这是一篇来自已证抗体库的有关人类 α微管蛋白 (alpha-tubulin) 的综述,是根据826篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合α微管蛋白 抗体。
α微管蛋白 同义词: ALS22; H2-ALPHA; TUBA1

赛默飞世尔
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:20; 图 4a
赛默飞世尔α微管蛋白抗体(Thermo, A21371)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 4a). elife (2020) ncbi
小鼠 单克隆(DM1A)
赛默飞世尔α微管蛋白抗体(Thermo Fisher, 62204)被用于. elife (2020) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 人类; 1:5000; 图 2b
赛默飞世尔α微管蛋白抗体(Thermo Fisher, YL1/2)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2b). elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 其他; 淡水涡虫;真涡虫; 1:1000
赛默飞世尔α微管蛋白抗体(Thermo/Fisher, MS581P1)被用于被用于其他在淡水涡虫;真涡虫样本上浓度为1:1000. elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 2s1a
赛默飞世尔α微管蛋白抗体(Thermo Fisher, 62204)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2s1a). elife (2019) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛默飞世尔α微管蛋白抗体(Invitrogen, TUB-1A2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Mol Biol Cell (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3f
赛默飞世尔α微管蛋白抗体(Neomarkers, DM1A)被用于被用于免疫印迹在人类样本上 (图 3f). Sci Rep (2019) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫印迹; fruit fly ; 图 1f
赛默飞世尔α微管蛋白抗体(Thermo Fisher, MA1-80189)被用于被用于免疫印迹在fruit fly 样本上 (图 1f). Cell (2019) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; pigs ; 1:500; 图 1b
赛默飞世尔α微管蛋白抗体(Thermo Fisher, MA1-19162)被用于被用于免疫印迹在pigs 样本上浓度为1:500 (图 1b). BMC Vet Res (2019) ncbi
大鼠 单克隆(YL1/2)
  • 免疫组化-冰冻切片; 小鼠; 图 6e
赛默飞世尔α微管蛋白抗体(Thermo Fisher, MA1-80017)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6e). J Clin Invest (2019) ncbi
小鼠 单克隆(236-10501)
赛默飞世尔α微管蛋白抗体(Pierce, A11126)被用于. Int J Mol Med (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 3A
赛默飞世尔α微管蛋白抗体(eBioscience, 14?C4502)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3A). elife (2017) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; African green monkey; 图 1d
赛默飞世尔α微管蛋白抗体(Pierce, MA1-80017)被用于被用于免疫细胞化学在African green monkey样本上 (图 1d). elife (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000; 图 1a
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(6-11B-1)
  • proximity ligation assay; 人类; 0.7 ug/ml; 图 4a
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于被用于proximity ligation assay在人类样本上浓度为0.7 ug/ml (图 4a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛默飞世尔α微管蛋白抗体(ThermoScientific, PA5-22060)被用于被用于免疫印迹在小鼠样本上 (图 2c). Exp Eye Res (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2017) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 8d
赛默飞世尔α微管蛋白抗体(生活技术, A11126)被用于被用于免疫细胞化学在人类样本上 (图 8d). Mol Cell Biol (2017) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 人类; 1:500
赛默飞世尔α微管蛋白抗体(Thermo Scientific, MA1-80017)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔α微管蛋白抗体(Thermo Scientific, 62204)被用于被用于免疫组化-石蜡切片在小鼠样本上. Acta Histochem (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 小鼠; 图 5f
赛默飞世尔α微管蛋白抗体(Thermo Fisher, MS-581-P1)被用于被用于免疫组化在小鼠样本上 (图 5f). Autophagy (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 拟南芥; 图 1h
赛默飞世尔α微管蛋白抗体(生活技术, 32-2500)被用于被用于免疫印迹在拟南芥样本上 (图 1h). Plant Physiol (2017) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:400; 图 3a
赛默飞世尔α微管蛋白抗体(生活技术, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3a). Sci Rep (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; Dictyostelium discoideum; 图 s6g
赛默飞世尔α微管蛋白抗体(ThermoFisher Scientific, MA1-80017)被用于被用于免疫细胞化学在Dictyostelium discoideum样本上 (图 s6g). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2C
赛默飞世尔α微管蛋白抗体(Lab Vision, MS-581-PO)被用于被用于免疫印迹在人类样本上 (图 2C). Sci Rep (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; fruit fly ; 1:100; 图 s4
赛默飞世尔α微管蛋白抗体(Fisher Scientific, A11126)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 s4). Biophys J (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:2000; 图 3c
赛默飞世尔α微管蛋白抗体(Thermo Scientific, 62204)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3c). Mol Neurobiol (2017) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 5a
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫印迹在人类样本上 (图 5a). J Biol Chem (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:20,000; 图 3b
赛默飞世尔α微管蛋白抗体(Invitrogen, 322500)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 1:100; 图 6a
赛默飞世尔α微管蛋白抗体(生活技术, 322588)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6a). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(LabVision, DM1A)被用于被用于免疫印迹在人类样本上 (图 1). J Inflamm (Lond) (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 人类; 图 7a
赛默飞世尔α微管蛋白抗体(Pierce, MA1-80017)被用于被用于免疫细胞化学在人类样本上 (图 7a). J Biol Chem (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 3b
赛默飞世尔α微管蛋白抗体(生活技术, 32-2700)被用于被用于免疫细胞化学在人类样本上 (图 3b). BMC Cancer (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:50; 图 7
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛默飞世尔α微管蛋白抗体(生活技术, 32-2500)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Biol Chem (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 犬; 1:500; 图 4a
赛默飞世尔α微管蛋白抗体(Thermo Fisher, MA1-80017)被用于被用于免疫细胞化学在犬样本上浓度为1:500 (图 4a). J Cell Biol (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; 小鼠; 1:200; 图 2b
赛默飞世尔α微管蛋白抗体(生活技术, A11126)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2b). Reprod Biomed Online (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 2
赛默飞世尔α微管蛋白抗体(Thermo Scientific, A-11126)被用于被用于免疫印迹在人类样本上 (图 2). PLoS Pathog (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(Thermo Scientific, MS-581-P)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛默飞世尔α微管蛋白抗体(Invitrogen, 322500)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Mol Cancer Res (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 0.5 ug/ml; 图 2
赛默飞世尔α微管蛋白抗体(Invitrogen, 322588)被用于被用于免疫细胞化学在人类样本上浓度为0.5 ug/ml (图 2). Prostate (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔α微管蛋白抗体(ThermoFisher Scientific, MS-581-P1)被用于被用于免疫印迹在小鼠样本上 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔α微管蛋白抗体(Pierce, PA1-38814)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 2
赛默飞世尔α微管蛋白抗体(Thermo Fisher Scientific, MA1 19401)被用于被用于免疫印迹在人类样本上 (图 2). J Virol (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s5
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s5). Development (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:1000; 图 4
赛默飞世尔α微管蛋白抗体(生活技术, 322588)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). Mol Cell Proteomics (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; African green monkey; 图 2
赛默飞世尔α微管蛋白抗体(ThermoFisher Scientific, MA1-80017)被用于被用于免疫细胞化学在African green monkey样本上 (图 2). Nat Methods (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在大鼠样本上 (图 1). Anal Biochem (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔α微管蛋白抗体(Zymed Laboratories, 32-2500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 鸡; 1:500; 图 1
赛默飞世尔α微管蛋白抗体(生活技术, 32-2700)被用于被用于免疫组化在鸡样本上浓度为1:500 (图 1). J Cell Sci (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 7
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔α微管蛋白抗体(Invitrogen, 322588)被用于被用于免疫细胞化学在人类样本上 (图 7) 和 被用于免疫细胞化学在小鼠样本上 (图 2). Nat Commun (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠; 图 s1
赛默飞世尔α微管蛋白抗体(Thermo Fisher Scientific, YL1/2)被用于被用于免疫印迹在小鼠样本上 (图 s1). J Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
赛默飞世尔α微管蛋白抗体(生活技术, 32-2500)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 s3
赛默飞世尔α微管蛋白抗体(Thermo Fisher, 322588)被用于被用于免疫细胞化学在人类样本上 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔α微管蛋白抗体(Lab Vision, MS-581)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 杜氏利什曼原虫; 1:5000; 图 2
赛默飞世尔α微管蛋白抗体(ThermoFisher, MA1-19162)被用于被用于免疫印迹在杜氏利什曼原虫样本上浓度为1:5000 (图 2). Arch Biochem Biophys (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4b
赛默飞世尔α微管蛋白抗体(NeoMarkers, MS-581)被用于被用于免疫印迹在人类样本上 (图 4b). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2500; 图 5
赛默飞世尔α微管蛋白抗体(Pierce, 62204)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
赛默飞世尔α微管蛋白抗体(NeoMarkers, MS-581-P0)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 婴儿利什曼原虫; 1:1000; 图 4
赛默飞世尔α微管蛋白抗体(Neomarkers, DM1A)被用于被用于免疫印迹在婴儿利什曼原虫样本上浓度为1:1000 (图 4). PLoS Negl Trop Dis (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:400; 图 6
赛默飞世尔α微管蛋白抗体(生活技术, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 6). Biol Reprod (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; malaria parasite P. falciparum; 1:2000; 图 3
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于被用于免疫细胞化学在malaria parasite P. falciparum样本上浓度为1:2000 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s4
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在小鼠样本上 (图 s4). PLoS Pathog (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔α微管蛋白抗体(Ebioscience, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; domestic rabbit; 图 2
赛默飞世尔α微管蛋白抗体(Thermo Scientific, MA1-80017)被用于被用于免疫印迹在domestic rabbit样本上 (图 2). Endocrinology (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔α微管蛋白抗体(Thermo Fisher Scientific, PA5-22060)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). J Cell Sci (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 8
赛默飞世尔α微管蛋白抗体(生活技术, 236?C10501)被用于被用于免疫细胞化学在人类样本上 (图 8). J Exp Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 7
赛默飞世尔α微管蛋白抗体(Thermo Scientific, MS-581-P0)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔α微管蛋白抗体(Thermo Scientific, DM1A)被用于被用于免疫印迹在人类样本上 (图 3). Br J Cancer (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000; 图 3
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 3). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 4c
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4c). Oncogene (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Stem Cell Reports (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 1
赛默飞世尔α微管蛋白抗体(生活技术, 32-2500)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔α微管蛋白抗体(Neomarkers, MS581P1)被用于被用于免疫细胞化学在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔α微管蛋白抗体(Thermo Scientific, MS-581-P0)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Reproduction (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
赛默飞世尔α微管蛋白抗体(Lab Vision, DM1A)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; brewer's yeast; 1:200
赛默飞世尔α微管蛋白抗体(Invitrogen, 322500)被用于被用于免疫细胞化学在brewer's yeast样本上浓度为1:200. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔α微管蛋白抗体(Thermo, PA5-19489)被用于. elife (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:1000; 图 1
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔α微管蛋白抗体(Fisher Scientific, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:2000. Integr Biol (Camb) (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Thermo Scientific, MS-581-P1)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 犬
赛默飞世尔α微管蛋白抗体(Thermo Scientific, MA1-80017)被用于被用于免疫细胞化学在犬样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠
赛默飞世尔α微管蛋白抗体(Invitrogen LifeTechnologies, A11126)被用于被用于免疫细胞化学在小鼠样本上. Cell Death Dis (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上. Acta Neuropathol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(Neomarker, MS-581-P1)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 3
赛默飞世尔α微管蛋白抗体(Invitrogen, 322700)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Dev Cell (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
赛默飞世尔α微管蛋白抗体(生活技术, 322588)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Biol Reprod (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 2
赛默飞世尔α微管蛋白抗体(NeoMarkers, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔α微管蛋白抗体(生活技术, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Development (2015) ncbi
小鼠 单克隆(DM1A)
赛默飞世尔α微管蛋白抗体(Thermo, MS-581-P)被用于. Cell Prolif (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔α微管蛋白抗体(Neomarkers, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 1). Nature (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于被用于免疫组化在小鼠样本上浓度为1:300. Hum Mol Genet (2015) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 1:400
  • 免疫印迹; 人类; 1:400
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫印迹在小鼠样本上浓度为1:400 和 被用于免疫印迹在人类样本上浓度为1:400. J Gastroenterol (2015) ncbi
小鼠 单克隆(DM1A)
赛默飞世尔α微管蛋白抗体(Thermo Fisher Scientific, MS-581-P1)被用于. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔α微管蛋白抗体(Thermo Fisher Scientific, MS-581-P0)被用于被用于免疫印迹在小鼠样本上 (图 2). Int J Mol Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 9
赛默飞世尔α微管蛋白抗体(Thermo Scientific, 62204)被用于被用于免疫印迹在人类样本上 (图 9). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
赛默飞世尔α微管蛋白抗体(NeoMarkers, MS-581-P0)被用于. Hum Mutat (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在大鼠样本上. Mol Neurobiol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔α微管蛋白抗体(Thermo, DM-1A)被用于被用于免疫印迹在人类样本上 (图 3a). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在人类样本上. Infect Immun (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; African green monkey
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在African green monkey样本上. Soft Matter (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔α微管蛋白抗体(Thermo Fisher Scientific, MS581P)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 非洲爪蛙; 图 2
赛默飞世尔α微管蛋白抗体(Neomarkers, MS-581-P0)被用于被用于免疫印迹在非洲爪蛙样本上 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:500
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在人类样本上浓度为1:500. J Cell Biochem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 5
赛默飞世尔α微管蛋白抗体(Neomarkers, DM1A)被用于被用于免疫印迹在人类样本上 (图 5). PLoS Genet (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔α微管蛋白抗体(Lab Vision, DM1A)被用于被用于免疫印迹在人类样本上 (图 3). J Proteome Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 小鼠
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2588)被用于被用于免疫组化在小鼠样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠
赛默飞世尔α微管蛋白抗体(生活技术, A11126)被用于被用于免疫印迹在小鼠样本上. J Peripher Nerv Syst (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 犬; 1:150; 图 1c
  • 免疫印迹; 犬; 1:1000; 图 1b
赛默飞世尔α微管蛋白抗体(Zymed, 32?C2500)被用于被用于免疫细胞化学在犬样本上浓度为1:150 (图 1c) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 1b). Tissue Barriers (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 鸡; 1:300
赛默飞世尔α微管蛋白抗体(生活技术, 32-2700)被用于被用于免疫细胞化学在鸡样本上浓度为1:300. J Neurosci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
赛默飞世尔α微管蛋白抗体(Thermo, MS-581-P0)被用于被用于免疫印迹在小鼠样本上. J Radiat Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
赛默飞世尔α微管蛋白抗体(NeoMarkers, MS-581-P)被用于被用于免疫印迹在小鼠样本上. Nat Commun (2014) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Zymed Laboratories, TU-01)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 1:100; 图 7a
赛默飞世尔α微管蛋白抗体(生活技术, 322588)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7a). PLoS Genet (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化-石蜡切片; 人类; 0.5 ug/ml
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.5 ug/ml. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 图 1
赛默飞世尔α微管蛋白抗体(Zymed, 32-2700)被用于被用于免疫组化在人类样本上 (图 1). Cell Med (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Invitrogen, B-5-1-2)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. elife (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 牛; 图 5, 6
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫印迹在牛样本上 (图 5, 6). Endocrinology (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔α微管蛋白抗体(ThermoFisher, MS-581-P1)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 2 ug/ml; 图 3
赛默飞世尔α微管蛋白抗体(Zymed Laboratories, 32-2500)被用于被用于免疫印迹在人类样本上浓度为2 ug/ml (图 3). Cell Immunol (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Neomarkers, MS-581-PO)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔α微管蛋白抗体(NeoMarkers, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 4
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 4). Spinal Cord (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔α微管蛋白抗体(Thermo Scientific, MS-581-P0)被用于被用于免疫印迹在小鼠样本上 (图 3). Int J Mol Sci (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类
赛默飞世尔α微管蛋白抗体(生活技术, noca)被用于被用于免疫细胞化学在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(TU-01)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔α微管蛋白抗体(Pierce, MA1-19162)被用于被用于免疫组化在小鼠样本上浓度为1:100. Cell Death Differ (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; Arthrotardigrada; 1:300
赛默飞世尔α微管蛋白抗体(Invitrogen Corporation, 32-2700)被用于被用于免疫组化在Arthrotardigrada样本上浓度为1:300. J Morphol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(Invitrogen, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 4
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; 仓鼠
赛默飞世尔α微管蛋白抗体(Invitrogen, DM1A)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫细胞化学在仓鼠样本上. Neurobiol Aging (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 2
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 2). Int J Biochem Cell Biol (2013) ncbi
小鼠 单克隆(6-11B-1)
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于. Dev Genes Evol (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; Cyrtanthus mackenii; 1 ug/ml; 图 3
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于被用于免疫细胞化学在Cyrtanthus mackenii样本上浓度为1 ug/ml (图 3). AoB Plants (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 2
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). Cell Signal (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. J Neurosci (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:250
  • 免疫细胞化学; 犬; 图 2
赛默飞世尔α微管蛋白抗体(Zymed, 32-2700)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 和 被用于免疫细胞化学在犬样本上 (图 2). Cilia (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 5
  • 免疫印迹; 人类; 1:1000; 图 s5
赛默飞世尔α微管蛋白抗体(分子探针, A-11126)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). BMC Cancer (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Biochem Res Int (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 牛; 1:200
赛默飞世尔α微管蛋白抗体(Invitrogen, 236-10501)被用于被用于免疫细胞化学在牛样本上浓度为1:200. Reprod Biol Endocrinol (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(NeoMarkers, MS-581-P1)被用于被用于免疫印迹在人类样本上. Int J Cancer (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:200; 图 4
赛默飞世尔α微管蛋白抗体(Invitrogen, 236-10501)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Gynecol Oncol (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠
赛默飞世尔α微管蛋白抗体(Invitrogen/Life Technologies, A11126)被用于被用于免疫细胞化学在小鼠样本上. Mol Biol Cell (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 s7
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫细胞化学在人类样本上 (图 s7). PLoS ONE (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 非洲爪蛙; 1:5000; 图 1e
赛默飞世尔α微管蛋白抗体(Neomarker, DM1A)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:5000 (图 1e). PLoS ONE (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在人类样本上 (图 1). Cell Rep (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; 大鼠; 1:50; 图 6
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 6). J Histochem Cytochem (2012) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫细胞化学; 白色念珠菌; 1:100
赛默飞世尔α微管蛋白抗体(Invitrogen, YOL1/34)被用于被用于免疫细胞化学在白色念珠菌样本上浓度为1:100. PLoS Genet (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔α微管蛋白抗体(Invitrogen, 6-11B-1)被用于被用于免疫细胞化学在人类样本上 (图 5). Hum Mol Genet (2012) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 5
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫印迹在人类样本上 (图 5). Liver Int (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于被用于免疫细胞化学在人类样本上 (图 2). Cancer Genet (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). Mol Biol Cell (2011) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:500; 图 s4
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 s4). Dev Biol (2011) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 大鼠; 1:20; 图 5
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于被用于免疫细胞化学在大鼠样本上浓度为1:20 (图 5). Bone (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 7
赛默飞世尔α微管蛋白抗体(Neomarkers, DM1A)被用于被用于免疫印迹在人类样本上 (图 7). Cell Death Dis (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 5b
赛默飞世尔α微管蛋白抗体(Invitrogen, 23610501)被用于被用于免疫印迹在人类样本上 (图 5b). PLoS ONE (2011) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:500; 图 s2
赛默飞世尔α微管蛋白抗体(Zymed, 32-2700)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2). Nat Cell Biol (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 4
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于被用于免疫印迹在人类样本上 (图 4). FASEB J (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). J Mol Biol (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 s1
赛默飞世尔α微管蛋白抗体(Invitrogen, 236-10501)被用于被用于免疫细胞化学在人类样本上 (图 s1). PLoS ONE (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2500)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s1). J Cell Biol (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Biol Chem (2011) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:2000; 图 1
赛默飞世尔α微管蛋白抗体(NeoMarkers, DM1A)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1). Mol Biol Cell (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(分子探针, 236?C10501)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 犬; 1:100; 图 4
赛默飞世尔α微管蛋白抗体(Zymed, 32-2500)被用于被用于免疫细胞化学在犬样本上浓度为1:100 (图 4). Mol Membr Biol (2011) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 1:7500; 图 2, 3
赛默飞世尔α微管蛋白抗体(Zymed, 13-8000)被用于被用于免疫印迹在人类样本上浓度为1:7500 (图 2, 3). Neurobiol Dis (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 仓鼠; 图 4
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫印迹在仓鼠样本上 (图 4). Biochim Biophys Acta (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 2.5 mg/ml; 图 1
赛默飞世尔α微管蛋白抗体(分子探针, 322500)被用于被用于免疫细胞化学在人类样本上浓度为2.5 mg/ml (图 1). Biomaterials (2011) ncbi
小鼠 单克隆(TU-01)
  • 免疫沉淀; 人类; 图 5
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 图 4
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫沉淀在人类样本上 (图 5), 被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 4). Exp Cell Res (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 仓鼠; 图 4
  • 免疫印迹; 仓鼠; 图 8
赛默飞世尔α微管蛋白抗体(分子探针, A-11126)被用于被用于免疫细胞化学在仓鼠样本上 (图 4) 和 被用于免疫印迹在仓鼠样本上 (图 8). PLoS Pathog (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在人类样本上 (图 5). Eur J Cancer (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). Biochem Biophys Res Commun (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 2
赛默飞世尔α微管蛋白抗体(Invitrogen, 236-10501)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2010) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:200; 图 3
  • 免疫细胞化学; 犬; 1:200; 图 3
赛默飞世尔α微管蛋白抗体(Invitrogen, 32-2700)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3) 和 被用于免疫细胞化学在犬样本上浓度为1:200 (图 3). Biotechnol Bioeng (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; Cyrtanthus mackenii; 1 ug/ml; 图 2
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于被用于免疫组化在Cyrtanthus mackenii样本上浓度为1 ug/ml (图 2). Sex Plant Reprod (2010) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
赛默飞世尔α微管蛋白抗体(Zymed, 32-2500)被用于被用于免疫印迹在人类样本上 (图 3). J Dermatol Sci (2010) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
赛默飞世尔α微管蛋白抗体(Zymed, 32-2500)被用于被用于免疫印迹在人类样本上 (图 2). J Mol Endocrinol (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Cycle (2010) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
赛默飞世尔α微管蛋白抗体(Zymed, 6-11B-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Nat Genet (2010) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 2
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫印迹在人类样本上 (图 2). Toxicol Mech Methods (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Development (2009) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
赛默飞世尔α微管蛋白抗体(Zymed, 32-2700)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Nat Med (2009) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 2
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫印迹在人类样本上 (图 2). Hum Pathol (2009) ncbi
小鼠 单克隆(TU-01)
  • 免疫细胞化学; 人类
赛默飞世尔α微管蛋白抗体(Zymed Laboratories, TU-01)被用于被用于免疫细胞化学在人类样本上. Biochem Biophys Res Commun (2009) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫印迹在人类样本上. Mol Cell Biochem (2009) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔α微管蛋白抗体(Invitrogen, 236-10501)被用于被用于免疫细胞化学在人类样本上 (图 1). Bull Exp Biol Med (2008) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
赛默飞世尔α微管蛋白抗体(Zymed, 32-2500)被用于被用于免疫细胞化学在人类样本上. Cell Cycle (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 3
赛默飞世尔α微管蛋白抗体(Invitrogen, 236-10501)被用于被用于免疫印迹在人类样本上 (图 3). Aging Cell (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:200; 图 7
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7). Analyst (2008) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
赛默飞世尔α微管蛋白抗体(Zymed, 32-2700)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). Am J Hum Genet (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 1 ug/ml; 图 3
赛默飞世尔α微管蛋白抗体(ZYMED, TU-01)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 3). Cancer Res (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 4
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫印迹在人类样本上 (图 4). Lab Invest (2008) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 7
  • 免疫印迹; 人类; 图 7
赛默飞世尔α微管蛋白抗体(Lab Vision, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 7). Cancer Cell (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔α微管蛋白抗体(Invitrogen, TU-01)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Am J Pathol (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔α微管蛋白抗体(Zymed, 236-10501)被用于被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2008) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s4
赛默飞世尔α微管蛋白抗体(Zymed, 32-2500)被用于被用于免疫印迹在人类样本上 (图 s4). Nature (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 2
赛默飞世尔α微管蛋白抗体(Zymed Laboratories, TU-01)被用于被用于免疫印迹在人类样本上 (图 2). J Pharmacol Sci (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化-冰冻切片; 大鼠
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于被用于免疫组化-冰冻切片在大鼠样本上. Dev Neurobiol (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫组化在小鼠样本上 (图 1). Exp Cell Res (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(Zymed, tu-01)被用于被用于免疫印迹在人类样本上 (图 1). FEBS Lett (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:40; 图 3
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫细胞化学在小鼠样本上浓度为1:40 (图 3). In Vitro Cell Dev Biol Anim (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:400
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:400. FASEB J (2008) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔α微管蛋白抗体(NeoMarkers, MS-581-P1)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Neurochem Int (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; kangaroo; 2 ug/ml
赛默飞世尔α微管蛋白抗体(Invitrogen, noca)被用于被用于免疫细胞化学在kangaroo样本上浓度为2 ug/ml. Biophys J (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:200; 图 3
赛默飞世尔α微管蛋白抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). FEBS Lett (2007) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 1:7500; 图 3
赛默飞世尔α微管蛋白抗体(Zymed Laboratories, 13-8000)被用于被用于免疫印迹在人类样本上浓度为1:7500 (图 3). J Neurochem (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 表 1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (表 1). Ann N Y Acad Sci (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; field poppy; 1:200; 图 8
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫组化在field poppy样本上浓度为1:200 (图 8). Planta (2007) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔α微管蛋白抗体(Zymed, 13-8000)被用于被用于免疫印迹在小鼠样本上 (图 3). Am J Pathol (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). Cell Signal (2007) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔α微管蛋白抗体(Lab Vision, DM1A)被用于被用于免疫印迹在人类样本上. Blood (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在小鼠样本上. Stem Cells (2007) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; domestic rabbit; 图 1
赛默飞世尔α微管蛋白抗体(Zymed, 32-2500)被用于被用于免疫印迹在domestic rabbit样本上 (图 1). Cell Signal (2007) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
赛默飞世尔α微管蛋白抗体(Neomarkers, DM1A)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cell Biol (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10,501)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 1). Cancer Chemother Pharmacol (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; Leishmania ; 1:1000; 图 3
赛默飞世尔α微管蛋白抗体(分子探针, noca)被用于被用于免疫细胞化学在Leishmania 样本上浓度为1:1000 (图 3). J Biol Chem (2006) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:200; 图 3
赛默飞世尔α微管蛋白抗体(Zymed, 32-2700)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). ASAIO J (2006) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫印迹在小鼠样本上. Genes Cells (2006) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:200; 图 1
赛默飞世尔α微管蛋白抗体(分子探针, A-11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1). J Biol Chem (2006) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔α微管蛋白抗体(Invitrogen Corporation, 32-2500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Stem Cells (2006) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 图 6
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于被用于免疫细胞化学在小鼠样本上 (图 6). J Cell Sci (2005) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:800; 图 3
赛默飞世尔α微管蛋白抗体(Neomarkers, MS-581-P1)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 3). Pediatr Blood Cancer (2006) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫细胞化学在人类样本上 (图 1). J Cell Sci (2005) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔α微管蛋白抗体(Zymed Laboratories, 13-8000)被用于被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2005) ncbi
小鼠 单克隆(236-10501)
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于. Biophys J (2004) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔α微管蛋白抗体(Zymed, Tu-01)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cell Biol (2004) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠
赛默飞世尔α微管蛋白抗体(分子探针, noca)被用于被用于免疫细胞化学在小鼠样本上. Nat Immunol (2004) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2004) ncbi
小鼠 单克隆(TU-01)
  • 免疫细胞化学; African green monkey; 图 4
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫细胞化学在African green monkey样本上 (图 4). J Biol Chem (2004) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛默飞世尔α微管蛋白抗体(Zymed, 13-8000)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Endocrinology (2004) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 非洲爪蛙; 图 2
赛默飞世尔α微管蛋白抗体(noco, noca)被用于被用于免疫细胞化学在非洲爪蛙样本上 (图 2). Annu Rev Cell Dev Biol (2003) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫印迹在小鼠样本上 (图 7). J Biol Chem (2003) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 0.4 ug/ml; 图 2
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上浓度为0.4 ug/ml (图 2). Proteomics (2003) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 2b
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫印迹在人类样本上 (图 2b). Oral Oncol (2003) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 6
赛默飞世尔α微管蛋白抗体(noco, A11126)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2003) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔α微管蛋白抗体(Affinity BioReagents, A11126)被用于被用于免疫印迹在大鼠样本上 (图 3). J Cell Biol (2002) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; African green monkey; 1:250; 图 3
