al. (2016). "Proteomic Analysis Reveals Branch-specific Regulation of the Unfolded Protein Response by Nonsense-mediated mRNA Decay".PMID 26896796
  213. Hsiang Chun Chang et al. (2016). "Reduction in mitochondrial iron alleviates cardiac damage during injury".PMID 26896449
  214. Elizabeth I Tang et al. (2016). "Coordination of Actin- and Microtubule-Based Cytoskeletons Supports Transport of Spermatids and Residual Bodies/Phagosomes During Spermatogenesis in the Rat Testis".PMID 26894662
  215. Daria Gawron et al. (2016). "Positional proteomics reveals differences in N-terminal proteoform stability".PMID 26893308
  216. Josephine Bowles et al. (2016). "ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries".PMID 26892828
  217. Qiangge Zhang et al. (2016). "Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice".PMID 26888934
  218. Carmen Del Rio et al. (2016). "The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways".PMID 26887982
  219. Anika V Prabhu et al. (2016). "Cholesterol-mediated Degradation of 7-Dehydrocholesterol Reductase Switches the Balance from Cholesterol to Vitamin D Synthesis".PMID 26887953
  220. Tzu Wei Chuang et al. (2016). "A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement".PMID 26887951
  221. Anna P Baron et al. (2016). "Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524".PMID 26885717
  222. Sohinee Bhattacharyya et al. (2016). "Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development".PMID 26884322
  223. Celine Hoffmann et al. (2016). "CRP2, a new invadopodia actin bundling factor critically promotes breast cancer cell invasion and metastasis".PMID 26883198
  224. Masao Doi et al. (2016). "Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour".PMID 26882873
  225. Zhi Guang Fu et al. (2016). "A novel small-molecule compound targeting CD147 inhibits the motility and invasion of hepatocellular carcinoma cells".PMID 26882566
  226. Younghwa Chun et al. (2016). "Centromere Protein (CENP)-W Interacts with Heterogeneous Nuclear Ribonucleoprotein (hnRNP) U and May Contribute to Kinetochore-Microtubule Attachment in Mitotic Cells".PMID 26881882
  227. Chang Zhen Ren et al. (2016). "Exercise Training Improves the Altered Renin-Angiotensin System in the Rostral Ventrolateral Medulla of Hypertensive Rats".PMID 26881037
  228. Barbora Malecova et al. (2016). "TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells".PMID 26880551
  229. An Liu et al. (2016). "Neuroligin 1 regulates spines and synaptic plasticity via LIMK1/cofilin-mediated actin reorganization".PMID 26880202
  230. Katarzyna Chojnacka et al. (2016). "Interleukin 1alpha-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication".PMID 26879129
  231. Candice L Wike et al. (2016). "Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis".PMID 26878753
  232. Fumiaki Sugahara et al. (2016). "Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain".PMID 26878236
  233. Verena Passerini et al. (2016). "The presence of extra chromosomes leads to genomic instability".PMID 26876972
  234. Waltraut Lehmann et al. (2016). "ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types".PMID 26876920
  235. S El Ghamrasni et al. (2016). "Rad54 and Mus81 cooperation promotes DNA damage repair and restrains chromosome missegregation".PMID 26876210
  236. D Y Kim et al. (2016). "Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling".PMID 26876209
  237. Bin Wen et al. (2016). "Microphthalmia-associated transcription factor regulates the visual cycle genes Rlbp1 and Rdh5 in the retinal pigment epithelium".PMID 26876013
  238. Mi Na Hong et al. (2016). "The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha".PMID 26873011
  239. Barbara Czub et al. (2016). "TOPORS, a Dual E3 Ubiquitin and Sumo1 Ligase, Interacts with 26 S Protease Regulatory Subunit 4, Encoded by the PSMC1 Gene".PMID 26872363
  240. Garima Singhal et al. (2016). "Fibroblast Growth Factor 21 (FGF21) Protects against High Fat Diet Induced Inflammation and Islet Hyperplasia in Pancreas".PMID 26872145
  241. Sana Khalid et al. (2016). "cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation".PMID 26868434
  242. Nari Kim et al. (2016). "Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A".PMID 26868272
  243. Sifan Chen et al. (2016). "SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing".PMID 26867678
  244. Rosa A Uribe et al. (2016). "A novel subset of enteric neurons revealed by ptf1a:GFP in the developing zebrafish enteric nervous system".PMID 26865080
  245. Micha Sam Brickman Raredon et al. (2015). "A Rotating Bioreactor for Scalable Culture and Differentiation of Respiratory Epithelium".PMID 26858899
  246. Yu jiao Liu et al. (2016). "Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway".PMID 26858254
  247. Takao Kaji et al. (2016). "Amphioxus mouth after dorso-ventral inversion".PMID 26855789
  248. Giuseppina Divisato et al. (2016). "ZNF687 Mutations in Severe Paget Disease of Bone Associated with Giant Cell Tumor".PMID 26849110
  249. Chang Liu et al. (2016). "Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation".PMID 26846206
  250. Clare R Harding et al. (2016). "Gliding Associated Proteins Play Essential Roles during the Formation of the Inner Membrane Complex of Toxoplasma gondii".PMID 26845335
  251. Zita Nagy et al. (2016). "Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs".PMID 26845027
  252. Stephanie L Maiden et al. (2016). "Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model".PMID 26845024
  253. Rachel R Stine et al. (2016). "EBF2 promotes the recruitment of beige adipocytes in white adipose tissue".PMID 26844207
  254. Laura Di Magno et al. (2016). "The energy sensor AMPK regulates Hedgehog signaling in human cells through a unique Gli1 metabolic checkpoint".PMID 26843621
  255. Walt F Lima et al. (2016). "RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery".PMID 26843429
  256. Aarti Sharma et al. (2016). "ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function".PMID 26842965
  257. Edmilson Ozorio Dos Santos et al. (2016). "Aurora kinase targeting in lung cancer reduces KRAS-induced transformation".PMID 26842935
  258. Vinay Swaminathan et al. (2016). "The FAK-Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin".PMID 26842895
  259. Andre Franz et al. (2016). "Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression".PMID 26842564
  260. Nien Cheng Chen et al. (2016). "Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells".PMID 26838546
  261. G I Lancaster et al. (2016). "PKR is not obligatory for high-fat diet-induced obesity and its associated metabolic and inflammatory complications".PMID 26838266
  262. Alice Marmugi et al. (2016). "Sorcin Links Pancreatic β-Cell Lipotoxicity to ER Ca2+ Stores".PMID 26822088
  263. Megha Abbey et al. (2016). "GTPase domain driven dimerization of SEPT7 is dispensable for the critical role of septins in fibroblast cytokinesis".PMID 26818767
  264. Kah Wai Yau et al. (2016). "Dendrites In Vitro and In Vivo Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation".PMID 26818498
  265. Xiaoying Tan et al. (2016). "DNMT1 and HDAC2 Cooperate to Facilitate Aberrant Promoter Methylation in Inorganic Phosphate-Induced Endothelial-Mesenchymal Transition".PMID 26815200
  266. James W Stevenson et al. (2016). "The Amyloid Precursor Protein of Alzheimer's Disease Clusters at the Organelle/Microtubule Interface on Organelles that Bind Microtubules in an ATP Dependent Manner".PMID 26814888
  267. Robert W Button et al. (2016). "Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis".PMID 26814436
  268. Pavel Moudry et al. (2016). "TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity".PMID 26811421
  269. Joaquim Grego-Bessa et al. (2016). "The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium".PMID 26809587
  270. Maria Goulielmaki et al. (2016). "BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells".PMID 26802026
  271. Rikke D Rasmussen et al. (2016). "Enhanced efficacy of combined HDAC and PARP targeting in glioblastoma".PMID 26794465
  272. Laura Wood et al. (2016). "Auxin/AID versus conventional knockouts: distinguishing the roles of CENP-T/W in mitotic kinetochore assembly and stability".PMID 26791246
  273. Franz Villarroel-Espíndola et al. (2016). "Polyglucosan Molecules Induce Mitochondrial Impairment and Apoptosis in Germ Cells Without Affecting the Integrity and Functionality of Sertoli Cells".PMID 26790645
  274. Claire Crowley et al. (2016). "Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold".PMID 26790147
  275. Larry L Luchsinger et al. (2016). "Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential".PMID 26789249
  276. Sho Ikeda et al. (2016). "Disruption of CCL20-CCR6 interaction inhibits metastasis of advanced cutaneous T-cell lymphoma".PMID 26789110
  277. Guangqing Lu et al. (2016). "Ligase I and ligase III mediate the DNA double-strand break ligation in alternative end-joining".PMID 26787905
  278. Soyoung Choi et al. (2016). "Bcl-xL promotes metastasis independent of its anti-apoptotic activity".PMID 26785948
  279. Sui Chih Tien et al. (2016). "The Shp2-induced epithelial disorganization defect is reversed by HDAC6 inhibition independent of Cdc42".PMID 26783207
  280. Yi Du et al. (2016). "Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors".PMID 26779812
  281. Francesca Cipressa et al. (2016). "A role for Separase in telomere protection".PMID 26778495
  282. Madhura G Kelkar et al. (2016). "Enhancement of human sodium iodide symporter gene therapy for breast cancer by HDAC inhibitor mediated transcriptional modulation".PMID 26777440
  283. Alexandra Avgustinova et al. (2016). "Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness".PMID 26777421
  284. M Y Cherepkova et al. (2016). "Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway".PMID 26775702
  285. M Lienlaf et al. (2016). "Essential role of HDAC6 in the regulation of PD-L1 in melanoma".PMID 26775640
  286. Ivan Quétier et al. (2016). "Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion".PMID 26774483
  287. Young Eun Choi et al. (2016). "Platinum and PARP Inhibitor Resistance Due to Overexpression of MicroRNA-622 in BRCA1-Mutant Ovarian Cancer".PMID 26774475
  288. Joana Faria et al. (2016). "Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity".PMID 26771178
  289. Gianluca Cipriani et al. (2016). "Diabetic Csf1op/op mice lacking macrophages are protected against the development of delayed gastric emptying".PMID 26771000
  290. Jui M Dave et al. (2016). "Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase".PMID 26769900
  291. Yan Yang et al. (2016). "PAF Complex Plays Novel Subunit-Specific Roles in Alternative Cleavage and Polyadenylation".PMID 26765774
  292. Nicole J Camlin et al. (2016). "Maternal Smoke Exposure Impairs the Long-Term Fertility of Female Offspring in a Murine Model".PMID 26764348
  293. Maya Kono et al. (2016). "Pellicle formation in the malaria parasite".PMID 26763910
  294. Caroline Mauvezin et al. (2016). "Coordination of autophagosome-lysosome fusion and transport by a Klp98A-Rab14 complex in Drosophila".PMID 26763909
  295. Lan B Hoang-Minh et al. (2016). "Disruption of KIF3A in patient-derived glioblastoma cells: effects on ciliogenesis, hedgehog sensitivity, and tumorigenesis".PMID 26760767
  296. Katharina Ketel et al. (2016). "A phosphoinositide conversion mechanism for exit from endosomes".PMID 26760201
  297. Arnault Graindorge et al. (2016). "The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host Cells".PMID 26760042
  298. Peng Yuan et al. (2016). "Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity".PMID 26758850
  299. Akiko Hori et al. (2016). "A non-canonical function of Plk4 in centriolar satellite integrity and ciliogenesis through PCM1 phosphorylation".PMID 26755742
  300. Kazuhiro Murakami et al. (2016). "NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers".PMID 26751055
  301. Céline Ruegsegger et al. (2016). "Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology".PMID 26748090
  302. Haining Zhou et al. (2016). "Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1-Mad2".PMID 26743940
  303. Miao Xing Wang et al. (2016). "CED-4 is an mRNA-binding protein that delivers ced-3 mRNA to ribosomes".PMID 26740177
  304. Laura García-Prat et al. (2016). "Autophagy maintains stemness by preventing senescence".PMID 26738589
  305. Manuela Terranova-Barberio et al. (2016). "Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression".PMID 26735339
  306. Sang Bae Lee et al. (2016). "An ID2-dependent mechanism for VHL inactivation in cancer".PMID 26735018
  307. Ga l Quesseveur et al. (2015). "Attenuated Levels of Hippocampal Connexin 43 and its Phosphorylation Correlate with Antidepressant- and Anxiolytic-Like Activities in Mice".PMID 26733815
  308. Miriam Sansó et al. (2016). "P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates".PMID 26728557
  309. Kobe C Yuen et al. (2016). "NIPBL Controls RNA Biogenesis to Prevent Activation of the Stress Kinase PKR".PMID 26725122
  310. Alip Ghosh et al. (2016). "Hepatitis B Virus X Protein Upregulates hELG1/ ATAD5 Expression through E2F1 in Hepatocellular Carcinoma".PMID 26722215
  311. Nadja Drusenheimer et al. (2015). "The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling".PMID 26720614
  312. Jessica Kristine Nelson et al. (2016). "Deubiquitylase Inhibition Reveals Liver X Receptor-independent Transcriptional Regulation of the E3 Ubiquitin Ligase IDOL and Lipoprotein Uptake".PMID 26719329
  313. Ayuna Sakamoto et al. (2015). "DNA Methylation in the Exon 1 Region and Complex Regulation of Twist1 Expression in Gastric Cancer Cells".PMID 26695186
  314. Shu Yuan Chiou et al. (2015). "Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria".PMID 26690417
  315. Rosa Gomez-Villafuertes et al. (2015). "PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions".PMID 26687764
  316. João D Dias et al. (2015). "Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells".PMID 26687004
  317. Chunmin Ge et al. (2015). "The UBC Domain Is Required for BRUCE to Promote BRIT1/MCPH1 Function in DSB Signaling and Repair Post Formation of BRUCE-USP8-BRIT1 Complex".PMID 26683461
  318. Rui Huang et al. (2016). "The role of HDAC2 in chromatin remodelling and response to chemotherapy in ovarian cancer".PMID 26683361
  319. Eunju Lee et al. (2015). "Negative effect of cyclin D1 overexpression on recurrence-free survival in stage II-IIIA lung adenocarcinoma and its expression modulation by vorinostat in vitro".PMID 26681199
  320. Jennifer Stanic et al. (2015). "Rabphilin 3A retains NMDA receptors at synaptic sites through interaction with GluN2A/PSD-95 complex".PMID 26679993
  321. Gillian Morrison et al. (2016). "Convergence of cMyc and β-catenin on Tcf7l1 enables endoderm specification".PMID 26675138
  322. David J Duffy et al. (2015). "Integrative omics reveals MYCN as a global suppressor of cellular signalling and enables network-based therapeutic target discovery in neuroblastoma".PMID 26673823
  323. Guanhua Song et al. (2016). "A novel PAD4/SOX4/PU.1 signaling pathway is involved in the committed differentiation of acute promyelocytic leukemia cells into granulocytic cells".PMID 26673819
  324. Costanza Giampietro et al. (2015). "The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling".PMID 26668327
  325. Ana Franco-Villanueva et al. (2015). "Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities".PMID 26664784
  326. Julie J Loiselle et al. (2016). "Post-transcriptional regulation of Rbm5 expression in undifferentiated H9c2 myoblasts".PMID 26659391
  327. Kate M Mills et al. (2016). "APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane".PMID 26658612
  328. Sylviane Lagarrigue et al. (2016). "CDK4 is an essential insulin effector in adipocytes".PMID 26657864
  329. Mick D Edmonds et al. (2016). "MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer".PMID 26657862
  330. Andreas Müller-Schiffmann et al. (2016). "Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity".PMID 26657517
  331. Thibault Dupont et al. (2016). "Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma".PMID 26657288
  332. Natsumi Ageta-Ishihara et al. (2015). "A CDC42EP4/septin-based perisynaptic glial scaffold facilitates glutamate clearance".PMID 26657011
  333. Gabriel Sanchez et al. (2016). "A novel role for CARM1 in promoting nonsense-mediated mRNA decay: potential implications for spinal muscular atrophy".PMID 26656492
  334. Smitha Pillai et al. (2015). "Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis".PMID 26656453
  335. Gabriella Dobrowolny et al. (2015). "Muscle Expression of SOD1(G93A) Modulates microRNA and mRNA Transcription Pattern Associated with the Myelination Process in the Spinal Cord of Transgenic Mice".PMID 26648847
  336. Luis A Osorio et al. (2016). "SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells".PMID 26648419
  337. Matthew B Veldman et al. (2015). "The N17 domain mitigates nuclear toxicity in a novel zebrafish Huntington's disease model".PMID 26645399
  338. Rodrigo A Grandy et al. (2015). "Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation".PMID 26644406
  339. Hexin Shi et al. (2016). "NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component".PMID 26642356
  340. Loredana Verdone et al. (2015). "Poly(ADP-Ribosyl)ation Affects Histone Acetylation and Transcription".PMID 26636673
  341. Maiti J Lommel et al. (2016). "L-plastin Ser5 phosphorylation in breast cancer cells and in vitro is mediated by RSK downstream of the ERK/MAPK pathway".PMID 26631483
  342. Guofeng Qian et al. (2015). "Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors".PMID 26630504
  343. Dongping Qi et al. (2015). "Screening cell mechanotype by parallel microfiltration".PMID 26626154
  344. Banafsheh Etemad et al. (2015). "Kinetochore-microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint".PMID 26621779
  345. Eric C Tauchman et al. (2015). "Stable kinetochore-microtubule attachment is sufficient to silence the spindle assembly checkpoint in human cells".PMID 26620470
  346. Jose M Garcia-Manteiga et al. (2015). "REST-Governed Gene Expression Profiling in a Neuronal Cell Model Reveals Novel Direct and Indirect Processes of Repression and Up-Regulation".PMID 26617488
  347. Roberto Cuttano et al. (2016). "KLF4 is a key determinant in the development and progression of cerebral cavernous malformations".PMID 26612856
  348. Yingmeng Ni et al. (2015). "The Deubiquitinase USP17 Regulates the Stability and Nuclear Function of IL-33".PMID 26610488
  349. Anelise C Ramos et al. (2015). "The kin17 Protein in Murine Melanoma Cells".PMID 26610484
  350. Shoudong Ye et al. (2016). "Wnt/β-catenin and LIF-Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal".PMID 26598557
  351. Mikiko Fukuda et al. (2016). "Knockout mouse production assisted by Blm knockdown".PMID 26598326
  352. Michael Dewaele et al. (2016). "Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth".PMID 26595814
  353. Urszula Liwak-Muir et al. (2016). "ERK8 is a novel HuR kinase that regulates tumour suppressor PDCD4 through a miR-21 dependent mechanism".PMID 26595526
  354. Xing Huang Gao et al. (2015). "Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response".PMID 26595448
  355. Jaros aw Gzyl et al. (2015). "Cadmium affects microtubule organization and post-translational modifications of tubulin in seedlings of soybean (Glycine max L.)".PMID 26594217
  356. Christina R Chow et al. (2016). "Cancer Cell Invasion in Three-dimensional Collagen Is Regulated Differentially by Gα13 Protein and Discoidin Domain Receptor 1-Par3 Protein Signaling".PMID 26589794
  357. Nathalia Villa dos Santos et al. (2015). "Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response".PMID 26583055
  358. Agnese Cristini et al. (2016). "DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions".PMID 26578593
  359. Delphine Gogendeau et al. (2015). "Aneuploidy causes premature differentiation of neural and intestinal stem cells".PMID 26573328
  360. Laura Iarriccio et al. (2015). "GSE4, a Small Dyskerin- and GSE24.2-Related Peptide, Induces Telomerase Activity, Cell Proliferation and Reduces DNA Damage, Oxidative Stress and Cell Senescence in Dyskerin Mutant Cells".PMID 26571381
  361. Maiko Furuta et al. (2016). "Chromatin binding of RCC1 during mitosis is important for its nuclear localization in interphase".PMID 26564799
  362. Sarah J Copeland et al. (2016). "Actin- and microtubule-dependent regulation of Golgi morphology by FHDC1".PMID 26564798
  363. Akira Sassa et al. (2015). "Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome".PMID 26559182
  364. Boris Schminke et al. (2016). "Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage".PMID 26558442
  365. Ji Hyun Lee et al. (2015). "PharmDB-K: Integrated Bio-Pharmacological Network Database for Traditional Korean Medicine".PMID 26555441
  366. Zhanguang Zhang et al. (2015). "DNAM-1 controls NK cell activation via an ITT-like motif".PMID 26552706
  367. Shengyi Sun et al. (2015). "IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation".PMID 26551274
  368. Yves Cazals et al. (2015). "KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing".PMID 26549439
  369. Carole Seidel et al. (2016). "4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer".PMID 26549368
  370. O Ksionda et al. (2016). "RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines".PMID 26549032
  371. Diana Fontinha et al. (2015). "Murid Gammaherpesvirus Latency-Associated Protein M2 Promotes the Formation of Conjugates between Transformed B Lymphoma Cells and T Helper Cells".PMID 26544979
  372. Lucia Natarelli et al. (2015). "Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells".PMID 26544184
  373. Yi Chen Yen et al. (2015). "Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1".PMID 26540630
  374. Alison Roos et al. (2015). "Loss of Runx2 sensitises osteosarcoma to chemotherapy-induced apoptosis".PMID 26528706
  375. Xia Gao et al. (2015). "GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells".PMID 26527742
  376. M Stanojlovic et al. (2015). "Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus".PMID 26518459
  377. Rubén Fernández-Santiago et al. (2015). "Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients".PMID 26516212
  378. Zhi Wei Dong et al. (2015). "CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury".PMID 26515683
  379. Amberlyn M Wands et al. (2015). "Fucosylation and protein glycosylation create functional receptors for cholera toxin".PMID 26512888
  380. Laura Antonucci et al. (2015). "Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress".PMID 26512112
  381. Tim Eiseler et al. (2016). "Protein Kinase D2 Assembles a Multiprotein Complex at the Trans-Golgi Network to Regulate Matrix Metalloproteinase Secretion".PMID 26507660
  382. Deyong Jia et al. (2016). "Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo".PMID 26506421
  383. Audrey Dumas et al. (2015). "The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking".PMID 26504171
  384. Alexandre Zampieri et al. (2015). "Hyper sensitive protein detection by Tandem-HTRF reveals Cyclin D1 dynamics in adult mouse".PMID 26503526
  385. Shlomi Finkin et al. (2015). "Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma".PMID 26502405
  386. David S Waddell et al. (2016). "Isolation, expression analysis and characterization of NEFA-interacting nuclear protein 30 and RING finger and SPRY domain containing 1 in skeletal muscle".PMID 26497270
  387. P Podlasz et al. (2016). "Galanin regulates blood glucose level in the zebrafish: a morphological and functional study".PMID 26496922
  388. Margit Fuchs et al. (2015). "A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis".PMID 26496431
  389. Eva Tonsing-Carter et al. (2015). "Potentiation of Carboplatin-Mediated DNA Damage by the Mdm2 Modulator Nutlin-3a in a Humanized Orthotopic Breast-to-Lung Metastatic Model".PMID 26494859
  390. Gisela G Slaats et al. (2016). "MKS1 regulates ciliary INPP5E levels in Joubert syndrome".PMID 26490104
  391. Albane A Bizet et al. (2015). "Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization".PMID 26487268
  392. Longsen Han et al. (2015). "Sirt6 depletion causes spindle defects and chromosome misalignment during meiosis of mouse oocyte".PMID 26481302
  393. Ralf Erkens et al. (2015). "Left ventricular diastolic dysfunction in Nrf2 knock out mice is associated with cardiac hypertrophy, decreased expression of SERCA2a, and preserved endothelial function".PMID 26475037
  394. Sarah J Radford et al. (2015). "Lateral and End-On Kinetochore Attachments Are Coordinated to Achieve Bi-orientation in Drosophila Oocytes".PMID 26473960
  395. Da Liu et al. (2015). "Arsenic Trioxide Reduces Global Histone H4 Acetylation at Lysine 16 through Direct Binding to Histone Acetyltransferase hMOF in Human Cells".PMID 26473953
  396. Barbara Renga et al. (2015). "The HIV matrix protein p17 induces hepatic lipid accumulation via modulation of nuclear receptor transcriptoma".PMID 26469385
  397. Audrey Magron et al. (2015). "The Fanconi Anemia C Protein Binds to and Regulates Stathmin-1 Phosphorylation".PMID 26466335
  398. Werner E G Muller et al. (2016). "Mineralization of bone-related SaOS-2 cells under physiological hypoxic conditions".PMID 26453899
  399. Jennifer Munkley et al. (2015). "The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer".PMID 26452038
  400. Agnes S Klar et al. (2015). "Treatment with 5-Aza-2'-Deoxycytidine Induces Expression of NY-ESO-1 and Facilitates Cytotoxic T Lymphocyte-Mediated Tumor Cell Killing".PMID 26447882
  401. Ji Na Kong et al. (2015). "Regulation of Chlamydomonas flagella and ependymal cell motile cilia by ceramide-mediated translocation of GSK3".PMID 26446842
  402. Haluk Yuzugullu et al. (2015). "A PI3K p110β-Rac signalling loop mediates Pten-loss-induced perturbation of haematopoiesis and leukaemogenesis".PMID 26442967
  403. Francesca Meda et al. (2016). "Nerves Control Redox Levels in Mature Tissues Through Schwann Cells and Hedgehog Signaling".PMID 26442784
  404. Shiyou Jiang et al. (2015). "A Group of ent-Kaurane Diterpenoids Inhibit Hedgehog Signaling and Induce Cilia Elongation".PMID 26439749
  405. Wayne O Miles et al. (2015). "The LSD1 Family of Histone Demethylases and the Pumilio Posttranscriptional Repressor Function in a Complex Regulatory Feedback Loop".PMID 26438601
  406. N Felli et al. (2016). "AP2α controls the dynamic balance between miR-126&126* and miR-221&222 during melanoma progression".PMID 26434590
  407. Dhananjay M Nawandar et al. (2015). "Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells".PMID 26431332
  408. Gorbatchev Ambroise et al. (2015). "Subcellular localization of PUMA regulates its pro-apoptotic activity in Burkitt's lymphoma B cells".PMID 26431330
  409. Erik Voets et al. (2015). "The lethal response to Cdk1 inhibition depends on sister chromatid alignment errors generated by KIF4 and isoform 1 of PRC1".PMID 26423135
  410. Shuguo Sun et al. (2015). "Localization of Hippo signalling complexes and Warts activation in vivo".PMID 26420589
  411. Mu Yao et al. (2015). "Targeting of cytosolic phospholipase A2α impedes cell cycle re-entry of quiescent prostate cancer cells".PMID 26416244
  412. Li Liu et al. (2015). "Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion".PMID 26412641
  413. Ana Bagulho et al. (2015). "The extracellular matrix modulates H2O2 degradation and redox signaling in endothelial cells".PMID 26409032
  414. Medina Hasanagic et al. (2015). "The lysosomal enzyme receptor protein (LERP) is not essential, but is implicated in lysosomal function in Drosophila melanogaster".PMID 26405051
  415. Iryna Shnitsar et al. (2015). "PTEN regulates cilia through Dishevelled".PMID 26399523
  416. Katherina Beck et al. (2015). "Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons".PMID 26398944
  417. Marisa Granato et al. (2015). "The activation of KSHV lytic cycle blocks autophagy in PEL cells".PMID 26391343
  418. Malavika Raman et al. (2015). "Systematic proteomics of the VCP-UBXD adaptor network identifies a role for UBXN10 in regulating ciliogenesis".PMID 26389662
  419. N Yokdang et al. (2016). "LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells".PMID 26387542
  420. F F Blanco et al. (2016). "The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells".PMID 26387536
  421. Ivan Nemazanyy et al. (2015). "Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling".PMID 26387534
  422. Wassim A Basheer et al. (2015). "Cardiomyocyte-specific overexpression of the ubiquitin ligase Wwp1 contributes to reduction in Connexin 43 and arrhythmogenesis".PMID 26386426
  423. Louise A Stephen et al. (2015). "TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23)".PMID 26386247
  424. Lijuan Zhu et al. (2015). "Mitotic Protein CSPP1 Interacts with CENP-H Protein to Coordinate Accurate Chromosome Oscillation in Mitosis".PMID 26378239
  425. Lakshmi Reddy Bollu et al. (2015). "Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation".PMID 26378037
  426. O Krupin et al. (2015). "Detection of leukemia markers using long-range surface plasmon waveguides functionalized with Protein G".PMID 26374150
  427. Y Qiao et al. (2016). "RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer".PMID 26364597
  428. Nicholas C D'Amato et al. (2015). "A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer".PMID 26363006
  429. Heling Dong et al. (2015). "Rictor Regulates Spermatogenesis by Controlling Sertoli Cell Cytoskeletal Organization and Cell Polarity in the Mouse Testis".PMID 26360620
  430. João Agostinho Machado-Neto et al. (2015). "Stathmin 1 inhibition amplifies ruxolitinib-induced apoptosis in JAK2V617F cells".PMID 26356819
  431. Yuzuru Imai et al. (2015). "The Parkinson's Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway".PMID 26355680
  432. Melanie L Bailey et al. (2015). "Dependence of Human Colorectal Cells Lacking the FBW7 Tumor Suppressor on the Spindle Assembly Checkpoint".PMID 26354767
  433. Meng Wen Hu et al. (2015). "Loss of protein phosphatase 6 in oocytes causes failure of meiosis II exit and impaired female fertility".PMID 26349807
  434. Ralph E Kleiner et al. (2015). "Chemical proteomics reveals a γH2AX-53BP1 interaction in the DNA damage response".PMID 26344695
  435. Lingling Cao et al. (2015). "Negative Regulation of p21Waf1/Cip1 by Human INO80 Chromatin Remodeling Complex Is Implicated in Cell Cycle Phase G2/M Arrest and Abnormal Chromosome Stability".PMID 26340092
  436. Daniel Van de Mark et al. (2015). "MDM1 is a microtubule-binding protein that negatively regulates centriole duplication".PMID 26337392
  437. Or Bida et al. (2015). "A novel mitosis-associated lncRNA, MA-linc1, is required for cell cycle progression and sensitizes cancer cells to Paclitaxel".PMID 26337085
  438. Prakash P Mansara et al. (2015). "Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231".PMID 26325577
  439. Dongbo Qiu et al. (2015). "Klf2 and Tfcp2l1, Two Wnt/β-Catenin Targets, Act Synergistically to Induce and Maintain Naive Pluripotency".PMID 26321140
  440. Rachid Zagani et al. (2015). "Inhibition of adipose triglyceride lipase (ATGL) by the putative tumor suppressor G0S2 or a small molecule inhibitor attenuates the growth of cancer cells".PMID 26318046
  441. Masaya Jimbo et al. (2015). "Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells".PMID 26314962
  442. Sam Cooper et al. (2015). "Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells".PMID 26310441
  443. Na Zhou et al. (2015). "Role of dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B) in S-phase entry of HPV E7 expressing cells from quiescence".PMID 26307683
  444. Mathieu Nadeau-Vallée et al. (2015). "Novel Noncompetitive IL-1 Receptor-Biased Ligand Prevents Infection- and Inflammation-Induced Preterm Birth".PMID 26304990
  445. Peter Kruzliak et al. (2015). "Simvastatin impairs the induction of pulmonary fibrosis caused by a western style diet: a preliminary study".PMID 26304628
  446. Shanhu Hu et al. (2015). "Specific CP110 Phosphorylation Sites Mediate Anaphase Catastrophe after CDK2 Inhibition: Evidence for Cooperation with USP33 Knockdown".PMID 26304236
  447. Sabine Wolter et al. (2015). "cCMP causes caspase-dependent apoptosis in mouse lymphoma cell lines".PMID 26300059
  448. Claire J Garwood et al. (2015). "Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors".PMID 26297026
  449. Kevin Moreau et al. (2015). "Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy".PMID 26289944
  450. Gabriela Galicia-Vázquez et al. (2015). "eIF4AII is dispensable for miRNA-mediated gene silencing".PMID 26286746
  451. Dario Barbone et al. (2015). "Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models".PMID 26284517
  452. Kei ichi Takata et al. (2015). "Conserved overlapping gene arrangement, restricted expression, and biochemical activities of DNA polymerase ν (POLN)".PMID 26269593
  453. Andrew Archibald et al. (2015). "Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling".PMID 26269582
  454. Anastassiia Vertii et al. (2015). "Centrosome-intrinsic mechanisms modulate centrosome integrity during fever".PMID 26269579
  455. Isamu Sakabe et al. (2015). "TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling".PMID 26268696
  456. Viviana Meraviglia et al. (2015). "Acetylation mediates Cx43 reduction caused by electrical stimulation".PMID 26264759
  457. Einat Panet et al. (2015). "Purifying Cytokinetic Cells from an Asynchronous Population".PMID 26260981
  458. Jason J Gokey et al. (2015). "The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish".PMID 26254189
  459. Dylan B Udy et al. (2015). "Draft De Novo Transcriptome of the Rat Kangaroo Potorous tridactylus as a Tool for Cell Biology".PMID 26252667
  460. Yuxuan Guo et al. (2015). "Lamins position the nuclear pores and centrosomes by modulating dynein".PMID 26246603
  461. Heejin Choi et al. (2015). "Reduced Fertility and Altered Epididymal and Sperm Integrity in Mice Lacking ADAM7".PMID 26246218
  462. Shinya Ohata et al. (2015). "Mechanosensory Genes Pkd1 and Pkd2 Contribute to the Planar Polarization of Brain Ventricular Epithelium".PMID 26245976
  463. Mari S Lehti et al. (2015). "KIF1-binding protein interacts with KIF3A in haploid male germ cells".PMID 26245936
  464. Shanshan He et al. (2015). "Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers".PMID 26234763
  465. Li Jiang et al. (2015). "Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function".PMID 26229057
  466. Jun Hamazaki et al. (2015). "Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis".PMID 26222436
  467. Gunnar N Schroeder et al. (2015). "Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor".PMID 26216420
  468. A M Roncero et al. (2016). "Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development".PMID 26216197
  469. Adrianne S Chesser et al. (2016). "Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons".PMID 26207957
  470. Iwona A Cymerman et al. (2015). "Structural Plasticity of Dendritic Spines Requires GSK3α and GSK3β".PMID 26207897
  471. Wu chang Zhang et al. (2015). "High salt primes a specific activation state of macrophages, M(Na)".PMID 26206316
  472. Mariangela Succoio et al. (2015). "Proteomic analysis reveals novel common genes modulated in both replicative and stress-induced senescence".PMID 26206181
  473. E E Fink et al. (2016). "Mitochondrial thioredoxin reductase regulates major cytotoxicity pathways of proteasome inhibitors in multiple myeloma cells".PMID 26205085
  474. Takashi Sutani et al. (2015). "Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation".PMID 26204128
  475. Michael Stiess et al. (2015). "A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion".PMID 26189946
  476. Anne Sophie Bach et al. (2015). "Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells".PMID 26183398
  477. Fanny Kortüm et al. (2015). "αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor".PMID 26177020
  478. Richard C Silva et al. (2015). "The Gcn2 Regulator Yih1 Interacts with the Cyclin Dependent Kinase Cdc28 and Promotes Cell Cycle Progression through G2/M in Budding Yeast".PMID 26176233
  479. Maria A Rujano et al. (2015). "New insights into centrosome imaging in Drosophila and mouse neuroepithelial tissues".PMID 26175441
  480. Shu Ting Chen et al. (2015). "The Deubiquitinating Enzyme USP7 Regulates Androgen Receptor Activity by Modulating Its Binding to Chromatin".PMID 26175158
  481. Nelson Inacio Pinto Neto et al. (2015). "A Hyperlipidic Diet Combined with Short-Term Ovariectomy Increases Adiposity and Hyperleptinemia and Decreases Cytokine Content in Mesenteric Adipose Tissue".PMID 26170534
  482. Karen A Newell-Litwa et al. (2015). "ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity".PMID 26169356
  483. Kazuhiro Nagaoka et al. (2015). "A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model".PMID 26167913
  484. Wenbo Li et al. (2015). "Condensin I and II Complexes License Full Estrogen Receptor α-Dependent Enhancer Activation".PMID 26166704
  485. Caroline Alby et al. (2015). "Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome".PMID 26166481
  486. Misako Haraguchi et al. (2015). "CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells".PMID 26161782
  487. V Felzen et al. (2015). "Estrogen receptor α regulates non-canonical autophagy that provides stress resistance to neuroblastoma and breast cancer cells and involves BAG3 function".PMID 26158518
  488. Jong Hyuk Lee et al. (2015). "Mitochondrial Respiratory Dysfunction Induces Claudin-1 Expression via Reactive Oxygen Species-mediated Heat Shock Factor 1 Activation, Leading to Hepatoma Cell Invasiveness".PMID 26157141
  489. Jodi K Regan et al. (2016). "Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep".PMID 26156854
  490. Danielle Beckman et al. (2015). "Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice".PMID 26152722
  491. Qingwen Xu et al. (2015). "BBS4 and BBS5 show functional redundancy in the BBSome to regulate the degradative sorting of ciliary sensory receptors".PMID 26150102
  492. Damien Maggiorani et al. (2015). "Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells".PMID 26146837
  493. Akihiro Ohashi et al. (2015). "Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells".PMID 26144554
  494. Mahito Sadaie et al. (2015). "Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition".PMID 26133385
  495. Linda Andersson et al. (2015). "Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia".PMID 26130752
  496. Frédéric Lebrun-Julien et al. (2015). "Combined HDAC1 and HDAC2 Depletion Promotes Retinal Ganglion Cell Survival After Injury Through Reduction of p53 Target Gene Expression".PMID 26129908
  497. Yuan Na Lin et al. (2015). "Drosophila homologue of Diaphanous 1 (DIAPH1) controls the metastatic potential of colon cancer cells by regulating microtubule-dependent adhesion".PMID 26124177
  498. Malkolm Graffe et al. (2015). "A marginal band of microtubules transports and organizes mitochondria in retinal bipolar synaptic terminals".PMID 26123197