赛默飞世尔α微管蛋白抗体(分子探针, noca)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:250 (图 3). Hum Mol Genet (2002) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:20,000; 图 6g
赛默飞世尔α微管蛋白抗体(Zymed, noca)被用于被用于免疫细胞化学在小鼠样本上浓度为1:20,000 (图 6g). Exp Cell Res (2001) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠
赛默飞世尔α微管蛋白抗体(分子探针, noca)被用于被用于免疫细胞化学在小鼠样本上. J Cell Biol (2001) ncbi
小鼠 单克隆(TU-01)
  • 免疫沉淀; 非洲爪蛙; 图 2
赛默飞世尔α微管蛋白抗体(Zymed, clone TU-01)被用于被用于免疫沉淀在非洲爪蛙样本上 (图 2). Mol Reprod Dev (2001) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:200; 图 1
赛默飞世尔α微管蛋白抗体(Zymed, B-5-1-2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). J Biol Chem (2001) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 仓鼠; 图 6
赛默飞世尔α微管蛋白抗体(noco, noca)被用于被用于免疫细胞化学在仓鼠样本上 (图 6). Mol Biol Cell (2000) ncbi
小鼠 单克隆(TU-01)
  • 免疫细胞化学; 大鼠; 图 2
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫细胞化学在大鼠样本上 (图 2). J Neurochem (2000) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 1:20,000
赛默飞世尔α微管蛋白抗体(noco, noca)被用于被用于免疫印迹在人类样本上浓度为1:20,000. J Biol Chem (2000) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 4
赛默飞世尔α微管蛋白抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2000) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠; 1:500; 图 5
赛默飞世尔α微管蛋白抗体(分子探针, A11126)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Anal Biochem (1999) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔α微管蛋白抗体(noco, B-5-1-2)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Biol Chem (1999) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; African green monkey; 图 5
赛默飞世尔α微管蛋白抗体(noco, YL1/2)被用于被用于免疫细胞化学在African green monkey样本上 (图 5). J Cell Biol (1999) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 大鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 1:12,000; 图 4
赛默飞世尔α微管蛋白抗体(noco, noca)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:12,000 (图 4). Mol Biol Cell (1999) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; 牛; 图 7
赛默飞世尔α微管蛋白抗体(分子探针, noco)被用于被用于免疫组化在牛样本上 (图 7). J Histochem Cytochem (1999) ncbi
小鼠 单克隆(TU-01)
  • 免疫细胞化学; 大鼠; 图 2
赛默飞世尔α微管蛋白抗体(Zymed, TU-01)被用于被用于免疫细胞化学在大鼠样本上 (图 2). J Neurosci (1999) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔α微管蛋白抗体(noco, DM1a)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Mol Biol Cell (1999) ncbi
小鼠 单克隆(236-10501)
  • 流式细胞仪; 人类; 1:10
赛默飞世尔α微管蛋白抗体(Zymed, noca)被用于被用于流式细胞仪在人类样本上浓度为1:10. Cytometry (1998) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; Dictyostelium discoideum; 图 1a
赛默飞世尔α微管蛋白抗体(noco, YL l/2)被用于被用于免疫细胞化学在Dictyostelium discoideum样本上 (图 1a). Exp Cell Res (1984) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; fruit fly ; 图 4
赛默飞世尔α微管蛋白抗体(noco, noca)被用于被用于免疫组化在fruit fly 样本上 (图 4). Development (1992) ncbi
圣克鲁斯生物技术
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:160; 图 3a
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上浓度为1:160 (图 3a). elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:500; 图 5c
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5c). elife (2020) ncbi
小鼠 单克隆(10D8)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-53646)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). elife (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 4f
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-23948)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). EMBO Rep (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 3d
  • 免疫印迹; 大鼠; 图 3e, s4b
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3a
  • 免疫细胞化学; 人类; 1:200; 图 2a
  • 免疫印迹; 人类; 图 4e, 5a
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 3d), 被用于免疫印迹在大鼠样本上 (图 3e, s4b), 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3a), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2a) 和 被用于免疫印迹在人类样本上 (图 4e, 5a). Theranostics (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图 1a
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-32293)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1a). elife (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图 1a
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-32293)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Commun (2019) ncbi
小鼠 单克隆(10D8)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-53646)被用于被用于免疫印迹在人类样本上 (图 2a). J Biol Chem (2019) ncbi
小鼠 单克隆(B-7)
  • 免疫细胞化学; 人类; 1:100; 图 1s3a
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1s3a). elife (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s3a
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-23948)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Sci Adv (2019) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:500; 图 3h
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3h). elife (2019) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 2i
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 2i). Cell Rep (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 2g
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上 (图 2g). Cell Rep (2019) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 4j
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-8035)被用于被用于免疫印迹在小鼠样本上 (图 4j). Cell Rep (2019) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-8035)被用于被用于免疫印迹在人类样本上 (图 3a). Leukemia (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 图 1c
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-23950)被用于被用于免疫组化在人类样本上 (图 1c). EMBO J (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 6g
  • 免疫印迹; 人类; 图 6e
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫细胞化学在人类样本上 (图 6g), 被用于免疫印迹在人类样本上 (图 6e) 和 被用于免疫印迹在小鼠样本上 (图 6a). Cell Death Differ (2018) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠; 图 3c
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-53029)被用于被用于免疫印迹在小鼠样本上 (图 3c). Sci Rep (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 s4b
圣克鲁斯生物技术α微管蛋白抗体(Santa, 23948)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4b). Science (2018) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-8035)被用于被用于免疫印迹在人类样本上 (图 5b). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-23948)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2018) ncbi
小鼠 单克隆(5F131)
  • 免疫印迹; 人类; 图 8b
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-73242)被用于被用于免疫印迹在人类样本上 (图 8b). Clin Cancer Res (2018) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
圣克鲁斯生物技术α微管蛋白抗体(Santacruz, sc-8035)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Sci Rep (2017) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 人类; 图 1b
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-53029)被用于被用于免疫细胞化学在人类样本上 (图 1b). Nat Commun (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 6g
圣克鲁斯生物技术α微管蛋白抗体(SantaCruz, 6-11B-1)被用于被用于免疫印迹在小鼠样本上 (图 6g). Haematologica (2017) ncbi
小鼠 单克隆(TU-02)
  • 免疫细胞化学; 人类; 图 5a
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, TU-02)被用于被用于免疫细胞化学在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:1000; 图 6s1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6s1). elife (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在大鼠样本上 (图 3). Physiol Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 7
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). elife (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). Cancer Cell Int (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 大鼠; 图 2a
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在大鼠样本上 (图 2a). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC23948)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫细胞化学; 人类; 图 8b
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫细胞化学在人类样本上 (图 8b) 和 被用于免疫印迹在人类样本上 (图 5e). Nat Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 3a
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23948)被用于被用于免疫细胞化学在人类样本上 (图 3a). Exp Mol Med (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在小鼠样本上 (图 7). Front Neurosci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, Sc-32293)被用于被用于免疫印迹在人类样本上 (图 1). F1000Res (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 s1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, TU-02)被用于被用于免疫印迹在小鼠样本上 (图 s1). Mol Cell Oncol (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 小鼠; 图 5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, YL1/2)被用于被用于免疫细胞化学在小鼠样本上 (图 5). J Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 s3
  • 免疫印迹; 小鼠; 1:1000; 图 s1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23948)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-23948)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Res (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 5H
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 5H). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23948)被用于被用于免疫印迹在人类样本上 (图 3). Mol Neurodegener (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于被用于免疫印迹在人类样本上 (图 5). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫细胞化学; 小鼠; 1:500; 图 2b
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2b). Peerj (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 6). PLoS Pathog (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠; 1:1000; 图 5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Int J Med Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:200; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa-Cruz Biotechnology, sc-32293)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1). BMC Mol Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 非洲爪蛙; 1:500; 图 s1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, 6-11B-1)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:500 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 1D
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 1D). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(10D8)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术α微管蛋白抗体(Santa cruz, sc53646)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠; 1:20,000; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, YL1/2)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 5b
圣克鲁斯生物技术α微管蛋白抗体(santa cruz, sc-32293)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5b). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23948)被用于被用于免疫印迹在小鼠样本上 (图 4). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1 ug/ml; 图 5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 5). Nat Commun (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:200; 图 2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-398103)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-32293)被用于被用于免疫印迹在人类样本上 (图 3). Cell Signal (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, TU-02)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-5286)被用于被用于免疫印迹在小鼠样本上 (图 4). Cell Death Dis (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc5286)被用于被用于免疫印迹在小鼠样本上 (图 1). elife (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术α微管蛋白抗体(santa cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1b). J Cell Sci (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:500; 图 3g
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3g). Am J Hum Genet (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Biol (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-32293)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Mol Oncol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-23950)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Mol Oncol (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:200; 图 6
  • 免疫印迹; 人类; 1:200; 图 6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 犬; 1:1000; 图 2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-8035)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 2). elife (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图 s3
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:10,000; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnologies, sc-8035)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 1). In Vitro Cell Dev Biol Anim (2016) ncbi
小鼠 单克隆(AA13)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-58668)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-53030)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:2000; 图 4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Nat Cell Biol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在人类样本上 (图 3). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(6A204)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-69969)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 7). Gene (2016) ncbi
小鼠 单克隆(4G1)
  • 免疫印迹; 人类; 图 7b
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-58666)被用于被用于免疫印迹在人类样本上 (图 7b). PLoS ONE (2015) ncbi
小鼠 单克隆(10D8)
  • 免疫印迹; 人类; 1:2000; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-53646)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, Sc-23950)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). Brain Behav (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23948)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz), DM1A)被用于被用于免疫细胞化学在人类样本上 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(4G1)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-58666)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:500; 图 6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, TU-02)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在小鼠样本上. Biochem Pharmacol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:650; 图 2b
圣克鲁斯生物技术α微管蛋白抗体(santa cruz, B-5-1-2)被用于被用于免疫细胞化学在人类样本上浓度为1:650 (图 2b). Oncogene (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, TU-02)被用于被用于免疫印迹在人类样本上 (图 6). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS Genet (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上. J Proteomics (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上. Leukemia (2016) ncbi
小鼠 单克隆(AA12)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-58667)被用于被用于免疫印迹在小鼠样本上 (图 7). Mediators Inflamm (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:1000; 图 5
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc-8035)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(10D8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-53646)被用于被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:2000; 图 3c
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-8035)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Bioorg Med Chem (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 6d
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC23948)被用于被用于免疫印迹在小鼠样本上 (图 6d). Nat Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术α微管蛋白抗体(Santa cruz, SC-23948)被用于被用于免疫印迹在人类样本上 (图 3b). Epigenetics (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23948)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 s1c
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-8035)被用于被用于免疫印迹在人类样本上 (图 s1c). Cell Death Differ (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:200; 图 8
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫组化; 小鼠; 图 8c
  • 免疫印迹; 小鼠; 1:1000; 图 8a
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫组化在小鼠样本上 (图 8c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). PLoS ONE (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, SC-32293)被用于被用于免疫印迹在小鼠样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, SC-23950)被用于被用于免疫印迹在小鼠样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:250; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1). Drug Metab Dispos (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 1, 6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上 (图 1, 6). Autophagy (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23948)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 7). Oncogene (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:10,000; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 3). BMC Gastroenterol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 f6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 f6). Sci Signal (2015) ncbi
小鼠 单克隆(E-10)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, E10)被用于被用于免疫印迹在人类样本上 (图 1a). PLoS ONE (2015) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫印迹; brewer's yeast; 图 s4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-53030)被用于被用于免疫印迹在brewer's yeast样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 5f
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在小鼠样本上 (图 5f). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 s5e
圣克鲁斯生物技术α微管蛋白抗体(santa cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上 (图 s5e). Nat Immunol (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(B-7)
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, B-7)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫细胞化学; 人类; 2 ug/ml
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-8035)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml. Oncotarget (2015) ncbi
小鼠 单克隆(4G1)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-58666)被用于被用于免疫印迹在大鼠样本上. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, 8035)被用于被用于免疫印迹在人类样本上 (图 5d). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, DM1A)被用于被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
大鼠 单克隆(YL1/2)
  • 免疫组化-石蜡切片; 小鼠; 1:200
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, YL1/2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Nat Commun (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在大鼠样本上. Physiol Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-32293)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cell Death Dis (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术α微管蛋白抗体(santa cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 5). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, Sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biochem (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23948)被用于被用于免疫印迹在小鼠样本上 (图 5). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:700; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, B-5-1-2)被用于被用于免疫细胞化学在人类样本上浓度为1:700 (图 3). Cell Cycle (2015) ncbi
小鼠 单克隆(6A204)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-69969)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, DM1A)被用于被用于免疫印迹在人类样本上 (图 4c). Biochem J (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, B-7)被用于被用于免疫印迹在小鼠样本上. Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23948)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Development (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-32293)被用于被用于免疫印迹在人类样本上 (图 6). J Virol (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa-Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 人类; 1:400
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于被用于免疫组化在人类样本上浓度为1:400. Respir Res (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:5000; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). J Cell Physiol (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23948)被用于被用于免疫印迹在人类样本上. Am J Pathol (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Prostate (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:3000
圣克鲁斯生物技术α微管蛋白抗体(Santacruz, TU-02)被用于被用于免疫印迹在人类样本上浓度为1:3000. Cancer Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 白色念珠菌; 1:1000; 图 9
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于被用于免疫细胞化学在白色念珠菌样本上浓度为1:1000 (图 9). Nat Commun (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-8035)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 克氏锥虫; 1:100
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, DM1A)被用于被用于免疫细胞化学在克氏锥虫样本上浓度为1:100. Mem Inst Oswaldo Cruz (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc23948)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:2000; 图 2c
圣克鲁斯生物技术α微管蛋白抗体(SantaCruz, B-5-1-2)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 2c). Cell Death Dis (2014) ncbi
小鼠 单克隆(TU-02)
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于. Cell Death Dis (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上. Ann Neurol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 猕猴; 图 2
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc5286)被用于被用于免疫印迹在猕猴样本上 (图 2). Mol Endocrinol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于被用于免疫印迹在小鼠样本上 (图 4). J Immunol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在小鼠样本上 (图 4). J Immunol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology Inc, sc-5286)被用于被用于免疫印迹在人类样本上. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc8035)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. J Proteome Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa, sc-23948)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术α微管蛋白抗体(santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫组化; 大鼠; 1:500
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotech, TU-02)被用于被用于免疫组化在大鼠样本上浓度为1:500. Exp Eye Res (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上. J Innate Immun (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23948)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Med (2014) ncbi
大鼠 单克隆(3H3087)
  • 免疫印迹; 酵母菌目
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnologies, sc-69971)被用于被用于免疫印迹在酵母菌目样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-32293)被用于被用于免疫细胞化学在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(10D8)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-53646)被用于被用于免疫印迹在人类样本上. Biochimie (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上. FEBS Lett (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 1:250
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在人类样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:250
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; African green monkey; 1:16000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在African green monkey样本上浓度为1:16000. Biol Reprod (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:2500
  • 免疫印迹; 小鼠; 1:2500
圣克鲁斯生物技术α微管蛋白抗体(SantaCruz, SC-5286)被用于被用于免疫印迹在人类样本上浓度为1:2500 和 被用于免疫印迹在小鼠样本上浓度为1:2500. Eur Respir J (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:5000; 图 st13
圣克鲁斯生物技术α微管蛋白抗体(Santa cruz, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 st13). Nat Cell Biol (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-32293)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:1000. Hum Mol Genet (2014) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-53029)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上 (图 5). Endocrinology (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, DM1A)被用于被用于免疫细胞化学在人类样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(AA13)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa-Cruz, sc-58668)被用于被用于免疫印迹在大鼠样本上. Epilepsy Res (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:10,000; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnologies, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). In Vitro Cell Dev Biol Anim (2014) ncbi
小鼠 单克隆(AA12)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-58667)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫组化; 大鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, s-5286)被用于被用于免疫组化在大鼠样本上. Methods Mol Biol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:8000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:8000. Diabetes (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上. J Dermatol Sci (2014) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫印迹; fission yeast
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-53030)被用于被用于免疫印迹在fission yeast样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Diabetologia (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology,, sc-5286)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa-Cruz, sc-8035)被用于被用于免疫印迹在人类样本上. Cancer Res (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:2000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Comp Neurol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在大鼠样本上. J Gerontol A Biol Sci Med Sci (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Addict Biol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Eur J Immunol (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-32293)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫细胞化学; 鸡; 1:2500
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫细胞化学在鸡样本上浓度为1:2500. PLoS Genet (2013) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:10,000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz biotechnology, Sc-8035)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. PLoS ONE (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在大鼠样本上. Autophagy (2013) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, SC-8035)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2012) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, Sc 5286)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, Sc-8035)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2013) ncbi
小鼠 单克隆(10D8)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-53646)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Dev Biol (2012) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:1000; 图 7
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). BMC Dev Biol (2011) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上. J Biol Chem (2009) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术α微管蛋白抗体(Santa Cruz Biotechnology, TU-02)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2005) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 1g
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1g). BMC Cancer (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, EPR16772)被用于被用于免疫印迹在小鼠样本上. elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 1a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1a). Mol Metab (2020) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 大鼠; 1:400; 图 2a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, Ab6160)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 2a). Curr Biol (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 非洲爪蛙; 1:500; 图 8a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, AB24610)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:500 (图 8a). PLoS Genet (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2020) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 人类; 图 2d
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫细胞化学在人类样本上 (图 2d). elife (2019) ncbi
domestic rabbit 单克隆(EP1332Y)
  • 免疫细胞化学; 人类; 1:3000; 图 7g
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab52866)被用于被用于免疫细胞化学在人类样本上浓度为1:3000 (图 7g). elife (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 ev1d
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上 (图 ev1d). EMBO J (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 2e). Cell Rep (2019) ncbi
大鼠 单克隆(YL1/2)
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于. elife (2019) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在小鼠样本上 (图 5a). Neuron (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2019) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 人类; 1:5000; 图 1a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, Ab6160)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1a). J Cell Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5e). J Cell Biol (2019) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠; 1:2000; 图 6a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). Science (2019) ncbi
domestic rabbit 单克隆(EP1332Y)
  • 免疫印迹; 人类; 图 s4c
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab52866)被用于被用于免疫印迹在人类样本上 (图 s4c). Cell (2019) ncbi
单克隆
  • 免疫印迹; 人类; 1:2000; 图 s1c
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab11304)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s1c). Atherosclerosis (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 1d
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1d). Nat Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2f
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2f). J Clin Invest (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Cell (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s4k
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 s4k). Science (2018) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 牛; 1 ug/ml; 图 1a
  • 免疫印迹; 牛; 200 ng/ml; 图 6b
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在牛样本上浓度为1 ug/ml (图 1a) 和 被用于免疫印迹在牛样本上浓度为200 ng/ml (图 6b). Graefes Arch Clin Exp Ophthalmol (2019) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 人类; 图 8a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab179484)被用于被用于免疫细胞化学在人类样本上 (图 8a). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 4b). Oncogene (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 图 1a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在小鼠样本上 (图 1a). Sci Rep (2018) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 4b
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4b). Proteome Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司α微管蛋白抗体(Sigma, ab18251)被用于被用于免疫印迹在人类样本上 (图 1d). J Biol Chem (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Cell Biol (2017) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 小鼠; 图 3j
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫细胞化学在小鼠样本上 (图 3j). EMBO J (2017) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 人类; 1:500; 图 s11a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s11a). Nat Commun (2017) ncbi
大鼠 单克隆(YL1/2)
  • 免疫组化; 小鼠; 1:500; 图 1t
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1t). Cell (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, DM1A)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). Sci Rep (2017) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在人类样本上 (图 2b). Nature (2017) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; fruit fly ; 1:50; 图 2c
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:50 (图 2c). Nat Commun (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 人类; 图 4c
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫细胞化学在人类样本上 (图 4c). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 5
艾博抗(上海)贸易有限公司α微管蛋白抗体(abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 4074)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
  • 免疫印迹; African green monkey; 图 2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 56676)被用于被用于免疫印迹在African green monkey样本上 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫组化; 小鼠; 图 st1
  • 免疫细胞化学; 人类; 图 2a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫组化在小鼠样本上 (图 st1) 和 被用于免疫细胞化学在人类样本上 (图 2a). Nat Biotechnol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s2
艾博抗(上海)贸易有限公司α微管蛋白抗体(abcam, ab15246)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, DM1A)被用于被用于免疫印迹在人类样本上 (图 s1). Sci Rep (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠; 1:2000; 图 13
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 13). Histochem Cell Biol (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠; 图 7