  499. Christian Schachtrup et al. (2015). "Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-β signaling and astrocyte functions".PMID 26120963
  500. Julie K Watson et al. (2015). "Clonal Dynamics Reveal Two Distinct Populations of Basal Cells in Slow-Turnover Airway Epithelium".PMID 26119728
  501. Julio Madrigal-Matute et al. (2015). "Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis".PMID 26117319
  502. Hongliang Duan et al. (2015). "Identification of 5-nitrofuran-2-amide derivatives that induce apoptosis in triple negative breast cancer cells by activating C/EBP-homologous protein expression".PMID 26116180
  503. Shiau Mei Chen et al. (2015). "The Effect of MicroRNA-124 Overexpression on Anti-Tumor Drug Sensitivity".PMID 26115122
  504. Thomas D B Macvicar et al. (2015). "Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells".PMID 26110381
  505. Tyler C Moyer et al. (2015). "Binding of STIL to Plk4 activates kinase activity to promote centriole assembly".PMID 26101219
  506. Kashif Aziz Khan et al. (2015). "Fine-Tuning of the RIG-I-Like Receptor/Interferon Regulatory Factor 3-Dependent Antiviral Innate Immune Response by the Glycogen Synthase Kinase 3/β-Catenin Pathway".PMID 26100021
  507. S Castillo-Lluva et al. (2015). "A new role of SNAI2 in postlactational involution of the mammary gland links it to luminal breast cancer development".PMID 26096931
  508. Karina Galoian et al. (2015). "Epigenetic regulation of embryonic stem cell marker miR302C in human chondrosarcoma as determinant of antiproliferative activity of proline-rich polypeptide 1".PMID 26094604
  509. Faye M Nixon et al. (2015). "The mesh is a network of microtubule connectors that stabilizes individual kinetochore fibers of the mitotic spindle".PMID 26090906
  510. Anja Heinemann et al. (2015). "Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling".PMID 26087189
  511. Fiorella Faggi et al. (2015). "MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line".PMID 26086601
  512. Valentina Condelli et al. (2015). "Targeting TRAP1 as a downstream effector of BRAF cytoprotective pathway: a novel strategy for human BRAF-driven colorectal carcinoma".PMID 26084290
  513. Jiayun Zhu et al. (2015). "FANCD2 influences replication fork processes and genome stability in response to clustered DSBs".PMID 26083937
  514. Keodavanh Chounlamountry et al. (2015). "Remodeling of glial coverage of glutamatergic synapses in the rat nucleus tractus solitarii after ozone inhalation".PMID 26083406
  515. Laura Y McGirt et al. (2015). "Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides".PMID 26082451
  516. Irene Maria Aspalter et al. (2015). "Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch".PMID 26081042
  517. Helen J Whalley et al. (2015). "Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation".PMID 26078008
  518. S Paige Taylor et al. (2015). "Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome".PMID 26077881
  519. Michelle Kiebala et al. (2015). "Platelet Activation in Human Immunodeficiency Virus Type-1 Patients Is Not Altered with Cocaine Abuse".PMID 26076359
  520. Liang Xie et al. (2015). "PHD2/3-dependent hydroxylation tunes cardiac response to β-adrenergic stress via phospholamban".PMID 26075818
  521. Tia J Kowal et al. (2015). "Primary cilia found on HeLa and other cancer cells".PMID 26074404
  522. Robert N Jinks et al. (2015). "Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73".PMID 26070982
  523. M Petroni et al. (2016). "The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress".PMID 26068589
  524. Daehwan Kim et al. (2015). "Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain".PMID 26067556
  525. L Rato et al. (2015). "Testicular Metabolic Reprogramming in Neonatal Streptozotocin-Induced Type 2 Diabetic Rats Impairs Glycolytic Flux and Promotes Glycogen Synthesis".PMID 26064993
  526. Wenjie Luo et al. (2015). "Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody".PMID 26057852
  527. Stephanie Dille et al. (2015). "In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport".PMID 26056386
  528. Yang Xu et al. (2015). "hMSH5 Facilitates the Repair of Camptothecin-induced Double-strand Breaks through an Interaction with FANCJ".PMID 26055704
  529. Shu Hui Neo et al. (2015). "TRIM28 Is an E3 Ligase for ARF-Mediated NPM1/B23 SUMOylation That Represses Centrosome Amplification".PMID 26055329
  530. Alexandra L Strauss et al. (2015). "A Distinct Perisynaptic Glial Cell Type Forms Tripartite Neuromuscular Synapses in the Drosophila Adult".PMID 26053860
  531. Takayo Fukuda et al. (2015). "Class I histone deacetylase inhibitors inhibit the retention of BRCA1 and 53BP1 at the site of DNA damage".PMID 26053117
  532. Dawid Krokowski et al. (2015). "Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity".PMID 26041779
  533. Alexis R Barr et al. (2015). "A sensitised RNAi screen reveals a ch-TOG genetic interaction network required for spindle assembly".PMID 26037491
  534. Jesus Garcia-Cano et al. (2015). "Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance".PMID 26036632
  535. Zakia A Abdelhamed et al. (2015). "The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway".PMID 26035863
  536. Jennifer Koenig et al. (2015). "Regulation of Nav1.7: A Conserved SCN9A Natural Antisense Transcript Expressed in Dorsal Root Ganglia".PMID 26035178
  537. Alexis Poncy et al. (2015). "Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts".PMID 26033091
  538. Olga Moiseeva et al. (2015). "Mutant lamin A links prophase to a p53 independent senescence program".PMID 26029982
  539. Dale B Bosco et al. (2015). "Human mesenchymal stem cells are resistant to Paclitaxel by adopting a non-proliferative fibroblastic state".PMID 26029917
  540. Ning Yang et al. (2015). "Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis".PMID 26023097
  541. Varsha Tembe et al. (2015). "The BARD1 BRCT domain contributes to p53 binding, cytoplasmic and mitochondrial localization, and apoptotic function".PMID 26022179
  542. Yutaka Tojo et al. (2015). "Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes".PMID 26012551
  543. Takanobu Nagata et al. (2015). "Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules".PMID 26010537
  544. Direna Alonso-Curbelo et al. (2015). "RAB7 counteracts PI3K-driven macropinocytosis activated at early stages of melanoma development".PMID 26008978
  545. Carla Cicchini et al. (2015). "Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29".PMID 26003733
  546. Alexa Kiss et al. (2015). "Non-monotonic cellular responses to heterogeneity in talin protein expression-level".PMID 26000342
  547. Jennifer E Yeh et al. (2015). "Granulin, a novel STAT3-interacting protein, enhances STAT3 transcriptional function and correlates with poorer prognosis in breast cancer".PMID 26000098
  548. Hannah Greenfeld et al. (2015). "TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation".PMID 25996949
  549. A Fauster et al. (2015). "A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis".PMID 25996294
  550. Bradley C Jackson et al. (2015). "An ELMO2-RhoG-ILK network modulates microtubule dynamics".PMID 25995380
  551. Magdalena Stasiulewicz et al. (2015). "A conserved role for Notch signaling in priming the cellular response to Shh through ciliary localisation of the key Shh transducer Smo".PMID 25995356
  552. Daniela De Zio et al. (2015). "Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth".PMID 25975226
  553. Mirjam Ketema et al. (2015). "The rod domain is not essential for the function of plectin in maintaining tissue integrity".PMID 25971800
  554. Yun Teng et al. (2015). "Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells".PMID 25969534
  555. Elena Reales et al. (2015). "The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation".PMID 25967552
  556. Suzanna L Prosser et al. (2015). "Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis".PMID 25963817
  557. Danny Bergeron et al. (2015). "Regulated Intron Retention and Nuclear Pre-mRNA Decay Contribute to PABPN1 Autoregulation".PMID 25963658
  558. M R Tanas et al. (2016). "Mechanism of action of a WWTR1(TAZ)-CAMTA1 fusion oncoprotein".PMID 25961935
  559. Wenjuan Li et al. (2015). "Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation".PMID 25961580
  560. Makoto Ohira et al. (2015). "A novel anti-microtubule agent with carbazole and benzohydrazide structures suppresses tumor cell growth in vivo".PMID 25960391
  561. Olga Piskareva et al. (2015). "The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro".PMID 25960282
  562. K V Woan et al. (2015). "Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: Enhanced antitumor immunity and impaired cell proliferation".PMID 25957812
  563. Martina Tholen et al. (2015). "Stress-resistant Translation of Cathepsin L mRNA in Breast Cancer Progression".PMID 25957406
  564. Daniela Stangel et al. (2015). "Kif20a inhibition reduces migration and invasion of pancreatic cancer cells".PMID 25953216
  565. John B Moldovan et al. (2015). "The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition".PMID 25951186
  566. S Omari et al. (2015). "Mcl-1 is a key regulator of the ovarian reserve".PMID 25950485
  567. S Mahale et al. (2015). "Antitumour potential of BPT: a dual inhibitor of cdk4 and tubulin polymerization".PMID 25950473
  568. Maddalena Castelli et al. (2015). "Regulation of the microtubular cytoskeleton by Polycystin-1 favors focal adhesions turnover to modulate cell adhesion and migration".PMID 25947155
  569. Elaina B Breznau et al. (2015). "MgcRacGAP restricts active RhoA at the cytokinetic furrow and both RhoA and Rac1 at cell-cell junctions in epithelial cells".PMID 25947135
  570. Peng Liu et al. (2015). "Characterization of a Novel Mouse Model of Alzheimer's Disease--Amyloid Pathology and Unique β-Amyloid Oligomer Profile".PMID 25946042
  571. Marta Mauro-Lizcano et al. (2015). "New method to assess mitophagy flux by flow cytometry".PMID 25945953
  572. Kenneth S Thress et al. (2015). "Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M".PMID 25939061
  573. Shu Tao Qi et al. (2015). "Casein kinase 1 (α, δ and ε) localize at the spindle poles, but may not be essential for mammalian oocyte meiotic progression".PMID 25927854
  574. Kishan A T Naipal et al. (2015). "Attenuated XPC expression is not associated with impaired DNA repair in bladder cancer".PMID 25927440
  575. Rosalind C Williamson et al. (2015). "Coronin-1C Protein and Caveolin Protein Provide Constitutive and Inducible Mechanisms of Rac1 Protein Trafficking".PMID 25925950
  576. Tadamoto Isogai et al. (2015). "SMIFH2 has effects on Formins and p53 that perturb the cell cytoskeleton".PMID 25925024
  577. Seidai Sato et al. (2015). "Ablation of the p16(INK4a) tumour suppressor reverses ageing phenotypes of klotho mice".PMID 25923845
  578. Dipti Ranjan Mishra et al. (2015). "Identification of Critical Elements for Regulation of Inorganic Pyrophosphatase (PPA1) in MCF7 Breast Cancer Cells".PMID 25923237
  579. Manuel D Haschka et al. (2015). "The NOXA-MCL1-BIM axis defines lifespan on extended mitotic arrest".PMID 25922916
  580. Ian D Carrigan et al. (2015). "Morphology, innervation, and peripheral sensory cells of the siphon of aplysia californica".PMID 25921857
  581. Miroslav P Milev et al. (2015). "TRAMM/TrappC12 plays a role in chromosome congression, kinetochore stability, and CENP-E recruitment".PMID 25918224
  582. Wenjun Song et al. (2015). "Tubulin-tyrosine Ligase (TTL)-mediated Increase in Tyrosinated α-Tubulin in Injured Axons Is Required for Retrograde Injury Signaling and Axon Regeneration".PMID 25911101
  583. Edward A Ratovitski et al. (2015). "Phospho-ΔNp63α-responsive microRNAs contribute to the regulation of necroptosis in squamous cell carcinoma upon cisplatin exposure".PMID 25910754
  584. Maria Caruso et al. (2015). "R-spondin 1/dickkopf-1/beta-catenin machinery is involved in testicular embryonic angiogenesis".PMID 25910078
  585. Alberto Cruz-Bermudez et al. (2015). "Enhanced tumorigenicity by mitochondrial DNA mild mutations".PMID 25909222
  586. Donghwan Jang et al. (2015). "Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor".PMID 25908865
  587. Raquel Gago-Fuentes et al. (2015). "Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis".PMID 25903580
  588. Ye Sun et al. (2015). "Proteasome inhibition enhances the killing effect of BikDD gene therapy".PMID 25901200
  589. Karine Pozo et al. (2015). "Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis".PMID 25900242
  590. María Ceballos-Chávez et al. (2015). "The chromatin Remodeler CHD8 is required for activation of progesterone receptor-dependent enhancers".PMID 25894978
  591. K W Min et al. (2016). "NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway".PMID 25893289
  592. Fu Chak Ho et al. (2015). "Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix".PMID 25890737
  593. Edyta Brzoska et al. (2015). "Sdf-1 (CXCL12) induces CD9 expression in stem cells engaged in muscle regeneration".PMID 25890097
  594. Lisa K Briona et al. (2015). "Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury".PMID 25888075
  595. Sangho Lee et al. (2015). "Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice".PMID 25887799
  596. Lee Won Chong et al. (2015). "Fluvastatin attenuates hepatic steatosis-induced fibrogenesis in rats through inhibiting paracrine effect of hepatocyte on hepatic stellate cells".PMID 25886887
  597. Shiro Koizume et al. (2015). "Lipid starvation and hypoxia synergistically activate ICAM1 and multiple genes in an Sp1-dependent manner to promote the growth of ovarian cancer".PMID 25879517
  598. Ali Tebbi et al. (2015). "Caspase-dependent Proteolysis of Human Ribonucleotide Reductase Small Subunits R2 and p53R2 during Apoptosis".PMID 25878246
  599. Jacky Chung et al. (2015). "The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability".PMID 25872869
  600. Jianning Lu et al. (2015). "A role for Kalirin-7 in nociceptive sensitization via activity-dependent modulation of spinal synapses".PMID 25865668
  601. Anna C Navis et al. (2015). "Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein".PMID 25862637
  602. Vasily D Antonenkov et al. (2015). "The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential".PMID 25861990
  603. Makoto Ohashi et al. (2015). "The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth".PMID 25855980
  604. Debasis Panda et al. (2015). "The transcription factor FoxK participates with Nup98 to regulate antiviral gene expression".PMID 25852164
  605. Antonio Castro et al. (2015). "Neuronal Organization of the Brain in the Adult Amphioxus (Branchiostoma lanceolatum): A Study With Acetylated Tubulin Immunohistochemistry".PMID 25846052
  606. Jill M Westcott et al. (2015). "An epigenetically distinct breast cancer cell subpopulation promotes collective invasion".PMID 25844900
  607. Elia López-Bernardo et al. (2015). "4-Hydroxynonenal induces Nrf2-mediated UCP3 upregulation in mouse cardiomyocytes".PMID 25843654
  608. Jinling Liu et al. (2015). "The loss of Hh responsiveness by a non-ciliary Gli2 variant".PMID 25834022
  609. Akiko Hori et al. (2015). "Centriolar satellite- and hMsd1/SSX2IP-dependent microtubule anchoring is critical for centriole assembly".PMID 25833712
  610. Tony M Mertz et al. (2015). "Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity".PMID 25827231
  611. Shenghong Ma et al. (2015). "D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth".PMID 25825982
  612. Anne Czechanski et al. (2015). "Kif18a is specifically required for mitotic progression during germ line development".PMID 25824710
  613. Sébastien Tabariès et al. (2015). "Lyn modulates Claudin-2 expression and is a therapeutic target for breast cancer liver metastasis".PMID 25823815
  614. Birthe Dorgau et al. (2015). "Connexin50 couples axon terminals of mouse horizontal cells by homotypic gap junctions".PMID 25823610
  615. Clifford H Shin et al. (2015). "The BRAF kinase domain promotes the development of gliomas in vivo".PMID 25821557
  616. Adriana Eisner et al. (2015). "The Eya1 phosphatase promotes Shh signaling during hindbrain development and oncogenesis".PMID 25816987
  617. Elsa Bazellieres et al. (2015). "Control of cell-cell forces and collective cell dynamics by the intercellular adhesome".PMID 25812522
  618. Pamela Y Ting et al. (2015). "Identification of small molecules that disrupt signaling between ABL and its positive regulator RIN1".PMID 25811598
  619. Erola Ainsua-Enrich et al. (2015). "The adaptor 3BP2 is required for KIT receptor expression and human mast cell survival".PMID 25810396
  620. Shanhu Hu et al. (2015). "CDK2 Inhibition Causes Anaphase Catastrophe in Lung Cancer through the Centrosomal Protein CP110".PMID 25808870
  621. Saeko Takada et al. (2015). "The FHA domain determines Drosophila Chk2/Mnk localization to key mitotic structures and is essential for early embryonic DNA damage responses".PMID 25808488
  622. Enni Markkanen et al. (2015). "Cells deficient in base-excision repair reveal cancer hallmarks originating from adjustments to genetic instability".PMID 25800737
  623. X X Peng et al. (2015). "Episodic sucrose intake during food restriction increases synaptic abundance of AMPA receptors in nucleus accumbens and augments intake of sucrose following restoration of ad libitum feeding".PMID 25800309
  624. Brian G Coon et al. (2015). "Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex".PMID 25800053
  625. Guotai Xu et al. (2015). "REV7 counteracts DNA double-strand break resection and affects PARP inhibition".PMID 25799992
  626. R Perdigão-Henriques et al. (2016). "miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes".PMID 25798844
  627. Rieko Muramatsu et al. (2015). "Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system".PMID 25795781
  628. Anastassios Philippou et al. (2015). "Masticatory muscles of mouse do not undergo atrophy in space".PMID 25795455
  629. Lionel Leclere et al. (2015). "Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells".PMID 25794149
  630. Han Seok Koh et al. (2015). "The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia".PMID 25790768
  631. Teruki Yanagi et al. (2015). "PCTAIRE1-knockdown sensitizes cancer cells to TNF family cytokines".PMID 25790448
  632. Kristina Kirschner et al. (2015). "Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53".PMID 25790137
  633. Akiko Kobayashi et al. (2015). "Therapeutic potential of mitotic interaction between the nucleoporin Tpr and aurora kinase A".PMID 25789545
  634. Dan Chen et al. (2015). "EML4 promotes the loading of NUDC to the spindle for mitotic progression".PMID 25789526
  635. Ye Liu et al. (2015). "Mutations in the microtubule-associated protein 1A (Map1a) gene cause Purkinje cell degeneration".PMID 25788676
  636. Barbara Solchenberger et al. (2015). "Granulin knock out zebrafish lack frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis pathology".PMID 25785851
  637. Manabu Kawada et al. (2015). "Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction".PMID 25785838
  638. Simon J Conn et al. (2015). "The RNA binding protein quaking regulates formation of circRNAs".PMID 25768908
  639. V Tassinari et al. (2015). "Fgf9 inhibition of meiotic differentiation in spermatogonia is mediated by Erk-dependent activation of Nodal-Smad2/3 signaling and is antagonized by Kit Ligand".PMID 25766327
  640. Hannah M Burgess et al. (2015). "Cellular 5'-3' mRNA exonuclease Xrn1 controls double-stranded RNA accumulation and anti-viral responses".PMID 25766294
  641. Germana Rappa et al. (2015). "Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells".PMID 25762645
  642. Ling Zhang et al. (2015). "RC/BTB2 is essential for formation of primary cilia in mammalian cells".PMID 25762510
  643. Hui Min Cheng et al. (2015). "Effects on murine behavior and lifespan of selectively decreasing expression of mutant huntingtin allele by supt4h knockdown".PMID 25760041
  644. Jordan Wengrod et al. (2015). "Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma".PMID 25759478
  645. Mark A Gillespie et al. (2015). "An LXR-NCOA5 gene regulatory complex directs inflammatory crosstalk-dependent repression of macrophage cholesterol efflux".PMID 25755249
  646. Suzanna L Prosser et al. (2015). "Centrin2 regulates CP110 removal in primary cilium formation".PMID 25753040
  647. Lorena Aguilar-Arnal et al. (2015). "NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1".PMID 25751424
  648. Erik Voets et al. (2015). "MASTL promotes cyclin B1 destruction by enforcing Cdc20-independent binding of cyclin B1 to the APC/C".PMID 25750436
  649. Zhao Huan Zhang et al. (2015). "WNK1 is involved in Nogo66 inhibition of OPC differentiation".PMID 25749374
  650. Kenji Iemura et al. (2015). "Chromokinesin Kid and kinetochore kinesin CENP-E differentially support chromosome congression without end-on attachment to microtubules".PMID 25743205
  651. A Tsuru et al. (2015). "Hairy/enhancer-of-split related with YRPW motif protein 1 promotes osteosarcoma metastasis via matrix metallopeptidase 9 expression".PMID 25742474
  652. Ana Carolina Martinez-Torres et al. (2015). "CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans".PMID 25734483
  653. Saravanabhavan Thangavel et al. (2015). "DNA2 drives processing and restart of reversed replication forks in human cells".PMID 25733713
  654. Jianhua Xiong et al. (2015). "Stemness factor Sall4 is required for DNA damage response in embryonic stem cells".PMID 25733712
  655. Sung Jin Park et al. (2015). "Disrupted-in-schizophrenia-1 (DISC1) Regulates Endoplasmic Reticulum Calcium Dynamics".PMID 25732993
  656. Loreto Carvallo et al. (2015). "Buprenorphine decreases the CCL2-mediated chemotactic response of monocytes".PMID 25716997
  657. Parjam S Zolfaghari et al. (2015). "Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis".PMID 25714676
  658. Kristin Halvorsen Hortemo et al. (2015). "Exhausting treadmill running causes dephosphorylation of sMLC2 and reduced level of myofilament MLCK2 in slow twitch rat soleus muscle".PMID 25713325
  659. Matthew R Stoyek et al. (2015). "Intrinsic and extrinsic innervation of the heart in zebrafish (Danio rerio)".PMID 25711945
  660. Charles A S Banks et al. (2015). "Proteins interacting with cloning scars: a source of false positive protein-protein interactions".PMID 25704442
  661. S Fernandes et al. (2015). "Methamphetamine promotes α-tubulin deacetylation in endothelial cells: the protective role of acetyl-l-carnitine".PMID 25703822
  662. Anne Sophie Kratz et al. (2015). "Plk4-dependent phosphorylation of STIL is required for centriole duplication".PMID 25701666
  663. Robin Beaven et al. (2015). "Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system".PMID 25694447
  664. Deepa Kushwaha et al. (2015). "USP9X inhibition promotes radiation-induced apoptosis in non-small cell lung cancer cells expressing mid-to-high MCL1".PMID 25692226
  665. R Mitchell Baldwin et al. (2015). "Identification of the PRMT1v1 and PRMT1v2 specific interactomes by quantitative mass spectrometry in breast cancer cells".PMID 25690678
  666. Rachel E Bennett et al. (2015). "Array tomography for the detection of non-dilated, injured axons in traumatic brain injury".PMID 25687633
  667. Yuko Nakagawa et al. (2015). "NF-κB signaling mediates acquired resistance after PARP inhibition".PMID 25686825
  668. Serge Ducommun et al. (2015). "Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate".PMID 25683918
  669. Keishi Narita et al. (2015). "TRPV4 regulates the integrity of the blood-cerebrospinal fluid barrier and modulates transepithelial protein transport".PMID 25681460
  670. Yu Bo Wang et al. (2015). "Ubiquitin-associated domain-containing ubiquitin regulatory X (UBX) protein UBXN1 is a negative regulator of nuclear factor κB (NF-κB) signaling".PMID 25681446
  671. Daniel Pollack et al. (2015). "CDK14 expression is down-regulated by cigarette smoke in vivo and in vitro".PMID 25680692
  672. Takao Ito et al. (2015). "Inhibitory mechanism of FAT4 gene expression in response to actin dynamics during Src-induced carcinogenesis".PMID 25679223
  673. Augusta Di Savino et al. (2015). "Morgana acts as an oncosuppressor in chronic myeloid leukemia".PMID 25678499
  674. S Miyake et al. (2015). "Prolyl hydroxylase regulates axonal rewiring and motor recovery after traumatic brain injury".PMID 25675298
  675. Linda L Wu et al. (2015). "Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors".PMID 25670793
  676. Edward James Morris et al. (2015). "Integrin-linked kinase links dynactin-1/dynactin-2 with cortical integrin receptors to orient the mitotic spindle relative to the substratum".PMID 25669897
  677. Majid Momeny et al. (2015). "Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines".PMID 25668816
  678. Hayeong Kwon et al. (2015). "Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation".PMID 25667086
  679. Jeffrey K Bailey et al. (2015). "WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission".PMID 25666610
  680. Benjamin A Diner et al. (2015). "The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA".PMID 25665578
  681. Heiko Locher et al. (2015). "Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss".PMID 25663387
  682. Maya Raghunandan et al. (2015). "FANCD2, FANCJ and BRCA2 cooperate to promote replication fork recovery independently of the Fanconi Anemia core complex".PMID 25659033
  683. Jicui Chen et al. (2015). "TSH/TSHR Signaling Suppresses Fatty Acid Synthase (FASN) Expression in Adipocytes".PMID 25655684
  684. Ana Guerrero et al. (2015). "The cerebral cavernous malformation 3 gene is necessary for senescence induction".PMID 25655101
  685. Misako Okumura et al. (2015). "Linking cell surface receptors to microtubules: tubulin folding cofactor D mediates Dscam functions during neuronal morphogenesis".PMID 25653356
  686. Nieves Gonzalez et al. (2015). "Effect of bombesin receptor subtype-3 and its synthetic agonist on signaling, glucose transport and metabolism in myocytes from patients with obesity and type 2 diabetes".PMID 25653074
  687. Ho Chang Jeong et al. (2015). "Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression".PMID 25649870
  688. Sébastien Michel et al. (2015). "Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response".PMID 25643991
  689. A Phillip West et al. (2015). "Mitochondrial DNA stress primes the antiviral innate immune response".PMID 25642965
  690. Nina Kozlova et al. (2016). "Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231".PMID 25641046
  691. Naama H Sleiman et al. (2015). "Transitions of protein traffic from cardiac ER to junctional SR".PMID 25640161
  692. Jianfei Xue et al. (2015). "Tumour suppressor TRIM33 targets nuclear β-catenin degradation".PMID 25639486
  693. F Darío Cuello-Carrión et al. (2015). "HER2 and β-catenin protein location: importance in the prognosis of breast cancer patients and their correlation when breast cancer cells suffer stressful situations".PMID 25636904
  694. J Marsolier et al. (2015). "Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation".PMID 25624101
  695. Paolo Piatti et al. (2015). "Embryonic stem cell differentiation requires full length Chd1".PMID 25620209
  696. Aditya Bele et al. (2015). "The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells".PMID 25616580
  697. Sheng Mou Hsiao et al. (2015). "The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer".PMID 25613390
  698. Paloma López de Figueroa et al. (2015). "Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes".PMID 25605458
  699. Sayaka Iwano et al. (2015). "PCTK1 regulates integrin-dependent spindle orientation via protein kinase A regulatory subunit KAP0 and myosin X".PMID 25605337
  700. Bonnie Seaberg et al. (2015). "Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions".PMID 25605336
  701. Victoria C Silva et al. (2015). "A delay prior to mitotic entry triggers caspase 8-dependent cell death in p53-deficient Hela and HCT-116 cells".PMID 25602147
  702. M Hamed Grati et al. (2015). "A missense mutation in DCDC2 causes human recessive deafness DFNB66, likely by interfering with sensory hair cell and supporting cell cilia length regulation".PMID 25601850
  703. Fiona K Bangs et al. (2015). "Lineage specificity of primary cilia in the mouse embryo".PMID 25599390
  704. Danielle Zheng et al. (2015). "Nucleus accumbens AMPA receptor involvement in cocaine-conditioned place preference under different dietary conditions in rats".PMID 25589145
  705. Jennifer L Kopanic et al. (2015). "Degradation of gap junction connexins is regulated by the interaction with Cx43-interacting protein of 75 kDa (CIP75)".PMID 25583071
  706. K H Al-Gubory et al. (2015). "The conceptus regulates tryptophanyl-tRNA synthetase and superoxide dismutase 2 in the sheep caruncular endometrium during early pregnancy".PMID 25578560
  707. Raed Rizkallah et al. (2015). "Identification of the oncogenic kinase TOPK/PBK as a master mitotic regulator of C2H2 zinc finger proteins".PMID 25575812
  708. Y C Cheng et al. (2015). "Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT".PMID 25569101
  709. Zhanguo Gao et al. (2015). "P65 inactivation in adipocytes and macrophages attenuates adipose inflammatory response in lean but not in obese mice".PMID 25564477
  710. Courtney M Karner et al. (2015). "Increased glutamine catabolism mediates bone anabolism in response to WNT signaling".PMID 25562323
  711. Manuele Rebsamen et al. (2015). "SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1".PMID 25561175
  712. Petra van Bergeijk et al. (2015). "Optogenetic control of organelle transport and positioning".PMID 25561173
  713. Yann Thomas et al. (2014). "Kizuna is a novel mitotic substrate for CDC25B phosphatase".PMID 25558830
  714. Elizabeth M Kita et al. (2015). "The influence of activity on axon pathfinding in the optic tectum".PMID 25556913
  715. Lauriel F Earley et al. (2015). "Identification and characterization of nuclear and nucleolar localization signals in the adeno-associated virus serotype 2 assembly-activating protein".PMID 25552709
  716. Sari Toropainen et al. (2015). "SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin".PMID 25552417
  717. Motoko Sasaki et al. (2015). "A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis".PMID 25552342
  718. Hemma Brandstaetter et al. (2014). "Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion".PMID 25551774
  719. Emily Van de Laar et al. (2014). "Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas".PMID 25551685
  720. Takuya Toda et al. (2014). "Down-regulation of KCC2 expression and phosphorylation in motoneurons, and increases the number of in primary afferent projections to motoneurons in mice with post-stroke spasticity".PMID 25546454
  721. Ahyoung Hong et al. (2015). "Ubiquitin-specific protease 22 (USP22) positively regulates RCAN1 protein levels through RCAN1 de-ubiquitination".PMID 25546086
  722. Stephanie L Smith-Roe et al. (2015). "SWI/SNF complexes are required for full activation of the DNA-damage response".PMID 25544751
  723. José M González-Granado et al. (2014). "Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope".PMID 25535984
  724. Jihye Kim et al. (2015). "Meikin is a conserved regulator of meiosis-I-specific kinetochore function".PMID 25533956
  725. Masamichi Imajo et al. (2015). "Dual role of YAP and TAZ in renewal of the intestinal epithelium".PMID 25531778
  726. João Agostinho Machado-Neto et al. (2015). "ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells".PMID 25523139
  727. Elisa Vitiello et al. (2014). "The tumour suppressor DLC2 ensures mitotic fidelity by coordinating spindle positioning and cell-cell adhesion".PMID 25518808
  728. Henri François Renard et al. (2015). "Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis".PMID 25517096
  729. Duo Zhang et al. (2014). "Thyroid hormone regulates muscle fiber type conversion via miR-133a1".PMID 25512392
  730. Xiang Ling et al. (2014). "FL118 induces p53-dependent senescence in colorectal cancer cells by promoting degradation of MdmX".PMID 25512388
  731. Hikaru Ito et al. (2014). "HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice".PMID 25510912
  732. Cordula A Jilg et al. (2014). "PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells".PMID 25504435
  733. Julia K Pagan et al. (2015). "Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing".PMID 25503564
  734. Abdessamad Tahiri-Alaoui et al. (2014). "Poly(A) binding protein 1 enhances cap-independent translation initiation of neurovirulence factor from avian herpesvirus".PMID 25503397
  735. Kokichi Katsunuma et al. (2015). "Z-100, extracted from Mycobacterium tuberculosis strain Aoyama B, promotes TNF-α production via nucleotide-binding oligomerization domain containing 2 (Nod2)-dependent NF-κB activation in RAW264.7 cells".PMID 25499802
  736. Yanhua Rao et al. (2014). "A Mec17-Myosin II Effector Axis Coordinates Microtubule Acetylation and Actin Dynamics to Control Primary Cilium Biogenesis".PMID 25494100
  737. Xiaomu Qiao et al. (2014). "Different effects of ZO-1, ZO-2 and ZO-3 silencing on kidney collecting duct principal cell proliferation and adhesion".PMID 25486565
  738. Mo Li et al. (2014). "Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis".PMID 25486481
  739. Vincent Duheron et al. (2014). "Structural characterization of altered nucleoporin Nup153 expression in human cells by thin-section electron microscopy".PMID 25485891
  740. Wen Chuan Shen et al. (2015). "Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism".PMID 25484089
  741. Sun Jung Cho et al. (2015). "SUMO1 promotes Aβ production via the modulation of autophagy".PMID 25484073
  742. Jing Ling Hoon et al. (2014). "POPX2 phosphatase regulates cell polarity and centrosome placement".PMID 25483195
  743. Lakshmi Reddy Bollu et al. (2014). "Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells".PMID 25483192
  744. Chao Tang Chuang et al. (2015). "S100B is required for high glucose-induced pro-fibrotic gene expression and hypertrophy in mesangial cells".PMID 25482070
  745. Michelle R Bond et al. (2014). "Conserved nutrient sensor O-GlcNAc transferase is integral to C. elegans pathogen-specific immunity".PMID 25474640
  746. Wolfgang Hofmeister et al. (2015). "CTNND2-a candidate gene for reading problems and mild intellectual disability".PMID 25473103
  747. Katrin Diesenberg et al. (2015). "SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR".PMID 25472714
  748. Linyan Meng et al. (2015). "Towards a therapy for Angelman syndrome by targeting a long non-coding RNA".PMID 25470045
  749. Adam Freund et al. (2014). "Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1".PMID 25467444
  750. Itay Pickholtz et al. (2014). "Cooperation between BRCA1 and vitamin D is critical for histone acetylation of the p21waf1 promoter and growth inhibition of breast cancer cells and cancer stem-like cells".PMID 25460500
  751. Elizabeth I Tang et al. (2015). "EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study".PMID 25456071
  752. Jui Tung Liu et al. (2014). "Arsenic inhibits hedgehog signaling during P19 cell differentiation".PMID 25448440
  753. Tae Hyung Kim et al. (2015). "Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts".PMID 25445714
  754. Paul L Colbert et al. (2015). "EphrinB1: novel microtubule associated protein whose expression affects taxane sensitivity".PMID 25436983
  755. Timothy Q Dubuc et al. (2014). "In vivo imaging of Nematostella vectensis embryogenesis and late development using fluorescent probes".PMID 25433655
  756. Charmaine J Green et al. (2015). "Insulin-like growth factor 1 increases apical fibronectin in blastocysts to increase blastocyst attachment to endometrial epithelial cells in vitro".PMID 25432925
  757. Andreas Vigelsø et al. (2015). "GAPDH and β-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle".PMID 25429098
  758. Shi Jie Wang et al. (2015). "CD147 promotes Src-dependent activation of Rac1 signaling through STAT3/DOCK8 during the motility of hepatocellular carcinoma cells".PMID 25428919
  759. Wen Jie Bian et al. (2015). "A novel Wnt5a-Frizzled4 signaling pathway mediates activity-independent dendrite morphogenesis via the distal PDZ motif of Frizzled 4".PMID 25424568
  760. Fuzhou Liu et al. (2015). "Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A".PMID 25421946
  761. Hui Yuan Wu et al. (2015). "Comparison of the enzymatic and functional properties of three cytosolic carboxypeptidase family members".PMID 25416787
  762. Francesca Boscia et al. (2015). "High levels of GPR30 protein in human testicular carcinoma in situ and seminomas correlate with low levels of estrogen receptor-beta and indicate a switch in estrogen responsiveness".PMID 25413376
  763. Georgios Kararigas et al. (2014). "Comparative proteomic analysis reveals sex and estrogen receptor β effects in the pressure overloaded heart".PMID 25406860
  764. Hyunho Kim et al. (2014). "Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism".PMID 25405894
  765. Wilco Nijenhuis et al. (2014). "Negative feedback at kinetochores underlies a responsive spindle checkpoint signal".PMID 25402682
  766. Bethany L Johnson-Kerner et al. (2015). "Intermediate filament protein accumulation in motor neurons derived from giant axonal neuropathy iPSCs rescued by restoration of gigaxonin".PMID 25398950
  767. Jian Chen et al. (2014). "CSN6 drives carcinogenesis by positively regulating Myc stability".PMID 25395170
  768. Till F M Andlauer et al. (2014). "Drep-2 is a novel synaptic protein important for learning and memory".PMID 25392983
  769. Alma Husedzinovic et al. (2015). "The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization".PMID 25392300
  770. Ravi K Komaravolu et al. (2015). "Erk5 inhibits endothelial migration via KLF2-dependent down-regulation of PAK1".PMID 25388666
  771. E V Korobko et al. (2014). "Characterization of Rabaptin-5 γ isoform".PMID 25385014
  772. Raquel Martínez-Vega et al. (2015). "Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism".PMID 25384423
  773. Evgeny E Akkuratov et al. (2015). "Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons".PMID 25381029
  774. Yarden Katz et al. (2014). "Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state".PMID 25380226
  775. Mar Carmena et al. (2014). "Polo kinase regulates the localization and activity of the chromosomal passenger complex in meiosis and mitosis in Drosophila melanogaster".PMID 25376909
  776. Tal Salz et al. (2015). "Histone Methyltransferase hSETD1A Is a Novel Regulator of Metastasis in Breast Cancer".PMID 25373480
  777. Keun Woo Lee et al. (2015). "Twist1 is a key regulator of cancer-associated fibroblasts".PMID 25368021
  778. Miju Kim et al. (2014). "The MST1/2-SAV1 complex of the Hippo pathway promotes ciliogenesis".PMID 25367221
  779. Sharon Israeli-Rosenberg et al. (2015). "Caveolin modulates integrin function and mechanical activation in the cardiomyocyte".PMID 25366344