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在小鼠样本上 (图 7). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:6000; 图 1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 7291)被用于被用于免疫印迹在人类样本上浓度为1:6000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:500; 图 6
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Small Gtpases (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 15246)被用于被用于免疫细胞化学在人类样本上 (图 4). J Biol Chem (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 大鼠; 图 7
  • 免疫印迹; 大鼠; 图 3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫细胞化学在大鼠样本上 (图 7) 和 被用于免疫印迹在大鼠样本上 (图 3). Int J Mol Med (2016) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7750)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:50,000; 图 st2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 st2). Transl Res (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:700; 图 3a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫细胞化学在人类样本上浓度为1:700 (图 3a). Hum Mutat (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠; 1:10,000; 图 4
  • 免疫印迹; 人类; 1:10,000; 图 2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Mol Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; African green monkey; 图 2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab48389)被用于被用于免疫细胞化学在African green monkey样本上 (图 2). Nat Methods (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于被用于免疫细胞化学在人类样本上 (图 1). Cell Div (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 小鼠; 图 4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Acta Neuropathol (2016) ncbi
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab89984)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 6). Open Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:25,000; 图 s18
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于被用于免疫印迹在人类样本上浓度为1:25,000 (图 s18). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5i, 5t, 6d, 6g, 6i2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5i, 5t, 6d, 6g, 6i2). Genesis (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:100; 图 s2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, Ab64503)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 大鼠; 图 5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫组化在大鼠样本上 (图 5). Eur J Histochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司α微管蛋白抗体(AbCam, Ab18251)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, Ab48389)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3c). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, DM1A)被用于被用于免疫印迹在人类样本上 (图 s5). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 6
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 6). Endocrinology (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 大鼠; 1:400; 图 5
  • 免疫印迹; 大鼠; 1:10,000; 图 2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 2). Cell Signal (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化基因敲除验证; 人类; 1:5000; 图 s2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, Ab7291)被用于被用于免疫组化基因敲除验证在人类样本上浓度为1:5000 (图 s2). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在人类样本上 (图 5). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab182251)被用于被用于免疫印迹在小鼠样本上 (图 8). J Cell Sci (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 人类; 1:10,000; 图 5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab15246)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Cell Rep (2016) ncbi
单克隆
  • 免疫印迹; 人类; 1:10,000; 图 1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab11304)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Heliyon (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:6000; 图 6a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:6000 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EP1332Y)
  • 免疫印迹; 小鼠; 1:5000; 图 3A
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab52866)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3A). Int J Mol Sci (2015) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司α微管蛋白抗体(abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2500; 图 4c
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4c). Skelet Muscle (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 5
艾博抗(上海)贸易有限公司α微管蛋白抗体(abcam, ab15246)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5). Mol Med Rep (2016) ncbi
  • 免疫印迹; 小鼠; 1:10,000; 图 s2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab56676)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s2). Stem Cell Res Ther (2015) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠; 1:5000; 图 2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). PLoS Genet (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:15,000; 图 s2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 6-11B-1)被用于被用于免疫细胞化学在人类样本上浓度为1:15,000 (图 s2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Nat Commun (2015) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在小鼠样本上. Nutr Neurosci (2016) ncbi
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab56676)被用于被用于免疫印迹在小鼠样本上. Neurogenetics (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 6
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab18251)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). Reprod Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在小鼠样本上. Cardiovasc Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 金鱼; 1:200; 图 3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在金鱼样本上浓度为1:200 (图 3). J Gen Physiol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 金鱼; 1:200; 图 3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫细胞化学在金鱼样本上浓度为1:200 (图 3). J Gen Physiol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, DM1A+DM1B)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于. Cilia (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; African green monkey; 1:1000; 图 S4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 S4). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图  2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图  2). Cancer Lett (2015) ncbi
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab 56676)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Physiol Rep (2015) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). FEBS Lett (2015) ncbi
  • 免疫印迹; 人类; 1:20,000; 图 3a
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab89984)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 3a). Sci Signal (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 3e
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上 (图 3e) 和 被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2015) ncbi
单克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab11304)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Front Pharmacol (2015) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab56676)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 s4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s4). Cell (2015) ncbi
  • 免疫印迹; 人类; 1:10,000; 图 3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24246)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Cell (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 大鼠; 1:3000; 图 4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 6-11B-1)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 4). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 6
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 7291)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图 4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Toxicol Lett (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 2, 3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2, 3). Cell Cycle (2015) ncbi
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab56676)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 家羊; 1:10,000; 图 1
艾博抗(上海)贸易有限公司α微管蛋白抗体(AbCam, ab7291)被用于被用于免疫印迹在家羊样本上浓度为1:10,000 (图 1). Int J Biochem Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在小鼠样本上 (图 5). Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s9
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 s9). Nature (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; pigs ; 1:1000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫细胞化学在pigs 样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-冰冻切片; 大鼠; 1:500
  • 免疫组化-石蜡切片; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500, 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Endocrinology (2015) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠; 图 7
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在小鼠样本上 (图 7). FASEB J (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab40742)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, Ab7291)被用于被用于免疫印迹在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上. J Cell Biol (2014) ncbi
大鼠 单克隆(YL1/2)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 3, 4
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, Ab6160)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 3, 4). Methods Mol Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Int J Mol Sci (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
  • 免疫细胞化学; 小鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 6-11B-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 3). Mol Biol Cell (2014) ncbi
大鼠 单克隆(YL1/2)
  • 免疫组化; 小鼠; 1:5000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫组化在小鼠样本上浓度为1:5000. Dev Biol (2014) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Open Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上. Stem Cell Res (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Hippocampus (2014) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫细胞化学在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab 7291)被用于被用于免疫印迹在小鼠样本上. J Appl Physiol (1985) (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:1000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Cancer Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:5000. Methods Mol Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫细胞化学在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 s5
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s5). Nat Chem Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, 7291)被用于被用于免疫印迹在小鼠样本上 (图 3). EMBO Mol Med (2014) ncbi
domestic rabbit 单克隆(EP1332Y)
  • 免疫印迹; 小鼠; 1:2000
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab52866)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Stem Cells (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫组化在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 人类; 1:800
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800. BMC Nephrol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图 8
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8). Reprod Toxicol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, Ab7291)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 3). J Bioenerg Biomembr (2014) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫细胞化学在人类样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上. J Dermatol Sci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 5d
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, AB7291)被用于被用于免疫细胞化学在人类样本上 (图 4b), 被用于免疫印迹在人类样本上 (图 5d) 和 被用于免疫细胞化学在小鼠样本上. J Clin Invest (2013) ncbi
domestic rabbit 单克隆(EP1332Y)
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab52866)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Eur J Cancer (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Hum Mol Genet (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab40742)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(EP1332Y)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab52866)被用于被用于免疫细胞化学在人类样本上. Cell Cycle (2013) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于免疫印迹在人类样本上. J Cell Sci (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1500
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab24610)被用于被用于免疫细胞化学在人类样本上浓度为1:1500. Cytoskeleton (Hoboken) (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上. Nat Genet (2011) ncbi
大鼠 单克隆(YL1/2)
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab6160)被用于被用于染色质免疫沉淀 在人类样本上. Mol Cell Biol (2010) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:2500
艾博抗(上海)贸易有限公司α微管蛋白抗体(Abcam, ab7291)被用于被用于免疫印迹在大鼠样本上浓度为1:2500. J Comp Neurol (2008) ncbi
西格玛奥德里奇
小鼠 单克隆(B-5-1-2)
  • 免疫沉淀; 人类; 图 1c
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫沉淀在人类样本上 (图 1c). elife (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 5a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Adv (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:4000; 图 s4f
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 s4f). Stem Cell Reports (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; roundworm ; 图 10e
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在roundworm 样本上 (图 10e). Cancer Cell Int (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1b
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Signal (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 5d
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 5d). Nat Commun (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2b
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 2b). J Clin Invest (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在人类样本上 (图 2a). elife (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 非洲爪蛙; 图 3c
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫细胞化学在非洲爪蛙样本上 (图 3c). Neuron (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:4000; 图 s11d
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 s11d). Mol Syst Biol (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-冰冻切片; 拟南芥; 1:100; 图 6c
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫组化-冰冻切片在拟南芥样本上浓度为1:100 (图 6c). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1c
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 ex3g
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 ex3g). Nature (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1c
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 1c). Nat Genet (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s6a
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 s6a). Nat Commun (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 8). Viruses (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:2000; 图 1a
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1a). J Cell Sci (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 人类; 1:10; 图 3
  • 免疫细胞化学; 小鼠; 1:10; 图 5a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫组化在人类样本上浓度为1:10 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 5a). PLoS ONE (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 3a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS ONE (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 3). Nature (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). Cell Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 中国人仓鼠; 1:5000; 图 1
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在中国人仓鼠样本上浓度为1:5000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 7
  • 免疫印迹; 小鼠; 1:5000; 图 3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 图 3a
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:50,000; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 非洲爪蛙; 1:5000; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:5000 (图 2). Open Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Cell Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fission yeast; 图 5
西格玛奥德里奇α微管蛋白抗体(Sigma, B5-1-2)被用于被用于免疫印迹在fission yeast样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:4000; 图 4
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 4). J Mol Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Vis Exp (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 s4). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 6). J Virol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:25,000; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在小鼠样本上浓度为1:25,000 (图 1). Am J Pathol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fruit fly ; 1:10,000; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在fruit fly 样本上浓度为1:10,000 (图 1). Development (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:2500; 图 4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 11
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 11). J Virol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 非洲爪蛙; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于被用于免疫印迹在非洲爪蛙样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 衣藻; 1:40,000; 图 s4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在衣藻样本上浓度为1:40,000 (图 s4). elife (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s3f
西格玛奥德里奇α微管蛋白抗体(Sigma., T6074)被用于被用于免疫印迹在小鼠样本上 (图 s3f). Immunity (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Metab (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在大鼠样本上 (图 3). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:4000; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 3b). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 大鼠; 图 6i
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫细胞化学在大鼠样本上 (图 6i). J Neurosci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 鸡; 图 3
  • 免疫印迹; 鸡; 1:2000; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B512)被用于被用于免疫细胞化学在鸡样本上 (图 3) 和 被用于免疫印迹在鸡样本上浓度为1:2000 (图 2). Open Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 图 4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫细胞化学在小鼠样本上 (图 4). J Cell Physiol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:25,000; 图 s4c
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在小鼠样本上浓度为1:25,000 (图 s4c). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s2
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在小鼠样本上 (图 s2). Cell Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:500. Nature (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于被用于免疫印迹在人类样本上 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 3). Genes Dev (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在人类样本上 (图 4). Int J Biol Sci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). PLoS Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). elife (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 10
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在小鼠样本上 (图 10) 和 被用于免疫印迹在人类样本上 (图 7). J Clin Invest (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:2000; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 0.2 ug/ml; 图 4b
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为0.2 ug/ml (图 4b). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s7
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 s7). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 家羊; 1:1000; 图 1a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B5-1-2)被用于被用于免疫印迹在家羊样本上浓度为1:1000 (图 1a). Am J Physiol Cell Physiol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 图 3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 s3). Nat Methods (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:3000; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma, T 6074)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 2b
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s11
西格玛奥德里奇α微管蛋白抗体(sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 s11). PLoS Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:30,000; 图 3c
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, B-5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:30,000 (图 3c). Cancer Res (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 小鼠; 1:200; 图 6a
  • 免疫印迹; 小鼠; 1:5000; 图 5f,1
西格玛奥德里奇α微管蛋白抗体(sigma, T6074)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5f,1). Endocrinology (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; domestic rabbit; 1:20000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:20000. J Cell Mol Med (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T-6074)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在大鼠样本上 (图 3). Nutr Neurosci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 s8
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. J Proteome Res (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 仓鼠; 1:5000; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在仓鼠样本上浓度为1:5000 (图 2). J Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s6m
西格玛奥德里奇α微管蛋白抗体(Sigma., B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 s6m). Mol Cell (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:50000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:50000. J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在大鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 5d
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 5d). Blood (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 s1). Stem Cell Res (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图 1e
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在大鼠样本上 (图 1e). J Clin Invest (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:1500; 图 5
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫细胞化学在人类样本上浓度为1:1500 (图 5). Brain (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:3000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:3000. Cell Signal (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s3
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-512)被用于被用于免疫印迹在人类样本上 (图 s3). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, clone B-5-1-2)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Pathog (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s6
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B512)被用于被用于免疫印迹在人类样本上 (图 s6). J Clin Invest (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 6
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nature (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma, 6074)被用于被用于免疫印迹在人类样本上 (图 1). Cell Host Microbe (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上. PLoS Med (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上. Cell Signal (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:2000; 图 1a
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B512)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1a). Mol Biol Cell (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 大鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫细胞化学在大鼠样本上. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T-6074)被用于被用于免疫印迹在人类样本上. Clin Exp Metastasis (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 2). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 4). Autophagy (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; roundworm ; 1:1500; 图 s4
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6074)被用于被用于免疫印迹在roundworm 样本上浓度为1:1500 (图 s4). PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:200; 图 4
  • 免疫印迹; 人类; 图 3d; 3g
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4) 和 被用于免疫印迹在人类样本上 (图 3d; 3g). J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6074)被用于被用于免疫印迹在人类样本上浓度为1:10000. J Appl Physiol (1985) (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 1:20000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在大鼠样本上浓度为1:20000. Dev Neurobiol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fruit fly ; 1:2000
西格玛奥德里奇α微管蛋白抗体(SIGMA, B512)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000. Open Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:1000; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). Hum Reprod (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s1
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 s1). Oncogene (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 2). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Oncotarget (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; groundhog; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074-200UL)被用于被用于免疫印迹在groundhog样本上浓度为1:1000. Mol Cancer Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 3). Nature (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Oncogene (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, T6074)被用于被用于免疫印迹在人类样本上 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上. EMBO Mol Med (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B512)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10000
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于被用于免疫印迹在人类样本上浓度为1:10000. J Biol Chem (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上. Nat Commun (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fission yeast
  • 免疫印迹; 酵母菌目
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B5-1-2)被用于被用于免疫印迹在fission yeast样本上 和 被用于免疫印迹在酵母菌目样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 大鼠; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T607)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 6
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 6). PLoS Pathog (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上. FEBS Lett (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上. RNA (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图 10
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在大鼠样本上 (图 10). Nat Protoc (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, B-5-1-2)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2b
西格玛奥德里奇α微管蛋白抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 2b). Oncogene (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 非洲爪蛙
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于被用于免疫印迹在非洲爪蛙样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5?C1?C2)被用于被用于免疫印迹在人类样本上 (图 2). Cell Death Differ (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; domestic rabbit; 1:20000
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:20000. Eur J Nutr (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, B512)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠
西格玛奥德里奇α微管蛋白抗体(Sigma-Aldrich, B512)被用于被用于免疫印迹在大鼠样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 鸡; 1:2000
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于被用于免疫细胞化学在鸡样本上浓度为1:2000. Cell Cycle (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Development (2012) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫细胞化学; 人类; 1:100; 图 2
西格玛奥德里奇α微管蛋白抗体(Sigma, F2043)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). PLoS ONE (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图  6
西格玛奥德里奇α微管蛋白抗体(Sigma, B512)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图  6). Leuk Res (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:3000; 图 1
西格玛奥德里奇α微管蛋白抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1). PLoS ONE (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 猕猴; 图 6
西格玛奥德里奇α微管蛋白抗体(Sigma, clone B-5-1-2)被用于被用于免疫印迹在猕猴样本上 (图 6). J Virol (2010) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇α微管蛋白抗体(Sigma Aldrich, B512)被用于被用于免疫印迹在人类样本上. J Cell Biol (2008) ncbi
GeneTex
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000; 图 3a
GeneTexα微管蛋白抗体(Genetex, GTX16292)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3a). PLoS ONE (2018) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 人类; 图 1b
GeneTexα微管蛋白抗体(Genetex, GTX76511)被用于被用于免疫细胞化学在人类样本上 (图 1b). Cell Death Discov (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
GeneTexα微管蛋白抗体(GeneTex, GTX112141)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
GeneTexα微管蛋白抗体(Gene Tex, GTX112141)被用于被用于免疫细胞化学在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
GeneTexα微管蛋白抗体(GeneTex, GTX75717)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Tumour Biol (2015) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 酵母菌目
GeneTexα微管蛋白抗体(Genetex, GTX76511)被用于被用于免疫印迹在酵母菌目样本上. DNA Repair (Amst) (2008) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; brewer's yeast
GeneTexα微管蛋白抗体(Genetex, GTX76511)被用于被用于免疫印迹在brewer's yeast样本上. DNA Repair (Amst) (2006) ncbi
Cedarlanelabs
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:3000; 图 s15
Cedarlanelabsα微管蛋白抗体(Cedarlane, CLT9002)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 s15). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; fruit fly ; 1:10,0000; 图 7
  • 免疫印迹; 人类; 1:10,0000; 图 7
Cedarlanelabsα微管蛋白抗体(Cedarlane Laboratories, CLT9002)被用于被用于免疫印迹在fruit fly 样本上浓度为1:10,0000 (图 7) 和 被用于免疫印迹在人类样本上浓度为1:10,0000 (图 7). Mol Cell Biol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 7
Cedarlanelabsα微管蛋白抗体(Cedarlane, CLT9002)被用于被用于免疫印迹在人类样本上 (图 7). J Cell Physiol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
Cedarlanelabsα微管蛋白抗体(Cedarlane, CLT-9002)被用于被用于免疫印迹在人类样本上 (图 3). Cell Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
Cedarlanelabsα微管蛋白抗体(Cedarlane, CLT9002)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Mol Cell Biol (2014) ncbi
Exbio
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类
Exbioα微管蛋白抗体(Exbio, 11-250-C100)被用于被用于免疫印迹在人类样本上. Stem Cells (2012) ncbi
MBL International
  • 免疫印迹; 小鼠; 图 1
MBL Internationalα微管蛋白抗体(Medical & Biological Laboratories, PM054)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
  • 免疫印迹; 小鼠; 1:10,000
  • 免疫印迹; 人类; 1:10,000; 图 2
MBL Internationalα微管蛋白抗体(MBL, PM054)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). elife (2015) ncbi
  • 免疫印迹; 人类
MBL Internationalα微管蛋白抗体(Medical and Biological Laboratories, PM054-7)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
  • 免疫印迹; 小鼠; 图 s6
MBL Internationalα微管蛋白抗体(MBL, PM054-7)被用于被用于免疫印迹在小鼠样本上 (图 s6). Proc Natl Acad Sci U S A (2014) ncbi
  • 免疫印迹; 人类
MBL Internationalα微管蛋白抗体(Medical & Biological Laboratories, PM054-7)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
文章列表
  1. Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, et al. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer. 2020;20:749 pubmed 出版商
  2. Bhaskar A, Kumar S, Khan M, Singh A, Dwivedi V, Nandicoori V. Host sirtuin 2 as an immunotherapeutic target against tuberculosis. elife. 2020;9: pubmed 出版商
  3. Fenech E, Lari F, Charles P, Fischer R, Laétitia Thézénas M, Bagola K, et al. Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling. elife. 2020;9: pubmed 出版商
  4. Bozal Basterra L, Gonzalez Santamarta M, Muratore V, Bermejo Arteagabeitia A, Da Fonseca C, Barroso Gomila O, et al. LUZP1, a novel regulator of primary cilia and the actin cytoskeleton, is a contributing factor in Townes-Brocks Syndrome. elife. 2020;9: pubmed 出版商
  5. Gunesch J, Dixon A, Ebrahim T, Berrien Elliott M, Tatineni S, Kumar T, et al. CD56 regulates human NK cell cytotoxicity through Pyk2. elife. 2020;9: pubmed 出版商
  6. Booth D, King N. Genome editing enables reverse genetics of multicellular development in the choanoflagellate Salpingoeca rosetta. elife. 2020;9: pubmed 出版商
  7. Chan K, Son S, Schmid E, Fletcher D. A viral fusogen hijacks the actin cytoskeleton to drive cell-cell fusion. elife. 2020;9: pubmed 出版商
  8. Chong W, Wang W, Lo C, Chiu T, Chang T, Liu Y, et al. Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages. elife. 2020;9: pubmed 出版商
  9. Li H, Lian L, Liu B, Chen Y, Yang J, Jian S, et al. KIT ligand protects against both light-induced and genetic photoreceptor degeneration. elife. 2020;9: pubmed 出版商
  10. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  11. Steins A, van Mackelenbergh M, van der Zalm A, Klaassen R, Serrels B, Goris S, et al. High-grade mesenchymal pancreatic ductal adenocarcinoma drives stromal deactivation through CSF-1. EMBO Rep. 2020;21:e48780 pubmed 出版商
  12. Reynders M, Matsuura B, Bérouti M, Simoneschi D, Marzio A, Pagano M, et al. PHOTACs enable optical control of protein degradation. Sci Adv. 2020;6:eaay5064 pubmed 出版商
  13. Cao Y, Lipka J, Stucchi R, Burute M, Pan X, Portegies S, et al. Microtubule Minus-End Binding Protein CAMSAP2 and Kinesin-14 Motor KIFC3 Control Dendritic Microtubule Organization. Curr Biol. 2020;30:899-908.e6 pubmed 出版商
  14. Singh M, Jensen M, Lasser M, Huber E, Yusuff T, Pizzo L, et al. NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models. PLoS Genet. 2020;16:e1008590 pubmed 出版商
  15. Li S, Wei Z, Li G, Zhang Q, Niu S, Xu D, et al. Silica Perturbs Primary Cilia and Causes Myofibroblast Differentiation during Silicosis by Reduction of the KIF3A-Repressor GLI3 Complex. Theranostics. 2020;10:1719-1732 pubmed 出版商
  16. Karge A, Bonar N, Wood S, Petersen C. tec-1 kinase negatively regulates regenerative neurogenesis in planarians. elife. 2020;9: pubmed 出版商
  17. Du X, Zhang Z, Zheng X, Zhang H, Dong D, Zhang Z, et al. An electrochemical biosensor for the detection of epithelial-mesenchymal transition. Nat Commun. 2020;11:192 pubmed 出版商
  18. Ahfeldt T, Ordureau A, Bell C, Sarrafha L, Sun C, Piccinotti S, et al. Pathogenic Pathways in Early-Onset Autosomal Recessive Parkinson's Disease Discovered Using Isogenic Human Dopaminergic Neurons. Stem Cell Reports. 2020;14:75-90 pubmed 出版商
  19. Conti D, Gul P, Islam A, Martín Durán J, Pickersgill R, Draviam V. Kinetochores attached to microtubule-ends are stabilised by Astrin bound PP1 to ensure proper chromosome segregation. elife. 2019;8: pubmed 出版商
  20. Bendriem R, Singh S, Aleem A, Antonetti D, Ross M. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. elife. 2019;8: pubmed 出版商
  21. Clark D, McMillan L, Tan S, Bellomo G, Massoue C, Thompson H, et al. Transient protein accumulation at the center of the T cell antigen-presenting cell interface drives efficient IL-2 secretion. elife. 2019;8: pubmed 出版商
  22. Vohnoutka R, Gulvady A, Goreczny G, Alpha K, Handelman S, Sexton J, et al. The focal adhesion scaffold protein Hic-5 regulates vimentin organization in fibroblasts. Mol Biol Cell. 2019;30:3037-3056 pubmed 出版商
  23. Thomson B, Carota I, Souma T, Soman S, Vestweber D, Quaggin S. Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma. elife. 2019;8: pubmed 出版商
  24. Moriyama M, Koshiba T, Ichinohe T. Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat Commun. 2019;10:4624 pubmed 出版商
  25. Lai Y, Zhu M, Wu W, Rokutanda N, Togashi Y, Liang W, et al. HERC2 regulates RPA2 by mediating ATR-induced Ser33 phosphorylation and ubiquitin-dependent degradation. Sci Rep. 2019;9:14257 pubmed 出版商
  26. Nil Z, Herv s R, Gerbich T, Leal P, Yu Z, Saraf A, et al. Amyloid-like Assembly Activates a Phosphatase in the Developing Drosophila Embryo. Cell. 2019;178:1403-1420.e21 pubmed 出版商
  27. Chatzifrangkeskou M, Pefani D, Eyres M, Vendrell I, Fischer R, Panková D, et al. RASSF1A is required for the maintenance of nuclear actin levels. EMBO J. 2019;38:e101168 pubmed 出版商
  28. Jiang C, Trudeau S, Cheong T, Guo R, Teng M, Wang L, et al. CRISPR/Cas9 Screens Reveal Multiple Layers of B cell CD40 Regulation. Cell Rep. 2019;28:1307-1322.e8 pubmed 出版商
  29. Jobin P, Solis N, Machado Y, Bell P, Kwon N, Kim S, et al. Matrix metalloproteinases inactivate the proinflammatory functions of secreted moonlighting tryptophanyl-tRNA synthetase. J Biol Chem. 2019;294:12866-12879 pubmed 出版商
  30. Nakagaki Silva E, Gooding C, Llorian M, Jacob A, RICHARDS F, Buckroyd A, et al. Identification of RBPMS as a mammalian smooth muscle master splicing regulator via proximity of its gene with super-enhancers. elife. 2019;8: pubmed 出版商
  31. Nakagawa N, Plestant C, Yabuno Nakagawa K, Li J, Lee J, Huang C, et al. Memo1-Mediated Tiling of Radial Glial Cells Facilitates Cerebral Cortical Development. Neuron. 2019;: pubmed 出版商
  32. Barrows N, Anglero Rodriguez Y, Kim B, Jamison S, Le Sommer C, McGee C, et al. Dual roles for the ER membrane protein complex in flavivirus infection: viral entry and protein biogenesis. Sci Rep. 2019;9:9711 pubmed 出版商
  33. Hu M, Schulze K, Ghildyal R, Henstridge D, Kolanowski J, New E, et al. Respiratory syncytial virus co-opts host mitochondrial function to favour infectious virus production. elife. 2019;8: pubmed 出版商
  34. Miller D, Schmierer B, Hill C. TGF-β family ligands exhibit distinct signalling dynamics that are driven by receptor localisation. J Cell Sci. 2019;: pubmed 出版商
  35. Ommer A, Figlia G, Pereira J, Datwyler A, Gerber J, Degeer J, et al. Ral GTPases in Schwann cells promote radial axonal sorting in the peripheral nervous system. J Cell Biol. 2019;: pubmed 出版商
  36. Ji J, Yuan J, Guo X, Ji R, Quan Q, Ding M, et al. Harmine suppresses hyper-activated Ras-MAPK pathway by selectively targeting oncogenic mutated Ras/Raf in Caenorhabditis elegans. Cancer Cell Int. 2019;19:159 pubmed 出版商
  37. Yang S, Harding A, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019;5:eaav7999 pubmed 出版商
  38. Chaves Pérez A, Yilmaz M, Perna C, de la Rosa S, Djouder N. URI is required to maintain intestinal architecture during ionizing radiation. Science. 2019;364: pubmed 出版商
  39. Kang Y, Torrente L, Falzone A, Elkins C, Liu M, Asara J, et al. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer. elife. 2019;8: pubmed 出版商
  40. Douanne T, André Grégoire G, Thys A, Trillet K, Gavard J, Bidere N. CYLD Regulates Centriolar Satellites Proteostasis by Counteracting the E3 Ligase MIB1. Cell Rep. 2019;27:1657-1665.e4 pubmed 出版商
  41. Bernardini C, Bertocchi M, Zannoni A, Salaroli R, Tubon I, Dothel G, et al. Constitutive and LPS-stimulated secretome of porcine Vascular Wall-Mesenchymal Stem Cells exerts effects on in vitro endothelial angiogenesis. BMC Vet Res. 2019;15:123 pubmed 出版商
  42. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  43. Zhu Y, Zhang Y, Huang X, Xie Y, Qu Y, Long H, et al. Z-Ligustilide protects vascular endothelial cells from oxidative stress and rescues high fat diet-induced atherosclerosis by activating multiple NRF2 downstream genes. Atherosclerosis. 2019;284:110-120 pubmed 出版商
  44. Lin K, Qiang W, Zhu M, Ding Y, Shi Q, Chen X, et al. Mammalian Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor Cdkn1b. Cell Rep. 2019;26:2434-2450.e6 pubmed 出版商
  45. Ducommun S, Deak M, Zeigerer A, Göransson O, Seitz S, Collodet C, et al. Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cell Signal. 2019;57:45-57 pubmed 出版商
  46. Zhou N, Gutierrez Uzquiza A, Zheng X, Chang R, Vogl D, Garfall A, et al. RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation. Leukemia. 2019;: pubmed 出版商
  47. Melamed Z, López Erauskin J, Baughn M, Zhang O, Drenner K, Sun Y, et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci. 2019;22:180-190 pubmed 出版商
  48. Sachs N, Papaspyropoulos A, Zomer van Ommen D, Heo I, Böttinger L, Klay D, et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 2019;38: pubmed 出版商
  49. Karsai G, Kraft F, Haag N, Korenke G, Hanisch B, Othman A, et al. DEGS1-associated aberrant sphingolipid metabolism impairs nervous system function in humans. J Clin Invest. 2019;129:1229-1239 pubmed 出版商
  50. Mantri C, St John A. Immune synapses between mast cells and γδ T cells limit viral infection. J Clin Invest. 2019;129:1094-1108 pubmed 出版商
  51. Meisenberg C, Pinder S, Hopkins S, Wooller S, Benstead Hume G, Pearl F, et al. Repression of Transcription at DNA Breaks Requires Cohesin throughout Interphase and Prevents Genome Instability. Mol Cell. 2019;73:212-223.e7 pubmed 出版商
  52. Bigenzahn J, Collu G, Kartnig F, Pieraks M, Vladimer G, Heinz L, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362:1171-1177 pubmed 出版商
  53. Deissler H, Lang G, Lang G. Fate of the Fc fusion protein aflibercept in retinal endothelial cells: competition of recycling and degradation. Graefes Arch Clin Exp Ophthalmol. 2019;257:83-94 pubmed 出版商
  54. Li W, Yue F, Dai Y, Shi B, Xu G, Jiang X, et al. Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation. Cell Death Differ. 2018;: pubmed 出版商
  55. Avolio R, Järvelin A, Mohammed S, Agliarulo I, Condelli V, Zoppoli P, et al. Protein Syndesmos is a novel RNA-binding protein that regulates primary cilia formation. Nucleic Acids Res. 2018;46:12067-12086 pubmed 出版商
  56. Neubauer H, Tea M, Zebol J, Gliddon B, Stefanidis C, Moretti P, et al. Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma. Oncogene. 2019;38:1151-1165 pubmed 出版商
  57. Craxton A, Munnur D, Jukes Jones R, Skalka G, Langlais C, Cain K, et al. PAXX and its paralogs synergistically direct DNA polymerase λ activity in DNA repair. Nat Commun. 2018;9:3877 pubmed 出版商
  58. Bianchi Smiraglia A, Bagati A, Fink E, Affronti H, Lipchick B, Moparthy S, et al. Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma. J Clin Invest. 2018;128:4682-4696 pubmed 出版商
  59. Rodríguez Baena F, Redondo García S, Peris Torres C, Martino Echarri E, Fernández Rodríguez R, Plaza Calonge M, et al. ADAMTS1 protease is required for a balanced immune cell repertoire and tumour inflammatory response. Sci Rep. 2018;8:13103 pubmed 出版商
  60. Bugaj L, Sabnis A, Mitchell A, Garbarino J, Toettcher J, Bivona T, et al. Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science. 2018;361: pubmed 出版商
  61. Kane M, Rebensburg S, Takata M, Zang T, Yamashita M, Kvaratskhelia M, et al. Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2. elife. 2018;7: pubmed 出版商
  62. Cagnetta R, Frese C, Shigeoka T, Krijgsveld J, Holt C. Rapid Cue-Specific Remodeling of the Nascent Axonal Proteome. Neuron. 2018;99:29-46.e4 pubmed 出版商
  63. Trepte P, Kruse S, Kostova S, Hoffmann S, Buntru A, Tempelmeier A, et al. LuTHy: a double-readout bioluminescence-based two-hybrid technology for quantitative mapping of protein-protein interactions in mammalian cells. Mol Syst Biol. 2018;14:e8071 pubmed 出版商
  64. Reipert S, Goldammer H, Richardson C, Goldberg M, Hawkins T, Hollergschwandtner E, et al. Agitation Modules: Flexible Means to Accelerate Automated Freeze Substitution. J Histochem Cytochem. 2018;66:903-921 pubmed 出版商
  65. Bernal A, Moltó Abad M, Dominguez D, Tusell L. Acute telomere deprotection prevents ongoing BFB cycles and rampant instability in p16INK4a-deficient epithelial cells. Oncotarget. 2018;9:27151-27170 pubmed 出版商
  66. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  67. Liu H, Lorenzini P, Zhang F, Xu S, Wong M, Zheng J, et al. Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator. Nucleic Acids Res. 2018;46:6069-6086 pubmed 出版商
  68. Manalo A, Schroer A, Fenix A, Shancer Z, Coogan J, Brolsma T, et al. Loss of CENP-F Results in Dilated Cardiomyopathy with Severe Disruption of Cardiac Myocyte Architecture. Sci Rep. 2018;8:7546 pubmed 出版商
  69. Gozdecka M, Meduri E, Mazan M, Tzelepis K, Dudek M, Knights A, et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat Genet. 2018;50:883-894 pubmed 出版商
  70. Clemente C, Rius C, Alonso Herranz L, Martín Alonso M, Pollán A, Camafeita E, et al. MT4-MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis. Nat Commun. 2018;9:910 pubmed 出版商
  71. Spanos C, Maldonado E, Fisher C, Leenutaphong P, Oviedo Orta E, Windridge D, et al. Proteomic identification and characterization of hepatic glyoxalase 1 dysregulation in non-alcoholic fatty liver disease. Proteome Sci. 2018;16:4 pubmed 出版商
  72. Hsieh W, Ramadesikan S, FEKETE D, Aguilar R. Kidney-differentiated cells derived from Lowe Syndrome patient's iPSCs show ciliogenesis defects and Six2 retention at the Golgi complex. PLoS ONE. 2018;13:e0192635 pubmed 出版商
  73. Zhao H, Klausen C, Li Y, Zhu H, Wang Y, Leung P. Bone morphogenetic protein 2 promotes human trophoblast cell invasion by upregulating N-cadherin via non-canonical SMAD2/3 signaling. Cell Death Dis. 2018;9:174 pubmed 出版商
  74. Zhao Z, Jia Q, Wu M, Xie X, Wang Y, Song G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res. 2018;24:130-144 pubmed 出版商
  75. Lee I, Kim G, Bae J, Kim J, Rhee K, Hwang D. The DNA replication protein Cdc6 inhibits the microtubule-organizing activity of the centrosome. J Biol Chem. 2017;292:16267-16276 pubmed 出版商
  76. Bartusch C, Döring T, Prange R. Rab33B Controls Hepatitis B Virus Assembly by Regulating Core Membrane Association and Nucleocapsid Processing. Viruses. 2017;9: pubmed 出版商
  77. Xu P, Tao X, Zhao C, Huang Q, Chang H, Ban N, et al. DTX3L is upregulated in glioma and is associated with glioma progression. Int J Mol Med. 2017;40:491-498 pubmed 出版商
  78. Cha Y, Han M, Cha H, Zoldan J, Burkart A, Jung J, et al. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Nat Cell Biol. 2017;19:445-456 pubmed 出版商
  79. Dong C, Xu H, Zhang R, Tanaka N, Takeichi M, Meng W. CAMSAP3 accumulates in the pericentrosomal area and accompanies microtubule release from the centrosome via katanin. J Cell Sci. 2017;130:1709-1715 pubmed 出版商
  80. Shin J, Choi D, Sohn K, Kim J, Im M, Lee Y, et al. Targeted deletion of Crif1 in mouse epidermis impairs skin homeostasis and hair morphogenesis. Sci Rep. 2017;7:44828 pubmed 出版商
  81. Miles A, Burr S, Grice G, Nathan J. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1? prolyl hydroxylation by regulating cellular iron levels. elife. 2017;6: pubmed 出版商
  82. van Riel W, Rai A, Bianchi S, Katrukha E, Liu Q, Heck A, et al. Kinesin-4 KIF21B is a potent microtubule pausing factor. elife. 2017;6: pubmed 出版商
  83. Oliazadeh N, Gorman K, Eveleigh R, Bourque G, Moreau A. Identification of Elongated Primary Cilia with Impaired Mechanotransduction in Idiopathic Scoliosis Patients. Sci Rep. 2017;7:44260 pubmed 出版商
  84. Bohnacker T, Prota A, Beaufils F, Burke J, Melone A, Inglis A, et al. Deconvolution of Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nat Commun. 2017;8:14683 pubmed 出版商
  85. Assis L, Silva Junior R, Dolce L, Alborghetti M, Honorato R, Nascimento A, et al. The molecular motor Myosin Va interacts with the cilia-centrosomal protein RPGRIP1L. Sci Rep. 2017;7:43692 pubmed 出版商
  86. Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017;36:840-853 pubmed 出版商
  87. Grzelak C, Sigglekow N, Tirnitz Parker J, Hamson E, Warren A, Maneck B, et al. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease. PLoS ONE. 2017;12:e0171480 pubmed 出版商
  88. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  89. Tagal V, Wei S, Zhang W, Brekken R, Posner B, Peyton M, et al. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat Commun. 2017;8:14098 pubmed 出版商
  90. Nagaraj R, Sharpley M, Chi F, Braas D, Zhou Y, Kim R, et al. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell. 2017;168:210-223.e11 pubmed 出版商
  91. Beauchemin H, Shooshtarizadeh P, Vadnais C, Vassen L, Pastore Y, Moroy T. Gfi1b controls integrin signaling-dependent cytoskeleton dynamics and organization in megakaryocytes. Haematologica. 2017;102:484-497 pubmed 出版商
  92. Jin M, Pomp O, Shinoda T, Toba S, Torisawa T, Furuta K, et al. Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics. Sci Rep. 2017;7:39902 pubmed 出版商
  93. Sterling J, Guttha S, Song Y, Song D, Hadziahmetovic M, Dunaief J. Iron importers Zip8 and Zip14 are expressed in retina and regulated by retinal iron levels. Exp Eye Res. 2017;155:15-23 pubmed 出版商
  94. Schauwecker S, Kim J, Licht J, Clevenger C. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells. J Biol Chem. 2017;292:2237-2254 pubmed 出版商
  95. Sierra Potchanant E, Cerabona D, Sater Z, He Y, Sun Z, Gehlhausen J, et al. INPP5E Preserves Genomic Stability through Regulation of Mitosis. Mol Cell Biol. 2017;37: pubmed 出版商
  96. van de Ven R, de Groot J, Park D, van Domselaar R, de Jong D, Szuhai K, et al. p120-catenin prevents multinucleation through control of MKLP1-dependent RhoA activity during cytokinesis. Nat Commun. 2016;7:13874 pubmed 出版商
  97. Hoch N, Hanzlikova H, Rulten S, Tetreault M, Komulainen E, Ju L, et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature. 2017;541:87-91 pubmed 出版商
  98. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  99. Da Ros M, Lehtiniemi T, Olotu O, Fischer D, Zhang F, Vihinen H, et al. FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules. Autophagy. 2017;13:302-321 pubmed 出版商
  100. Mir R, Aranda L, Biaocchi T, Luo A, Sylvester A, Rasmussen C. A DII Domain-Based Auxin Reporter Uncovers Low Auxin Signaling during Telophase and Early G1. Plant Physiol. 2017;173:863-871 pubmed 出版商
  101. Tirmarche S, Kimura S, Dubruille R, Horard B, Loppin B. Unlocking sperm chromatin at fertilization requires a dedicated egg thioredoxin in Drosophila. Nat Commun. 2016;7:13539 pubmed 出版商
  102. Hamdan M, Jones K, Cheong Y, Lane S. The sensitivity of the DNA damage checkpoint prevents oocyte maturation in endometriosis. Sci Rep. 2016;6:36994 pubmed 出版商
  103. Artemenko Y, Axiotakis L, Borleis J, Iglesias P, Devreotes P. Chemical and mechanical stimuli act on common signal transduction and cytoskeletal networks. Proc Natl Acad Sci U S A. 2016;113:E7500-E7509 pubmed
  104. Lin J, Kumari S, Kim C, Van T, Wachsmuth L, Polykratis A, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature. 2016;540:124-128 pubmed 出版商
  105. Vuono E, Mukherjee A, Vierra D, Adroved M, Hodson C, Deans A, et al. The PTEN phosphatase functions cooperatively with the Fanconi anemia proteins in DNA crosslink repair. Sci Rep. 2016;6:36439 pubmed 出版商
  106. Noordstra I, Liu Q, Nijenhuis W, Hua S, Jiang K, Baars M, et al. Control of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7. J Cell Sci. 2016;129:4278-4288 pubmed
  107. Fang Y, Kong Y, Xi J, Zhu M, Zhu T, Jiang T, et al. Preclinical activity of MBM-5 in gastrointestinal cancer by inhibiting NEK2 kinase activity. Oncotarget. 2016;7:79327-79341 pubmed 出版商
  108. Vasconcelos F, Sessa A, Laranjeira C, Raposo A, Teixeira V, Hagey D, et al. MyT1 Counteracts the Neural Progenitor Program to Promote Vertebrate Neurogenesis. Cell Rep. 2016;17:469-483 pubmed 出版商
  109. Tofangchi A, Fan A, Saif M. Mechanism of Axonal Contractility in Embryonic Drosophila Motor Neurons In Vivo. Biophys J. 2016;111:1519-1527 pubmed 出版商
  110. Oksdath M, Guil A, Grassi D, Sosa L, Quiroga S. The Motor KIF5C Links the Requirements of Stable Microtubules and IGF-1 Receptor Membrane Insertion for Neuronal Polarization. Mol Neurobiol. 2017;54:6085-6096 pubmed 出版商
  111. Qi L, Jafari N, Li X, Chen Z, Li L, Hytönen V, et al. Talin2-mediated traction force drives matrix degradation and cell invasion. J Cell Sci. 2016;129:3661-3674 pubmed
  112. Zhuang J, Kamp W, Li J, Liu C, Kang J, Wang P, et al. Forkhead Box O3A (FOXO3) and the Mitochondrial Disulfide Relay Carrier (CHCHD4) Regulate p53 Protein Nuclear Activity in Response to Exercise. J Biol Chem. 2016;291:24819-24827 pubmed
  113. Blanco F, Preet R, Aguado A, Vishwakarma V, Stevens L, Vyas A, et al. Impact of HuR inhibition by the small molecule MS-444 on colorectal cancer cell tumorigenesis. Oncotarget. 2016;7:74043-74058 pubmed 出版商
  114. Vanhoutte D, Schips T, Kwong J, Davis J, Tjondrokoesoemo A, Brody M, et al. Thrombospondin expression in myofibers stabilizes muscle membranes. elife. 2016;5: pubmed 出版商
  115. Wolfe S, Workman E, Heaney C, Niere F, Namjoshi S, Cacheaux L, et al. FMRP regulates an ethanol-dependent shift in GABABR function and expression with rapid antidepressant properties. Nat Commun. 2016;7:12867 pubmed 出版商
  116. Hortemo K, Lunde P, Anonsen J, Kvaløy H, Munkvik M, Rehn T, et al. Exercise training increases protein O-GlcNAcylation in rat skeletal muscle. Physiol Rep. 2016;4: pubmed
  117. Hu H, Umemori H, Hsueh Y. Postsynaptic SDC2 induces transsynaptic signaling via FGF22 for bidirectional synaptic formation. Sci Rep. 2016;6:33592 pubmed 出版商
  118. Carbonneau M, M Gagné L, Lalonde M, Germain M, Motorina A, Guiot M, et al. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat Commun. 2016;7:12700 pubmed 出版商
  119. Justa Schuch D, Silva Garcia M, Pilla E, Engelke M, Kilisch M, Lenz C, et al. DPP9 is a novel component of the N-end rule pathway targeting the tyrosine kinase Syk. elife. 2016;5: pubmed 出版商
  120. Chen R, Wang S, Zhang Y, Hou R, Jiang J, Cui H. CD147 promotes cell motility via upregulation of p190-B RhoGAP in hepatocellular carcinoma. Cancer Cell Int. 2016;16:69 pubmed 出版商
  121. Xiaojun W, Yan L, Hong X, Xianghong Z, Shifeng L, Dingjie X, et al. Acetylated ?-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica. Sci Rep. 2016;6:32257 pubmed 出版商
  122. Balboula A, Nguyen A, Gentilello A, Quartuccio S, Drutovic D, Solc P, et al. Haspin kinase regulates microtubule-organizing center clustering and stability through Aurora kinase C in mouse oocytes. J Cell Sci. 2016;129:3648-3660 pubmed
  123. Guo L, Costanzo Garvey D, Smith D, Zavorka M, Venable Kang M, MacDonald R, et al. Cell non-autonomous regulation of hepatic IGF-1 and neonatal growth by Kinase Suppressor of Ras 2 (KSR2). Sci Rep. 2016;6:32093 pubmed 出版商
  124. Fern ndez Majada V, Welz P, Ermolaeva M, Schell M, Adam A, Dietlein F, et al. The tumour suppressor CYLD regulates the p53 DNA damage response. Nat Commun. 2016;7:12508 pubmed 出版商
  125. Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, et al. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun. 2016;7:12547 pubmed 出版商
  126. Chien J, Tsen S, Chien C, Liu H, Tung C, Lin C. ?TAT1 downregulation induces mitotic catastrophe in HeLa and A549 cells. Cell Death Discov. 2016;2:16006 pubmed 出版商
  127. Naidenow J, Hrgovic I, Doll M, Hailemariam Jahn T, Lang V, Kleemann J, et al. Peroxisome proliferator-activated receptor (PPAR) ? and ? activators induce ICAM-1 expression in quiescent non stimulated endothelial cells. J Inflamm (Lond). 2016;13:27 pubmed 出版商
  128. Mowry A, Kavazis A, Sirman A, Potts W, Hood W. Reproduction Does Not Adversely Affect Liver Mitochondrial Respiratory Function but Results in Lipid Peroxidation and Increased Antioxidants in House Mice. PLoS ONE. 2016;11:e0160883 pubmed 出版商
  129. Liu Q, Liu F, Yu K, Tas R, Grigoriev I, Remmelzwaal S, et al. MICAL3 Flavoprotein Monooxygenase Forms a Complex with Centralspindlin and Regulates Cytokinesis. J Biol Chem. 2016;291:20617-29 pubmed 出版商
  130. Rasmussen M, Lyskjær I, Jersie Christensen R, Tarpgaard L, Primdal Bengtson B, Nielsen M, et al. miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells. Nat Commun. 2016;7:12436 pubmed 出版商
  131. Ramakrishnan S, Ku S, Ciamporcero E, Miles K, Attwood K, Chintala S, et al. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma. BMC Cancer. 2016;16:617 pubmed 出版商
  132. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 2016;18:954-966 pubmed 出版商
  133. Busse B, Bezrukov L, Blank P, Zimmerberg J. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains. Sci Rep. 2016;6:30284 pubmed 出版商
  134. El Sikhry H, Alsaleh N, Dakarapu R, Falck J, Seubert J. Novel Roles of Epoxyeicosanoids in Regulating Cardiac Mitochondria. PLoS ONE. 2016;11:e0160380 pubmed 出版商
  135. Park Y, Nam H, Do M, Lee J. The p90 ribosomal S6 kinase 2 specifically affects mitotic progression by regulating the basal level, distribution and stability of mitotic spindles. Exp Mol Med. 2016;48:e250 pubmed 出版商
  136. Furukawa Y, Tanemura K, Igarashi K, Ideta Otsuka M, Aisaki K, Kitajima S, et al. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period. Front Neurosci. 2016;10:339 pubmed 出版商
  137. Harrington K, Clevenger C. Identification of NEK3 Kinase Threonine 165 as a Novel Regulatory Phosphorylation Site That Modulates Focal Adhesion Remodeling Necessary for Breast Cancer Cell Migration. J Biol Chem. 2016;291:21388-21406 pubmed
  138. Reddy B, Mattson M, Wynne C, Vadpey O, Durra A, Chapman D, et al. Load-induced enhancement of Dynein force production by LIS1-NudE in vivo and in vitro. Nat Commun. 2016;7:12259 pubmed 出版商
  139. Li L, Han L, Zhang J, Liu X, Ma R, Hou X, et al. Epsin2 promotes polarity establishment and meiotic division through activating Cdc42 in mouse oocyte. Oncotarget. 2016;7:50927-50936 pubmed 出版商
  140. Bernabé Rubio M, Andrés G, Casares Arias J, Fernández Barrera J, Rangel L, Reglero Real N, et al. Novel role for the midbody in primary ciliogenesis by polarized epithelial cells. J Cell Biol. 2016;214:259-73 pubmed 出版商
  141. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  142. Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun. 2016;7:12235 pubmed 出版商
  143. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  144. Mihajlovic A, Bruce A. Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation mouse embryo development. Reprod Biomed Online. 2016;33:381-90 pubmed 出版商
  145. Akil A, Peng J, Omrane M, Gondeau C, Desterke C, Marin M, et al. Septin 9 induces lipid droplets growth by a phosphatidylinositol-5-phosphate and microtubule-dependent mechanism hijacked by HCV. Nat Commun. 2016;7:12203 pubmed 出版商
  146. Harwardt T, Lukas S, Zenger M, Reitberger T, Danzer D, Übner T, et al. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response. PLoS Pathog. 2016;12:e1005748 pubmed 出版商
  147. Lu R, Hu X, Zhou J, Sun J, Zhu A, Xu X, et al. COPS5 amplification and overexpression confers tamoxifen-resistance in ER?-positive breast cancer by degradation of NCoR. Nat Commun. 2016;7:12044 pubmed 出版商
  148. Peng H, Cheng Y, Hsu Y, Wu G, Kuo C, Liou J, et al. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0158440 pubmed 出版商
  149. Medler T, Craig J, Fiorillo A, Feeney Y, Harrell J, Clevenger C. HDAC6 Deacetylates HMGN2 to Regulate Stat5a Activity and Breast Cancer Growth. Mol Cancer Res. 2016;14:994-1008 pubmed
  150. Gao Y, Lui W, Lee W, Cheng C. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep. 2016;6:28589 pubmed 出版商
  151. Müller A, Giambruno R, Weißer J, Májek P, Hofer A, Bigenzahn J, et al. Identifying Kinase Substrates via a Heavy ATP Kinase Assay and Quantitative Mass Spectrometry. Sci Rep. 2016;6:28107 pubmed 出版商
  152. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  153. Grainger D, Kutzler L, Rannels S, Kimball S. Validation of a commercially available anti-REDD1 antibody using RNA interference and REDD1-/- mouse embryonic fibroblasts. F1000Res. 2016;5:250 pubmed 出版商
  154. Cunningham D, Parajuli K, Zhang C, Wang G, Mei J, Zhang Q, et al. Monomethyl Auristatin E Phosphate Inhibits Human Prostate Cancer Growth. Prostate. 2016;76:1420-30 pubmed 出版商
  155. Llorian M, Gooding C, Bellora N, Hallegger M, Buckroyd A, Wang X, et al. The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators. Nucleic Acids Res. 2016;44:8933-8950 pubmed
  156. Hamlin A, Basford J, Jaeschke A, Hui D. LRP1 Protein Deficiency Exacerbates Palmitate-induced Steatosis and Toxicity in Hepatocytes. J Biol Chem. 2016;291:16610-9 pubmed 出版商
  157. Skoge R, Ziegler M. SIRT2 inactivation reveals a subset of hyperacetylated perinuclear microtubules inaccessible to HDAC6. J Cell Sci. 2016;129:2972-82 pubmed 出版商
  158. Gómez Sánchez R, Yakhine Diop S, Bravo San Pedro J, Pizarro Estrella E, Rodríguez Arribas M, Climent V, et al. PINK1 deficiency enhances autophagy and mitophagy induction. Mol Cell Oncol. 2016;3:e1046579 pubmed 出版商
  159. Muroyama A, Seldin L, Lechler T. Divergent regulation of functionally distinct γ-tubulin complexes during differentiation. J Cell Biol. 2016;213:679-92 pubmed 出版商
  160. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  161. Penterling C, Drexler G, Böhland C, Stamp R, Wilke C, Braselmann H, et al. Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair. PLoS ONE. 2016;11:e0156599 pubmed 出版商
  162. Mukhopadhyay A, Sehgal L, Bose A, Gulvady A, Senapati P, Thorat R, et al. 14-3-3? Prevents Centrosome Amplification and Neoplastic Progression. Sci Rep. 2016;6:26580 pubmed 出版商
  163. Xi Z, Yao M, Li Y, Xie C, Holst J, Liu T, et al. Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation. Cell Death Dis. 2016;7:e2252 pubmed 出版商
  164. Konopacki F, Wong H, Dwivedy A, Bellon A, Blower M, Holt C. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis. Open Biol. 2016;6:150218 pubmed 出版商
  165. Farrugia A, Calvo F. Cdc42 regulates Cdc42EP3 function in cancer-associated fibroblasts. Small Gtpases. 2017;8:49-57 pubmed 出版商
  166. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  167. Nutter C, Jaworski E, Verma S, Deshmukh V, Wang Q, Botvinnik O, et al. Dysregulation of RBFOX2 Is an Early Event in Cardiac Pathogenesis of Diabetes. Cell Rep. 2016;15:2200-2213 pubmed 出版商
  168. Trairatphisan P, Wiesinger M, Bahlawane C, Haan S, Sauter T. A Probabilistic Boolean Network Approach for the Analysis of Cancer-Specific Signalling: A Case Study of Deregulated PDGF Signalling in GIST. PLoS ONE. 2016;11:e0156223 pubmed 出版商
  169. Ma N, Ma Y, Nakashima A, Kikkawa U, Furuyashiki T. The Loss of Lam2 and Npr2-Npr3 Diminishes the Vacuolar Localization of Gtr1-Gtr2 and Disinhibits TORC1 Activity in Fission Yeast. PLoS ONE. 2016;11:e0156239 pubmed 出版商
  170. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  171. Derussy B, Boland M, Tandon R. Human Cytomegalovirus pUL93 Links Nucleocapsid Maturation and Nuclear Egress. J Virol. 2016;90:7109-7117 pubmed 出版商
  172. Elbaz B, Traka M, Kunjamma R, Dukala D, Brosius Lutz A, Anton E, et al. Adenomatous polyposis coli regulates radial axonal sorting and myelination in the PNS. Development. 2016;143:2356-66 pubmed 出版商
  173. Shi X, Li Y, Hu J, Yu B. Tert-butylhydroquinone attenuates the ethanol-induced apoptosis of and activates the Nrf2 antioxidant defense pathway in H9c2 cardiomyocytes. Int J Mol Med. 2016;38:123-30 pubmed 出版商
  174. Lopez A, Kugelman J, Garcia Rivera J, Urias E, Salinas S, Fernandez Zapico M, et al. The Structure-Specific Recognition Protein 1 Associates with Lens Epithelium-Derived Growth Factor Proteins and Modulates HIV-1 Replication. J Mol Biol. 2016;428:2814-31 pubmed 出版商
  175. Lim S, Liu H, Madeira da Silva L, Arora R, Liu Z, Phillips J, et al. Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1?. Cancer Res. 2016;76:2231-42 pubmed 出版商
  176. Rao S, Flores Rodriguez N, Page S, Wong C, Robinson P, Chircop M. The Clathrin-dependent Spindle Proteome. Mol Cell Proteomics. 2016;15:2537-53 pubmed 出版商
  177. Kwon O, Kim K, Lee E, Kim M, Choi S, Li H, et al. Induction of MiR-21 by Stereotactic Body Radiotherapy Contributes to the Pulmonary Fibrotic Response. PLoS ONE. 2016;11:e0154942 pubmed 出版商