  780. Yiqiang Cai et al. (2014). "Altered trafficking and stability of polycystins underlie polycystic kidney disease".PMID 25365220
  781. Veronika M Berghold et al. (2015). "Phospholipid scramblase 1 (PLSCR1) in villous trophoblast of the human placenta".PMID 25362260
  782. Elie Akoury et al. (2015). "NLRP7 and KHDC3L, the two maternal-effect proteins responsible for recurrent hydatidiform moles, co-localize to the oocyte cytoskeleton".PMID 25358348
  783. Rachel H Giles et al. (2014). "3D spheroid model of mIMCD3 cells for studying ciliopathies and renal epithelial disorders".PMID 25356583
  784. Philip D Campbell et al. (2014). "Unique function of Kinesin Kif5A in localization of mitochondria in axons".PMID 25355224
  785. Zachary T Olmsted et al. (2014). "Kinesin-14 and kinesin-5 antagonistically regulate microtubule nucleation by γ-TuRC in yeast and human cells".PMID 25348260
  786. Kyeongmi Kim et al. (2015). "Neural crest specification by inhibition of the ROCK/Myosin II pathway".PMID 25346532
  787. Yulia Kraus et al. (2014). "The embryonic development of the cnidarian Hydractinia echinata".PMID 25346055
  788. Qiang Sun et al. (2014). "Competition between human cells by entosis".PMID 25342560
  789. Sama F Sleiman et al. (2014). "Hydroxamic acid-based histone deacetylase (HDAC) inhibitors can mediate neuroprotection independent of HDAC inhibition".PMID 25339746
  790. Andreas K Hock et al. (2014). "Ubiquitin-specific peptidase 42 (USP42) functions to deubiquitylate histones and regulate transcriptional activity".PMID 25336640
  791. Masaoki Kawasumi et al. (2014). "Identification of ATR-Chk1 pathway inhibitors that selectively target p53-deficient cells without directly suppressing ATR catalytic activity".PMID 25336189
  792. Gohei Nishibuchi et al. (2014). "N-terminal phosphorylation of HP1α increases its nucleosome-binding specificity".PMID 25332400
  793. A O'Loghlen et al. (2015). "The nuclear receptor NR2E1/TLX controls senescence".PMID 25328137
  794. Kuo Ming Lee et al. (2014). "TRAP150 activates splicing in composite terminal exons".PMID 25326322
  795. Jarred J Bultema et al. (2014). "Myosin vc interacts with Rab32 and Rab38 proteins and works in the biogenesis and secretion of melanosomes".PMID 25324551
  796. Joni Van der Meulen et al. (2015). "The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia".PMID 25320243
  797. Dylan L Díaz-Chiguer et al. (2014). "JVG9, a benzimidazole derivative, alters the surface and cytoskeleton of Trypanosoma cruzi bloodstream trypomastigotes".PMID 25317703
  798. Jan Van Deun et al. (2014). "The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling".PMID 25317274
  799. Nai Di Yang et al. (2014). "Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin".PMID 25305013
  800. Maj Linea Vestergaard et al. (2016). "Immunofluorescence Microscopy and mRNA Analysis of Human Embryonic Stem Cells (hESCs) Including Primary Cilia Associated Signaling Pathways".PMID 25304206
  801. Fikret Gurkan Agircan et al. (2014). "Sensors at centrosomes reveal determinants of local separase activity".PMID 25299182
  802. Xinxin Gao et al. (2014). "Single-cell in situ imaging of palmitoylation in fatty-acylated proteins".PMID 25299157
  803. Moritz Gegg et al. (2014). "Flattop regulates basal body docking and positioning in mono- and multiciliated cells".PMID 25296022
  804. Gabriela Cabral et al. (2014). "Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes".PMID 25295686
  805. Paraskevi Goggolidou et al. (2014). "ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis".PMID 25294941
  806. Kazushi Aoto et al. (2015). "Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival".PMID 25292199
  807. Yuan Lin et al. (2014). "Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers".PMID 25288727
  808. Ning Liang et al. (2014). "Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex".PMID 25288394
  809. Jordan M Reese et al. (2014). "ERβ1: characterization, prognosis, and evaluation of treatment strategies in ERα-positive and -negative breast cancer".PMID 25288324
  810. Liliana M G Pereira et al. (2014). "Intracellular trafficking of AIP56, an NF-κB-cleaving toxin from Photobacterium damselae subsp. piscicida".PMID 25287919
  811. M Yakut Ali et al. (2014). "Reprogramming cellular phenotype by soft collagen gels".PMID 25284029
  812. Joo Hee An et al. (2014). "The expression of p21 is upregulated by forkhead box A1/2 in p53-null H1299 cells".PMID 25281925
  813. Jin Sun Choi et al. (2014). "HAX1 regulates E3 ubiquitin ligase activity of cIAPs by promoting their dimerization".PMID 25275296
  814. Alana L Gray et al. (2014). "The polyphenols (-)-epigallocatechin-3-gallate and luteolin synergistically inhibit TGF-β-induced myofibroblast phenotypes through RhoA and ERK inhibition".PMID 25272043
  815. Natasha M Sosanya et al. (2015). "Rapamycin reveals an mTOR-independent repression of Kv1.1 expression during epileptogenesis".PMID 25270294
  816. Janine O Ilagan et al. (2015). "U2AF1 mutations alter splice site recognition in hematological malignancies".PMID 25267526
  817. Duancheng Wen et al. (2014). "Genome editing a mouse locus encoding a variant histone, H3.3B, to report on its expression in live animals".PMID 25262655
  818. Nikolaos Charlaftis et al. (2014). "The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines".PMID 25260751
  819. D Jia et al. (2015). "β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer".PMID 25257174
  820. B rang re Deleglise et al. (2014). "β-amyloid induces a dying-back process and remote trans-synaptic alterations in a microfluidic-based reconstructed neuronal network".PMID 25253021
  821. Sarit Cohen-Kedar et al. (2014). "Human intestinal epithelial cells respond to β-glucans via Dectin-1 and Syk".PMID 25251945
  822. Anupama R Rajapakshe et al. (2015). "Lysosome-associated membrane proteins (LAMPs) regulate intracellular positioning of mitochondria in MC3T3-E1 cells".PMID 25246127
  823. Lynda K McGinnis et al. (2014). "Post-ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis".PMID 25242074
  824. Magdalena H Menhofer et al. (2014). "In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor".PMID 25239826
  825. Kristen L Curran et al. (2014). "Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis".PMID 25238599
  826. Daichi G Suzuki et al. (2015). "A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center".PMID 25233869
  827. Dipal M Patel et al. (2014). "Disease mutations in desmoplakin inhibit Cx43 membrane targeting mediated by desmoplakin-EB1 interactions".PMID 25225338
  828. Krzysztof Wrzesinski et al. (2014). "The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments".PMID 25222612
  829. F De Nicola et al. (2014). "HIPK2 sustains apoptotic response by phosphorylating Che-1/AATF and promoting its degradation".PMID 25210797
  830. Ying Wai Chan et al. (2014). "Spatial control of the GEN1 Holliday junction resolvase ensures genome stability".PMID 25209024
  831. Edna Ribeiro-Varandas et al. (2014). "Bisphenol A disrupts transcription and decreases viability in aging vascular endothelial cells".PMID 25207595
  832. Cátia S Rocha et al. (2014). "Melatonin alters the glycolytic profile of Sertoli cells: implications for male fertility".PMID 25205674
  833. Teruki Yanagi et al. (2014). "PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells".PMID 25205104
  834. Yogesh Saini et al. (2014). "Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration".PMID 25204199
  835. Xue Qiang Zhao et al. (2014). "C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation".PMID 25202022
  836. Lianqin Tao et al. (2014). "Deubiquitination and stabilization of IL-33 by USP21".PMID 25197364
  837. Chunqiao Liu et al. (2014). "Null and hypomorph Prickle1 alleles in mice phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a".PMID 25190059
  838. Jia Liu et al. (2014). "Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy".PMID 25172632
  839. Esther Garcia et al. (2014). "WIP is necessary for matrix invasion by breast cancer cells".PMID 25169059
  840. Melissa S Rotunno et al. (2014). "Identification of a misfolded region in superoxide dismutase 1 that is exposed in amyotrophic lateral sclerosis".PMID 25164820
  841. Shih Han Huang et al. (2014). "6-Dehydrogingerdione restrains lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages".PMID 25162585
  842. Maoyu Peng et al. (2014). "PTK6/BRK is expressed in the normal mammary gland and activated at the plasma membrane in breast tumors".PMID 25153721
  843. Vanessa Ginet et al. (2014). "Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic".PMID 25146903
  844. Hiroki Ishii et al. (2014). "Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms".PMID 25143390
  845. Weiping Wang et al. (2014). "The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium".PMID 25139956
  846. Carmela Passaro et al. (2015). "PARP inhibitor olaparib increases the oncolytic activity of dl922-947 in in vitro and in vivo model of anaplastic thyroid carcinoma".PMID 25139258
  847. Marius Dannappel et al. (2014). "RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis".PMID 25132550
  848. Paivi Sutinen et al. (2014). "Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation".PMID 25127374
  849. Tareck Rharass et al. (2014). "Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/β-catenin pathway activation to facilitate cell differentiation".PMID 25124032
  850. Min Xu et al. (2014). "An acetate switch regulates stress erythropoiesis".PMID 25108527
  851. Fengdong Cheng et al. (2014). "A novel role for histone deacetylase 6 in the regulation of the tolerogenic STAT3/IL-10 pathway in APCs".PMID 25108026
  852. Steven W James et al. (2014). "Restraint of the G2/M transition by the SR/RRM family mRNA shuttling binding protein SNXAHRB1 in Aspergillus nidulans".PMID 25104516
  853. Lilian Gonçalves dos Reis Bastos et al. (2014). "Progeny from irradiated colorectal cancer cells acquire an EMT-like phenotype and activate Wnt/β-catenin pathway".PMID 25103643
  854. Bamaprasad Dutta et al. (2014). "Quantitative profiling of chromatome dynamics reveals a novel role for HP1BP3 in hypoxia-induced oncogenesis".PMID 25100860
  855. Edmarcia Elisa de Souza et al. (2014). "Characterization of the human NEK7 interactome suggests catalytic and regulatory properties distinct from those of NEK6".PMID 25093993
  856. Quentin Bazot et al. (2014). "Epstein-Barr virus nuclear antigen 3A protein regulates CDKN2B transcription via interaction with MIZ-1".PMID 25092922
  857. A Vassilopoulos et al. (2015). "WEE1 murine deficiency induces hyper-activation of APC/C and results in genomic instability and carcinogenesis".PMID 25088202
  858. Michael E Werner et al. (2014). "Radial intercalation is regulated by the Par complex and the microtubule-stabilizing protein CLAMP/Spef1".PMID 25070955
  859. Patrícia M A Silva et al. (2014). "Dynein-dependent transport of spindle assembly checkpoint proteins off kinetochores toward spindle poles".PMID 25064841
  860. Dorthe H Larsen et al. (2014). "The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage".PMID 25064736
  861. Kazunobu Isogaya et al. (2014). "A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression".PMID 25060702
  862. Raquel Requejo-Aguilar et al. (2014). "PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1".PMID 25058378
  863. Corey L Smith et al. (2014). "A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli".PMID 25057015
  864. Cassandra Mostocotto et al. (2014). "Poly(ADP-ribosyl)ation is required to modulate chromatin changes at c-MYC promoter during emergence from quiescence".PMID 25047032
  865. Mariann Eilertsen et al. (2014). "Exorhodopsin and melanopsin systems in the pineal complex and brain at early developmental stages of Atlantic halibut (Hippoglossus hippoglossus)".PMID 25044160
  866. Seung Hyun Ro et al. (2014). "Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1".PMID 25040165
  867. B David Persson et al. (2014). "Respiratory syncytial virus can infect basal cells and alter human airway epithelial differentiation".PMID 25033192
  868. Brian J Galletta et al. (2014). "Drosophila pericentrin requires interaction with calmodulin for its function at centrosomes and neuronal basal bodies but not at sperm basal bodies".PMID 25031429
  869. Catherine Moorwood et al. (2014). "Absence of γ-sarcoglycan alters the response of p70S6 kinase to mechanical perturbation in murine skeletal muscle".PMID 25024843
  870. S K Mungamuri et al. (2015). "Ash2L enables P53-dependent apoptosis by favoring stable transcription pre-initiation complex formation on its pro-apoptotic target promoters".PMID 25023704
  871. A Patel et al. (2015). "MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways".PMID 25023700
  872. Gareth D Hyde et al. (2014). "Axl tyrosine kinase protects against tubulo-interstitial apoptosis and progression of renal failure in a murine model of chronic kidney disease and hyperphosphataemia".PMID 25019319
  873. Jose L Serrano-Velez et al. (2014). "Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons".PMID 25018700
  874. Giuseppe Lo Sasso et al. (2014). "Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer".PMID 25013930
  875. Andrew S Brohl et al. (2014). "The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation".PMID 25010205
  876. Kourtney P Nickerson et al. (2014). "The dietary polysaccharide maltodextrin promotes Salmonella survival and mucosal colonization in mice".PMID 25000398
  877. David J Elzi et al. (2014). "Proteomic Analysis of the EWS-Fli-1 Interactome Reveals the Role of the Lysosome in EWS-Fli-1 Turnover".PMID 24999758
  878. Raphael Bernier et al. (2014). "Disruptive CHD8 mutations define a subtype of autism early in development".PMID 24998929
  879. Simona Lodato et al. (2014). "Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons".PMID 24997765
  880. Jessica Hopkins et al. (2014). "Meiosis-specific cohesin component, Stag3 is essential for maintaining centromere chromatid cohesion, and required for DNA repair and synapsis between homologous chromosomes".PMID 24992337
  881. Frederic Gaillard et al. (2014). "Retinal distribution of Disabled-1 in a diurnal murine rodent, the Nile grass rat Arvicanthis niloticus".PMID 24992207
  882. Anne Fernandez-Vidal et al. (2014). "A role for DNA polymerase θ in the timing of DNA replication".PMID 24989122
  883. Cristina Manguan-García et al. (2014). "Expression of the genetic suppressor element 24.2 (GSE24.2) decreases DNA damage and oxidative stress in X-linked dyskeratosis congenita cells".PMID 24987982
  884. Georgios Chondrogiannis et al. (2014). "Cytokine effects on cell viability and death of prostate carcinoma cells".PMID 24982891
  885. Johannes C Kutten et al. (2015). "Decellularized tracheal extracellular matrix supports epithelial migration, differentiation, and function".PMID 24980864
  886. Armelle Natsuo Takeda et al. (2014). "Ubiquitin-dependent regulation of MEKK2/3-MEK5-ERK5 signaling module by XIAP and cIAP1".PMID 24975362
  887. Brian P O'Rourke et al. (2014). "Cep192 controls the balance of centrosome and non-centrosomal microtubules during interphase".PMID 24971877
  888. Ravi Ranjan et al. (2014). "The transcription factor nuclear factor of activated T cells c3 modulates the function of macrophages in sepsis".PMID 24970700
  889. Joana Fernandes et al. (2014). "In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons".PMID 24960035
  890. Chun Kim et al. (2014). "Epidermal p65/NF-κB signalling is essential for skin carcinogenesis".PMID 24952939
  891. Lila G Glotfelty et al. (2014). "Enteropathogenic E. coli effectors EspG1/G2 disrupt microtubules, contribute to tight junction perturbation and inhibit restoration".PMID 24948117
  892. Ieva Antanavičiūtė et al. (2014). "Long-distance communication between laryngeal carcinoma cells".PMID 24945745
  893. Weimin Qiu et al. (2014). "miR-141-3p inhibits human stromal (mesenchymal) stem cell proliferation and differentiation".PMID 24937190
  894. Dae In Kim et al. (2014). "Probing nuclear pore complex architecture with proximity-dependent biotinylation".PMID 24927568
  895. Wenjing Tao et al. (2014). "c-Abl activates janus kinase 2 in normal hematopoietic cells".PMID 24923444
  896. Qiang Liu et al. (2014). "Cyclin D1 and C/EBPβ LAP1 operate in a common pathway to promote mammary epithelial cell differentiation".PMID 24912680
  897. Kenza Mamouni et al. (2014). "RhoB promotes γH2AX dephosphorylation and DNA double-strand break repair".PMID 24912678
  898. M H Premkumar et al. (2014). "Argininosuccinate lyase in enterocytes protects from development of necrotizing enterocolitis".PMID 24904080
  899. Pil Soo Sung et al. (2014). "Hepatitis C virus entry is impaired by claudin-1 downregulation in diacylglycerol acyltransferase-1-deficient cells".PMID 24899196
  900. Roshan L Shrestha et al. (2014). "TAO1 kinase maintains chromosomal stability by facilitating proper congression of chromosomes".PMID 24898139
  901. Yoshinori Tsurusaki et al. (2014). "De novo SOX11 mutations cause Coffin-Siris syndrome".PMID 24886874
  902. Mariella Mannino et al. (2014). "Differential sensitivity of Glioma stem cells to Aurora kinase A inhibitors: implications for stem cell mitosis and centrosome dynamics".PMID 24879067
  903. Kimberly A Fernandes et al. (2014). "DLK-dependent signaling is important for somal but not axonal degeneration of retinal ganglion cells following axonal injury".PMID 24878510
  904. Anastasia Mashukova et al. (2014). "The BAG-1 isoform BAG-1M regulates keratin-associated Hsp70 chaperoning of aPKC in intestinal cells during activation of inflammatory signaling".PMID 24876225
  905. Fraser Soares et al. (2014). "The mitochondrial protein NLRX1 controls the balance between extrinsic and intrinsic apoptosis".PMID 24867956
  906. Alleene V Strickland et al. (2014). "Characterization of the mitofusin 2 R94W mutation in a knock-in mouse model".PMID 24862862
  907. Michel Kielar et al. (2014). "Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human".PMID 24859200
  908. Y H Ling et al. (2014). "CCHCR1 interacts with EDC4, suggesting its localization in P-bodies".PMID 24858563
  909. Midori Iida et al. (2014). "Transient suppression of AHR activity in early red seabream embryos does not prevent the disruption of peripheral nerve projection by 2,3,7,8-tetrachlorodibenzo-p-dioxin".PMID 24858342
  910. Guilian Tian et al. (2014). "Retrograde intraciliary trafficking of opsin during the maintenance of cone-shaped photoreceptor outer segments of Xenopus laevis".PMID 24855015
  911. Nathan J Godde et al. (2014). "Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland".PMID 24852022
  912. Ren Ke Li et al. (2014). "Iqcg is essential for sperm flagellum formation in mice".PMID 24849454
  913. Serge Paschoud et al. (2014). "PLEKHA7 modulates epithelial tight junction barrier function".PMID 24843844
  914. Young Eun Choi et al. (2014). "MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability".PMID 24843000
  915. Frances Ka Yan Cheong et al. (2014). "Dynactin integrity depends upon direct binding of dynamitin to Arp1".PMID 24829381
  916. Friederike Hans et al. (2014). "UBE2E ubiquitin-conjugating enzymes and ubiquitin isopeptidase Y regulate TDP-43 protein ubiquitination".PMID 24825905
  917. Alvaro P Barrios et al. (2014). "Differential properties of transcriptional complexes formed by the CoREST family".PMID 24820421
  918. Kyoko Kitagawa et al. (2014). "Fbw7 targets GATA3 through CDK2-dependent proteolysis and contributes to regulation of T-cell development".PMID 24820417