  178. Ramesh S, Singh A, Cibi D, Hausenloy D, Singh M. In Vitro Culture of Epicardial Cells From Mouse Embryonic Heart. J Vis Exp. 2016;: pubmed 出版商
  179. Moshfegh C, Aires L, Kisielow M, Vogel V. A gonogenic stimulated transition of mouse embryonic stem cells with enhanced control of diverse differentiation pathways. Sci Rep. 2016;6:25104 pubmed 出版商
  180. Yen H, Liu Y, Kan C, Wei H, Lee S, Wei Y, et al. Disruption of the human COQ5-containing protein complex is associated with diminished coenzyme Q10 levels under two different conditions of mitochondrial energy deficiency. Biochim Biophys Acta. 2016;1860:1864-76 pubmed 出版商
  181. Dai Y, Hung L, Chen R, Lai C, Chang K. ON 01910.Na inhibits growth of diffuse large B-cell lymphoma by cytoplasmic sequestration of sumoylated C-MYB/TRAF6 complex. Transl Res. 2016;175:129-143.e13 pubmed 出版商
  182. Pourcet B, Gage M, León T, Waddington K, Pello O, Steffensen K, et al. The nuclear receptor LXR modulates interleukin-18 levels in macrophages through multiple mechanisms. Sci Rep. 2016;6:25481 pubmed 出版商
  183. Humoud M, Doyle N, Royall E, Willcocks M, Sorgeloos F, van Kuppeveld F, et al. Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage. J Virol. 2016;90:6489-6501 pubmed 出版商
  184. Alquezar C, Salado I, de la Encarnación A, Perez D, Moreno F, Gil C, et al. Targeting TDP-43 phosphorylation by Casein Kinase-1? inhibitors: a novel strategy for the treatment of frontotemporal dementia. Mol Neurodegener. 2016;11:36 pubmed 出版商
  185. Watanabe Y, Papoutsoglou P, Maturi V, Tsubakihara Y, Hottiger M, Heldin C, et al. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation. J Biol Chem. 2016;291:12706-23 pubmed 出版商
  186. Krall A, Xu S, Graeber T, Braas D, Christofk H. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun. 2016;7:11457 pubmed 出版商
  187. Matias A, Manieri T, Cerchiaro G. Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation. Oxid Med Cell Longev. 2016;2016:6724585 pubmed 出版商
  188. Jeanson L, Thomas L, Copin B, Coste A, Sermet Gaudelus I, Dastot Le Moal F, et al. Mutations in GAS8, a Gene Encoding a Nexin-Dynein Regulatory Complex Subunit, Cause Primary Ciliary Dyskinesia with Axonemal Disorganization. Hum Mutat. 2016;37:776-85 pubmed 出版商
  189. Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A. 2016;113:E2589-97 pubmed 出版商
  190. Li R, Jin Z, Gao L, Liu P, Yang Z, Zhang D. Effective protein inhibition in intact mouse oocytes through peptide nanoparticle-mediated antibody transfection. Peerj. 2016;4:e1849 pubmed 出版商
  191. Kim S, Choi K, Cho S, Yun S, Jeon J, Koh Y, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933 pubmed 出版商
  192. Rodriguez Ortiz C, Flores J, Valenzuela J, Rodriguez G, Zumkehr J, Tran D, et al. The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress. Am J Pathol. 2016;186:1623-34 pubmed 出版商
  193. Jung A, Stoiber C, Herkt C, Schulz C, Bertrams W, Schmeck B. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages. PLoS Pathog. 2016;12:e1005592 pubmed 出版商
  194. Wilkinson R, Young A, Burden R, Williams R, Scott C. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development. Mol Cancer. 2016;15:29 pubmed 出版商
  195. Kwenda L, Collins C, Dattoli A, Dunleavy E. Nucleolar activity and CENP-C regulate CENP-A and CAL1 availability for centromere assembly in meiosis. Development. 2016;143:1400-12 pubmed 出版商
  196. Papke B, Murarka S, Vogel H, Martín Gago P, Kovacevic M, Truxius D, et al. Identification of pyrazolopyridazinones as PDE? inhibitors. Nat Commun. 2016;7:11360 pubmed 出版商
  197. Lai C, Tsai C, Kuo W, Ho T, Day C, Pai P, et al. Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats. Int J Med Sci. 2016;13:277-85 pubmed 出版商
  198. Saito A, Ferhadian D, Sowd G, Serrao E, Shi J, Halambage U, et al. Roles of Capsid-Interacting Host Factors in Multimodal Inhibition of HIV-1 by PF74. J Virol. 2016;90:5808-5823 pubmed 出版商
  199. Pinz S, Unser S, Rascle A. Signal transducer and activator of transcription STAT5 is recruited to c-Myc super-enhancer. BMC Mol Biol. 2016;17:10 pubmed 出版商
  200. Corcelle Termeau E, Vindeløv S, Hämälistö S, Mograbi B, Keldsbo A, Bräsen J, et al. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy. 2016;12:833-49 pubmed 出版商
  201. Chozinski T, Halpern A, Okawa H, Kim H, Tremel G, Wong R, et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat Methods. 2016;13:485-8 pubmed 出版商
  202. Chu C, Ossipova O, Ioannou A, Sokol S. Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth. Sci Rep. 2016;6:24104 pubmed 出版商
  203. Fortes M, Marzuca Nassr G, Vitzel K, da Justa Pinheiro C, Newsholme P, Curi R. Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models?. Anal Biochem. 2016;504:38-40 pubmed 出版商
  204. Thakur B, Dasgupta N, Ta A, Das S. Physiological TLR5 expression in the intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms. Nucleic Acids Res. 2016;44:5658-72 pubmed 出版商
  205. Ren J, Li J, Liu X, Feng Y, Gui Y, Yang J, et al. Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling. Sci Rep. 2016;6:23968 pubmed 出版商
  206. Hattori K, Naguro I, Okabe K, Funatsu T, Furutani S, Takeda K, et al. ASK1 signalling regulates brown and beige adipocyte function. Nat Commun. 2016;7:11158 pubmed 出版商
  207. Guerrera D, Shah J, Vasileva E, Sluysmans S, Méan I, Jond L, et al. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. J Biol Chem. 2016;291:11016-29 pubmed 出版商
  208. Amarnath S, Agarwala S. Cell-cycle-dependent TGF?-BMP antagonism regulates neural tube closure by modulating tight junctions. J Cell Sci. 2017;130:119-131 pubmed 出版商
  209. Lawrence E, Boucher E, Mandato C. Mitochondria-cytoskeleton associations in mammalian cytokinesis. Cell Div. 2016;11:3 pubmed 出版商
  210. Prieto J, León M, Ponsoda X, Sendra R, Bort R, Ferrer Lorente R, et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. 2016;7:11124 pubmed 出版商
  211. Yadav P, Selvaraj B, Bender F, Behringer M, Moradi M, Sivadasan R, et al. Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling. Acta Neuropathol. 2016;132:93-110 pubmed 出版商
  212. Tanaka T, Takei Y, Yamanouchi D. Hyperglycemia Suppresses Calcium Phosphate-Induced Aneurysm Formation Through Inhibition of Macrophage Activation. J Am Heart Assoc. 2016;5:e003062 pubmed 出版商
  213. Stritt S, Nurden P, Favier R, Favier M, Ferioli S, Gotru S, et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg(2+) homeostasis and cytoskeletal architecture. Nat Commun. 2016;7:11097 pubmed 出版商
  214. Xing Y, Sun W, Wang Y, Gao F, Ma H. Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart. Aging (Albany NY). 2016;8:873-88 pubmed 出版商
  215. Li Y, Liu D, López Paz C, OLSON B, Umen J. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division. elife. 2016;5:e10767 pubmed 出版商
  216. Kimball S, Gordon B, Moyer J, Dennis M, Jefferson L. Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation. Cell Signal. 2016;28:896-906 pubmed 出版商
  217. McKenzie C, Bassi Z, Debski J, Gottardo M, Callaini G, Dadlez M, et al. Cross-regulation between Aurora B and Citron kinase controls midbody architecture in cytokinesis. Open Biol. 2016;6: pubmed 出版商
  218. Douanne T, Gavard J, Bidère N. The paracaspase MALT1 cleaves the LUBAC subunit HOIL1 during antigen receptor signaling. J Cell Sci. 2016;129:1775-80 pubmed 出版商
  219. Pal K, Hwang S, Somatilaka B, Badgandi H, Jackson P, DeFea K, et al. Smoothened determines ?-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol. 2016;212:861-75 pubmed 出版商
  220. Sakakini N, Turchi L, Bergon A, Holota H, Rekima S, Lopez F, et al. A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells. J Biol Chem. 2016;291:10684-99 pubmed 出版商
  221. Salzman D, Nakamura K, Nallur S, Dookwah M, Metheetrairut C, Slack F, et al. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun. 2016;7:10954 pubmed 出版商
  222. Müller M, Mönkemöller V, Hennig S, Hubner W, Huser T. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat Commun. 2016;7:10980 pubmed 出版商
  223. Babinsky V, Hannan F, Gorvin C, Howles S, Nesbit M, Rust N, et al. Allosteric Modulation of the Calcium-sensing Receptor Rectifies Signaling Abnormalities Associated with G-protein ?-11 Mutations Causing Hypercalcemic and Hypocalcemic Disorders. J Biol Chem. 2016;291:10876-85 pubmed 出版商
  224. Lee T, Liu C, Chang Y, Nieh S, Lin Y, Jao S, et al. Increased chemoresistance via Snail-Raf kinase inhibitor protein signaling in colorectal cancer in response to a nicotine derivative. Oncotarget. 2016;7:23512-20 pubmed 出版商
  225. Hirai M, Chen J, Evans S. Generation and Characterization of a Tissue-Specific Centrosome Indicator Mouse Line. Genesis. 2016;54:286-96 pubmed 出版商
  226. Obino D, Farina F, Malbec O, Sáez P, Maurin M, Gaillard J, et al. Actin nucleation at the centrosome controls lymphocyte polarity. Nat Commun. 2016;7:10969 pubmed 出版商
  227. Vlantis K, Wullaert A, Polykratis A, Kondylis V, Dannappel M, Schwarzer R, et al. NEMO Prevents RIP Kinase 1-Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF-κB-Dependent and -Independent Functions. Immunity. 2016;44:553-567 pubmed 出版商
  228. Nichuguti N, Hayase M, Fujiwara H. Both the Exact Target Site Sequence and a Long Poly(A) Tail Are Required for Precise Insertion of the 18S Ribosomal DNA-Specific Non-Long Terminal Repeat Retrotransposon R7Ag. Mol Cell Biol. 2016;36:1494-508 pubmed 出版商
  229. Merigo F, Boschi F, Lasconi C, Benati D, Sbarbati A. Molecules implicated in glucose homeostasis are differentially expressed in the trachea of lean and obese Zucker rats. Eur J Histochem. 2016;60:2557 pubmed 出版商
  230. Wang Y, Jones Tabah J, Chakravarty P, Stewart A, Muotri A, Laposa R, et al. Pharmacological Bypass of Cockayne Syndrome B Function in Neuronal Differentiation. Cell Rep. 2016;14:2554-61 pubmed 出版商
  231. Mori F, Ferraiuolo M, Santoro R, Sacconi A, Goeman F, Pallocca M, et al. Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget. 2016;7:20532-48 pubmed 出版商
  232. Daly O, Gaboriau D, Karakaya K, King S, Dantas T, Lalor P, et al. CEP164-null cells generated by genome editing show a ciliation defect with intact DNA repair capacity. J Cell Sci. 2016;129:1769-74 pubmed 出版商
  233. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  234. Du Z, Li L, Huang X, Jin J, Huang S, Zhang Q, et al. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation. Oncotarget. 2016;7:21618-30 pubmed 出版商
  235. Swenson S, Cannon A, Harris N, Taylor N, Fox J, Khalimonchuk O. Analysis of Oligomerization Properties of Heme a Synthase Provides Insights into Its Function in Eukaryotes. J Biol Chem. 2016;291:10411-25 pubmed 出版商
  236. Gilormini M, Malesys C, Armandy E, Manas P, Guy J, Magne N, et al. Preferential targeting of cancer stem cells in the radiosensitizing effect of ABT-737 on HNSCC. Oncotarget. 2016;7:16731-44 pubmed 出版商
  237. Bhardwaj R, Kumar R, Singh S, Selvaraj C, Dubey V. Understanding the importance of conservative hypothetical protein LdBPK_070020 in Leishmania donovani and its role in subsistence of the parasite. Arch Biochem Biophys. 2016;596:10-21 pubmed 出版商
  238. Moiseeva O, Lopes Paciencia S, Huot G, Lessard F, Ferbeyre G. Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase. Aging (Albany NY). 2016;8:366-81 pubmed
  239. Fujiwara M, Okamoto M, Hori M, Suga H, Jikihara H, Sugihara Y, et al. Radiation-Induced RhoGDI? Cleavage Leads to Perturbation of Cell Polarity: A Possible Link to Cancer Spreading. J Cell Physiol. 2016;231:2493-505 pubmed 出版商
  240. Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, et al. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget. 2016;7:15065-92 pubmed 出版商
  241. Marchildon F, Fu D, Lala Tabbert N, Wiper Bergeron N. CCAAT/enhancer binding protein beta protects muscle satellite cells from apoptosis after injury and in cancer cachexia. Cell Death Dis. 2016;7:e2109 pubmed 出版商
  242. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  243. Ost M, Coleman V, Voigt A, van Schothorst E, Keipert S, van der Stelt I, et al. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action. Mol Metab. 2016;5:79-90 pubmed 出版商
  244. Hong J, Lee J, Chung I. Telomerase activates transcription of cyclin D1 gene through an interaction with NOL1. J Cell Sci. 2016;129:1566-79 pubmed 出版商
  245. Tang E, Lee W, Cheng C. Coordination of Actin- and Microtubule-Based Cytoskeletons Supports Transport of Spermatids and Residual Bodies/Phagosomes During Spermatogenesis in the Rat Testis. Endocrinology. 2016;157:1644-59 pubmed 出版商
  246. Chuang T, Lee K, Lou Y, Lu C, Tarn W. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement. J Biol Chem. 2016;291:8565-74 pubmed 出版商
  247. Fu Z, Wang L, Cui H, Peng J, Wang S, Geng J, et al. A novel small-molecule compound targeting CD147 inhibits the motility and invasion of hepatocellular carcinoma cells. Oncotarget. 2016;7:9429-47 pubmed 出版商
  248. Ren C, Yang Y, Sun J, Wu Z, Zhang R, Shen D, et al. Exercise Training Improves the Altered Renin-Angiotensin System in the Rostral Ventrolateral Medulla of Hypertensive Rats. Oxid Med Cell Longev. 2016;2016:7413963 pubmed 出版商
  249. Chojnacka K, Bilinska B, Mruk D. Interleukin 1alpha-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication. Cell Signal. 2016;28:469-480 pubmed 出版商
  250. Wen B, Li S, Li H, Chen Y, Ma X, Wang J, et al. Microphthalmia-associated transcription factor regulates the visual cycle genes Rlbp1 and Rdh5 in the retinal pigment epithelium. Sci Rep. 2016;6:21208 pubmed 出版商
  251. Czub B, Shah A, Alfano G, Kruczek P, Chakarova C, Bhattacharya S. TOPORS, a Dual E3 Ubiquitin and Sumo1 Ligase, Interacts with 26 S Protease Regulatory Subunit 4, Encoded by the PSMC1 Gene. PLoS ONE. 2016;11:e0148678 pubmed 出版商
  252. Singhal G, Fisher F, Chee M, Tan T, El Ouaamari A, Adams A, et al. Fibroblast Growth Factor 21 (FGF21) Protects against High Fat Diet Induced Inflammation and Islet Hyperplasia in Pancreas. PLoS ONE. 2016;11:e0148252 pubmed 出版商
  253. Kim N, Kim M, Sung P, Bae Y, Shin E, Yoo J. Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nat Commun. 2016;7:10631 pubmed 出版商
  254. Chen S, Blank M, Iyer A, Huang B, Wang L, Grummt I, et al. SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing. Nat Commun. 2016;7:10734 pubmed 出版商
  255. Ohashi R, Takao K, Miyakawa T, Shiina N. Comprehensive behavioral analysis of RNG105 (Caprin1) heterozygous mice: Reduced social interaction and attenuated response to novelty. Sci Rep. 2016;6:20775 pubmed 出版商
  256. Divisato G, Formicola D, Esposito T, Merlotti D, Pazzaglia L, Del Fattore A, et al. ZNF687 Mutations in Severe Paget Disease of Bone Associated with Giant Cell Tumor. Am J Hum Genet. 2016;98:275-86 pubmed 出版商
  257. Maiden S, Petrova Y, Gumbiner B. Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model. PLoS ONE. 2016;11:e0148574 pubmed 出版商
  258. Di Magno L, Basile A, Coni S, Manni S, Sdruscia G, D Amico D, et al. The energy sensor AMPK regulates Hedgehog signaling in human cells through a unique Gli1 metabolic checkpoint. Oncotarget. 2016;7:9538-49 pubmed 出版商
  259. Chen N, Chyau C, Lee Y, Tseng H, Chou F. Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells. Sci Rep. 2016;6:20417 pubmed 出版商
  260. Yau K, Schätzle P, Tortosa E, Pagès S, Holtmaat A, Kapitein L, et al. Dendrites In Vitro and In Vivo Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation. J Neurosci. 2016;36:1071-85 pubmed 出版商
  261. Moudry P, Watanabe K, Wolanin K, Bartkova J, Wassing I, Watanabe S, et al. TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity. J Cell Biol. 2016;212:281-8 pubmed 出版商
  262. Audet Walsh Ã, Papadopoli D, Gravel S, Yee T, Bridon G, Caron M, et al. The PGC-1α/ERRα Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-folate Therapy in Breast Cancer. Cell Rep. 2016;14:920-931 pubmed 出版商
  263. Goulielmaki M, Koustas E, Moysidou E, Vlassi M, Sasazuki T, Shirasawa S, et al. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells. Oncotarget. 2016;7:9188-221 pubmed 出版商
  264. Wood L, Booth D, Vargiu G, Ohta S, deLima Alves F, Samejima K, et al. Auxin/AID versus conventional knockouts: distinguishing the roles of CENP-T/W in mitotic kinetochore assembly and stability. Open Biol. 2016;6:150230 pubmed 出版商
  265. Villarroel Espíndola F, Tapia C, González Stegmaier R, Concha I, Slebe J. Polyglucosan Molecules Induce Mitochondrial Impairment and Apoptosis in Germ Cells Without Affecting the Integrity and Functionality of Sertoli Cells. J Cell Physiol. 2016;231:2142-52 pubmed 出版商
  266. Ikeda S, Kitadate A, Ito M, Abe F, Nara M, Watanabe A, et al. Disruption of CCL20-CCR6 interaction inhibits metastasis of advanced cutaneous T-cell lymphoma. Oncotarget. 2016;7:13563-74 pubmed 出版商
  267. De Franceschi N, Arjonen A, Elkhatib N, Denessiouk K, Wrobel A, Wilson T, et al. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2. Nat Struct Mol Biol. 2016;23:172-9 pubmed 出版商
  268. Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, et al. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep. 2016;6:19470 pubmed 出版商
  269. Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 2016;7:10305 pubmed 出版商
  270. M L, P P, T K, M P, E S, J P, et al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol Oncol. 2016;10:735-750 pubmed 出版商
  271. Quétier I, Marshall J, Spencer Dene B, Lachmann S, Casamassima A, Franco C, et al. Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion. Cell Rep. 2016;14:440-448 pubmed 出版商
  272. Faria J, Loureiro I, Santarém N, Macedo Ribeiro S, Tavares J, Cordeiro da Silva A. Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity. PLoS Negl Trop Dis. 2016;10:e0004365 pubmed 出版商
  273. Gingras J, Gawor M, Bernadzki K, Grady R, Hallock P, Glass D, et al. Α-Dystrobrevin-1 recruits Grb2 and α-catulin to organize neurotransmitter receptors at the neuromuscular junction. J Cell Sci. 2016;129:898-911 pubmed 出版商
  274. Camlin N, Sobinoff A, Sutherland J, Beckett E, Jarnicki A, Vanders R, et al. Maternal Smoke Exposure Impairs the Long-Term Fertility of Female Offspring in a Murine Model. Biol Reprod. 2016;94:39 pubmed 出版商
  275. Kono M, Heincke D, Wilcke L, Wong T, Bruns C, Herrmann S, et al. Pellicle formation in the malaria parasite. J Cell Sci. 2016;129:673-80 pubmed 出版商
  276. Ketel K, Krauss M, Nicot A, Puchkov D, Wieffer M, Müller R, et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature. 2016;529:408-12 pubmed 出版商
  277. Graindorge A, Frénal K, Jacot D, Salamun J, Marq J, Soldati Favre D. The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host Cells. PLoS Pathog. 2016;12:e1005388 pubmed 出版商
  278. Priglinger C, Obermann J, Szober C, Merl Pham J, Ohmayer U, Behler J, et al. Epithelial-to-Mesenchymal Transition of RPE Cells In Vitro Confers Increased β1,6-N-Glycosylation and Increased Susceptibility to Galectin-3 Binding. PLoS ONE. 2016;11:e0146887 pubmed 出版商
  279. Puvirajesinghe T, Bertucci F, Jain A, Scerbo P, Belotti E, Audebert S, et al. Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2-JNK signalling in breast cancer. Nat Commun. 2016;7:10318 pubmed 出版商
  280. Sansó M, Levin R, Lipp J, Wang V, Greifenberg A, Quezada E, et al. P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates. Genes Dev. 2016;30:117-31 pubmed 出版商
  281. Yuen K, Xu B, Krantz I, Gerton J. NIPBL Controls RNA Biogenesis to Prevent Activation of the Stress Kinase PKR. Cell Rep. 2016;14:93-102 pubmed 出版商
  282. Ghosh A, Ghosh S, Dasgupta D, Ghosh A, Datta S, Sikdar N, et al. Hepatitis B Virus X Protein Upregulates hELG1/ ATAD5 Expression through E2F1 in Hepatocellular Carcinoma. Int J Biol Sci. 2016;12:30-41 pubmed 出版商
  283. Drusenheimer N, Migdal B, Jäckel S, Tveriakhina L, Scheider K, Schulz K, et al. The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling. PLoS Genet. 2015;11:e1005749 pubmed 出版商
  284. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  285. Geng Y, Feng B. Mesendogen, a novel inhibitor of TRPM6, promotes mesoderm and definitive endoderm differentiation of human embryonic stem cells through alteration of magnesium homeostasis. Heliyon. 2015;1:e00046 pubmed
  286. Cawthorn W, Scheller E, Parlee S, Pham H, Learman B, Redshaw C, et al. Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia. Endocrinology. 2016;157:508-21 pubmed 出版商
  287. Sakamoto A, Akiyama Y, Shimada S, Zhu W, Yuasa Y, Tanaka S. DNA Methylation in the Exon 1 Region and Complex Regulation of Twist1 Expression in Gastric Cancer Cells. PLoS ONE. 2015;10:e0145630 pubmed 出版商
  288. Avau B, Bauters D, Steensels S, Vancleef L, Laermans J, Lesuisse J, et al. The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice. PLoS ONE. 2015;10:e0145538 pubmed 出版商
  289. Dias J, Rito T, Torlai Triglia E, Kukalev A, Ferrai C, Chotalia M, et al. Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells. elife. 2015;4: pubmed 出版商
  290. Huang R, Langdon S, Tse M, Mullen P, Um I, Faratian D, et al. The role of HDAC2 in chromatin remodelling and response to chemotherapy in ovarian cancer. Oncotarget. 2016;7:4695-711 pubmed 出版商
  291. Lee E, Jin D, Lee B, Kim Y, Han J, Shim Y, et al. Negative effect of cyclin D1 overexpression on recurrence-free survival in stage II-IIIA lung adenocarcinoma and its expression modulation by vorinostat in vitro. BMC Cancer. 2015;15:982 pubmed 出版商
  292. Brunati M, Perucca S, Han L, Cattaneo A, Consolato F, Andolfo A, et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. elife. 2015;4:e08887 pubmed 出版商
  293. Duffy D, Krstic A, Halasz M, Schwarzl T, Fey D, Iljin K, et al. Integrative omics reveals MYCN as a global suppressor of cellular signalling and enables network-based therapeutic target discovery in neuroblastoma. Oncotarget. 2015;6:43182-201 pubmed 出版商
  294. Loiselle J, Tessier S, Sutherland L. Post-transcriptional regulation of Rbm5 expression in undifferentiated H9c2 myoblasts. In Vitro Cell Dev Biol Anim. 2016;52:327-36 pubmed 出版商
  295. Edmonds M, Boyd K, Moyo T, Mitra R, Duszynski R, Arrate M, et al. MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer. J Clin Invest. 2016;126:349-64 pubmed 出版商
  296. Pillai S, Nguyen J, Johnson J, Haura E, Coppola D, Chellappan S. Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis. Nat Commun. 2015;6:10072 pubmed 出版商
  297. Osorio L, Farfán N, Castellón E, Contreras H. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells. Mol Med Rep. 2016;13:778-86 pubmed 出版商
  298. Verdone L, La Fortezza M, Ciccarone F, Caiafa P, Zampieri M, Caserta M. Poly(ADP-Ribosyl)ation Affects Histone Acetylation and Transcription. PLoS ONE. 2015;10:e0144287 pubmed 出版商
  299. Ramos A, Gaspar V, Kelmer S, Sellani T, Batista A, De Lima Neto Q, et al. The kin17 Protein in Murine Melanoma Cells. Int J Mol Sci. 2015;16:27912-20 pubmed 出版商
  300. De Franceschi N, Peuhu E, Parsons M, Rissanen S, Vattulainen I, Salmi M, et al. Mutually Exclusive Roles of SHARPIN in Integrin Inactivation and NF-κB Signaling. PLoS ONE. 2015;10:e0143423 pubmed 出版商
  301. Leclercq A, Veillat V, Loriot S, Spuul P, Madonna F, Roques X, et al. A Methodology for Concomitant Isolation of Intimal and Adventitial Endothelial Cells from the Human Thoracic Aorta. PLoS ONE. 2015;10:e0143144 pubmed 出版商
  302. Ye S, Zhang D, Cheng F, Wilson D, Mackay J, He K, et al. Wnt/β-catenin and LIF-Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal. J Cell Sci. 2016;129:269-76 pubmed 出版商
  303. Liwak Muir U, Dobson C, Naing T, Wylie Q, Chehade L, Baird S, et al. ERK8 is a novel HuR kinase that regulates tumour suppressor PDCD4 through a miR-21 dependent mechanism. Oncotarget. 2016;7:1439-50 pubmed 出版商
  304. Chow C, Ebine K, Knab L, Bentrem D, Kumar K, Munshi H. Cancer Cell Invasion in Three-dimensional Collagen Is Regulated Differentially by Gα13 Protein and Discoidin Domain Receptor 1-Par3 Protein Signaling. J Biol Chem. 2016;291:1605-18 pubmed 出版商
  305. Massouridès E, Polentes J, Mangeot P, Mournetas V, Nectoux J, Deburgrave N, et al. Dp412e: a novel human embryonic dystrophin isoform induced by BMP4 in early differentiated cells. Skelet Muscle. 2015;5:40 pubmed 出版商
  306. Sassa A, Kamoshita N, Kanemaru Y, Honma M, Yasui M. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome. PLoS ONE. 2015;10:e0142218 pubmed 出版商
  307. Lee J, Park K, Han D, Bang N, Kim D, Na H, et al. PharmDB-K: Integrated Bio-Pharmacological Network Database for Traditional Korean Medicine. PLoS ONE. 2015;10:e0142624 pubmed 出版商
  308. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A. DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med. 2015;212:2165-82 pubmed 出版商
  309. Sun S, Shi G, Sha H, Ji Y, Han X, Shu X, et al. IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nat Cell Biol. 2015;17:1546-55 pubmed 出版商
  310. Zeng J, Quan J, Xia X. Transient transfection of macrophage migration inhibitory factor small interfering RNA disrupts the biological behavior of oral squamous carcinoma cells. Mol Med Rep. 2016;13:174-80 pubmed 出版商
  311. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  312. Ksionda O, Melton A, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658-68 pubmed 出版商
  313. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed 出版商
  314. Neirinckx V, Agirman G, Coste C, Marquet A, Dion V, Rogister B, et al. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury. Stem Cell Res Ther. 2015;6:211 pubmed 出版商
  315. Roos A, Satterfield L, Zhao S, Fuja D, Shuck R, Hicks M, et al. Loss of Runx2 sensitises osteosarcoma to chemotherapy-induced apoptosis. Br J Cancer. 2015;113:1289-97 pubmed 出版商
  316. Xu D, Shan B, Lee B, Zhu K, Zhang T, Sun H, et al. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system. elife. 2015;4:e10510 pubmed 出版商
  317. Wang B, Ma A, Zhang L, Jin W, Qian Y, Xu G, et al. POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation. Nat Commun. 2015;6:8704 pubmed 出版商
  318. Waddell D, Duffin P, Haddock A, Triplett V, Saredy J, Kakareka K, et al. Isolation, expression analysis and characterization of NEFA-interacting nuclear protein 30 and RING finger and SPRY domain containing 1 in skeletal muscle. Gene. 2016;576:319-32 pubmed 出版商
  319. Podlasz P, Jakimiuk A, Chmielewska Krzesinska M, Kasica N, Nowik N, Kaleczyc J. Galanin regulates blood glucose level in the zebrafish: a morphological and functional study. Histochem Cell Biol. 2016;145:105-17 pubmed 出版商
  320. Geister K, Brinkmeier M, Cheung L, Wendt J, Oatley M, Burgess D, et al. LINE-1 Mediated Insertion into Poc1a (Protein of Centriole 1 A) Causes Growth Insufficiency and Male Infertility in Mice. PLoS Genet. 2015;11:e1005569 pubmed 出版商
  321. Tonsing Carter E, Bailey B, Saadatzadeh M, Ding J, Wang H, Sinn A, et al. Potentiation of Carboplatin-Mediated DNA Damage by the Mdm2 Modulator Nutlin-3a in a Humanized Orthotopic Breast-to-Lung Metastatic Model. Mol Cancer Ther. 2015;14:2850-63 pubmed 出版商
  322. Teng R, Wu T, Afolayan A, Konduri G. Nitrotyrosine impairs mitochondrial function in fetal lamb pulmonary artery endothelial cells. Am J Physiol Cell Physiol. 2016;310:C80-8 pubmed 出版商
  323. Han L, Ge J, Zhang L, Ma R, Hou X, Li B, et al. Sirt6 depletion causes spindle defects and chromosome misalignment during meiosis of mouse oocyte. Sci Rep. 2015;5:15366 pubmed 出版商
  324. Bolukbasi M, Gupta A, Oikemus S, Derr A, Garber M, Brodsky M, et al. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat Methods. 2015;12:1150-6 pubmed 出版商
  325. Vajravelu B, Hong K, Al Maqtari T, Cao P, Keith M, Wysoczynski M, et al. C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways. PLoS ONE. 2015;10:e0140798 pubmed 出版商
  326. Liu D, Wu D, Zhao L, Yang Y, Ding J, Dong L, et al. Arsenic Trioxide Reduces Global Histone H4 Acetylation at Lysine 16 through Direct Binding to Histone Acetyltransferase hMOF in Human Cells. PLoS ONE. 2015;10:e0141014 pubmed 出版商
  327. Rohrbach T, Shah N, Jackson W, Feeney E, Scanlon S, Gish R, et al. The Effector Domain of MARCKS Is a Nuclear Localization Signal that Regulates Cellular PIP2 Levels and Nuclear PIP2 Localization. PLoS ONE. 2015;10:e0140870 pubmed 出版商
  328. Renga B, Francisci D, Carino A, Marchianò S, Cipriani S, Chiara Monti M, et al. The HIV matrix protein p17 induces hepatic lipid accumulation via modulation of nuclear receptor transcriptoma. Sci Rep. 2015;5:15403 pubmed 出版商
  329. Klar A, Gopinadh J, Kleber S, Wadle A, Renner C. Treatment with 5-Aza-2'-Deoxycytidine Induces Expression of NY-ESO-1 and Facilitates Cytotoxic T Lymphocyte-Mediated Tumor Cell Killing. PLoS ONE. 2015;10:e0139221 pubmed 出版商
  330. Ragot A, Pietropaolo S, Vincent J, Delage P, Zhang H, Allinquant B, et al. Genetic deletion of the Histone Deacetylase 6 exacerbates selected behavioral deficits in the R6/1 mouse model for Huntington's disease. Brain Behav. 2015;5:e00361 pubmed 出版商
  331. Aviner R, Shenoy A, Elroy Stein O, Geiger T. Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis. PLoS Genet. 2015;11:e1005554 pubmed 出版商
  332. Ambroise G, Portier A, Roders N, Arnoult D, Vazquez A. Subcellular localization of PUMA regulates its pro-apoptotic activity in Burkitt's lymphoma B cells. Oncotarget. 2015;6:38181-94 pubmed 出版商
  333. de Lange J, Faramarz A, Oostra A, de Menezes R, van der Meulen I, Rooimans M, et al. Defective sister chromatid cohesion is synthetically lethal with impaired APC/C function. Nat Commun. 2015;6:8399 pubmed 出版商
  334. Yao M, Xie C, Kiang M, Teng Y, Harman D, Tiffen J, et al. Targeting of cytosolic phospholipase A2α impedes cell cycle re-entry of quiescent prostate cancer cells. Oncotarget. 2015;6:34458-74 pubmed 出版商
  335. Asghar A, Lajeunesse A, Dulla K, Combes G, Thebault P, Nigg E, et al. Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation. Nat Commun. 2015;6:8364 pubmed 出版商
  336. Blanco F, Jimbo M, Wulfkuhle J, Gallagher I, Deng J, Enyenihi L, et al. The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells. Oncogene. 2016;35:2529-41 pubmed 出版商
  337. Bollu L, Katreddy R, Blessing A, Pham N, Zheng B, Wu X, et al. Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation. Oncotarget. 2015;6:34992-5003 pubmed 出版商
  338. D Amato N, Rogers T, Gordon M, Greene L, Cochrane D, Spoelstra N, et al. A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res. 2015;75:4651-64 pubmed 出版商
  339. Dong H, Chen Z, Wang C, Xiong Z, Zhao W, Jia C, et al. Rictor Regulates Spermatogenesis by Controlling Sertoli Cell Cytoskeletal Organization and Cell Polarity in the Mouse Testis. Endocrinology. 2015;156:4244-56 pubmed 出版商
  340. Machado Neto J, de Melo Campos P, Favaro P, Lazarini M, da Silva Santos Duarte A, Lorand Metze I, et al. Stathmin 1 inhibition amplifies ruxolitinib-induced apoptosis in JAK2V617F cells. Oncotarget. 2015;6:29573-84 pubmed 出版商