  919. Yezi Zhu et al. (2014). "Interleukin-6 induces neuroendocrine differentiation (NED) through suppression of RE-1 silencing transcription factor (REST)".PMID 24819501
  920. Eszter Zavodszky et al. (2014). "Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy".PMID 24819384
  921. Gina Shaw-Hallgren et al. (2014). "Association of nuclear-localized Nemo-like kinase with heat-shock protein 27 inhibits apoptosis in human breast cancer cells".PMID 24816797
  922. Sigrid B Thoresen et al. (2014). "ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4".PMID 24814515
  923. Jinfeng Liu et al. (2014). "Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer".PMID 24807215
  924. Daniel Schulz et al. (2014). "Rpb4 subunit functions mainly in mRNA synthesis by RNA polymerase II".PMID 24802753
  925. Li Ma et al. (2014). "Identification of small ubiquitin-like modifier substrates with diverse functions using the Xenopus egg extract system".PMID 24797264
  926. Mi Young Lee et al. (2014). "E2F activators signal and maintain centrosome amplification in breast cancer cells".PMID 24797070
  927. Naoyuki Okada et al. (2014). "CDK-dependent phosphorylation of Alp7-Alp14 (TACC-TOG) promotes its nuclear accumulation and spindle microtubule assembly".PMID 24790093
  928. Tomoaki Nakada et al. (2014). "Expression of G proteins in the olfactory receptor neurons of the newt Cynops pyrrhogaster: their unique projection into the olfactory bulbs".PMID 24771457
  929. José E San Miguel-Ruiz et al. (2014). "The role of Arp2/3 in growth cone actin dynamics and guidance is substrate dependent".PMID 24760849
  930. Jessica S Nikitczuk et al. (2014). "N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo".PMID 24753442
  931. Jenni H E Mäki-Jouppila et al. (2014). "Centmitor-1, a novel acridinyl-acetohydrazide, possesses similar molecular interaction field and antimitotic cellular phenotype as rigosertib, on 01910.Na".PMID 24748653
  932. Masamitsu Negishi et al. (2014). "A new lncRNA, APTR, associates with and represses the CDKN1A/p21 promoter by recruiting polycomb proteins".PMID 24748121
  933. Sireesha V Garimella et al. (2014). "Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening".PMID 24745479
  934. Stephen J Hayes et al. (2014). "Immunohistochemical assessment of NY-ESO-1 expression in esophageal adenocarcinoma resection specimens".PMID 24744590
  935. Pierre Bon et al. (2014). "Fast label-free cytoskeletal network imaging in living mammalian cells".PMID 24739158
  936. Jessica M Huszar et al. (2014). "MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells".PMID 24726732
  937. Kei Ichi Ishikawa et al. (2014). "P150glued-associated disorders are caused by activation of intrinsic apoptotic pathway".PMID 24722468
  938. Naoki Watanabe et al. (2014). "Flavan-3-ol fraction from cocoa powder promotes mitochondrial biogenesis in skeletal muscle in mice".PMID 24708519
  939. Ryohei Yamamoto et al. (2014). "Hypersensitivity of mouse NEIL1-knockdown cells to hydrogen peroxide during S phase".PMID 24706997
  940. Zahia Touat-Hamici et al. (2014). "Selective up-regulation of human selenoproteins in response to oxidative stress".PMID 24706762
  941. Gustaf E Rydell et al. (2014). "Rab12 localizes to Shiga toxin-induced plasma membrane invaginations and controls toxin transport".PMID 24703428
  942. Amaia M Erdozain et al. (2014). "Alcohol-related brain damage in humans".PMID 24699688
  943. X Y Han et al. (2014). "Decelerated transport and its mechanism of 2,5-hexanedione on middle-molecular-weight neurofilament in rat dorsal root ganglia cells".PMID 24699225
  944. Timo E F Kuijt et al. (2014). "Conditional targeting of MAD1 to kinetochores is sufficient to reactivate the spindle assembly checkpoint in metaphase".PMID 24695965
  945. Manjula Karpurapu et al. (2014). "Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation".PMID 24695324
  946. Makoto Kuwahara et al. (2014). "The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis".PMID 24694524
  947. Caroline Daems et al. (2014). "MEF2 is restricted to the male gonad and regulates expression of the orphan nuclear receptor NR4A1".PMID 24694307
  948. Yangfan P Liu et al. (2014). "Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators".PMID 24691443
  949. Alexa Kiss et al. (2014). "Nuclear motility in glioma cells reveals a cell-line dependent role of various cytoskeletal components".PMID 24691067
  950. Hiroshi Sakane et al. (2014). "α-Taxilin interacts with sorting nexin 4 and participates in the recycling pathway of transferrin receptor".PMID 24690921
  951. Sky K Feuer et al. (2014). "Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis".PMID 24684304
  952. Laura Castellani et al. (2014). "Exercise training protects against an acute inflammatory insult in mouse epididymal adipose tissue".PMID 24674860
  953. Jessie M Sutherland et al. (2014). "Developmental expression of Musashi-1 and Musashi-2 RNA-binding proteins during spermatogenesis: analysis of the deleterious effects of dysregulated expression".PMID 24671879
  954. Vanessa Dubois et al. (2014). "A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle".PMID 24671706
  955. Yutaka Hashimoto et al. (2014). "Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia".PMID 24668814
  956. Jeremy T T Kennard et al. (2014). "Redistribution of ionotropic glutamate receptors detected by laser microdissection of the rat dentate gyrus 48 h following LTP induction in vivo".PMID 24667777
  957. Pao Lin Kuo et al. (2014). "STK31 is a cell-cycle regulated protein that contributes to the tumorigenicity of epithelial cancer cells".PMID 24667656
  958. Sherri A Rennoll et al. (2014). "Targeted repression of AXIN2 and MYC gene expression using designer TALEs".PMID 24667606
  959. Yagmur Turgay et al. (2014). "SUN proteins facilitate the removal of membranes from chromatin during nuclear envelope breakdown".PMID 24662567
  960. Jinping Jia et al. (2014). "CLPTM1L promotes growth and enhances aneuploidy in pancreatic cancer cells".PMID 24648346
  961. Manuel Gunkel et al. (2014). "Integrated and correlative high-throughput and super-resolution microscopy".PMID 24647616
  962. Charles S Cobbs et al. (2014). "Methods for the detection of cytomegalovirus in glioblastoma cells and tissues".PMID 24639224
  963. Denise K Reaves et al. (2014). "The role of lipolysis stimulated lipoprotein receptor in breast cancer and directing breast cancer cell behavior".PMID 24637461
  964. O Gilan et al. (2015). "PR55α-containing protein phosphatase 2A complexes promote cancer cell migration and invasion through regulation of AP-1 transcriptional activity".PMID 24632621
  965. Kazue Kakiuchi et al. (2014). "Cell-surface DEAD-box polypeptide 4-immunoreactive cells and gonocytes are two distinct populations in postnatal porcine testes".PMID 24621921
  966. Jacquelin A Crouse et al. (2014). "Distinct functions for IFT140 and IFT20 in opsin transport".PMID 24619649
  967. Rafah Mackeh et al. (2014). "Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate α-tubulin acetyltransferase-1 (αTAT-1/MEC-17)-dependent microtubule hyperacetylation during cell stress".PMID 24619423
  968. Matthew S Waitkus et al. (2014). "Signal integration and gene induction by a functionally distinct STAT3 phosphoform".PMID 24615012
  969. Gunes Uzer et al. (2014). "Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro".PMID 24614887
  970. Sveva Romani et al. (2014). "The ciliary proteins Meckelin and Jouberin are required for retinoic acid-dependent neural differentiation of mouse embryonic stem cells".PMID 24613594
  971. Thilo J Witsch et al. (2014). "Transglutaminase 2: a new player in bronchopulmonary dysplasia?".PMID 24603819
  972. Paul Fitzpatrick et al. (2014). "C-terminal COOH of integrin β1 is necessary for β1 association with the kindlin-2 adapter protein".PMID 24599960
  973. John A Follit et al. (2014). "Arf4 is required for Mammalian development but dispensable for ciliary assembly".PMID 24586199
  974. Anne M Meehan et al. (2014). "A cyclophilin homology domain-independent role for Nup358 in HIV-1 infection".PMID 24586169
  975. Ulrike Pannasch et al. (2014). "Connexin 30 sets synaptic strength by controlling astroglial synapse invasion".PMID 24584052
  976. Dominique Herve et al. (2014). "Loss of α1β1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia".PMID 24581742
  977. Lei Gu et al. (2014). "Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation".PMID 24577942
  978. Deborah A Buffington et al. (2012). "Bioartificial Renal Epithelial Cell System (BRECS): A Compact, Cryopreservable Extracorporeal Renal Replacement Device".PMID 24575327
  979. Koji Yamano et al. (2014). "Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy".PMID 24569479
  980. Katsuyuki Imamura et al. (2014). "Human immunodeficiency virus type 1 enhancer-binding protein 3 is essential for the expression of asparagine-linked glycosylation 2 in the regulation of osteoblast and chondrocyte differentiation".PMID 24563464
  981. Khalid Khan et al. (2014). "Splicing inhibition induces gene expression through canonical NF-κB pathway and extracellular signal-related kinase activation".PMID 24561197
  982. Vânia Gonçalves et al. (2014). "Phosphorylation of SRSF1 by SRPK1 regulates alternative splicing of tumor-related Rac1b in colorectal cells".PMID 24550521
  983. Masaya Uno et al. (2014). "NF-κB inducing kinase, a central signaling component of the non-canonical pathway of NF-κB, contributes to ovarian cancer progression".PMID 24533079
  984. Yufeng Wang et al. (2014). "Proteomic analysis indicates that overexpression and nuclear translocation of lactoylglutathione lyase (GLO1) is associated with tumor progression in murine fibrosarcoma".PMID 24532130
  985. Qin Liang et al. (2014). "A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses".PMID 24531842
  986. W Nakajima et al. (2014). "Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer".PMID 24525728
  987. Giovanni Nassa et al. (2014). "Post-transcriptional regulation of human breast cancer cell proteome by unliganded estrogen receptor β via microRNAs".PMID 24525454
  988. Pedro Sousa-Victor et al. (2014). "Geriatric muscle stem cells switch reversible quiescence into senescence".PMID 24522534
  989. Damian Ryszawy et al. (2014). "Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer".PMID 24503443
  990. Marta Martínez-Díez et al. (2014). "PM060184, a new tubulin binding agent with potent antitumor activity including P-glycoprotein over-expressing tumors".PMID 24486569
  991. Xianpeng Liu et al. (2014). "Downregulation of Smurf2, a tumor-suppressive ubiquitin ligase, in triple-negative breast cancers: involvement of the RB-microRNA axis".PMID 24485087
  992. V Pavet et al. (2014). "Plasminogen activator urokinase expression reveals TRAIL responsiveness and supports fractional survival of cancer cells".PMID 24481457
  993. Gang Zhai et al. (2014). "Sept6 is required for ciliogenesis in Kupffer's vesicle, the pronephros, and the neural tube during early embryonic development".PMID 24469395
  994. Florencia Facciuto et al. (2014). "Human papillomavirus (HPV)-18 E6 oncoprotein interferes with the epithelial cell polarity Par3 protein".PMID 24462519
  995. Joshua K Salabei et al. (2014). "Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis".PMID 24457333
  996. Yvette C Wong et al. (2014). "The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation".PMID 24453320
  997. Angelica Vittori et al. (2014). "Copy-number variation of the neuronal glucose transporter gene SLC2A3 and age of onset in Huntington's disease".PMID 24452335
  998. Ana I Arroyo et al. (2014). "Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model".PMID 24448491
  999. Hirotaka Suga et al. (2014). "Tracking the elusive fibrocyte: identification and characterization of collagen-producing hematopoietic lineage cells during murine wound healing".PMID 24446236
  1000. Matthew L Turner et al. (2014). "Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6".PMID 24437488
  1001. Yan Cheng et al. (2014). "XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple-negative breast cancer".PMID 24431073
  1002. Eva Potthoff et al. (2014). "Toward a rational design of surface textures promoting endothelialization".PMID 24428164
  1003. Vasiliki S Lalioti et al. (2014). "Sorcin links calcium signaling to vesicle trafficking, regulates Polo-like kinase 1 and is necessary for mitosis".PMID 24427308
  1004. Elangovan Vellaichamy et al. (2014). "Genetically altered mutant mouse models of guanylyl cyclase/natriuretic peptide receptor-A exhibit the cardiac expression of proinflammatory mediators in a gene-dose-dependent manner".PMID 24424043
  1005. Muhammad Imtiaz Ashraf et al. (2014). "A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury".PMID 24423080
  1006. Boubou Diagouraga et al. (2014). "Motor-driven marginal band coiling promotes cell shape change during platelet activation".PMID 24421335
  1007. Alice E Zemljic-Harpf et al. (2014). "Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes".PMID 24413171
  1008. C Xu et al. (2015). "Regulation of Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase".PMID 24413081
  1009. Yu Wang et al. (2014). "Regulation of TET protein stability by calpains".PMID 24412366
  1010. Adám Sike et al. (2014). "mRNA levels of related Abcb genes change opposite to each other upon histone deacetylase inhibition in drug-resistant rat hepatoma cells".PMID 24409311
  1011. Narimon Honarpour et al. (2014). "F-box protein FBXL16 binds PP2A-B55α and regulates differentiation of embryonic stem cells along the FLK1+ lineage".PMID 24390425
  1012. Fabrizio D'Anselmi et al. (2013). "Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines".PMID 24386275
  1013. Gang Yao et al. (2014). "Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-Pacsin 2-N-Wasp complex".PMID 24385601
  1014. Shin Miura et al. (2014). "CUB-domain containing protein 1 represses the epithelial phenotype of pancreatic cancer cells".PMID 24384474
  1015. Marion Manil-Segalén et al. (2014). "Interactions between endosomal maturation and autophagy: analysis of ESCRT machinery during Caenorhabditis elegans development".PMID 24359950
  1016. Yen Ju Chen et al. (2013). "Global assessment of Antrodia cinnamomea-induced microRNA alterations in hepatocarcinoma cells".PMID 24358224
  1017. Maren Klinger et al. (2014). "The novel centriolar satellite protein SSX2IP targets Cep290 to the ciliary transition zone".PMID 24356449
  1018. Rachael E Stebbing et al. (2014). "An ITAM in a nonenveloped virus regulates activation of NF-κB, induction of beta interferon, and viral spread".PMID 24352448
  1019. Vibha Shrivastava et al. (2014). "Cigarette smoke affects posttranslational modifications and inhibits capacitation-induced changes in human sperm proteins".PMID 24345728
  1020. Michel van Weeghel et al. (2014). "Identification and characterization of Eci3, a murine kidney-specific Δ3,Δ2-enoyl-CoA isomerase".PMID 24344334
  1021. A Li et al. (2015). "SALL4 is a new target in endometrial cancer".PMID 24336327
  1022. Neelam Sharma-Walia et al. (2014). "The Kaposi's sarcoma-associated herpesvirus (KSHV)-induced 5-lipoxygenase-leukotriene B4 cascade plays key roles in KSHV latency, monocyte recruitment, and lipogenesis".PMID 24335295
  1023. Devendra Kumar Maurya et al. (2014). "Developmental expression of the calcium-activated chloride channels TMEM16A and TMEM16B in the mouse olfactory epithelium".PMID 24318978
  1024. Ines Sanchez-Roman et al. (2014). "Independent and additive effects of atenolol and methionine restriction on lowering rat heart mitochondria oxidative stress".PMID 24318105
  1025. Alexis Tapanes-Castillo et al. (2014). "Characterization of a novel primary culture system of adult zebrafish brainstem cells".PMID 24316294
  1026. Joshua E Basford et al. (2013). "Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice".PMID 24312398
  1027. Brendan A S McIntyre et al. (2014). "Expansive generation of functional airway epithelium from human embryonic stem cells".PMID 24300555
  1028. Sherri A Rennoll et al. (2014). "Nuclear AXIN2 represses MYC gene expression".PMID 24299953
  1029. Shi Hao Tan et al. (2014). "Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway".PMID 24296537
  1030. Xin Song et al. (2013). "H. pylori-encoded CagA disrupts tight junctions and induces invasiveness of AGS gastric carcinoma cells via Cdx2-dependent targeting of Claudin-2".PMID 24287273
  1031. Jeanne N Jodoin et al. (2013). "The snRNA-processing complex, Integrator, is required for ciliogenesis and dynein recruitment to the nuclear envelope via distinct mechanisms".PMID 24285713
  1032. Chih Wen Chu et al. (2013). "Lulu regulates Shroom-induced apical constriction during neural tube closure".PMID 24282618
  1033. Gro Elise Rødland et al. (2014). "Crosstalk between the Tor and Gcn2 pathways in response to different stresses".PMID 24280780
  1034. Rebecca A Boisvert et al. (2013). "Coordinate nuclear targeting of the FANCD2 and FANCI proteins via a FANCD2 nuclear localization signal".PMID 24278431
  1035. M G Alves et al. (2014). "Metformin and male reproduction: effects on Sertoli cell metabolism".PMID 24261663
  1036. Lucy S Williams et al. (2014). "The auto-inhibitory domain and ATP-independent microtubule-binding region of Kinesin heavy chain are major functional domains for transport in the Drosophila germline".PMID 24257625
  1037. Christopher J Del Nagro et al. (2014). "Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death".PMID 24247149
  1038. Marta Capannolo et al. (2014). "Nitric oxide synthase inhibition reverts muscarinic receptor down-regulation induced by pilocarpine- and kainic acid-evoked seizures in rat fronto-parietal cortex".PMID 24246145
  1039. Kung Chao Chang et al. (2013). "Ran GTPase-activating protein 1 is a therapeutic target in diffuse large B-cell lymphoma".PMID 24223200
  1040. Xin Liu et al. (2013). "The p38-interacting protein (p38IP) regulates G2/M progression by promoting α-tubulin acetylation via inhibiting ubiquitination-induced degradation of the acetyltransferase GCN5".PMID 24220028
  1041. A V Leonard et al. (2014). "Changes in substance P and NK1 receptor immunohistochemistry following human spinal cord injury".PMID 24216617
  1042. L J Dawes et al. (2014). "Interactions between lens epithelial and fiber cells reveal an intrinsic self-assembly mechanism".PMID 24211762
  1043. Akannsha Singh et al. (2014). "GSI promotes vincristine-induced apoptosis by enhancing multi-polar spindle formation".PMID 24200971
  1044. Ya Wen Chen et al. (2013). "Differentiated epithelial- and mesenchymal-like phenotypes in subcutaneous mouse xenografts using diffusion weighted-magnetic resonance imaging".PMID 24196357
  1045. S A H de Poot et al. (2014). "Granzyme M targets topoisomerase II alpha to trigger cell cycle arrest and caspase-dependent apoptosis".PMID 24185622
  1046. Julie J Loiselle et al. (2014). "Differential downregulation of Rbm5 and Rbm10 during skeletal and cardiac differentiation".PMID 24178303
  1047. Patrick Eldin et al. (2014). "Vpr expression abolishes the capacity of HIV-1 infected cells to repair uracilated DNA".PMID 24178031
  1048. A Soledad Coria et al. (2014). "Regulation of PKD1-mediated Golgi to cell surface trafficking by Gαq subunits".PMID 24175919
  1049. David A Proia et al. (2014). "Preclinical activity profile and therapeutic efficacy of the HSP90 inhibitor ganetespib in triple-negative breast cancer".PMID 24173541
  1050. Eileen L Whiteman et al. (2014). "Crumbs3 is essential for proper epithelial development and viability".PMID 24164893
  1051. B de Craene et al. (2014). "Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential".PMID 24162662
  1052. Periasamy Ramyaa et al. (2014). "Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells - up regulation of Nrf2 expression and down regulation of NF-κB and COX-2".PMID 24161694
  1053. Alan Cochrane et al. (2014). "HIV-1 Rev function and RNA nuclear-cytoplasmic export".PMID 24158817
  1054. Zheng Chen et al. (2014). "SH2B1 in β-cells regulates glucose metabolism by promoting β-cell survival and islet expansion".PMID 24150605
  1055. Esperanza Garcia et al. (2014). "S-allyl cysteine protects against MPTP-induced striatal and nigral oxidative neurotoxicity in mice: participation of Nrf2".PMID 24147739
  1056. M Setyarani et al. (2014). "High dietary taurine inhibits myocardial apoptosis during an atherogenic diet: association with increased myocardial HSP70 and HSF-1 but not caspase 3".PMID 24146099
  1057. Paveenarat Aukkarasongsup et al. (2013). "Periostin inhibits hypoxia-induced apoptosis in human periodontal ligament cells via TGF-β signaling".PMID 24129188
  1058. Dennis K Persson et al. (2014). "Brain anatomy of the marine tardigrade Actinarctus doryphorus (Arthrotardigrada)".PMID 24127309
  1059. Ji Seon Lee et al. (2014). "Off-target response of a Wip1 chemical inhibitor in skin keratinocytes".PMID 24126074
  1060. Koji Yamano et al. (2013). "PINK1 is degraded through the N-end rule pathway".PMID 24121706
  1061. C Hashizume et al. (2013). "Down-modulation of nucleoporin RanBP2/Nup358 impaired chromosomal alignment and induced mitotic catastrophe".PMID 24113188
  1062. Chieko Hashizume et al. (2013). "Nucleoporin Nup62 maintains centrosome homeostasis".PMID 24107630
  1063. Christine M DeGennaro et al. (2013). "Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast".PMID 24100010
  1064. Waldemir F de Souza et al. (2013). "Claudin-3 overexpression increases the malignant potential of colorectal cancer cells: roles of ERK1/2 and PI3K-Akt as modulators of EGFR signaling".PMID 24069372
  1065. M Egbert et al. (2014). "The matricellular protein periostin contributes to proper collagen function and is downregulated during skin aging".PMID 24055232
  1066. Theodore G Drivas et al. (2013). "Disruption of CEP290 microtubule/membrane-binding domains causes retinal degeneration".PMID 24051377
  1067. Seong Ho Jo et al. (2013). "Txnip contributes to impaired glucose tolerance by upregulating the expression of genes involved in hepatic gluconeogenesis in mice".PMID 24037087
  1068. Patricia Pazos et al. (2013). "Interleukin 6 deficiency modulates the hypothalamic expression of energy balance regulating peptides during pregnancy in mice".PMID 24015235
  1069. Aida Martinez-Sanchez et al. (2013). "miR-1247 functions by targeting cartilage transcription factor SOX9".PMID 24014021
  1070. Elisabetta Kuhn et al. (2013). "Ovarian Brenner tumour: a morphologic and immunohistochemical analysis suggesting an origin from fallopian tube epithelium".PMID 24012099
  1071. Masaki Hosogane et al. (2013). "Ras-induced changes in H3K27me3 occur after those in transcriptional activity".PMID 24009517
  1072. Kathleen E DelGiorno et al. (2014). "Identification and manipulation of biliary metaplasia in pancreatic tumors".PMID 23999170
  1073. Youngjo Kim et al. (2013). "Generation and characterization of a conditional deletion allele for Lmna in mice".PMID 23998933
  1074. Xiaohua Yi et al. (2013). "Reversal of obesity-induced hypertriglyceridemia by (R)-α-lipoic acid in ZDF (fa/fa) rats".PMID 23994635
  1075. Budd A Tucker et al. (2013). "Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa".PMID 23991284
  1076. Z Chen et al. (2014). "Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells".PMID 23975434
  1077. Yuyan Chen et al. (2013). "Tumor protein D52 represents a negative regulator of ATM protein levels".PMID 23974097
  1078. Igor Shats et al. (2013). "FOXO transcription factors control E2F1 transcriptional specificity and apoptotic function".PMID 23966291
  1079. Juu Chin Lu et al. (2013). "Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor α-induced lipolysis in 3T3-L1 adipocytes".PMID 23951179
  1080. Ee Phie Tan et al. (2013). "O-linked N-acetylglucosamine cycling regulates mitotic spindle organization".PMID 23946484
  1081. Yan Zhang et al. (2014). "BBS mutations modify phenotypic expression of CEP290-related ciliopathies".PMID 23943788
  1082. Alexandra E Schreiner et al. (2014). "Laminar and subcellular heterogeneity of GLAST and GLT-1 immunoreactivity in the developing postnatal mouse hippocampus".PMID 23939750
  1083. Manish Kumar et al. (2013). "NF-κB regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells".PMID 23935876
  1084. Carolina Gonzalez-Silva et al. (2013). "Ca2+-activated Cl- channels of the ClCa family express in the cilia of a subset of rat olfactory sensory neurons".PMID 23874937
  1085. Julie K Horton et al. (2013). "Preventing oxidation of cellular XRCC1 affects PARP-mediated DNA damage responses".PMID 23871146
  1086. John Mach et al. (2014). "The effect of aging on acetaminophen pharmacokinetics, toxicity and Nrf2 in Fischer 344 rats".PMID 23863315
  1087. Kenya Yuki et al. (2013). "Neuroprotective role of superoxide dismutase 1 in retinal ganglion cells and inner nuclear layer cells against N-methyl-d-aspartate-induced cytotoxicity".PMID 23856406
  1088. Cecilia M Newton et al. (2014). "Regional innervation of the heart in the goldfish, Carassius auratus: a confocal microscopy study".PMID 23853005
  1089. T Alfonso-Pérez et al. (2014). "Cytoplasmic interaction of the tumour suppressor protein hSNF5 with dynamin-2 controls endocytosis".PMID 23851497
  1090. J A Collins et al. (2013). "Oxygen and pH-sensitivity of human osteoarthritic chondrocytes in 3-D alginate bead culture system".PMID 23850530
  1091. Rose Boutros et al. (2013). "CDC25B overexpression stabilises centrin 2 and promotes the formation of excess centriolar foci".PMID 23840880
  1092. Laura E O'Dell et al. (2014). "Enhanced nicotine self-administration and suppressed dopaminergic systems in a rat model of diabetes".PMID 23834715
  1093. R van Boxtel et al. (2013). "FOXP1 acts through a negative feedback loop to suppress FOXO-induced apoptosis".PMID 23832113
  1094. Ling Zhang et al. (2013). "RIT2, a neuron-specific small guanosine triphosphatase, is expressed in retinal neuronal cells and its promoter is modulated by the POU4 transcription factors".PMID 23805044
  1095. Seok Hyung Kim et al. (2013). "Multi-organ abnormalities and mTORC1 activation in zebrafish model of multiple acyl-CoA dehydrogenase deficiency".PMID 23785301
  1096. Monique N H Luijten et al. (2013). "Birt-Hogg-Dube syndrome is a novel ciliopathy".PMID 23784378
  1097. Xiao Tian et al. (2013). "High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat".PMID 23783513
  1098. Luigi Maddaluno et al. (2013). "EndMT contributes to the onset and progression of cerebral cavernous malformations".PMID 23748444
  1099. Wenbo Li et al. (2013). "Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation".PMID 23728302
  1100. Matthias Samwer et al. (2013). "The nuclear F-actin interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic cytokinesis".PMID 23727888
  1101. Junya Tomida et al. (2013). "A novel interplay between the Fanconi anemia core complex and ATR-ATRIP kinase during DNA cross-link repair".PMID 23723247
  1102. Chia Yee Tan et al. (2013). "mTORC1 dependent regulation of REDD1 protein stability".PMID 23717519
  1103. Victoria Kolupaeva et al. (2013). "The B55α regulatory subunit of protein phosphatase 2A mediates fibroblast growth factor-induced p107 dephosphorylation and growth arrest in chondrocytes".PMID 23716589
  1104. Tian Ma et al. (2013). "Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer".PMID 23686769
  1105. Camille Brochier et al. (2013). "Specific acetylation of p53 by HDAC inhibition prevents DNA damage-induced apoptosis in neurons".PMID 23678107
  1106. Chunyan Dai et al. (2013). "Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability--an implication in aneuploid human tumors".PMID 23675453
  1107. Marta Przewoźniak et al. (2013). "Adhesion proteins--an impact on skeletal myoblast differentiation".PMID 23671573
  1108. Nils Grabole et al. (2013). "Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation".PMID 23670199
  1109. Christopher Boehlke et al. (2013). "Kif3a guides microtubular dynamics, migration and lumen formation of MDCK cells".PMID 23658710
  1110. Miyuki Matsuda et al. (2013). "Upstream stimulatory factors 1 and 2 mediate the transcription of angiotensin II binding and inhibitory protein".PMID 23653383
  1111. Katrin J Svensson et al. (2013). "Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1".PMID 23653359
  1112. Chiara Scaramuzzino et al. (2013). "Protein arginine methyltransferase 1 and 8 interact with FUS to modify its sub-cellular distribution and toxicity in vitro and in vivo".PMID 23620769
  1113. Ginevra Licandro et al. (2013). "The NLRP3 inflammasome affects DNA damage responses after oxidative and genotoxic stress in dendritic cells".PMID 23619996
  1114. A Moreno et al. (2014). "ING4 regulates a secretory phenotype in primary fibroblasts with dual effects on cell proliferation and tumor growth".PMID 23604125
  1115. Teresa Rodriguez-Martin et al. (2013). "Tau phosphorylation affects its axonal transport and degradation".PMID 23601672
  1116. Chia Yee Tan et al. (2013). "Destabilization of CDC6 upon DNA damage is dependent on neddylation but independent of Cullin E3 ligases".PMID 23597704
  1117. Maey Gharbiah et al. (2013). "Analysis of ciliary band formation in the mollusc Ilyanassa obsoleta".PMID 23592252
  1118. Xiaoran Li et al. (2013). "Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair".PMID 23591390
  1119. Jozsef Gal et al. (2013). "HDAC6 regulates mutant SOD1 aggregation through two SMIR motifs and tubulin acetylation".PMID 23580651
  1120. Bettina Maier et al. (2013). "The novel actin/focal adhesion-associated protein MISP is involved in mitotic spindle positioning in human cells".PMID 23574715
  1121. Antoine Reginensi et al. (2013). "Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development".PMID 23555292
  1122. Tomonari Hirano et al. (2013). "DNA damage response in male gametes of Cyrtanthus mackenii during pollen tube growth".PMID 23550213
  1123. Min Luo et al. (2013). "NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells".PMID 23533168
  1124. Fernando Gómez-Herreros et al. (2013). "TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo".PMID 23505375
  1125. Anna C Navis et al. (2013). "Effects of dual targeting of tumor cells and stroma in human glioblastoma xenografts with a tyrosine kinase inhibitor against c-MET and VEGFR2".PMID 23484006
  1126. Ann N Behrens et al. (2013). "Nkx2-5 mediates differential cardiac differentiation through interaction with Hoxa10".PMID 23477547
  1127. Tal Pe'er et al. (2013). "Gas2l3, a novel constriction site-associated protein whose regulation is mediated by the APC/C Cdh1 complex".PMID 23469016
  1128. Michael K Dush et al. (2013). "Jun N-terminal kinase maintains tissue integrity during cell rearrangement in the gut".PMID 23462475
  1129. Marianna Trakala et al. (2013). "Aurora B prevents delayed DNA replication and premature mitotic exit by repressing p21(Cip1)".PMID 23428904
  1130. Chia Yee Tan et al. (2013). "Post-translational regulation of mTOR complex 1 in hypoxia and reoxygenation".PMID 23416465
  1131. Jordan Lang et al. (2013). "Adenomatous polyposis coli regulates oligodendroglial development".PMID 23407966
  1132. Karen M Imbalzano et al. (2013). "Nuclear shape changes are induced by knockdown of the SWI/SNF ATPase BRG1 and are independent of cytoskeletal connections".PMID 23405182
  1133. Yoshimi Endo Greer et al. (2013). "Atypical protein kinase Cι is required for Wnt3a-dependent neurite outgrowth and binds to phosphorylated dishevelled 2".PMID 23396968
  1134. Hyung Jin Kim et al. (2013). "Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development".PMID 23393595
  1135. David M Taylor et al. (2013). "MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition".PMID 23392662
  1136. Rayner Rodriguez-Diaz et al. (2013). "Novel approaches to studying the role of innervation in the biology of pancreatic islets".PMID 23391238
  1137. Monique T Barakat et al. (2013). "Kif3a is necessary for initiation and maintenance of medulloblastoma".PMID 23389290
  1138. Lucy J Dawes et al. (2013). "Wnt-frizzled signaling is part of an FGF-induced cascade that promotes lens fiber differentiation".PMID 23385791
  1139. Gary P Brennan et al. (2013). "Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo".PMID 23359526
  1140. Kapil Sirohi et al. (2013). "M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells".PMID 23357852
  1141. Carolyn Ott et al. (2012). "Primary cilia utilize glycoprotein-dependent adhesion mechanisms to stabilize long-lasting cilia-cilia contacts".PMID 23351752
  1142. Marc August Willaredt et al. (2012). "Multiple essential roles for primary cilia in heart development".PMID 23351706
  1143. Breeann N Brandhagen et al. (2013). "Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics".PMID 23351358
  1144. Yifan Wang et al. (2013). "Promoter hijack reveals pericentrin functions in mitosis and the DNA damage response".PMID 23324397
  1145. Elisa Carra et al. (2013). "Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures".PMID 23324350
  1146. Xinrong Peng et al. (2013). "Conversion of rat embryonic stem cells into neural precursors in chemical-defined medium".PMID 23321306
  1147. Christine Zhiwen Hu et al. (2012). "The role of the cullin-5 e3 ubiquitin ligase in the regulation of insulin receptor substrate-1".PMID 23304509
  1148. Bo Gu et al. (2013). "CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo".PMID 23275552
  1149. Ivan Tattoli et al. (2012). "The bacterial and cellular determinants controlling the recruitment of mTOR to the Salmonella-containing vacuole".PMID 23259056
  1150. Wendy Scott Beane et al. (2013). "Bioelectric signaling regulates head and organ size during planarian regeneration".PMID 23250205
  1151. Ekaterina Bubenshchikova et al. (2012). "Wtip and Vangl2 are required for mitotic spindle orientation and cloaca morphogenesis".PMID 23213452
  1152. Ilaria Barone et al. (2012). "Environmental enrichment extends photoreceptor survival and visual function in a mouse model of retinitis pigmentosa".PMID 23209820
  1153. Alice C Newman et al. (2012). "TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signalling".PMID 23209807
  1154. Kaiyu Lei et al. (2012). "Progesterone acts via the nuclear glucocorticoid receptor to suppress IL-1β-induced COX-2 expression in human term myometrial cells".PMID 23209664
  1155. Chuan Dong Fan et al. (2013). "Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response".PMID 23195959
  1156. Laurent Jullien et al. (2013). "Eroded human telomeres are more prone to remain uncapped and to trigger a G2 checkpoint response".PMID 23193277
  1157. Min Gao et al. (2012). "A novel role of human holliday junction resolvase GEN1 in the maintenance of centrosome integrity".PMID 23166748
  1158. Mohamed Ali Jarboui et al. (2012). "Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus".PMID 23166591
  1159. Salvatore Mancarella et al. (2013). "Targeted STIM deletion impairs calcium homeostasis, NFAT activation, and growth of smooth muscle".PMID 23159931
  1160. Edna Ribeiro-Varandas et al. (2013). "Bisphenol A at concentrations found in human serum induces aneugenic effects in endothelial cells".PMID 23142537
  1161. Louise M Blakemore et al. (2013). "Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage".PMID 23125222
  1162. Paloma Aivar et al. (2012). "Surface expression and subunit specific control of steady protein levels by the Kv7.2 helix A-B linker".PMID 23115641
  1163. Alice Duncan et al. (2012). "Estrous cycle-dependent changes of Fas expression in the bovine corpus luteum: influence of keratin 8/18 intermediate filaments and cytokines".PMID 23113883
  1164. Oliver Limbo et al. (2012). "Mre11 ATLD17/18 mutation retains Tel1/ATM activity but blocks DNA double-strand break repair".PMID 23080121
  1165. Phat X Dinh et al. (2013). "Induction of stress granule-like structures in vesicular stomatitis virus-infected cells".PMID 23077311
  1166. Pauline C Conroy et al. (2012). "C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis".PMID 23070519
  1167. Sabine Koch et al. (2013). "Cathepsin D deficiency induces cytoskeletal changes and affects cell migration pathways in the brain".PMID 23069676
  1168. Kelly Coffey et al. (2012). "Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer".PMID 23056207
  1169. Suresh B Pakala et al. (2012). "Signaling-dependent phosphorylation of mitotic centromere-associated kinesin regulates microtubule depolymerization and its centrosomal localization".PMID 23055517
  1170. Krista J Queen et al. (2013). "Epstein-Barr virus-induced epigenetic alterations following transient infection".PMID 23047626
  1171. Katherine J Kopeikina et al. (2013). "Synaptic alterations in the rTg4510 mouse model of tauopathy".PMID 23047530
  1172. Cassy M Spiller et al. (2012). "Endogenous Nodal signaling regulates germ cell potency during mammalian testis development".PMID 23034635
  1173. Natacha Cigna et al. (2012). "The hedgehog system machinery controls transforming growth factor-β-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis".PMID 23031257
  1174. Céline Hebras et al. (2012). "Urochordate ascidians possess a single isoform of Aurora kinase that localizes to the midbody via TPX2 in eggs and cleavage stage embryos".PMID 23029005
  1175. Daniela Loessner et al. (2012). "Combined expression of KLK4, KLK5, KLK6, and KLK7 by ovarian cancer cells leads to decreased adhesion and paclitaxel-induced chemoresistance".PMID 22964375
  1176. Janet E Holt et al. (2012). "APC(FZR1) prevents nondisjunction in mouse oocytes by controlling meiotic spindle assembly timing".PMID 22918942
  1177. Suzanne Gartner et al. (2012). "De novo generation of cells within human nurse macrophages and consequences following HIV-1 infection".PMID 22911696
  1178. Y C Chen et al. (2012). "MANF regulates dopaminergic neuron development in larval zebrafish".PMID 22898306
  1179. Britta Wallmen et al. (2012). "Intrinsic properties of Tcf1 and Tcf4 splice variants determine cell-type-specific Wnt/β-catenin target gene expression".PMID 22859735
  1180. Sang wook Cha et al. (2012). "Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e".PMID 22848601
  1181. Julia I Toth et al. (2012). "A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924".PMID 22832224
  1182. Yu Xiao et al. (2012). "Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways".PMID 22829911
  1183. Radim Moravec et al. (2012). "BRAG2/GEP100/IQSec1 interacts with clathrin and regulates α5β1 integrin endocytosis through activation of ADP ribosylation factor 5 (Arf5)".PMID 22815487
  1184. I Lun Hsin et al. (2012). "Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells".PMID 22800509
  1185. Hsu Wen Chao et al. (2012). "NMDAR signaling facilitates the IPO5-mediated nuclear import of CPEB3".PMID 22730302
  1186. Maggie P C Ma et al. (2012). "SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis".PMID 22718350