  341. Cao L, Ding J, Dong L, Zhao J, Su J, Wang L, et al. Negative Regulation of p21Waf1/Cip1 by Human INO80 Chromatin Remodeling Complex Is Implicated in Cell Cycle Phase G2/M Arrest and Abnormal Chromosome Stability. PLoS ONE. 2015;10:e0137411 pubmed 出版商
  342. Van de Mark D, Kong D, Loncarek J, Stearns T. MDM1 is a microtubule-binding protein that negatively regulates centriole duplication. Mol Biol Cell. 2015;26:3788-802 pubmed 出版商
  343. Mansara P, Deshpande R, Vaidya M, Kaul Ghanekar R. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS ONE. 2015;10:e0136542 pubmed 出版商
  344. Qiu D, Ye S, Ruiz B, Zhou X, Liu D, Zhang Q, et al. Klf2 and Tfcp2l1, Two Wnt/β-Catenin Targets, Act Synergistically to Induce and Maintain Naive Pluripotency. Stem Cell Reports. 2015;5:314-22 pubmed 出版商
  345. Jimbo M, Blanco F, Huang Y, Telonis A, Screnci B, Cosma G, et al. Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells. Oncotarget. 2015;6:27312-31 pubmed 出版商
  346. Cooper S, Sadok A, Bousgouni V, Bakal C. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells. Mol Biol Cell. 2015;26:4163-70 pubmed 出版商
  347. Stockley J, Markert E, Zhou Y, Robson C, Elliott D, Lindberg J, et al. The RNA-binding protein Sam68 regulates expression and transcription function of the androgen receptor splice variant AR-V7. Sci Rep. 2015;5:13426 pubmed 出版商
  348. Kruzliak P, Hare D, Zvonícek V, Klimas J, Zulli A. Simvastatin impairs the induction of pulmonary fibrosis caused by a western style diet: a preliminary study. J Cell Mol Med. 2015;19:2647-54 pubmed 出版商
  349. Wolter S, Kloth C, Golombek M, Dittmar F, Försterling L, Seifert R. cCMP causes caspase-dependent apoptosis in mouse lymphoma cell lines. Biochem Pharmacol. 2015;98:119-31 pubmed 出版商
  350. Lüddecke S, Ertych N, Stenzinger A, Weichert W, Beissbarth T, Dyczkowski J, et al. The putative oncogene CEP72 inhibits the mitotic function of BRCA1 and induces chromosomal instability. Oncogene. 2016;35:2398-406 pubmed 出版商
  351. Barbone D, Follo C, Echeverry N, Gerbaudo V, Klabatsa A, Bueno R, et al. Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models. PLoS ONE. 2015;10:e0134825 pubmed 出版商
  352. Sakabe I, Hu R, Jin L, Clarke R, Kasid U. TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. 2015;153:285-97 pubmed 出版商
  353. Panet E, Ozer E, Mashriki T, Lazar I, Itzkovich D, Tzur A. Purifying Cytokinetic Cells from an Asynchronous Population. Sci Rep. 2015;5:13230 pubmed 出版商
  354. Kanfer G, Courtheoux T, Peterka M, Meier S, Soste M, Melnik A, et al. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat Commun. 2015;6:8015 pubmed 出版商
  355. Lee H, Park Y, Cho M, Chae S, Yoo Y, Kwon M, et al. The chromatin remodeller RSF1 is essential for PLK1 deposition and function at mitotic kinetochores. Nat Commun. 2015;6:7904 pubmed 出版商
  356. Lehti M, Kotaja N, Sironen A. KIF1-binding protein interacts with KIF3A in haploid male germ cells. Reproduction. 2015;150:209-16 pubmed 出版商
  357. Hagl S, Berressem D, Grewal R, Sus N, Frank J, Eckert G. Rice bran extract improves mitochondrial dysfunction in brains of aged NMRI mice. Nutr Neurosci. 2016;19:1-10 pubmed 出版商
  358. Hamazaki J, Hirayama S, Murata S. Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis. PLoS Genet. 2015;11:e1005401 pubmed 出版商
  359. Lee K, Im J, Shibata E, Park J, Handa N, Kowalczykowski S, et al. MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat Commun. 2015;6:7744 pubmed 出版商
  360. Chesser A, Ganeshan V, Yang J, Johnson G. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci. 2016;19:21-31 pubmed 出版商
  361. Succoio M, Comegna M, D Ambrosio C, Scaloni A, Cimino F, Faraonio R. Proteomic analysis reveals novel common genes modulated in both replicative and stress-induced senescence. J Proteomics. 2015;128:18-29 pubmed 出版商
  362. Fink E, Mannava S, Bagati A, Bianchi Smiraglia A, Nair J, Moparthy K, et al. Mitochondrial thioredoxin reductase regulates major cytotoxicity pathways of proteasome inhibitors in multiple myeloma cells. Leukemia. 2016;30:104-11 pubmed 出版商
  363. Sutani T, Sakata T, Nakato R, Masuda K, Ishibashi M, Yamashita D, et al. Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation. Nat Commun. 2015;6:7815 pubmed 出版商
  364. Stiess M, Wegehingel S, Nguyen C, Nickel W, Bradke F, Cambridge S. A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion. J Proteome Res. 2015;14:3229-38 pubmed 出版商
  365. Bach A, Derocq D, Laurent Matha V, Montcourrier P, Sebti S, Orsetti B, et al. Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells. Oncotarget. 2015;6:28084-103 pubmed 出版商
  366. Navarro F, Lieberman J. miR-34 and p53: New Insights into a Complex Functional Relationship. PLoS ONE. 2015;10:e0132767 pubmed 出版商
  367. Silva R, Dautel M, Di Genova B, Amberg D, Castilho B, Sattlegger E. The Gcn2 Regulator Yih1 Interacts with the Cyclin Dependent Kinase Cdc28 and Promotes Cell Cycle Progression through G2/M in Budding Yeast. PLoS ONE. 2015;10:e0131070 pubmed 出版商
  368. Chen S, Okada M, Nakato R, Izumi K, Bando M, Shirahige K. The Deubiquitinating Enzyme USP7 Regulates Androgen Receptor Activity by Modulating Its Binding to Chromatin. J Biol Chem. 2015;290:21713-23 pubmed 出版商
  369. Neto N, Rodrigues M, Hachul A, Moreno M, Boldarine V, Ribeiro E, et al. A Hyperlipidic Diet Combined with Short-Term Ovariectomy Increases Adiposity and Hyperleptinemia and Decreases Cytokine Content in Mesenteric Adipose Tissue. Mediators Inflamm. 2015;2015:923248 pubmed 出版商
  370. Newell Litwa K, Badoual M, Asmussen H, Patel H, Whitmore L, Horwitz A. ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity. J Cell Biol. 2015;210:225-42 pubmed 出版商
  371. Nagaoka K, Matoba T, Mao Y, Nakano Y, Ikeda G, Egusa S, et al. A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model. PLoS ONE. 2015;10:e0132451 pubmed 出版商
  372. Li W, Hu Y, Oh S, Ma Q, Merkurjev D, Song X, et al. Condensin I and II Complexes License Full Estrogen Receptor α-Dependent Enhancer Activation. Mol Cell. 2015;59:188-202 pubmed 出版商
  373. Córdova Fletes C, Domínguez M, Delint Ramirez I, Martínez Rodríguez H, Rivas Estilla A, Barros Núñez P, et al. A de novo t(10;19)(q22.3;q13.33) leads to ZMIZ1/PRR12 reciprocal fusion transcripts in a girl with intellectual disability and neuropsychiatric alterations. Neurogenetics. 2015;16:287-98 pubmed 出版商
  374. Han Y, Choi Y, Lee S, Jin Y, Cheong H, Lee K. Yin Yang 1 is a multi-functional regulator of adipocyte differentiation in 3T3-L1 cells. Mol Cell Endocrinol. 2015;413:217-27 pubmed 出版商
  375. Lee J, Lee Y, Lim J, Byun H, Park I, Kim G, et al. Mitochondrial Respiratory Dysfunction Induces Claudin-1 Expression via Reactive Oxygen Species-mediated Heat Shock Factor 1 Activation, Leading to Hepatoma Cell Invasiveness. J Biol Chem. 2015;290:21421-31 pubmed 出版商
  376. Regan J, Kannan P, Kemp M, Kramer B, Newnham J, Jobe A, et al. Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep. Reprod Sci. 2016;23:69-80 pubmed 出版商
  377. Beckman D, Santos L, Americo T, Ledo J, de Mello F, Linden R. Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice. J Biol Chem. 2015;290:20488-98 pubmed 出版商
  378. Andersson L, Scharin Täng M, Lundqvist A, Lindbom M, Mardani I, Fogelstrand P, et al. Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia. Cardiovasc Res. 2015;107:478-86 pubmed 出版商
  379. Graffe M, Zenisek D, Taraska J. A marginal band of microtubules transports and organizes mitochondria in retinal bipolar synaptic terminals. J Gen Physiol. 2015;146:109-17 pubmed 出版商
  380. Duan H, Li Y, Lim H, Wang W. Identification of 5-nitrofuran-2-amide derivatives that induce apoptosis in triple negative breast cancer cells by activating C/EBP-homologous protein expression. Bioorg Med Chem. 2015;23:4514-21 pubmed 出版商
  381. Nixon F, Gutiérrez Caballero C, Hood F, Booth D, Prior I, Royle S. The mesh is a network of microtubule connectors that stabilizes individual kinetochore fibers of the mitotic spindle. elife. 2015;4: pubmed 出版商
  382. Heinemann A, Cullinane C, De Paoli Iseppi R, Wilmott J, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507-21 pubmed
  383. Nishida H, Ikegami A, Kaneko C, Kakuma H, Nishi H, Tanaka N, et al. Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats. PLoS ONE. 2015;10:e0128805 pubmed 出版商
  384. Condelli V, Maddalena F, Sisinni L, Lettini G, Matassa D, Piscazzi A, et al. Targeting TRAP1 as a downstream effector of BRAF cytoprotective pathway: a novel strategy for human BRAF-driven colorectal carcinoma. Oncotarget. 2015;6:22298-309 pubmed
  385. McGirt L, Jia P, Baerenwald D, Duszynski R, Dahlman K, Zic J, et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood. 2015;126:508-19 pubmed 出版商
  386. Gierut J, Lyons J, Shah M, Genetti C, Breault D, Haigis K. Oncogenic K-Ras promotes proliferation in quiescent intestinal stem cells. Stem Cell Res. 2015;15:165-71 pubmed 出版商
  387. Kiebala M, Singh M, Piepenbrink M, Qiu X, Kobie J, Maggirwar S. Platelet Activation in Human Immunodeficiency Virus Type-1 Patients Is Not Altered with Cocaine Abuse. PLoS ONE. 2015;10:e0130061 pubmed 出版商
  388. Xie L, Pi X, Townley Tilson W, Li N, Wehrens X, Entman M, et al. PHD2/3-dependent hydroxylation tunes cardiac response to β-adrenergic stress via phospholamban. J Clin Invest. 2015;125:2759-71 pubmed 出版商
  389. Mohankumar K, Currle D, White E, Boulos N, Dapper J, Eden C, et al. An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes. Nat Genet. 2015;47:878-87 pubmed 出版商
  390. Gagnon J, Daou S, Zamorano N, Iannantuono N, Hammond Martel I, Mashtalir N, et al. Undetectable histone O-GlcNAcylation in mammalian cells. Epigenetics. 2015;10:677-91 pubmed 出版商
  391. Park S, Choi S, Yoo S, Nah J, Jeong E, Kim H, et al. Pyruvate stimulates mitophagy via PINK1 stabilization. Cell Signal. 2015;27:1824-30 pubmed 出版商
  392. Jinks R, Puffenberger E, Baple E, Harding B, Crino P, Fogo A, et al. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73. Brain. 2015;138:2173-90 pubmed 出版商
  393. Petroni M, Sardina F, Heil C, Sahún Roncero M, Colicchia V, Veschi V, et al. The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress. Cell Death Differ. 2016;23:197-206 pubmed 出版商
  394. Bock F, Tanzer M, Haschka M, Krumschnabel G, Sohm B, Goetsch K, et al. The p53 binding protein PDCD5 is not rate-limiting in DNA damage induced cell death. Sci Rep. 2015;5:11268 pubmed 出版商
  395. Neo S, Itahana Y, Alagu J, Kitagawa M, Guo A, Lee S, et al. TRIM28 Is an E3 Ligase for ARF-Mediated NPM1/B23 SUMOylation That Represses Centrosome Amplification. Mol Cell Biol. 2015;35:2851-63 pubmed 出版商
  396. Barr A, Bakal C. A sensitised RNAi screen reveals a ch-TOG genetic interaction network required for spindle assembly. Sci Rep. 2015;5:10564 pubmed 出版商
  397. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  398. Koenig J, Werdehausen R, Linley J, Habib A, Vernon J, Lolignier S, et al. Regulation of Nav1.7: A Conserved SCN9A Natural Antisense Transcript Expressed in Dorsal Root Ganglia. PLoS ONE. 2015;10:e0128830 pubmed 出版商
  399. Lee K, Guevarra M, Nguyen A, Chua M, Wang Y, Jacobs C. The primary cilium functions as a mechanical and calcium signaling nexus. Cilia. 2015;4:7 pubmed 出版商
  400. Tembe V, Martino Echarri E, Marzec K, Mok M, Brodie K, Mills K, et al. The BARD1 BRCT domain contributes to p53 binding, cytoplasmic and mitochondrial localization, and apoptotic function. Cell Signal. 2015;27:1763-71 pubmed 出版商
  401. Herms A, Bosch M, Reddy B, Schieber N, Fajardo A, Rupérez C, et al. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat Commun. 2015;6:7176 pubmed 出版商
  402. Nagata T, Yasukawa H, Kyogoku S, Oba T, Takahashi J, Nohara S, et al. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules. PLoS ONE. 2015;10:e0127942 pubmed 出版商
  403. Cicchini C, de Nonno V, Battistelli C, Cozzolino A, De Santis Puzzonia M, Ciafrè S, et al. Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29. Biochim Biophys Acta. 2015;1849:919-29 pubmed 出版商
  404. Kiss A, Gong X, Kowalewski J, Shafqat Abbasi H, Strömblad S, Lock J. Non-monotonic cellular responses to heterogeneity in talin protein expression-level. Integr Biol (Camb). 2015;7:1171-85 pubmed 出版商
  405. Fauster A, Rebsamen M, Huber K, Bigenzahn J, Stukalov A, Lardeau C, et al. A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death Dis. 2015;6:e1767 pubmed 出版商
  406. Bhatt D, Puig K, Gorr M, Wold L, Combs C. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS ONE. 2015;10:e0127102 pubmed 出版商
  407. Ketema M, Secades P, Kreft M, Nahidiazar L, Janssen H, Jalink K, et al. The rod domain is not essential for the function of plectin in maintaining tissue integrity. Mol Biol Cell. 2015;26:2402-17 pubmed 出版商
  408. Teng Y, Radde B, Litchfield L, Ivanova M, Prough R, Clark B, et al. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells. J Biol Chem. 2015;290:15799-811 pubmed 出版商
  409. Reales E, Bernabé Rubio M, Casares Arias J, Rentero C, Fernández Barrera J, Rangel L, et al. The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci. 2015;128:2261-70 pubmed 出版商
  410. Li W, Zhang C, Ren A, Li T, Jin R, Li G, et al. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation. PLoS ONE. 2015;10:e0126459 pubmed 出版商
  411. Piskareva O, Harvey H, Nolan J, Conlon R, Alcock L, Buckley P, et al. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. Cancer Lett. 2015;364:142-55 pubmed 出版商
  412. Woan K, Lienlaf M, Perez Villaroel P, Lee C, Cheng F, Knox T, et al. Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: Enhanced antitumor immunity and impaired cell proliferation. Mol Oncol. 2015;9:1447-1457 pubmed 出版商
  413. Omari S, Waters M, Naranian T, Kim K, Perumalsamy A, Chi M, et al. Mcl-1 is a key regulator of the ovarian reserve. Cell Death Dis. 2015;6:e1755 pubmed 出版商
  414. Mahale S, Bharate S, Manda S, Joshi P, Jenkins P, Vishwakarma R, et al. Antitumour potential of BPT: a dual inhibitor of cdk4 and tubulin polymerization. Cell Death Dis. 2015;6:e1743 pubmed 出版商
  415. Valdés Fuentes M, Vera Rivera G, De Ita Pérez D, Méndez I, Miranda M, Díaz Muñoz M. Effect of daytime-restricted feeding in the daily variations of liver metabolism and blood transport of serotonin in rat. Physiol Rep. 2015;3: pubmed 出版商
  416. Barrett K, Fang H, Cukovic D, Dombkowski A, Kocarek T, Runge Morris M. Upregulation of UGT2B4 Expression by 3'-Phosphoadenosine-5'-Phosphosulfate Synthase Knockdown: Implications for Coordinated Control of Bile Acid Conjugation. Drug Metab Dispos. 2015;43:1061-70 pubmed 出版商
  417. Mauro Lizcano M, Esteban Martínez L, Seco E, Serrano Puebla A, García Ledo L, Figueiredo Pereira C, et al. New method to assess mitophagy flux by flow cytometry. Autophagy. 2015;11:833-43 pubmed 出版商
  418. Naipal K, Raams A, Bruens S, Brandsma I, Verkaik N, Jaspers N, et al. Attenuated XPC expression is not associated with impaired DNA repair in bladder cancer. PLoS ONE. 2015;10:e0126029 pubmed 出版商
  419. Isogai T, van der Kammen R, Innocenti M. SMIFH2 has effects on Formins and p53 that perturb the cell cytoskeleton. Sci Rep. 2015;5:9802 pubmed 出版商
  420. Teasley D, Parajuli S, Nguyen M, Moore H, Alspach E, Lock Y, et al. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand. J Biol Chem. 2015;290:15133-45 pubmed 出版商
  421. Ratovitski E. Phospho-ΔNp63α-responsive microRNAs contribute to the regulation of necroptosis in squamous cell carcinoma upon cisplatin exposure. FEBS Lett. 2015;589:1352-8 pubmed 出版商
  422. Cruz Bermúdez A, Vallejo C, Vicente Blanco R, Gallardo M, Fernández Moreno M, Quintanilla M, et al. Enhanced tumorigenicity by mitochondrial DNA mild mutations. Oncotarget. 2015;6:13628-43 pubmed
  423. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128:2179-90 pubmed 出版商
  424. Li S, Oh Y, Yue P, Khuri F, Sun S. Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells. Oncogene. 2016;35:642-50 pubmed 出版商
  425. Min K, Liggett J, Silva G, Wu W, Wang R, Shen R, et al. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene. 2016;35:377-88 pubmed 出版商
  426. Chong L, Hsu Y, Lee T, Lin Y, Chiu Y, Yang K, et al. Fluvastatin attenuates hepatic steatosis-induced fibrogenesis in rats through inhibiting paracrine effect of hepatocyte on hepatic stellate cells. BMC Gastroenterol. 2015;15:22 pubmed 出版商
  427. Chung J, Bauer D, Ghamari A, Nizzi C, Deck K, Kingsley P, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal. 2015;8:ra34 pubmed 出版商
  428. Navis A, van Lith S, van Duijnhoven S, de Pooter M, Yetkin Arik B, Wesseling P, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131-44 pubmed 出版商
  429. Antonenkov V, Isomursu A, Mennerich D, Vapola M, Weiher H, Kietzmann T, et al. The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential. J Biol Chem. 2015;290:13840-61 pubmed 出版商
  430. Ohashi M, Holthaus A, Calderwood M, Lai C, Krastins B, Sarracino D, et al. The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth. PLoS Pathog. 2015;11:e1004822 pubmed 出版商
  431. Pereira L, Hugo H, Malaterre J, Huiling X, Sonza S, Cures A, et al. MYB elongation is regulated by the nucleic acid binding of NFκB p50 to the intronic stem-loop region. PLoS ONE. 2015;10:e0122919 pubmed 出版商
  432. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  433. Akizu N, Cantagrel V, Zaki M, Al Gazali L, Wang X, Rosti R, et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet. 2015;47:528-34 pubmed 出版商
  434. Westcott J, Prechtl A, Maine E, Dang T, Esparza M, Sun H, et al. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest. 2015;125:1927-43 pubmed 出版商
  435. Yi J, Zhang X, Huan X, Song S, Wang W, Tian Q, et al. Dual targeting of microtubule and topoisomerase II by α-carboline derivative YCH337 for tumor proliferation and growth inhibition. Oncotarget. 2015;6:8960-73 pubmed
  436. Mertz T, Sharma S, Chabes A, Shcherbakova P. Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity. Proc Natl Acad Sci U S A. 2015;112:E2467-76 pubmed 出版商
  437. Ma S, Jiang B, Deng W, Gu Z, Wu F, Li T, et al. D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget. 2015;6:8606-20 pubmed
  438. Shi Y, Chen J, Karner C, Long F. Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci U S A. 2015;112:4678-83 pubmed 出版商
  439. Lee I, Hüttemann M, Kruger A, Bollig Fischer A, Malek M. (-)-Epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice. Front Pharmacol. 2015;6:43 pubmed 出版商
  440. Eisner A, Pazyra Murphy M, Durresi E, Zhou P, Zhao X, Chadwick E, et al. The Eya1 phosphatase promotes Shh signaling during hindbrain development and oncogenesis. Dev Cell. 2015;33:22-35 pubmed 出版商
  441. Ting P, Damoiseaux R, Titz B, Bradley K, Graeber T, Fernandez Vega V, et al. Identification of small molecules that disrupt signaling between ABL and its positive regulator RIN1. PLoS ONE. 2015;10:e0121833 pubmed 出版商
  442. Xu G, Chapman J, Brandsma I, Yuan J, Mistrik M, Bouwman P, et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature. 2015;521:541-544 pubmed 出版商
  443. O Hara L, Curley M, Tedim Ferreira M, Cruickshanks L, Milne L, Smith L. Pituitary androgen receptor signalling regulates prolactin but not gonadotrophins in the male mouse. PLoS ONE. 2015;10:e0121657 pubmed 出版商
  444. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  445. Muramatsu R, Kuroda M, Matoba K, Lin H, Takahashi C, Koyama Y, et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J Biol Chem. 2015;290:11515-25 pubmed 出版商
  446. Yanagi T, Shi R, Aza Blanc P, Reed J, Matsuzawa S. PCTAIRE1-knockdown sensitizes cancer cells to TNF family cytokines. PLoS ONE. 2015;10:e0119404 pubmed 出版商
  447. Liu Y, Lee J, Ackerman S. Mutations in the microtubule-associated protein 1A (Map1a) gene cause Purkinje cell degeneration. J Neurosci. 2015;35:4587-98 pubmed 出版商
  448. Balboula A, Stein P, Schultz R, Schindler K. RBBP4 regulates histone deacetylation and bipolar spindle assembly during oocyte maturation in the mouse. Biol Reprod. 2015;92:105 pubmed 出版商
  449. Kralovicova J, Knut M, Cross N, Vorechovsky I. Identification of U2AF(35)-dependent exons by RNA-Seq reveals a link between 3' splice-site organization and activity of U2AF-related proteins. Nucleic Acids Res. 2015;43:3747-63 pubmed 出版商
  450. Conn S, Pillman K, Toubia J, Conn V, Salmanidis M, Phillips C, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125-34 pubmed 出版商
  451. Gennarino V, Singh R, White J, De Maio A, Han K, Kim J, et al. Pumilio1 haploinsufficiency leads to SCA1-like neurodegeneration by increasing wild-type Ataxin1 levels. Cell. 2015;160:1087-98 pubmed 出版商
  452. Burgess H, Mohr I. Cellular 5'-3' mRNA exonuclease Xrn1 controls double-stranded RNA accumulation and anti-viral responses. Cell Host Microbe. 2015;17:332-344 pubmed 出版商
  453. Rappa G, Green T, Karbanová J, Corbeil D, Lorico A. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget. 2015;6:7970-91 pubmed
  454. Jadhav S, Katina S, Kovac A, Kazmerova Z, Novak M, Zilka N. Truncated tau deregulates synaptic markers in rat model for human tauopathy. Front Cell Neurosci. 2015;9:24 pubmed 出版商
  455. Zhang Z, Li J, Wang Q, Zhao W, Hong J, Lou S, et al. WNK1 is involved in Nogo66 inhibition of OPC differentiation. Mol Cell Neurosci. 2015;65:135-42 pubmed 出版商
  456. Martínez Torres A, Quiney C, Attout T, Boullet H, Herbi L, Vela L, et al. CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans. PLoS Med. 2015;12:e1001796 pubmed 出版商
  457. Grabner B, Schramek D, Mueller K, Moll H, Svinka J, Hoffmann T, et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun. 2015;6:6285 pubmed 出版商
  458. Park S, Jeong J, Park Y, Park K, Lee H, Lee N, et al. Disrupted-in-schizophrenia-1 (DISC1) Regulates Endoplasmic Reticulum Calcium Dynamics. Sci Rep. 2015;5:8694 pubmed 出版商
  459. Koo D, Lee H, Ahn J, Yoon D, Kim S, Gong G, et al. Tau and PTEN status as predictive markers for response to trastuzumab and paclitaxel in patients with HER2-positive breast cancer. Tumour Biol. 2015;36:5865-71 pubmed 出版商
  460. Arbeille E, Reynaud F, Sanyas I, Bozon M, Kindbeiter K, Causeret F, et al. Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat Commun. 2015;6:6366 pubmed 出版商
  461. Zolfaghari P, Carré J, Parker N, Curtin N, Duchen M, Singer M. Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis. Am J Physiol Endocrinol Metab. 2015;308:E713-25 pubmed 出版商
  462. Hortemo K, Aronsen J, Lunde I, Sjaastad I, Lunde P, Sejersted O. Exhausting treadmill running causes dephosphorylation of sMLC2 and reduced level of myofilament MLCK2 in slow twitch rat soleus muscle. Physiol Rep. 2015;3: pubmed 出版商
  463. Kushwaha D, O Leary C, Cron K, Deraska P, Zhu K, D Andrea A, et al. USP9X inhibition promotes radiation-induced apoptosis in non-small cell lung cancer cells expressing mid-to-high MCL1. Cancer Biol Ther. 2015;16:392-401 pubmed 出版商
  464. Nakagawa Y, Sedukhina A, Okamoto N, Nagasawa S, Suzuki N, Ohta T, et al. NF-κB signaling mediates acquired resistance after PARP inhibition. Oncotarget. 2015;6:3825-39 pubmed
  465. Ducommun S, Deak M, Sumpton D, Ford R, Núñez Galindo A, Kussmann M, et al. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Cell Signal. 2015;27:978-88 pubmed 出版商
  466. Pollack D, Xiao Y, Shrivasatava V, Levy A, Andrusier M, D ARMIENTO J, et al. CDK14 expression is down-regulated by cigarette smoke in vivo and in vitro. Toxicol Lett. 2015;234:120-30 pubmed 出版商
  467. Miyake S, Muramatsu R, Hamaguchi M, Yamashita T. Prolyl hydroxylase regulates axonal rewiring and motor recovery after traumatic brain injury. Cell Death Dis. 2015;6:e1638 pubmed 出版商
  468. Wu L, Russell D, Wong S, Chen M, Tsai T, St John J, et al. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development. 2015;142:681-91 pubmed 出版商
  469. Kwon H, Lee J, Jeong K, Jang D, Pak Y. Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation. Biochim Biophys Acta. 2015;1853:1022-34 pubmed 出版商
  470. Bailey J, Fields A, Cheng K, Lee A, Wagenaar E, Lagrois R, et al. WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission. J Biol Chem. 2015;290:8987-9001 pubmed 出版商
  471. Hsieh W, Huang Y, Wang T, Ming Y, Tsai C, Pang J. IFI27, a novel epidermal growth factor-stabilized protein, is functionally involved in proliferation and cell cycling of human epidermal keratinocytes. Cell Prolif. 2015;48:187-97 pubmed 出版商
  472. Raghunandan M, Chaudhury I, Kelich S, Hanenberg H, Sobeck A. FANCD2, FANCJ and BRCA2 cooperate to promote replication fork recovery independently of the Fanconi Anemia core complex. Cell Cycle. 2015;14:342-53 pubmed 出版商
  473. Ohta S, Wood L, Toramoto I, Yagyu K, Fukagawa T, Earnshaw W. CENP-32 is required to maintain centrosomal dominance in bipolar spindle assembly. Mol Biol Cell. 2015;26:1225-37 pubmed 出版商
  474. Jeong H, Gil N, Lee H, Cho S, Kim K, Chun K, et al. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression. J Cell Biochem. 2015;116:1602-12 pubmed 出版商
  475. West A, Khoury Hanold W, Staron M, Tal M, Pineda C, Lang S, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553-7 pubmed 出版商
  476. Sleiman N, McFarland T, Jones L, Cala S. Transitions of protein traffic from cardiac ER to junctional SR. J Mol Cell Cardiol. 2015;81:34-45 pubmed 出版商
  477. Xue J, Chen Y, Wu Y, Wang Z, Zhou A, Zhang S, et al. Tumour suppressor TRIM33 targets nuclear β-catenin degradation. Nat Commun. 2015;6:6156 pubmed 出版商
  478. Cuello Carrión F, Shortrede J, Alvarez Olmedo D, Cayado Gutiérrez N, Castro G, Zoppino F, et al. HER2 and β-catenin protein location: importance in the prognosis of breast cancer patients and their correlation when breast cancer cells suffer stressful situations. Clin Exp Metastasis. 2015;32:151-68 pubmed 出版商
  479. Mauger O, Klinck R, Chabot B, Muchardt C, Allemand E, Batsché E. Alternative splicing regulates the expression of G9A and SUV39H2 methyltransferases, and dramatically changes SUV39H2 functions. Nucleic Acids Res. 2015;43:1869-82 pubmed 出版商
  480. Grati M, Chakchouk I, Ma Q, Bensaïd M, DeSmidt A, Turki N, et al. A missense mutation in DCDC2 causes human recessive deafness DFNB66, likely by interfering with sensory hair cell and supporting cell cilia length regulation. Hum Mol Genet. 2015;24:2482-91 pubmed 出版商
  481. Wijeweera A, Haj M, Feldman A, Pnueli L, Luo Z, Melamed P. Gonadotropin gene transcription is activated by menin-mediated effects on the chromatin. Biochim Biophys Acta. 2015;1849:328-41 pubmed 出版商
  482. Stolz A, Ertych N, Bastians H. A phenotypic screen identifies microtubule plus end assembly regulators that can function in mitotic spindle orientation. Cell Cycle. 2015;14:827-37 pubmed 出版商
  483. Miyata M, Lee J, Susuki Miyata S, Wang W, Xu H, Kai H, et al. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat Commun. 2015;6:6062 pubmed 出版商
  484. Kopanic J, Schlingmann B, Koval M, Lau A, Sorgen P, Su V. Degradation of gap junction connexins is regulated by the interaction with Cx43-interacting protein of 75 kDa (CIP75). Biochem J. 2015;466:571-85 pubmed 出版商
  485. Al Gubory K, Arianmanesh M, Garrel C, Fowler P. The conceptus regulates tryptophanyl-tRNA synthetase and superoxide dismutase 2 in the sheep caruncular endometrium during early pregnancy. Int J Biochem Cell Biol. 2015;60:112-8 pubmed 出版商
  486. Rizkallah R, Batsomboon P, Dudley G, Hurt M. Identification of the oncogenic kinase TOPK/PBK as a master mitotic regulator of C2H2 zinc finger proteins. Oncotarget. 2015;6:1446-61 pubmed
  487. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  488. Sathyamurthy A, Yin D, Barik A, Shen C, Bean J, Figueiredo D, et al. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development. 2015;142:522-32 pubmed 出版商
  489. Gao Z, Zhang J, Henagan T, Lee J, Ye X, Wang H, et al. P65 inactivation in adipocytes and macrophages attenuates adipose inflammatory response in lean but not in obese mice. Am J Physiol Endocrinol Metab. 2015;308:E496-505 pubmed 出版商
  490. Karner C, Esen E, Okunade A, Patterson B, Long F. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. J Clin Invest. 2015;125:551-62 pubmed 出版商
  491. Rebsamen M, Pochini L, Stasyk T, de Araújo M, Galluccio M, Kandasamy R, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519:477-81 pubmed 出版商
  492. Earley L, Kawano Y, Adachi K, Sun X, Dai M, Nakai H. Identification and characterization of nuclear and nucleolar localization signals in the adeno-associated virus serotype 2 assembly-activating protein. J Virol. 2015;89:3038-48 pubmed 出版商
  493. Toropainen S, Malinen M, Kaikkonen S, Rytinki M, Jääskeläinen T, Sahu B, et al. SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Res. 2015;43:848-61 pubmed 出版商
  494. Sasaki M, Yoshimura Miyakoshi M, Sato Y, Nakanuma Y. A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis. J Gastroenterol. 2015;50:984-95 pubmed 出版商
  495. Van de Laar E, Clifford M, Hasenoeder S, Kim B, Wang D, Lee S, et al. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas. Respir Res. 2014;15:160 pubmed 出版商
  496. Toda T, Ishida K, Kiyama H, Yamashita T, Lee S. Down-regulation of KCC2 expression and phosphorylation in motoneurons, and increases the number of in primary afferent projections to motoneurons in mice with post-stroke spasticity. PLoS ONE. 2014;9:e114328 pubmed 出版商
  497. Hong A, Lee J, Chung K. Ubiquitin-specific protease 22 (USP22) positively regulates RCAN1 protein levels through RCAN1 de-ubiquitination. J Cell Physiol. 2015;230:1651-60 pubmed 出版商
  498. Gonzalez Granado J, Navarro Puche A, Molina Sánchez P, Blanco Berrocal M, Viana R, Font de Mora J, et al. Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope. PLoS ONE. 2014;9:e115571 pubmed 出版商
  499. Machado Neto J, Lazarini M, Favaro P, de Melo Campos P, Scopim Ribeiro R, Franchi Junior G, et al. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. Biochim Biophys Acta. 2015;1853:583-93 pubmed 出版商
  500. Jilg C, Ketscher A, Metzger E, Hummel B, Willmann D, Rüsseler V, et al. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget. 2014;5:12646-64 pubmed
  501. Huang Y, Bertrand V, Bozukova D, Pagnoulle C, Labrugère C, De Pauw E, et al. RGD surface functionalization of the hydrophilic acrylic intraocular lens material to control posterior capsular opacification. PLoS ONE. 2014;9:e114973 pubmed 出版商
  502. Da Ros M, Hirvonen N, Olotu O, Toppari J, Kotaja N. Retromer vesicles interact with RNA granules in haploid male germ cells. Mol Cell Endocrinol. 2015;401:73-83 pubmed 出版商
  503. Cho S, Yun S, Jo C, Lee D, Choi K, Song J, et al. SUMO1 promotes Aβ production via the modulation of autophagy. Autophagy. 2015;11:100-12 pubmed 出版商
  504. Bollu L, Ren J, Blessing A, Katreddy R, Gao G, Xu L, et al. Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells. Cell Cycle. 2014;13:2415-30 pubmed 出版商
  505. Chuang C, Guh J, Lu C, Chen H, Chuang L. S100B is required for high glucose-induced pro-fibrotic gene expression and hypertrophy in mesangial cells. Int J Mol Med. 2015;35:546-52 pubmed 出版商