  1187. Tsuyoshi Watanabe et al. (2012). "A unique ball-shaped Golgi apparatus in the rat pituitary gonadotrope: its functional implications in relation to the arrangement of the microtubule network".PMID 22562559
  1188. Kuancan Liu et al. (2012). "Coordinate lentiviral expression of Cre recombinase and RFP/EGFP mediated by FMDV 2A and analysis of Cre activity".PMID 22532014
  1189. Gang Ren et al. (2012). "Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer".PMID 22505648
  1190. Wei Jong Shia et al. (2012). "PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential".PMID 22498736
  1191. Tamara Mikeladze-Dvali et al. (2012). "Analysis of centriole elimination during C. elegans oogenesis".PMID 22492357
  1192. Liv Austenaa et al. (2012). "The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis".PMID 22483804
  1193. Halina S Chkourko et al. (2012). "Remodeling of mechanical junctions and of microtubule-associated proteins accompany cardiac connexin43 lateralization".PMID 22406144
  1194. Daniel R Beriault et al. (2012). "The mechanical behavior of mutant K14-R125P keratin bundles and networks in NEB-1 keratinocytes".PMID 22363617
  1195. Hans Martin Herz et al. (2012). "Polycomb repressive complex 2-dependent and -independent functions of Jarid2 in transcriptional regulation in Drosophila".PMID 22354997
  1196. Andre Koch et al. (2012). "A chemical genetic approach for covalent inhibition of analogue-sensitive aurora kinase".PMID 22264160
  1197. A Macia et al. (2012). "Sprouty1 is a candidate tumor-suppressor gene in medullary thyroid carcinoma".PMID 22158037
  1198. Elise Roy et al. (2012). "GM130 gain-of-function induces cell pathology in a model of lysosomal storage disease".PMID 22156940
  1199. Motoko Sasaki et al. (2012). "A possible involvement of p62/sequestosome-1 in the process of biliary epithelial autophagy and senescence in primary biliary cirrhosis".PMID 22098537
  1200. Geoffrey A Charters et al. (2011). "Centrosomal dysregulation in human metastatic melanoma cell lines".PMID 22018269
  1201. Yin Yin Choo et al. (2011). "Characterization of the role of COP9 signalosome in regulating cullin E3 ubiquitin ligase activity".PMID 22013077
  1202. Chung Il An et al. (2011). "Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6".PMID 21985497
  1203. Patricia Balsas et al. (2012). "Bortezomib resistance in a myeloma cell line is associated to PSMβ5 overexpression and polyploidy".PMID 21978467
  1204. Caleb A Doll et al. (2011). "Subnuclear development of the zebrafish habenular nuclei requires ER translocon function".PMID 21945073
  1205. Yvonne Y Shao et al. (2012). "Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes".PMID 21930256
  1206. H Rauert et al. (2011). "TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms".PMID 21850048
  1207. Hongpeng He et al. (2011). "CBP/p300 and SIRT1 are involved in transcriptional regulation of S-phase specific histone genes".PMID 21789216
  1208. Da Wei Liu et al. (2011). "A variant of fibroblast growth factor receptor 2 (Fgfr2) regulates left-right asymmetry in zebrafish".PMID 21747958
  1209. Dejia Li et al. (2011). "iNOS ablation does not improve specific force of the extensor digitorum longus muscle in dystrophin-deficient mdx4cv mice".PMID 21738735
  1210. Madeline A Lancaster et al. (2011). "Subcellular spatial regulation of canonical Wnt signalling at the primary cilium".PMID 21602792
  1211. C Y Ko et al. (2011). "Integration of CNS survival and differentiation by HIF2α".PMID 21546908
  1212. Andreas Houben et al. (2011). "CENH3 distribution and differential chromatin modifications during pollen development in rye (Secale cereale L.)".PMID 21503764
  1213. Benoît Vanderperre et al. (2011). "An overlapping reading frame in the PRNP gene encodes a novel polypeptide distinct from the prion protein".PMID 21478263
  1214. Boon Kim Boh et al. (2011). "Neddylation-induced conformational control regulates cullin RING ligase activity in vivo".PMID 21463634
  1215. Igor O Nasonkin et al. (2011). "Distinct nuclear localization patterns of DNA methyltransferases in developing and mature mammalian retina".PMID 21452232
  1216. Christopher M Stern et al. (2011). "Corticotropin releasing factor-induced CREB activation in striatal neurons occurs via a novel Gβγ signaling pathway".PMID 21448293
  1217. François Gerbe et al. (2011). "Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium".PMID 21383077
  1218. Heng Yu Chang et al. (2011). "Essential role of protein phosphatase 2A in metaphase II arrest and activation of mouse eggs shown by okadaic acid, dominant negative protein phosphatase 2A, and FTY720".PMID 21383018
  1219. John G Tooley et al. (2011). "The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement".PMID 21325630
  1220. Yee Shin Chua et al. (2011). "Regulation of cullin RING E3 ubiquitin ligases by CAND1 in vivo".PMID 21249194
  1221. Chantal Stoepker et al. (2011). "SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype".PMID 21240277
  1222. Serge Paschoud et al. (2011). "Cingulin and paracingulin show similar dynamic behaviour, but are recruited independently to junctions".PMID 21166484
  1223. Michael Skalski et al. (2011). "SNARE-mediated membrane traffic is required for focal adhesion kinase signaling and Src-regulated focal adhesion turnover".PMID 20888376
  1224. Stefaan J H Soenen et al. (2011). "Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling".PMID 20863560
  1225. Leen Uyttebroek et al. (2010). "Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio)".PMID 20853514
  1226. Cheng Jeng Tai et al. (2010). "Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells".PMID 20688056
  1227. Chad E Mire et al. (2010). "A spatio-temporal analysis of matrix protein and nucleocapsid trafficking during vesicular stomatitis virus uncoating".PMID 20657818
  1228. Antje M Richter et al. (2010). "Protein kinase A-mediated phosphorylation of the RASSF1A tumour suppressor at Serine 203 and regulation of RASSF1A function".PMID 20655196
  1229. Yee Chin Leck et al. (2010). "Biochemical and cellular effects of inhibiting Nedd8 conjugation".PMID 20603103
  1230. Fa Xing Yu et al. (2010). "Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate".PMID 20558747
  1231. Nicholas Ferrell et al. (2010). "A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells".PMID 20552673
  1232. Sergei Boichuk et al. (2010). "Multiple DNA damage signaling and repair pathways deregulated by simian virus 40 large T antigen".PMID 20519379
  1233. Tomonari Hirano et al. (2010). "Sperm dimorphism in terms of nuclear shape and microtubule accumulation in Cyrtanthus mackenii".PMID 20490968
  1234. Raymond L Warters et al. (2010). "The nuclear matrix shell proteome of human epidermis".PMID 20363599
  1235. Feng Fang et al. (2010). "Cyclophilin B as a co-regulator of prolactin-induced gene expression and function in breast cancer cells".PMID 20237142
  1236. Mal Irvine et al. (2010). "Amino terminal hydrophobic import signals target the p14(ARF) tumor suppressor to the mitochondria".PMID 20107316
  1237. Carrie M Louie et al. (2010). "AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis".PMID 20081859
  1238. Ching Fong Liao et al. (2008). "CAS Enhances Chemotherapeutic Drug-Induced p53 Accumulation and Apoptosis: Use of CAS for High-Sensitivity Anticancer Drug Screening".PMID 20020938
  1239. Heng Yu Chang et al. (2009). "Calmodulin-dependent protein kinase gamma 3 (CamKIIgamma3) mediates the cell cycle resumption of metaphase II eggs in mouse".PMID 19906843
  1240. Claas Wodarczyk et al. (2009). "A novel mouse model reveals that polycystin-1 deficiency in ependyma and choroid plexus results in dysfunctional cilia and hydrocephalus".PMID 19774080
  1241. Marianna N Rossi et al. (2009). "Mitochondrial localization of PARP-1 requires interaction with mitofilin and is involved in the maintenance of mitochondrial DNA integrity".PMID 19762472
  1242. Jonathan H Clarke et al. (2009). "Distribution and neuronal expression of phosphatidylinositol phosphate kinase IIgamma in the mouse brain".PMID 19757494
  1243. Madeline A Lancaster et al. (2009). "Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy".PMID 19718039
  1244. Motoko Sasaki et al. (2009). "Polycomb group protein Bmi1 is overexpressed and essential in anchorage-independent colony formation, cell proliferation and repression of cellular senescence in cholangiocarcinoma: tissue and culture studies".PMID 19695678
  1245. Li Qing Jin et al. (2009). "Axon regeneration in the absence of growth cones: acceleration by cyclic AMP".PMID 19425080
  1246. Ivana De Domenico et al. (2009). "Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with Jak2".PMID 19234114
  1247. Naoto Miyajima et al. (2009). "TRIM36 interacts with the kinetochore protein CENP-H and delays cell cycle progression".PMID 19232519
  1248. Tang Yi Tsao et al. (2009). "Function of CSE1L/CAS in the secretion of HT-29 human colorectal cells and its expression in human colon".PMID 19224336
  1249. Oliver H Kramer et al. (2009). "A phosphorylation-acetylation switch regulates STAT1 signaling".PMID 19171783
  1250. M M Shkarupeta et al. (2008). "Localization of C. trachomatis Inc proteins in expression of their genes in HeLa cell culture".PMID 19145327
  1251. Antón Barreiro-Iglesias et al. (2009). "Extensive presence of serotonergic cells and fibers in the peripheral nervous system of lampreys".PMID 19025991
  1252. David Frescas et al. (2008). "KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state".PMID 19001877
  1253. Sebastian Haferkamp et al. (2008). "p16INK4a-induced senescence is disabled by melanoma-associated mutations".PMID 18843795
  1254. Antón Barreiro-Iglesias et al. (2008). "Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates".PMID 18831528
  1255. Yu Chang Kim et al. (2008). "Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device".PMID 18810292
  1256. Vincent Cantagrel et al. (2008). "Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome".PMID 18674751
  1257. Satoshi Kano et al. (2008). "Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2".PMID 18632609
  1258. Richa B Tripathi et al. (2008). "Chronically increased ciliary neurotrophic factor and fibroblast growth factor-2 expression after spinal contusion in rats".PMID 18615534
  1259. Motoko Sasaki et al. (2008). "The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma".PMID 18591938
  1260. Fang Xia et al. (2008). "A survivin-ran complex regulates spindle formation in tumor cells".PMID 18591255
  1261. Koji Itahana et al. (2008). "Mitochondrial p32 is a critical mediator of ARF-induced apoptosis".PMID 18538737
  1262. Junaid Abdulghani et al. (2008). "Stat3 promotes metastatic progression of prostate cancer".PMID 18483213
  1263. Tadashi Nakaya et al. (2008). "Regulation of FE65 nuclear translocation and function by amyloid beta-protein precursor in osmotically stressed cells".PMID 18468999
  1264. Catharina Olsson et al. (2008). "Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut".PMID 18393294
  1265. Daniele Guardavaccaro et al. (2008). "Control of chromosome stability by the beta-TrCP-REST-Mad2 axis".PMID 18354482
  1266. Tomohiro Omura et al. (2008). "Novel functions of ubiquitin ligase HRD1 with transmembrane and proline-rich domains".PMID 18344614
  1267. Ruwin Pandithage et al. (2008). "The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility".PMID 18332217
  1268. Ana Carolina Dudenhoeffer Carneiro et al. (2008). "A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells".PMID 18278803
  1269. C S Ramsey et al. (2008). "Copine-I represses NF-kappaB transcription by endoproteolysis of p65".PMID 18212740
  1270. Akio Sumioka et al. (2008). "The X11L/X11beta/MINT2 and X11L2/X11gamma/MINT3 scaffold proteins shuttle between the nucleus and cytoplasm".PMID 18201694
  1271. Masayuki Kaneko et al. (2007). "A different pathway in the endoplasmic reticulum stress-induced expression of human HRD1 and SEL1 genes".PMID 17967421
  1272. Philip G Woost et al. (2007). "Development of an AT2-deficient proximal tubule cell line for transport studies".PMID 17963016
  1273. Anne Sophie Gabet et al. (2008). "Impairment of the telomere/telomerase system and genomic instability are associated with keratinocyte immortalization induced by the skin human papillomavirus type 38".PMID 17898088
  1274. Lanhai Lü et al. (2008). "Oxidative stress on the astrocytes in culture derived from a senescence accelerated mouse strain".PMID 17664019
  1275. Alexander Egner et al. (2007). "Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters".PMID 17660318
  1276. Tadashi Nishiya et al. (2007). "Distinct roles of TIR and non-TIR regions in the subcellular localization and signaling properties of MyD88".PMID 17583698
  1277. Rosanna Supino et al. (2007). "Effect of paclitaxel on intracellular localization of c-Myc and P-c-Myc in prostate carcinoma cell lines".PMID 17404030
  1278. Olivier Gossot et al. (2007). "Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton".PMID 17318608
  1279. Sandra Martin-Latil et al. (2007). "Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway".PMID 17301139
  1280. Eng Hui Chew et al. (2007). "Characterization of cullin-based E3 ubiquitin ligases in intact mammalian cells--evidence for cullin dimerization".PMID 17254749
  1281. Umberto De Fanis et al. (2007). "GATA3 up-regulation associated with surface expression of CD294/CRTH2: a unique feature of human Th cells".PMID 17234745
  1282. Daniel Wegmüller et al. (2007). "A cassette system to study embryonic stem cell differentiation by inducible RNA interference".PMID 17218405
  1283. Vladimir Akoyev et al. (2007). "ZO-1 is required for protein kinase C gamma-driven disassembly of connexin 43".PMID 17210245
  1284. Elisabeth Pellegrini et al. (2007). "Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish".PMID 17206614
  1285. Jung Sik Kim et al. (2007). "Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA".PMID 17060456
  1286. D Henley et al. (2007). "Paclitaxel induced apoptosis in breast cancer cells requires cell cycle transit but not Cdc2 activity".PMID 16972069
  1287. Raquel Valdes et al. (2006). "Comprehensive examination of charged intramembrane residues in a nucleoside transporter".PMID 16769726
  1288. William H Fissell et al. (2006). "Differentiated growth of human renal tubule cells on thin-film and nanostructured materials".PMID 16760708
  1289. Tadashi Nakaya et al. (2006). "Role of APP phosphorylation in FE65-dependent gene transactivation mediated by AICD".PMID 16716194
  1290. Manisha Sharma et al. (2006). "Membrane localization of adenomatous polyposis coli protein at cellular protrusions: targeting sequences and regulation by beta-catenin".PMID 16621792
  1291. Shelley R Hough et al. (2006). "Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog".PMID 16456133
  1292. Mingming Hao et al. (2005). "Regulation of two insulin granule populations within the reserve pool by distinct calcium sources".PMID 16317050
  1293. Jason W Barlow et al. (2006). "Differentiation of rhabdomyosarcoma cell lines using retinoic acid".PMID 16283617
  1294. Albert G Remacle et al. (2005). "The transmembrane domain is essential for the microtubular trafficking of membrane type-1 matrix metalloproteinase (MT1-MMP)".PMID 16219679
  1295. Maria T Bengoechea-Alonso et al. (2005). "Hyperphosphorylation regulates the activity of SREBP1 during mitosis".PMID 16081540
  1296. Eugenia Trushina et al. (2004). "Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro".PMID 15340079
  1297. Jordan Jacobelli et al. (2004). "A single class II myosin modulates T cell motility and stopping, but not synapse formation".PMID 15064761
  1298. Ryosuke Tsunematsu et al. (2004). "Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development".PMID 14672936
  1299. Matthew J Ruddy et al. (2004). "Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members".PMID 14600152
  1300. Alexandra A Nascimento et al. (2003). "Pigment cells: a model for the study of organelle transport".PMID 14570578
  1301. Su Li Cheng et al. (2003). "MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors".PMID 12925529
  1302. Karen Martin et al. (2003). "Simultaneous trichromatic fluorescence detection of proteins on Western blots using an amine-reactive dye in combination with alkaline phosphatase- and horseradish peroxidase-antibody conjugates".PMID 12872222
  1303. Yasusei Kudo et al. (2003). "Establishment of an oral squamous cell carcinoma cell line with high invasive and p27 degradation activities from a lymph node metastasis".PMID 12747977
  1304. Anthony W Ashton et al. (2003). "Inhibition of tumor necrosis factor alpha-mediated NFkappaB activation and leukocyte adhesion, with enhanced endothelial apoptosis, by G protein-linked receptor (TP) ligands".PMID 12517920
  1305. Dana L Madison et al. (2002). "Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-alpha".PMID 12161448
  1306. Gundula Rohde et al. (2002). "A phosphatidylinositol (4,5)-bisphosphate binding site within mu2-adaptin regulates clathrin-mediated endocytosis".PMID 12119359
  1307. Alessia Errico et al. (2002). "Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics".PMID 11809724
  1308. F J Hernandez-Blazquez et al. (2001). "Control of intracellular movement of connexins by E-cadherin in murine skin papilloma cells".PMID 11640887
  1309. A O Gramolini et al. (2001). "Distinct regions in the 3' untranslated region are responsible for targeting and stabilizing utrophin transcripts in skeletal muscle cells".PMID 11551978
  1310. C A Lessman et al. (2001). "Soluble tubulin complexes in oocytes of the common leopard frog, Rana pipiens, contain gamma-tubulin".PMID 11550276
  1311. L Akileswaran et al. (2001). "A-kinase-anchoring protein AKAP95 is targeted to the nuclear matrix and associates with p68 RNA helicase".PMID 11279182
  1312. V Vogelsberg-Ragaglia et al. (2000). "Distinct FTDP-17 missense mutations in tau produce tau aggregates and other pathological phenotypes in transfected CHO cells".PMID 11102510
  1313. K Iijima et al. (2000). "Neuron-specific phosphorylation of Alzheimer's beta-amyloid precursor protein by cyclin-dependent kinase 5".PMID 10936190
  1314. J C Deloulme et al. (2000). "S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo".PMID 10913138
  1315. J G Pryde et al. (2000). "Temperature-dependent arrest of neutrophil apoptosis. Failure of Bax insertion into mitochondria at 15 degrees C prevents the release of cytochrome c".PMID 10896657
  1316. K Berggren et al. (1999). "A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports".PMID 10603235
  1317. A W Ashton et al. (1999). "Inhibition of endothelial cell migration, intercellular communication, and vascular tube formation by thromboxane A(2)".PMID 10585431
  1318. S Timm et al. (1999). "The EF-hand Ca(2+)-binding protein p22 associates with microtubules in an N-myristoylation-dependent manner".PMID 10512881
  1319. N Panchuk-Voloshina et al. (1999). "Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates".PMID 10449539
  1320. K Ando et al. (1999). "Role of phosphorylation of Alzheimer's amyloid precursor protein during neuronal differentiation".PMID 10341243
  1321. A M Yvon et al. (1999). "Taxol suppresses dynamics of individual microtubules in living human tumor cells".PMID 10198049
  1322. S K Koester et al. (1998). "APO2.7 defines a shared apoptotic-necrotic pathway in a breast tumor hypoxia model".PMID 9822343
  1323. G Hime et al. (1992). "Zygotic expression of the pebble locus is required for cytokinesis during the postblastoderm mitoses of Drosophila".PMID 1576956