  506. Bond M, Ghosh S, Wang P, Hanover J. Conserved nutrient sensor O-GlcNAc transferase is integral to C. elegans pathogen-specific immunity. PLoS ONE. 2014;9:e113231 pubmed 出版商
  507. Tang E, Mok K, Lee W, Cheng C. EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology. 2015;156:680-93 pubmed 出版商
  508. Peng H, Kaplan N, Yang W, Getsios S, Lavker R. FIH-1 disrupts an LRRK1/EGFR complex to positively regulate keratinocyte migration. Am J Pathol. 2014;184:3262-71 pubmed 出版商
  509. Kim T, Kim H, Kang Y, Yoon S, Lee J, Choi W, et al. Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts. Biochim Biophys Acta. 2015;1850:401-10 pubmed 出版商
  510. Colbert P, Vermeer D, Wieking B, Lee J, Vermeer P. EphrinB1: novel microtubule associated protein whose expression affects taxane sensitivity. Oncotarget. 2015;6:953-68 pubmed
  511. Nakashima H, Nguyen T, Goins W, Chiocca E. Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J Biol Chem. 2015;290:1485-95 pubmed 出版商
  512. Vigelsø A, Dybboe R, Hansen C, Dela F, Helge J, Guadalupe Grau A. GAPDH and β-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle. J Appl Physiol (1985). 2015;118:386-94 pubmed 出版商
  513. Wang S, Cui H, Liu Y, Zhao P, Zhang Y, Fu Z, et al. CD147 promotes Src-dependent activation of Rac1 signaling through STAT3/DOCK8 during the motility of hepatocellular carcinoma cells. Oncotarget. 2015;6:243-57 pubmed
  514. Bian W, Miao W, He S, Wan Z, Luo Z, Yu X. A novel Wnt5a-Frizzled4 signaling pathway mediates activity-independent dendrite morphogenesis via the distal PDZ motif of Frizzled 4. Dev Neurobiol. 2015;75:805-22 pubmed 出版商
  515. Liu F, Shen W, Qiu H, Hu X, Zhang C, Chu T. Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A. Prostate. 2015;75:370-80 pubmed 出版商
  516. He W, Hu C, Hou J, Fan L, Xu Y, Liu M, et al. Microtubule-associated protein 1 light chain 3 interacts with and contributes to growth inhibiting effect of PML. PLoS ONE. 2014;9:e113089 pubmed 出版商
  517. O Hara L, McInnes K, Simitsidellis I, Morgan S, Atanassova N, Slowikowska Hilczer J, et al. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FASEB J. 2015;29:894-910 pubmed 出版商
  518. Vulto van Silfhout A, Nakagawa T, Bahi Buisson N, Haas S, Hu H, Bienek M, et al. Variants in CUL4B are associated with cerebral malformations. Hum Mutat. 2015;36:106-17 pubmed 出版商
  519. Akkuratov E, Lopacheva O, Kruusmägi M, Lopachev A, Shah Z, Boldyrev A, et al. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons. Mol Neurobiol. 2015;52:1726-1734 pubmed 出版商
  520. Carmena M, Lombardía M, Ogawa H, Earnshaw W. Polo kinase regulates the localization and activity of the chromosomal passenger complex in meiosis and mitosis in Drosophila melanogaster. Open Biol. 2014;4:140162 pubmed 出版商
  521. Lee K, Yeo S, Sung C, Kim S. Twist1 is a key regulator of cancer-associated fibroblasts. Cancer Res. 2015;75:73-85 pubmed 出版商
  522. Akoury E, Zhang L, Ao A, Slim R. NLRP7 and KHDC3L, the two maternal-effect proteins responsible for recurrent hydatidiform moles, co-localize to the oocyte cytoskeleton. Hum Reprod. 2015;30:159-69 pubmed 出版商
  523. Olmsted Z, Colliver A, Riehlman T, Paluh J. Kinesin-14 and kinesin-5 antagonistically regulate microtubule nucleation by γ-TuRC in yeast and human cells. Nat Commun. 2014;5:5339 pubmed 出版商
  524. Hock A, Vigneron A, Vousden K. Ubiquitin-specific peptidase 42 (USP42) functions to deubiquitylate histones and regulate transcriptional activity. J Biol Chem. 2014;289:34862-70 pubmed 出版商
  525. Kawasumi M, Bradner J, Tolliday N, Thibodeau R, Sloan H, Brummond K, et al. Identification of ATR-Chk1 pathway inhibitors that selectively target p53-deficient cells without directly suppressing ATR catalytic activity. Cancer Res. 2014;74:7534-45 pubmed 出版商
  526. O Loghlen A, Martin N, Krusche B, Pemberton H, Alonso M, Chandler H, et al. The nuclear receptor NR2E1/TLX controls senescence. Oncogene. 2015;34:4069-4077 pubmed 出版商
  527. Lee K, Tarn W. TRAP150 activates splicing in composite terminal exons. Nucleic Acids Res. 2014;42:12822-32 pubmed 出版商
  528. Díaz Chiguer D, Hernández Luis F, Nogueda Torres B, Castillo R, Reynoso Ducoing O, Hernández Campos A, et al. JVG9, a benzimidazole derivative, alters the surface and cytoskeleton of Trypanosoma cruzi bloodstream trypomastigotes. Mem Inst Oswaldo Cruz. 2014;109:757-60 pubmed
  529. Wang X, Li Y, Liu S, Yu X, Li L, Shi C, et al. Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense. Proc Natl Acad Sci U S A. 2014;111:15438-43 pubmed 出版商
  530. Lin Y, Zhang H, Liang J, Li K, Zhu W, Fu L, et al. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc Natl Acad Sci U S A. 2014;111:E4504-12 pubmed 出版商
  531. Pereira L, Pinto R, Silva D, Moreira A, Beitzinger C, Oliveira P, et al. Intracellular trafficking of AIP56, an NF-κB-cleaving toxin from Photobacterium damselae subsp. piscicida. Infect Immun. 2014;82:5270-85 pubmed 出版商
  532. Ali M, Chuang C, Saif M. Reprogramming cellular phenotype by soft collagen gels. Soft Matter. 2014;10:8829-37 pubmed 出版商
  533. Choi J, Park B, Chi S, Bae K, Kim S, Cho S, et al. HAX1 regulates E3 ubiquitin ligase activity of cIAPs by promoting their dimerization. Oncotarget. 2014;5:10084-99 pubmed
  534. Gray A, Stephens C, Bigelow R, Coleman D, Cardelli J. The polyphenols (-)-epigallocatechin-3-gallate and luteolin synergistically inhibit TGF-β-induced myofibroblast phenotypes through RhoA and ERK inhibition. PLoS ONE. 2014;9:e109208 pubmed 出版商
  535. Moskwa P, Zinn P, Choi Y, Shukla S, Fendler W, Chen C, et al. A functional screen identifies miRs that induce radioresistance in glioblastomas. Mol Cancer Res. 2014;12:1767-78 pubmed 出版商
  536. Cohen Kedar S, Baram L, Elad H, Brazowski E, Guzner Gur H, Dotan I. Human intestinal epithelial cells respond to β-glucans via Dectin-1 and Syk. Eur J Immunol. 2014;44:3729-40 pubmed 出版商
  537. Perry M, Dufour C, Eichner L, Tsang D, Deblois G, Muller W, et al. ERBB2 deficiency alters an E2F-1-dependent adaptive stress response and leads to cardiac dysfunction. Mol Cell Biol. 2014;34:4232-43 pubmed 出版商
  538. Curran K, Allen L, Porter B, Dodge J, Lope C, Willadsen G, et al. Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis. PLoS ONE. 2014;9:e108266 pubmed 出版商
  539. Patel D, Dubash A, Kreitzer G, Green K. Disease mutations in desmoplakin inhibit Cx43 membrane targeting mediated by desmoplakin-EB1 interactions. J Cell Biol. 2014;206:779-97 pubmed 出版商
  540. Sempere L. Fully automated fluorescence-based four-color multiplex assay for co-detection of microRNA and protein biomarkers in clinical tissue specimens. Methods Mol Biol. 2014;1211:151-70 pubmed 出版商
  541. Tun A, Chaiyarit S, Kaewsutthi S, Katanyoo W, Chuenkongkaew W, Kuwano M, et al. Profiling the mitochondrial proteome of Leber's Hereditary Optic Neuropathy (LHON) in Thailand: down-regulation of bioenergetics and mitochondrial protein quality control pathways in fibroblasts with the 11778G>A mutation. PLoS ONE. 2014;9:e106779 pubmed 出版商
  542. Zha Y, Xia Y, Ding J, Choi J, Yang L, Dong Z, et al. MEIS2 is essential for neuroblastoma cell survival and proliferation by transcriptional control of M-phase progression. Cell Death Dis. 2014;5:e1417 pubmed 出版商
  543. De Nicola F, Catena V, Rinaldo C, Bruno T, Iezzi S, Sorino C, et al. HIPK2 sustains apoptotic response by phosphorylating Che-1/AATF and promoting its degradation. Cell Death Dis. 2014;5:e1414 pubmed 出版商
  544. Ribeiro Varandas E, Pereira H, Monteiro S, Neves E, Brito L, Ferreira R, et al. Bisphenol A disrupts transcription and decreases viability in aging vascular endothelial cells. Int J Mol Sci. 2014;15:15791-805 pubmed 出版商
  545. Zhao X, Zhu L, Chang Q, Jiang C, You Y, Luo T, et al. C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem. 2014;289:30052-62 pubmed 出版商
  546. Huang S, Lee C, Wang H, Chang Y, Lin C, Chen C, et al. 6-Dehydrogingerdione restrains lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages. J Agric Food Chem. 2014;62:9171-9 pubmed 出版商
  547. Ginet V, Pittet M, Rummel C, Osterheld M, Meuli R, Clarke P, et al. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic. Ann Neurol. 2014;76:695-711 pubmed 出版商
  548. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 2014;513:90-4 pubmed 出版商
  549. Sutinen P, Rahkama V, Rytinki M, Palvimo J. Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol. 2014;28:1719-28 pubmed 出版商
  550. Cheng F, Lienlaf M, Wang H, Perez Villarroel P, Lee C, Woan K, et al. A novel role for histone deacetylase 6 in the regulation of the tolerogenic STAT3/IL-10 pathway in APCs. J Immunol. 2014;193:2850-62 pubmed 出版商
  551. Bastos L, de Marcondes P, de Freitas Junior J, Leve F, Mencalha A, de Souza W, et al. Progeny from irradiated colorectal cancer cells acquire an EMT-like phenotype and activate Wnt/?-catenin pathway. J Cell Biochem. 2014;115:2175-87 pubmed 出版商
  552. Lee Y, Santé J, Comerci C, Cyge B, Menezes L, Li F, et al. Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface and facilitates proper cilium formation and function. Mol Biol Cell. 2014;25:2919-33 pubmed 出版商
  553. Dutta B, Yan R, Lim S, Tam J, Sze S. Quantitative profiling of chromatome dynamics reveals a novel role for HP1BP3 in hypoxia-induced oncogenesis. Mol Cell Proteomics. 2014;13:3236-49 pubmed 出版商
  554. de Souza E, Meirelles G, Godoy B, Perez A, Smetana J, Doxsey S, et al. Characterization of the human NEK7 interactome suggests catalytic and regulatory properties distinct from those of NEK6. J Proteome Res. 2014;13:4074-90 pubmed 出版商
  555. Bazot Q, Deschamps T, Tafforeau L, Siouda M, Leblanc P, Harth Hertle M, et al. Epstein-Barr virus nuclear antigen 3A protein regulates CDKN2B transcription via interaction with MIZ-1. Nucleic Acids Res. 2014;42:9700-16 pubmed 出版商
  556. Vassilopoulos A, Tominaga Y, Kim H, Lahusen T, Li B, Yu H, et al. WEE1 murine deficiency induces hyper-activation of APC/C and results in genomic instability and carcinogenesis. Oncogene. 2015;34:3023-35 pubmed 出版商
  557. Kelso T, Baumgart K, Eickhoff J, Albert T, Antrecht C, Lemcke S, et al. Cyclin-dependent kinase 7 controls mRNA synthesis by affecting stability of preinitiation complexes, leading to altered gene expression, cell cycle progression, and survival of tumor cells. Mol Cell Biol. 2014;34:3675-88 pubmed 出版商
  558. Mostocotto C, Carbone M, Battistelli C, Ciotti A, Amati P, Maione R. Poly(ADP-ribosyl)ation is required to modulate chromatin changes at c-MYC promoter during emergence from quiescence. PLoS ONE. 2014;9:e102575 pubmed 出版商
  559. Patel A, Burton D, Halvorsen K, Balkan W, Reiner T, Perez Stable C, et al. MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene. 2015;34:2586-96 pubmed 出版商
  560. Lo Sasso G, Ryu D, Mouchiroud L, Fernando S, Anderson C, Katsyuba E, et al. Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer. PLoS ONE. 2014;9:e102495 pubmed 出版商
  561. Brohl A, Solomon D, Chang W, Wang J, Song Y, Sindiri S, et al. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014;10:e1004475 pubmed 出版商
  562. Elzi D, Song M, Hakala K, Weintraub S, Shiio Y. Proteomic Analysis of the EWS-Fli-1 Interactome Reveals the Role of the Lysosome in EWS-Fli-1 Turnover. J Proteome Res. 2014;13:3783-91 pubmed 出版商
  563. Kono K, Tamashiro D, Alarcon V. Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev Biol. 2014;394:142-55 pubmed 出版商
  564. Gaillard F, Kuny S, Sauve Y. Retinal distribution of Disabled-1 in a diurnal murine rodent, the Nile grass rat Arvicanthis niloticus. Exp Eye Res. 2014;125:236-43 pubmed 出版商
  565. Fernandez Vidal A, Guitton Sert L, Cadoret J, Drac M, Schwob E, Baldacci G, et al. A role for DNA polymerase ? in the timing of DNA replication. Nat Commun. 2014;5:4285 pubmed 出版商
  566. Ranjan R, Deng J, Chung S, Lee Y, Park G, Xiao L, et al. The transcription factor nuclear factor of activated T cells c3 modulates the function of macrophages in sepsis. J Innate Immun. 2014;6:754-64 pubmed 出版商
  567. Kim C, Pasparakis M. Epidermal p65/NF-?B signalling is essential for skin carcinogenesis. EMBO Mol Med. 2014;6:970-83 pubmed 出版商
  568. Pratt S, Shah S, Ward C, Kerr J, Stains J, Lovering R. Recovery of altered neuromuscular junction morphology and muscle function in mdx mice after injury. Cell Mol Life Sci. 2015;72:153-64 pubmed 出版商
  569. Tao W, Leng X, Chakraborty S, Ma H, Arlinghaus R. c-Abl activates janus kinase 2 in normal hematopoietic cells. J Biol Chem. 2014;289:21463-72 pubmed 出版商
  570. Liu Q, Boudot A, Ni J, Hennessey T, Beauparlant S, Rajabi H, et al. Cyclin D1 and C/EBP? LAP1 operate in a common pathway to promote mammary epithelial cell differentiation. Mol Cell Biol. 2014;34:3168-79 pubmed 出版商
  571. Sung P, Murayama A, Kang W, Kim M, Yoon S, Fukasawa M, et al. Hepatitis C virus entry is impaired by claudin-1 downregulation in diacylglycerol acyltransferase-1-deficient cells. J Virol. 2014;88:9233-44 pubmed 出版商
  572. Shrestha R, Tamura N, Fries A, Levin N, Clark J, Draviam V. TAO1 kinase maintains chromosomal stability by facilitating proper congression of chromosomes. Open Biol. 2014;4:130108 pubmed 出版商
  573. Mannino M, Gomez Roman N, Hochegger H, Chalmers A. Differential sensitivity of Glioma stem cells to Aurora kinase A inhibitors: implications for stem cell mitosis and centrosome dynamics. Stem Cell Res. 2014;13:135-43 pubmed 出版商
  574. Strickland A, Rebelo A, Zhang F, Price J, Bolon B, Silva J, et al. Characterization of the mitofusin 2 R94W mutation in a knock-in mouse model. J Peripher Nerv Syst. 2014;19:152-64 pubmed 出版商
  575. Paschoud S, Jond L, Guerrera D, Citi S. PLEKHA7 modulates epithelial tight junction barrier function. Tissue Barriers. 2014;2:e28755 pubmed 出版商
  576. Duitman J, Ruela de Sousa R, Shi K, de Boer O, Borensztajn K, Florquin S, et al. Protease activated receptor-1 deficiency diminishes bleomycin-induced skin fibrosis. Mol Med. 2014;20:410-6 pubmed 出版商
  577. Hans F, Fiesel F, Strong J, J ckel S, Rasse T, Geisler S, et al. UBE2E ubiquitin-conjugating enzymes and ubiquitin isopeptidase Y regulate TDP-43 protein ubiquitination. J Biol Chem. 2014;289:19164-79 pubmed 出版商
  578. Liu J, MCCLELAND M, Stawiski E, Gnad F, Mayba O, Haverty P, et al. Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer. Nat Commun. 2014;5:3830 pubmed 出版商
  579. Schulz D, Pirkl N, Lehmann E, Cramer P. Rpb4 subunit functions mainly in mRNA synthesis by RNA polymerase II. J Biol Chem. 2014;289:17446-52 pubmed 出版商
  580. Lee M, Moreno C, Saavedra H. E2F activators signal and maintain centrosome amplification in breast cancer cells. Mol Cell Biol. 2014;34:2581-99 pubmed
  581. Okada N, Toda T, Yamamoto M, Sato M. CDK-dependent phosphorylation of Alp7-Alp14 (TACC-TOG) promotes its nuclear accumulation and spindle microtubule assembly. Mol Biol Cell. 2014;25:1969-82 pubmed 出版商
  582. San Miguel Ruiz J, Letourneau P. The role of Arp2/3 in growth cone actin dynamics and guidance is substrate dependent. J Neurosci. 2014;34:5895-908 pubmed 出版商
  583. Castellano J, Fletcher B, Patzke H, Long J, Sewal A, Kim D, et al. Reassessing the effects of histone deacetylase inhibitors on hippocampal memory and cognitive aging. Hippocampus. 2014;24:1006-16 pubmed 出版商
  584. Mäki Jouppila J, Laine L, Rehnberg J, Narvi E, Tiikkainen P, Hukasova E, et al. Centmitor-1, a novel acridinyl-acetohydrazide, possesses similar molecular interaction field and antimitotic cellular phenotype as rigosertib, on 01910.Na. Mol Cancer Ther. 2014;13:1054-66 pubmed 出版商
  585. Negishi M, Wongpalee S, Sarkar S, Park J, Lee K, Shibata Y, et al. A new lncRNA, APTR, associates with and represses the CDKN1A/p21 promoter by recruiting polycomb proteins. PLoS ONE. 2014;9:e95216 pubmed 出版商
  586. Chen S, Li D, Yang F, Wu Z, Zhao Y, Jiang Y. Gemcitabine-induced pancreatic cancer cell death is associated with MST1/cyclophilin D mitochondrial complexation. Biochimie. 2014;103:71-9 pubmed 出版商
  587. Huszar J, Payne C. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells. FEBS Lett. 2014;588:1850-6 pubmed 出版商
  588. Yamamoto R, Ohshiro Y, Shimotani T, Yamamoto M, Matsuyama S, Ide H, et al. Hypersensitivity of mouse NEIL1-knockdown cells to hydrogen peroxide during S phase. J Radiat Res. 2014;55:707-12 pubmed 出版商
  589. Erdozain A, Morentin B, Bedford L, King E, Tooth D, Brewer C, et al. Alcohol-related brain damage in humans. PLoS ONE. 2014;9:e93586 pubmed 出版商
  590. Karpurapu M, Ranjan R, Deng J, Chung S, Lee Y, Xiao L, et al. Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation. PLoS ONE. 2014;9:e93362 pubmed 出版商
  591. Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun. 2014;5:3555 pubmed 出版商
  592. Kiss A, Horvath P, Rothballer A, Kutay U, Csucs G. Nuclear motility in glioma cells reveals a cell-line dependent role of various cytoskeletal components. PLoS ONE. 2014;9:e93431 pubmed 出版商
  593. Hamada K, Osaka M, Yoshida M. Cell density impacts epigenetic regulation of cytokine-induced E-selectin gene expression in vascular endothelium. PLoS ONE. 2014;9:e90502 pubmed 出版商
  594. Castellani L, Root McCaig J, Frendo Cumbo S, Beaudoin M, Wright D. Exercise training protects against an acute inflammatory insult in mouse epididymal adipose tissue. J Appl Physiol (1985). 2014;116:1272-80 pubmed 出版商
  595. Hashimoto Y, Shirane M, Matsuzaki F, Saita S, Ohnishi T, Nakayama K. Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia. J Biol Chem. 2014;289:12946-61 pubmed 出版商
  596. Jia J, Bosley A, Thompson A, Hoskins J, Cheuk A, Collins I, et al. CLPTM1L promotes growth and enhances aneuploidy in pancreatic cancer cells. Cancer Res. 2014;74:2785-95 pubmed 出版商
  597. Cobbs C, Matlaf L, Harkins L. Methods for the detection of cytomegalovirus in glioblastoma cells and tissues. Methods Mol Biol. 2014;1119:165-96 pubmed 出版商
  598. Gilan O, Diesch J, Amalia M, Jastrzebski K, Chueh A, Verrills N, et al. PR55?-containing protein phosphatase 2A complexes promote cancer cell migration and invasion through regulation of AP-1 transcriptional activity. Oncogene. 2015;34:1333-9 pubmed 出版商
  599. Kakiuchi K, Tsuda A, Goto Y, Shimada T, Taniguchi K, Takagishi K, et al. Cell-surface DEAD-box polypeptide 4-immunoreactive cells and gonocytes are two distinct populations in postnatal porcine testes. Biol Reprod. 2014;90:82 pubmed 出版商
  600. Uzer G, Pongkitwitoon S, Ian C, Thompson W, Rubin J, Chan M, et al. Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro. PLoS ONE. 2014;9:e90840 pubmed 出版商
  601. Witsch T, Niess G, Sakkas E, Likhoshvay T, Becker S, Herold S, et al. Transglutaminase 2: a new player in bronchopulmonary dysplasia?. Eur Respir J. 2014;44:109-21 pubmed 出版商
  602. Balboula A, Schindler K. Selective disruption of aurora C kinase reveals distinct functions from aurora B kinase during meiosis in mouse oocytes. PLoS Genet. 2014;10:e1004194 pubmed 出版商
  603. Meehan A, Saenz D, Guevera R, Morrison J, Peretz M, Fadel H, et al. A cyclophilin homology domain-independent role for Nup358 in HIV-1 infection. PLoS Pathog. 2014;10:e1003969 pubmed 出版商
  604. Gu L, Talati P, Vogiatzi P, Romero Weaver A, Abdulghani J, Liao Z, et al. Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation. Mol Cancer Ther. 2014;13:1246-58 pubmed 出版商
  605. Buffington D, Pino C, Chen L, Westover A, Hageman G, Humes H. Bioartificial Renal Epithelial Cell System (BRECS): A Compact, Cryopreservable Extracorporeal Renal Replacement Device. Cell Med. 2012;4:33-43 pubmed
  606. Yamano K, Fogel A, Wang C, van der Bliek A, Youle R. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. elife. 2014;3:e01612 pubmed 出版商
  607. Hwang W, Jiang J, Yang S, Huang T, Lan H, Teng H, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268-80 pubmed 出版商
  608. Khan K, Schneider Poetsch T, Ishfaq M, Ito A, Yoshimoto R, Mukaida N, et al. Splicing inhibition induces gene expression through canonical NF-?B pathway and extracellular signal-related kinase activation. FEBS Lett. 2014;588:1053-7 pubmed 出版商
  609. Gonçalves V, Henriques A, Henriques A, Pereira J, Pereira J, Neves Costa A, et al. Phosphorylation of SRSF1 by SRPK1 regulates alternative splicing of tumor-related Rac1b in colorectal cells. RNA. 2014;20:474-82 pubmed 出版商
  610. Maida Y, Yasukawa M, Okamoto N, Ohka S, Kinoshita K, Totoki Y, et al. Involvement of telomerase reverse transcriptase in heterochromatin maintenance. Mol Cell Biol. 2014;34:1576-93 pubmed 出版商
  611. Liang Q, Dexheimer T, Zhang P, Rosenthal A, Villamil M, You C, et al. A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat Chem Biol. 2014;10:298-304 pubmed 出版商
  612. Nakajima W, Hicks M, Tanaka N, Krystal G, Harada H. Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Cell Death Dis. 2014;5:e1052 pubmed 出版商
  613. Pavet V, Shlyakhtina Y, He T, Ceschin D, Kohonen P, Perala M, et al. Plasminogen activator urokinase expression reveals TRAIL responsiveness and supports fractional survival of cancer cells. Cell Death Dis. 2014;5:e1043 pubmed 出版商
  614. Salabei J, Gibb A, Hill B. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc. 2014;9:421-38 pubmed 出版商
  615. Vittori A, Breda C, Repici M, Orth M, Roos R, Outeiro T, et al. Copy-number variation of the neuronal glucose transporter gene SLC2A3 and age of onset in Huntington's disease. Hum Mol Genet. 2014;23:3129-37 pubmed 出版商
  616. Arroyo A, Camoletto P, Morando L, Sassoè Pognetto M, Giustetto M, Van Veldhoven P, et al. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model. EMBO Mol Med. 2014;6:398-413 pubmed 出版商
  617. Suga H, Rennert R, Rodrigues M, Sorkin M, Glotzbach J, Januszyk M, et al. Tracking the elusive fibrocyte: identification and characterization of collagen-producing hematopoietic lineage cells during murine wound healing. Stem Cells. 2014;32:1347-60 pubmed 出版商
  618. Turner M, Cronin J, Healey G, Sheldon I. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453-65 pubmed 出版商
  619. Cheng Y, Holloway M, Nguyen K, McCauley D, Landesman Y, Kauffman M, et al. XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple-negative breast cancer. Mol Cancer Ther. 2014;13:675-86 pubmed 出版商
  620. Gray J, Haura E, Chiappori A, Tanvetyanon T, Williams C, Pinder Schenck M, et al. A phase I, pharmacokinetic, and pharmacodynamic study of panobinostat, an HDAC inhibitor, combined with erlotinib in patients with advanced aerodigestive tract tumors. Clin Cancer Res. 2014;20:1644-55 pubmed 出版商
  621. Lalioti V, Ilari A, O Connell D, Poser E, Sandoval I, Colotti G. Sorcin links calcium signaling to vesicle trafficking, regulates Polo-like kinase 1 and is necessary for mitosis. PLoS ONE. 2014;9:e85438 pubmed 出版商
  622. Vellaichamy E, Das S, Subramanian U, Maeda N, Pandey K. Genetically altered mutant mouse models of guanylyl cyclase/natriuretic peptide receptor-A exhibit the cardiac expression of proinflammatory mediators in a gene-dose-dependent manner. Endocrinology. 2014;155:1045-56 pubmed 出版商
  623. Saraga M, Vukojevic K, Krzelj V, Puretic Z, Bocina I, Durdov M, et al. Mechanism of cystogenesis in nephrotic kidneys: a histopathological study. BMC Nephrol. 2014;15:3 pubmed 出版商
  624. Klinger M, Wang W, Kuhns S, Bärenz F, Dräger Meurer S, Pereira G, et al. The novel centriolar satellite protein SSX2IP targets Cep290 to the ciliary transition zone. Mol Biol Cell. 2014;25:495-507 pubmed 出版商
  625. Shrivastava V, Marmor H, Chernyak S, Goldstein M, Feliciano M, Vigodner M. Cigarette smoke affects posttranslational modifications and inhibits capacitation-induced changes in human sperm proteins. Reprod Toxicol. 2014;43:125-9 pubmed 出版商
  626. Li A, Jiao Y, Yong K, Wang F, Gao C, Yan B, et al. SALL4 is a new target in endometrial cancer. Oncogene. 2015;34:63-72 pubmed 出版商
  627. Sanchez Roman I, Gomez A, Naudi A, Jove M, Gomez J, Lopez Torres M, et al. Independent and additive effects of atenolol and methionine restriction on lowering rat heart mitochondria oxidative stress. J Bioenerg Biomembr. 2014;46:159-72 pubmed 出版商
  628. Basford J, Koch S, Anjak A, Singh V, Krause E, Robbins N, et al. Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice. PLoS ONE. 2013;8:e82026 pubmed 出版商
  629. Song X, Chen H, Wang X, Deng X, Xi Y, He Q, et al. H. pylori-encoded CagA disrupts tight junctions and induces invasiveness of AGS gastric carcinoma cells via Cdx2-dependent targeting of Claudin-2. Cell Immunol. 2013;286:22-30 pubmed 出版商
  630. Chu C, Gerstenzang E, Ossipova O, Sokol S. Lulu regulates Shroom-induced apical constriction during neural tube closure. PLoS ONE. 2013;8:e81854 pubmed 出版商
  631. Boisvert R, Rego M, Azzinaro P, Mauro M, Howlett N. Coordinate nuclear targeting of the FANCD2 and FANCI proteins via a FANCD2 nuclear localization signal. PLoS ONE. 2013;8:e81387 pubmed 出版商
  632. Nachbar J, Lázaro Diéguez F, Prekeris R, Cohen D, Müsch A. KIFC3 promotes mitotic progression and integrity of the central spindle in cytokinesis. Cell Cycle. 2014;13:426-33 pubmed 出版商
  633. Del Nagro C, Choi J, Xiao Y, Rangell L, Mohan S, Pandita A, et al. Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death. Cell Cycle. 2014;13:303-14 pubmed 出版商
  634. Capannolo M, Ciccarelli C, Molteni R, Fumagalli F, Rocchi C, Romeo S, et al. Nitric oxide synthase inhibition reverts muscarinic receptor down-regulation induced by pilocarpine- and kainic acid-evoked seizures in rat fronto-parietal cortex. Epilepsy Res. 2014;108:11-9 pubmed 出版商
  635. Chang K, Chang W, Chang Y, Hung L, Lai C, Yeh Y, et al. Ran GTPase-activating protein 1 is a therapeutic target in diffuse large B-cell lymphoma. PLoS ONE. 2013;8:e79863 pubmed 出版商
  636. Liu X, Xiao W, Wang X, Li Y, Han J, Li Y. The p38-interacting protein (p38IP) regulates G2/M progression by promoting ?-tubulin acetylation via inhibiting ubiquitination-induced degradation of the acetyltransferase GCN5. J Biol Chem. 2013;288:36648-61 pubmed 出版商
  637. Leonard A, Manavis J, Blumbergs P, Vink R. Changes in substance P and NK1 receptor immunohistochemistry following human spinal cord injury. Spinal Cord. 2014;52:17-23 pubmed 出版商
  638. Chen Y, Pan H, Tseng H, Chu H, Hung Y, Yen Y, et al. Differentiated epithelial- and mesenchymal-like phenotypes in subcutaneous mouse xenografts using diffusion weighted-magnetic resonance imaging. Int J Mol Sci. 2013;14:21943-59 pubmed 出版商
  639. de Poot S, Lai K, van der Wal L, Plasman K, Van Damme P, Porter A, et al. Granzyme M targets topoisomerase II alpha to trigger cell cycle arrest and caspase-dependent apoptosis. Cell Death Differ. 2014;21:416-26 pubmed 出版商
  640. Loiselle J, Sutherland L. Differential downregulation of Rbm5 and Rbm10 during skeletal and cardiac differentiation. In Vitro Cell Dev Biol Anim. 2014;50:331-9 pubmed 出版商
  641. Proia D, Zhang C, Sequeira M, Jimenez J, He S, Spector N, et al. Preclinical activity profile and therapeutic efficacy of the HSP90 inhibitor ganetespib in triple-negative breast cancer. Clin Cancer Res. 2014;20:413-24 pubmed 出版商
  642. de Craene B, Denecker G, Vermassen P, Taminau J, Mauch C, Derore A, et al. Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential. Cell Death Differ. 2014;21:310-20 pubmed 出版商
  643. Ramyaa P, Krishnaswamy R, Padma V. Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells - up regulation of Nrf2 expression and down regulation of NF-?B and COX-2. Biochim Biophys Acta. 2014;1840:681-92 pubmed 出版商
  644. Wilson V. Growth and differentiation of HaCaT keratinocytes. Methods Mol Biol. 2014;1195:33-41 pubmed 出版商
  645. Chen Z, Morris D, Jiang L, Liu Y, Rui L. SH2B1 in ?-cells regulates glucose metabolism by promoting ?-cell survival and islet expansion. Diabetes. 2014;63:585-95 pubmed 出版商
  646. Setyarani M, Zinellu A, Carru C, Zulli A. High dietary taurine inhibits myocardial apoptosis during an atherogenic diet: association with increased myocardial HSP70 and HSF-1 but not caspase 3. Eur J Nutr. 2014;53:929-37 pubmed 出版商
  647. Persson D, Halberg K, Jørgensen A, Møbjerg N, Kristensen R. Brain anatomy of the marine tardigrade Actinarctus doryphorus (Arthrotardigrada). J Morphol. 2014;275:173-90 pubmed 出版商
  648. Lee J, Park J, Kwon O, Kim H, Fornace A, Cha H. Off-target response of a Wip1 chemical inhibitor in skin keratinocytes. J Dermatol Sci. 2014;73:125-34 pubmed 出版商
  649. Yamano K, Youle R. PINK1 is degraded through the N-end rule pathway. Autophagy. 2013;9:1758-69 pubmed 出版商
  650. DeGennaro C, Alver B, Marguerat S, Stepanova E, Davis C, Bähler J, et al. Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast. Mol Cell Biol. 2013;33:4779-92 pubmed 出版商
  651. de Souza W, Fortunato Miranda N, Robbs B, de Araujo W, de Freitas Junior J, Bastos L, et al. Claudin-3 overexpression increases the malignant potential of colorectal cancer cells: roles of ERK1/2 and PI3K-Akt as modulators of EGFR signaling. PLoS ONE. 2013;8:e74994 pubmed 出版商
  652. Egbert M, Ruetze M, Sattler M, Wenck H, Gallinat S, Lucius R, et al. The matricellular protein periostin contributes to proper collagen function and is downregulated during skin aging. J Dermatol Sci. 2014;73:40-8 pubmed 出版商
  653. Drivas T, Holzbaur E, Bennett J. Disruption of CEP290 microtubule/membrane-binding domains causes retinal degeneration. J Clin Invest. 2013;123:4525-39 pubmed 出版商
  654. Jo S, Kim M, Park J, Kim T, Ahn Y. Txnip contributes to impaired glucose tolerance by upregulating the expression of genes involved in hepatic gluconeogenesis in mice. Diabetologia. 2013;56:2723-32 pubmed 出版商
  655. Kuhn E, Ayhan A, Shih I, Seidman J, Kurman R. Ovarian Brenner tumour: a morphologic and immunohistochemical analysis suggesting an origin from fallopian tube epithelium. Eur J Cancer. 2013;49:3839-49 pubmed 出版商
  656. Chen Z, Chen J, Gu Y, Hu C, Li J, Lin S, et al. Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene. 2014;33:3869-77 pubmed 出版商
  657. Huang Y, Kao J, Tseng D, Chen W, Chiang M, Hwang E. Microtubule-associated type II protein kinase A is important for neurite elongation. PLoS ONE. 2013;8:e73890 pubmed 出版商
  658. Shats I, Gatza M, Liu B, Angus S, You L, Nevins J. FOXO transcription factors control E2F1 transcriptional specificity and apoptotic function. Cancer Res. 2013;73:6056-67 pubmed 出版商
  659. Schreiner A, Durry S, Aida T, Stock M, Ruther U, Tanaka K, et al. Laminar and subcellular heterogeneity of GLAST and GLT-1 immunoreactivity in the developing postnatal mouse hippocampus. J Comp Neurol. 2014;522:204-24 pubmed 出版商
  660. Mach J, Huizer Pajkos A, Cogger V, McKenzie C, Le Couteur D, Jones B, et al. The effect of aging on acetaminophen pharmacokinetics, toxicity and Nrf2 in Fischer 344 rats. J Gerontol A Biol Sci Med Sci. 2014;69:387-97 pubmed 出版商
  661. Boutros R, Mondesert O, Lorenzo C, Astuti P, McArthur G, Chircop M, et al. CDC25B overexpression stabilises centrin 2 and promotes the formation of excess centriolar foci. PLoS ONE. 2013;8:e67822 pubmed 出版商
  662. O Dell L, Natividad L, Pipkin J, Roman F, Torres I, Jurado J, et al. Enhanced nicotine self-administration and suppressed dopaminergic systems in a rat model of diabetes. Addict Biol. 2014;19:1006-19 pubmed 出版商
  663. Luijten M, Basten S, Claessens T, Vernooij M, Scott C, Janssen R, et al. Birt-Hogg-Dube syndrome is a novel ciliopathy. Hum Mol Genet. 2013;22:4383-97 pubmed 出版商
  664. Tan C, Hagen T. mTORC1 dependent regulation of REDD1 protein stability. PLoS ONE. 2013;8:e63970 pubmed 出版商
  665. Kolupaeva V, Daempfling L, Basilico C. The B55? regulatory subunit of protein phosphatase 2A mediates fibroblast growth factor-induced p107 dephosphorylation and growth arrest in chondrocytes. Mol Cell Biol. 2013;33:2865-78 pubmed 出版商
  666. Dai C, Sun F, Zhu C, Hu X. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability--an implication in aneuploid human tumors. PLoS ONE. 2013;8:e63054 pubmed 出版商
  667. Matsuda M, Tamura K, Wakui H, Maeda A, Ohsawa M, Kanaoka T, et al. Upstream stimulatory factors 1 and 2 mediate the transcription of angiotensin II binding and inhibitory protein. J Biol Chem. 2013;288:19238-49 pubmed 出版商
  668. Svensson K, Christianson H, Wittrup A, Bourseau Guilmain E, Lindqvist E, Svensson L, et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem. 2013;288:17713-24 pubmed 出版商
  669. Licandro G, Ling Khor H, Beretta O, Lai J, Derks H, Laudisi F, et al. The NLRP3 inflammasome affects DNA damage responses after oxidative and genotoxic stress in dendritic cells. Eur J Immunol. 2013;43:2126-37 pubmed 出版商
  670. Rodriguez Martin T, Cuchillo Ibanez I, Noble W, Nyenya F, Anderton B, Hanger D. Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging. 2013;34:2146-57 pubmed 出版商
  671. Tan C, Hagen T. Destabilization of CDC6 upon DNA damage is dependent on neddylation but independent of Cullin E3 ligases. Int J Biochem Cell Biol. 2013;45:1489-98 pubmed 出版商
  672. Gharbiah M, Nakamoto A, Nagy L. Analysis of ciliary band formation in the mollusc Ilyanassa obsoleta. Dev Genes Evol. 2013;223:225-35 pubmed 出版商
  673. Gal J, Chen J, Barnett K, Yang L, Brumley E, Zhu H. HDAC6 regulates mutant SOD1 aggregation through two SMIR motifs and tubulin acetylation. J Biol Chem. 2013;288:15035-45 pubmed 出版商
  674. Maier B, Kirsch M, Anderhub S, Zentgraf H, Krämer A. The novel actin/focal adhesion-associated protein MISP is involved in mitotic spindle positioning in human cells. Cell Cycle. 2013;12:1457-71 pubmed 出版商
  675. Hirano T, Takagi K, Hoshino Y, Abe T. DNA damage response in male gametes of Cyrtanthus mackenii during pollen tube growth. AoB Plants. 2013;5:plt004 pubmed 出版商
  676. Hunt S, Townley A, Danson C, Cullen P, Stephens D. Microtubule motors mediate endosomal sorting by maintaining functional domain organization. J Cell Sci. 2013;126:2493-501 pubmed 出版商
  677. Bartholomeeusen K, Fujinaga K, Xiang Y, Peterlin B. Histone deacetylase inhibitors (HDACis) that release the positive transcription elongation factor b (P-TEFb) from its inhibitory complex also activate HIV transcription. J Biol Chem. 2013;288:14400-7 pubmed 出版商
  678. Gómez Herreros F, Romero Granados R, Zeng Z, Alvarez Quilón A, Quintero C, Ju L, et al. TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo. PLoS Genet. 2013;9:e1003226 pubmed 出版商
  679. Navis A, Bourgonje A, Wesseling P, Wright A, Hendriks W, Verrijp K, et al. Effects of dual targeting of tumor cells and stroma in human glioblastoma xenografts with a tyrosine kinase inhibitor against c-MET and VEGFR2. PLoS ONE. 2013;8:e58262 pubmed 出版商
  680. Pe er T, Lahmi R, Sharaby Y, Chorni E, Noach M, Vecsler M, et al. Gas2l3, a novel constriction site-associated protein whose regulation is mediated by the APC/C Cdh1 complex. PLoS ONE. 2013;8:e57532 pubmed 出版商
  681. Tan C, Hagen T. Post-translational regulation of mTOR complex 1 in hypoxia and reoxygenation. Cell Signal. 2013;25:1235-44 pubmed 出版商
  682. Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D, et al. Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci. 2013;33:3113-30 pubmed 出版商
  683. Greer Y, Fields A, Brown A, Rubin J. Atypical protein kinase C? is required for Wnt3a-dependent neurite outgrowth and binds to phosphorylated dishevelled 2. J Biol Chem. 2013;288:9438-46 pubmed 出版商
  684. Brennan G, Jimenez Mateos E, McKiernan R, Engel T, Tzivion G, Henshall D. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo. PLoS ONE. 2013;8:e54491 pubmed 出版商
  685. Sirohi K, Chalasani M, Sudhakar C, Kumari A, Radha V, Swarup G. M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells. Autophagy. 2013;9:510-27 pubmed 出版商
  686. Ott C, Elia N, Jeong S, Insinna C, Sengupta P, Lippincott Schwartz J. Primary cilia utilize glycoprotein-dependent adhesion mechanisms to stabilize long-lasting cilia-cilia contacts. Cilia. 2012;1:3 pubmed 出版商
  687. Brandhagen B, Tieszen C, Ulmer T, Tracy M, Goyeneche A, Telleria C. Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics. BMC Cancer. 2013;13:35 pubmed 出版商
  688. Wang Y, Dantas T, Lalor P, Dockery P, Morrison C. Promoter hijack reveals pericentrin functions in mitosis and the DNA damage response. Cell Cycle. 2013;12:635-46 pubmed 出版商
  689. Hu C, Sethi J, Hagen T. The role of the cullin-5 e3 ubiquitin ligase in the regulation of insulin receptor substrate-1. Biochem Res Int. 2012;2012:282648 pubmed 出版商
  690. Lei K, Chen L, Georgiou E, Sooranna S, Khanjani S, Brosens J, et al. Progesterone acts via the nuclear glucocorticoid receptor to suppress IL-1?-induced COX-2 expression in human term myometrial cells. PLoS ONE. 2012;7:e50167 pubmed 出版商
  691. Jarboui M, Bidoia C, Woods E, Roe B, Wynne K, Elia G, et al. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus. PLoS ONE. 2012;7:e48702 pubmed 出版商
  692. Blakemore L, Boes C, Cordell R, Manson M. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage. Carcinogenesis. 2013;34:351-60 pubmed 出版商
  693. Yang T, Hampilos P, Nathwani B, Miller C, Sutaria N, Liao J. Superresolution STED microscopy reveals differential localization in primary cilia. Cytoskeleton (Hoboken). 2013;70:54-65 pubmed 出版商
  694. Duncan A, Forcina J, Birt A, Townson D. Estrous cycle-dependent changes of Fas expression in the bovine corpus luteum: influence of keratin 8/18 intermediate filaments and cytokines. Reprod Biol Endocrinol. 2012;10:90 pubmed 出版商
  695. Queen K, Shi M, Zhang F, Cvek U, Scott R. Epstein-Barr virus-induced epigenetic alterations following transient infection. Int J Cancer. 2013;132:2076-86 pubmed 出版商
  696. Spiller C, Feng C, Jackson A, Gillis A, Rolland A, Looijenga L, et al. Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development. 2012;139:4123-32 pubmed 出版商
  697. Loessner D, Quent V, Kraemer J, Weber E, Hutmacher D, Magdolen V, et al. Combined expression of KLK4, KLK5, KLK6, and KLK7 by ovarian cancer cells leads to decreased adhesion and paclitaxel-induced chemoresistance. Gynecol Oncol. 2012;127:569-78 pubmed 出版商
  698. Holt J, Lane S, Jennings P, Garcia Higuera I, Moreno S, Jones K. APC(FZR1) prevents nondisjunction in mouse oocytes by controlling meiotic spindle assembly timing. Mol Biol Cell. 2012;23:3970-81 pubmed 出版商
  699. Gartner S, Liu Y, Natesan S. De novo generation of cells within human nurse macrophages and consequences following HIV-1 infection. PLoS ONE. 2012;7:e40139 pubmed 出版商
  700. Cha S, McAdams M, Kormish J, Wylie C, Kofron M. Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e. PLoS ONE. 2012;7:e41782 pubmed 出版商
  701. Toth J, Yang L, Dahl R, Petroski M. A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924. Cell Rep. 2012;1:309-16 pubmed 出版商
  702. Watanabe T, Sakai Y, Koga D, Bochimoto H, Hira Y, Hosaka M, et al. A unique ball-shaped Golgi apparatus in the rat pituitary gonadotrope: its functional implications in relation to the arrangement of the microtubule network. J Histochem Cytochem. 2012;60:588-602 pubmed 出版商
  703. Thakur J, Sanyal K. A coordinated interdependent protein circuitry stabilizes the kinetochore ensemble to protect CENP-A in the human pathogenic yeast Candida albicans. PLoS Genet. 2012;8:e1002661 pubmed 出版商
  704. Dolezalova D, Mraz M, Bárta T, Plevova K, Vinarsky V, Holubcová Z, et al. MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells. 2012;30:1362-72 pubmed 出版商
  705. Beriault D, Haddad O, McCuaig J, Robinson Z, Russell D, Lane E, et al. The mechanical behavior of mutant K14-R125P keratin bundles and networks in NEB-1 keratinocytes. PLoS ONE. 2012;7:e31320 pubmed 出版商
  706. Vinopal S, Cernohorská M, Sulimenko V, Sulimenko T, Vosecká V, Flemr M, et al. ?-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis. PLoS ONE. 2012;7:e29919 pubmed 出版商
  707. McDonel P, Demmers J, Tan D, Watt F, Hendrich B. Sin3a is essential for the genome integrity and viability of pluripotent cells. Dev Biol. 2012;363:62-73 pubmed 出版商
  708. Roy E, Bruyère J, Flamant P, Bigou S, Ausseil J, Vitry S, et al. GM130 gain-of-function induces cell pathology in a model of lysosomal storage disease. Hum Mol Genet. 2012;21:1481-95 pubmed 出版商
  709. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. A possible involvement of p62/sequestosome-1 in the process of biliary epithelial autophagy and senescence in primary biliary cirrhosis. Liver Int. 2012;32:487-99 pubmed 出版商
  710. Charters G, Stones C, Shelling A, Baguley B, Finlay G. Centrosomal dysregulation in human metastatic melanoma cell lines. Cancer Genet. 2011;204:477-85 pubmed 出版商
  711. Choo Y, Boh B, Lou J, Eng J, Leck Y, Anders B, et al. Characterization of the role of COP9 signalosome in regulating cullin E3 ubiquitin ligase activity. Mol Biol Cell. 2011;22:4706-15 pubmed 出版商
  712. An C, Dong Y, Hagiwara N. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6. BMC Dev Biol. 2011;11:59 pubmed 出版商
  713. Balsas P, Galán Malo P, Marzo I, Naval J. Bortezomib resistance in a myeloma cell line is associated to PSM?5 overexpression and polyploidy. Leuk Res. 2012;36:212-8 pubmed 出版商
  714. Doll C, Burkart J, Hope K, Halpern M, Gamse J. Subnuclear development of the zebrafish habenular nuclei requires ER translocon function. Dev Biol. 2011;360:44-57 pubmed 出版商
  715. Shao Y, Wang L, Welter J, Ballock R. Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes. Bone. 2012;50:79-84 pubmed 出版商
  716. Rauert H, Stühmer T, Bargou R, Wajant H, Siegmund D. TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms. Cell Death Dis. 2011;2:e194 pubmed 出版商
  717. He H, Yu F, Sun C, Luo Y. CBP/p300 and SIRT1 are involved in transcriptional regulation of S-phase specific histone genes. PLoS ONE. 2011;6:e22088 pubmed 出版商
  718. Li D, Shin J, Duan D. iNOS ablation does not improve specific force of the extensor digitorum longus muscle in dystrophin-deficient mdx4cv mice. PLoS ONE. 2011;6:e21618 pubmed 出版商
  719. Lancaster M, Schroth J, Gleeson J. Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat Cell Biol. 2011;13:700-7 pubmed 出版商
  720. Vanderperre B, Staskevicius A, Tremblay G, McCoy M, O Neill M, Cashman N, et al. An overlapping reading frame in the PRNP gene encodes a novel polypeptide distinct from the prion protein. FASEB J. 2011;25:2373-86 pubmed 出版商
  721. Boh B, Smith P, Hagen T. Neddylation-induced conformational control regulates cullin RING ligase activity in vivo. J Mol Biol. 2011;409:136-45 pubmed 出版商
  722. Stern C, Luoma J, Meitzen J, Mermelstein P. Corticotropin releasing factor-induced CREB activation in striatal neurons occurs via a novel G?? signaling pathway. PLoS ONE. 2011;6:e18114 pubmed 出版商
  723. Gerbe F, van Es J, Makrini L, Brulin B, Mellitzer G, Robine S, et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J Cell Biol. 2011;192:767-80 pubmed 出版商
  724. Chang H, Jennings P, Stewart J, Verrills N, Jones K. Essential role of protein phosphatase 2A in metaphase II arrest and activation of mouse eggs shown by okadaic acid, dominant negative protein phosphatase 2A, and FTY720. J Biol Chem. 2011;286:14705-12 pubmed 出版商
  725. Tooley J, Miller S, Stukenberg P. The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement. Mol Biol Cell. 2011;22:1217-26 pubmed 出版商
  726. Chua Y, Boh B, Ponyeam W, Hagen T. Regulation of cullin RING E3 ubiquitin ligases by CAND1 in vivo. PLoS ONE. 2011;6:e16071 pubmed 出版商
  727. Stoepker C, Hain K, Schuster B, Hilhorst Hofstee Y, Rooimans M, Steltenpool J, et al. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet. 2011;43:138-41 pubmed 出版商
  728. Paschoud S, Yu D, Pulimeno P, Jond L, Turner J, Citi S. Cingulin and paracingulin show similar dynamic behaviour, but are recruited independently to junctions. Mol Membr Biol. 2011;28:123-35 pubmed 出版商
  729. Tong J, Furukawa Y, Sherwin A, Hornykiewicz O, Kish S. Heterogeneous intrastriatal pattern of proteins regulating axon growth in normal adult human brain. Neurobiol Dis. 2011;41:458-68 pubmed 出版商
  730. Skalski M, Sharma N, Williams K, Kruspe A, Coppolino M. SNARE-mediated membrane traffic is required for focal adhesion kinase signaling and Src-regulated focal adhesion turnover. Biochim Biophys Acta. 2011;1813:148-58 pubmed 出版商
  731. Soenen S, Himmelreich U, Nuytten N, De Cuyper M. Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials. 2011;32:195-205 pubmed 出版商
  732. Tai C, Shen S, Lee W, Liao C, Deng W, Chiou H, et al. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res. 2010;316:2969-81 pubmed 出版商
  733. Mire C, White J, Whitt M. A spatio-temporal analysis of matrix protein and nucleocapsid trafficking during vesicular stomatitis virus uncoating. PLoS Pathog. 2010;6:e1000994 pubmed 出版商
  734. Richter A, Schagdarsurengin U, Rastetter M, Steinmann K, Dammann R. Protein kinase A-mediated phosphorylation of the RASSF1A tumour suppressor at Serine 203 and regulation of RASSF1A function. Eur J Cancer. 2010;46:2986-95 pubmed 出版商
  735. Leck Y, Choo Y, Tan C, Smith P, Hagen T. Biochemical and cellular effects of inhibiting Nedd8 conjugation. Biochem Biophys Res Commun. 2010;398:588-93 pubmed 出版商
  736. Yu F, Chai T, He H, Hagen T, Luo Y. Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J Biol Chem. 2010;285:25822-30 pubmed 出版商
  737. Ferrell N, Desai R, Fleischman A, Roy S, Humes H, Fissell W. A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells. Biotechnol Bioeng. 2010;107:707-16 pubmed 出版商
  738. Boichuk S, Hu L, Hein J, Gjoerup O. Multiple DNA damage signaling and repair pathways deregulated by simian virus 40 large T antigen. J Virol. 2010;84:8007-20 pubmed 出版商
  739. Hirano T, Hoshino Y. Sperm dimorphism in terms of nuclear shape and microtubule accumulation in Cyrtanthus mackenii. Sex Plant Reprod. 2010;23:153-62 pubmed 出版商
  740. Kyriss M, Jin Y, Gallegos I, Sanford J, Wyrick J. Novel functional residues in the core domain of histone H2B regulate yeast gene expression and silencing and affect the response to DNA damage. Mol Cell Biol. 2010;30:3503-18 pubmed 出版商
  741. Warters R, Cassidy P, Sunseri J, Parsawar K, Zhuplatov S, Kramer G, et al. The nuclear matrix shell proteome of human epidermis. J Dermatol Sci. 2010;58:113-22 pubmed 出版商
  742. Fang F, Zheng J, Galbaugh T, Fiorillo A, Hjort E, Zeng X, et al. Cyclophilin B as a co-regulator of prolactin-induced gene expression and function in breast cancer cells. J Mol Endocrinol. 2010;44:319-29 pubmed 出版商
  743. Irvine M, Philipsz S, Frausto M, Mijatov B, Gallagher S, Fung C, et al. Amino terminal hydrophobic import signals target the p14(ARF) tumor suppressor to the mitochondria. Cell Cycle. 2010;9:829-39 pubmed
  744. Louie C, Caridi G, Lopes V, Brancati F, Kispert A, Lancaster M, et al. AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat Genet. 2010;42:175-80 pubmed 出版商
  745. Liao C, Luo S, Tsai C, Tsao T, Chen S, Jiang M. CAS Enhances Chemotherapeutic Drug-Induced p53 Accumulation and Apoptosis: Use of CAS for High-Sensitivity Anticancer Drug Screening. Toxicol Mech Methods. 2008;18:771-6 pubmed 出版商
  746. Chang H, Minahan K, Merriman J, Jones K. Calmodulin-dependent protein kinase gamma 3 (CamKIIgamma3) mediates the cell cycle resumption of metaphase II eggs in mouse. Development. 2009;136:4077-81 pubmed 出版商
  747. Rossi M, Carbone M, Mostocotto C, Mancone C, Tripodi M, Maione R, et al. Mitochondrial localization of PARP-1 requires interaction with mitofilin and is involved in the maintenance of mitochondrial DNA integrity. J Biol Chem. 2009;284:31616-24 pubmed 出版商
  748. Lancaster M, Louie C, Silhavy J, Sintasath L, DeCambre M, Nigam S, et al. Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat Med. 2009;15:1046-54 pubmed 出版商
  749. Sasaki M, Yamaguchi J, Ikeda H, Itatsu K, Nakanuma Y. Polycomb group protein Bmi1 is overexpressed and essential in anchorage-independent colony formation, cell proliferation and repression of cellular senescence in cholangiocarcinoma: tissue and culture studies. Hum Pathol. 2009;40:1723-30 pubmed 出版商
  750. Miyajima N, Maruyama S, Nonomura K, Hatakeyama S. TRIM36 interacts with the kinetochore protein CENP-H and delays cell cycle progression. Biochem Biophys Res Commun. 2009;381:383-7 pubmed 出版商
  751. Tsao T, Tsai C, Tung J, Chen S, Yue C, Liao C, et al. Function of CSE1L/CAS in the secretion of HT-29 human colorectal cells and its expression in human colon. Mol Cell Biochem. 2009;327:163-70 pubmed 出版商
  752. Shkarupeta M, Kostrjukova E, Lazarev V, Levitskii S, Basovskii Y, Govorun V. Localization of C. trachomatis Inc proteins in expression of their genes in HeLa cell culture. Bull Exp Biol Med. 2008;146:237-42 pubmed
  753. Frescas D, Guardavaccaro D, Kuchay S, Kato H, Poleshko A, Basrur V, et al. KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle. 2008;7:3539-47 pubmed
  754. Haferkamp S, Becker T, Scurr L, Kefford R, Rizos H. p16INK4a-induced senescence is disabled by melanoma-associated mutations. Aging Cell. 2008;7:733-45 pubmed
  755. Kim Y, Park S, Park J. Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device. Analyst. 2008;133:1432-9 pubmed 出版商
  756. Cantagrel V, Silhavy J, Bielas S, Swistun D, Marsh S, Bertrand J, et al. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am J Hum Genet. 2008;83:170-9 pubmed 出版商
  757. Kano S, Miyajima N, Fukuda S, Hatakeyama S. Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2. Cancer Res. 2008;68:5572-80 pubmed 出版商
  758. Tripathi R, McTigue D. Chronically increased ciliary neurotrophic factor and fibroblast growth factor-2 expression after spinal contusion in rats. J Comp Neurol. 2008;510:129-44 pubmed 出版商
  759. Sasaki M, Ikeda H, Itatsu K, Yamaguchi J, Sawada S, Minato H, et al. The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest. 2008;88:873-82 pubmed 出版商
  760. Itahana K, Zhang Y. Mitochondrial p32 is a critical mediator of ARF-induced apoptosis. Cancer Cell. 2008;13:542-53 pubmed 出版商
  761. Abdulghani J, Gu L, Dagvadorj A, Lutz J, Leiby B, Bonuccelli G, et al. Stat3 promotes metastatic progression of prostate cancer. Am J Pathol. 2008;172:1717-28 pubmed 出版商
  762. Nakaya T, Kawai T, Suzuki T. Regulation of FE65 nuclear translocation and function by amyloid beta-protein precursor in osmotically stressed cells. J Biol Chem. 2008;283:19119-31 pubmed 出版商
  763. den Dulk B, van Eijk P, de Ruijter M, Brandsma J, Brouwer J. The NER protein Rad33 shows functional homology to human Centrin2 and is involved in modification of Rad4. DNA Repair (Amst). 2008;7:858-68 pubmed 出版商
  764. Guardavaccaro D, Frescas D, Dorrello N, Peschiaroli A, Multani A, Cardozo T, et al. Control of chromosome stability by the beta-TrCP-REST-Mad2 axis. Nature. 2008;452:365-9 pubmed 出版商
  765. Omura T, Kaneko M, Onoguchi M, Koizumi S, Itami M, Ueyama M, et al. Novel functions of ubiquitin ligase HRD1 with transmembrane and proline-rich domains. J Pharmacol Sci. 2008;106:512-9 pubmed
  766. Pandithage R, Lilischkis R, Harting K, Wolf A, Jedamzik B, Lüscher Firzlaff J, et al. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J Cell Biol. 2008;180:915-29 pubmed 出版商
  767. Carneiro A, Fragel Madeira L, Silva Neto M, Linden R. A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells. Dev Neurobiol. 2008;68:620-31 pubmed 出版商
  768. Sumioka A, Saito Y, Sakuma M, Araki Y, Yamamoto T, Suzuki T. The X11L/X11beta/MINT2 and X11L2/X11gamma/MINT3 scaffold proteins shuttle between the nucleus and cytoplasm. Exp Cell Res. 2008;314:1155-62 pubmed 出版商
  769. Kaneko M, Yasui S, Niinuma Y, Arai K, Omura T, Okuma Y, et al. A different pathway in the endoplasmic reticulum stress-induced expression of human HRD1 and SEL1 genes. FEBS Lett. 2007;581:5355-60 pubmed
  770. Woost P, Kolb R, Chang C, Finesilver M, Inagami T, Hopfer U. Development of an AT2-deficient proximal tubule cell line for transport studies. In Vitro Cell Dev Biol Anim. 2007;43:352-60 pubmed
  771. Gabet A, Accardi R, Bellopede A, Popp S, Boukamp P, Sylla B, et al. Impairment of the telomere/telomerase system and genomic instability are associated with keratinocyte immortalization induced by the skin human papillomavirus type 38. FASEB J. 2008;22:622-32 pubmed
  772. Lü L, Li J, Yew D, Rudd J, Mak Y. Oxidative stress on the astrocytes in culture derived from a senescence accelerated mouse strain. Neurochem Int. 2008;52:282-9 pubmed
  773. Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D, Medda R, et al. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J. 2007;93:3285-90 pubmed
  774. Nishiya T, Kajita E, Horinouchi T, Nishimoto A, Miwa S. Distinct roles of TIR and non-TIR regions in the subcellular localization and signaling properties of MyD88. FEBS Lett. 2007;581:3223-9 pubmed
  775. Tong J, Hornykiewicz O, Furukawa Y, Kish S. Marked dissociation between high noradrenaline versus low noradrenaline transporter levels in human nucleus accumbens. J Neurochem. 2007;102:1691-1702 pubmed 出版商
  776. Supino R, Favini E, Cuccuru G, Zunino F, Scovassi A. Effect of paclitaxel on intracellular localization of c-Myc and P-c-Myc in prostate carcinoma cell lines. Ann N Y Acad Sci. 2007;1095:175-81 pubmed
  777. Gossot O, Geitmann A. Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta. 2007;226:405-16 pubmed
  778. Li P, Waters R, Redfern S, Zhang M, Mao L, Annex B, et al. Oxidative phenotype protects myofibers from pathological insults induced by chronic heart failure in mice. Am J Pathol. 2007;170:599-608 pubmed
  779. Chew E, Poobalasingam T, Hawkey C, Hagen T. Characterization of cullin-based E3 ubiquitin ligases in intact mammalian cells--evidence for cullin dimerization. Cell Signal. 2007;19:1071-80 pubmed
  780. De Fanis U, Mori F, Kurnat R, Lee W, Bova M, Adkinson N, et al. GATA3 up-regulation associated with surface expression of CD294/CRTH2: a unique feature of human Th cells. Blood. 2007;109:4343-50 pubmed
  781. Wegmüller D, Raineri I, Gross B, Oakeley E, Moroni C. A cassette system to study embryonic stem cell differentiation by inducible RNA interference. Stem Cells. 2007;25:1178-85 pubmed
  782. Akoyev V, Takemoto D. ZO-1 is required for protein kinase C gamma-driven disassembly of connexin 43. Cell Signal. 2007;19:958-67 pubmed
  783. Kim J, Lee C, Bonifant C, Ressom H, Waldman T. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol Cell Biol. 2007;27:662-77 pubmed
  784. Henley D, Isbill M, Fernando R, Foster J, Wimalasena J. Paclitaxel induced apoptosis in breast cancer cells requires cell cycle transit but not Cdc2 activity. Cancer Chemother Pharmacol. 2007;59:235-49 pubmed
  785. Valdes R, Liu W, Ullman B, Landfear S. Comprehensive examination of charged intramembrane residues in a nucleoside transporter. J Biol Chem. 2006;281:22647-55 pubmed
  786. Fissell W, Manley S, Westover A, Humes H, Fleischman A, Roy S. Differentiated growth of human renal tubule cells on thin-film and nanostructured materials. ASAIO J. 2006;52:221-7 pubmed
  787. Nakaya T, Suzuki T. Role of APP phosphorylation in FE65-dependent gene transactivation mediated by AICD. Genes Cells. 2006;11:633-45 pubmed
  788. Sharma M, Leung L, Brocardo M, Henderson J, Flegg C, Henderson B. Membrane localization of adenomatous polyposis coli protein at cellular protrusions: targeting sequences and regulation by beta-catenin. J Biol Chem. 2006;281:17140-9 pubmed
  789. den Dulk B, Sun S, de Ruijter M, Brandsma J, Brouwer J. Rad33, a new factor involved in nucleotide excision repair in Saccharomyces cerevisiae. DNA Repair (Amst). 2006;5:683-92 pubmed
  790. Hough S, Clements I, Welch P, Wiederholt K. Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog. Stem Cells. 2006;24:1467-75 pubmed
  791. Hao M, Li X, Rizzo M, Rocheleau J, Dawant B, Piston D. Regulation of two insulin granule populations within the reserve pool by distinct calcium sources. J Cell Sci. 2005;118:5873-84 pubmed
  792. Barlow J, Wiley J, Mous M, Narendran A, Gee M, Goldberg M, et al. Differentiation of rhabdomyosarcoma cell lines using retinoic acid. Pediatr Blood Cancer. 2006;47:773-84 pubmed
  793. Remacle A, Rozanov D, Baciu P, Chekanov A, Golubkov V, Strongin A. The transmembrane domain is essential for the microtubular trafficking of membrane type-1 matrix metalloproteinase (MT1-MMP). J Cell Sci. 2005;118:4975-84 pubmed
  794. Bengoechea Alonso M, Punga T, Ericsson J. Hyperphosphorylation regulates the activity of SREBP1 during mitosis. Proc Natl Acad Sci U S A. 2005;102:11681-6 pubmed
  795. Akimoto T, Pohnert S, Li P, Zhang M, Gumbs C, Rosenberg P, et al. Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem. 2005;280:19587-93 pubmed
  796. Babcock H, Chen C, Zhuang X. Using single-particle tracking to study nuclear trafficking of viral genes. Biophys J. 2004;87:2749-58 pubmed
  797. Trushina E, Dyer R, Badger J, Ure D, Eide L, Tran D, et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol. 2004;24:8195-209 pubmed
  798. Jacobelli J, Chmura S, Buxton D, Davis M, Krummel M. A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nat Immunol. 2004;5:531-8 pubmed
  799. Tsunematsu R, Nakayama K, Oike Y, Nishiyama M, Ishida N, Hatakeyama S, et al. Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem. 2004;279:9417-23 pubmed
  800. Ruddy M, Wong G, Liu X, Yamamoto H, Kasayama S, Kirkwood K, et al. Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members. J Biol Chem. 2004;279:2559-67 pubmed
  801. Laurent V, Jaubert Miazza L, Desjardins R, Day R, Lindberg I. Biosynthesis of proopiomelanocortin-derived peptides in prohormone convertase 2 and 7B2 null mice. Endocrinology. 2004;145:519-28 pubmed
  802. Nascimento A, Roland J, Gelfand V. Pigment cells: a model for the study of organelle transport. Annu Rev Cell Dev Biol. 2003;19:469-91 pubmed
  803. Cheng S, Shao J, Charlton Kachigian N, Loewy A, Towler D. MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem. 2003;278:45969-77 pubmed
  804. Martin K, Hart C, Liu J, Leung W, Patton W. Simultaneous trichromatic fluorescence detection of proteins on Western blots using an amine-reactive dye in combination with alkaline phosphatase- and horseradish peroxidase-antibody conjugates. Proteomics. 2003;3:1215-27 pubmed
  805. Kudo Y, Kitajjma S, Sato S, Miyauchi M, Ogawa I, Takata T. Establishment of an oral squamous cell carcinoma cell line with high invasive and p27 degradation activities from a lymph node metastasis. Oral Oncol. 2003;39:515-20 pubmed
  806. Ashton A, Ware G, Kaul D, Ware J. Inhibition of tumor necrosis factor alpha-mediated NFkappaB activation and leukocyte adhesion, with enhanced endothelial apoptosis, by G protein-linked receptor (TP) ligands. J Biol Chem. 2003;278:11858-66 pubmed
  807. Rohde G, Wenzel D, Haucke V. A phosphatidylinositol (4,5)-bisphosphate binding site within mu2-adaptin regulates clathrin-mediated endocytosis. J Cell Biol. 2002;158:209-14 pubmed
  808. Errico A, Ballabio A, Rugarli E. Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet. 2002;11:153-63 pubmed
  809. Hernandez Blazquez F, Joazeiro P, Omori Y, Yamasaki H. Control of intracellular movement of connexins by E-cadherin in murine skin papilloma cells. Exp Cell Res. 2001;270:235-47 pubmed
  810. Gramolini A, Belanger G, Jasmin B. Distinct regions in the 3' untranslated region are responsible for targeting and stabilizing utrophin transcripts in skeletal muscle cells. J Cell Biol. 2001;154:1173-83 pubmed
  811. Lessman C, Kim H. Soluble tubulin complexes in oocytes of the common leopard frog, Rana pipiens, contain gamma-tubulin. Mol Reprod Dev. 2001;60:128-36 pubmed
  812. Akileswaran L, Taraska J, Sayer J, Gettemy J, Coghlan V. A-kinase-anchoring protein AKAP95 is targeted to the nuclear matrix and associates with p68 RNA helicase. J Biol Chem. 2001;276:17448-54 pubmed
  813. Vogelsberg Ragaglia V, Bruce J, Richter Landsberg C, Zhang B, Hong M, Trojanowski J, et al. Distinct FTDP-17 missense mutations in tau produce tau aggregates and other pathological phenotypes in transfected CHO cells. Mol Biol Cell. 2000;11:4093-104 pubmed
  814. Iijima K, Ando K, Takeda S, Satoh Y, Seki T, Itohara S, et al. Neuron-specific phosphorylation of Alzheimer's beta-amyloid precursor protein by cyclin-dependent kinase 5. J Neurochem. 2000;75:1085-91 pubmed
  815. Deloulme J, Assard N, Mbele G, Mangin C, Kuwano R, Baudier J. S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo. J Biol Chem. 2000;275:35302-10 pubmed
  816. Pryde J, Walker A, Rossi A, Hannah S, Haslett C. Temperature-dependent arrest of neutrophil apoptosis. Failure of Bax insertion into mitochondria at 15 degrees C prevents the release of cytochrome c. J Biol Chem. 2000;275:33574-84 pubmed
  817. Berggren K, Steinberg T, Lauber W, Carroll J, Lopez M, Chernokalskaya E, et al. A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal Biochem. 1999;276:129-43 pubmed
  818. Ashton A, Yokota R, John G, Zhao S, Suadicani S, Spray D, et al. Inhibition of endothelial cell migration, intercellular communication, and vascular tube formation by thromboxane A(2). J Biol Chem. 1999;274:35562-70 pubmed
  819. Fava F, Raynaud Messina B, Leung Tack J, Mazzolini L, Li M, Guillemot J, et al. Human 76p: A new member of the gamma-tubulin-associated protein family. J Cell Biol. 1999;147:857-68 pubmed
  820. Timm S, Titus B, Bernd K, Barroso M. The EF-hand Ca(2+)-binding protein p22 associates with microtubules in an N-myristoylation-dependent manner. Mol Biol Cell. 1999;10:3473-88 pubmed
  821. Panchuk Voloshina N, Bishop Stewart J, Bhalgat M, Millard P, Mao F, Leung W, et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem. 1999;47:1179-88 pubmed
  822. Ando K, Oishi M, Takeda S, Iijima K, Isohara T, Nairn A, et al. Role of phosphorylation of Alzheimer's amyloid precursor protein during neuronal differentiation. J Neurosci. 1999;19:4421-7 pubmed
  823. Yvon A, Wadsworth P, Jordan M. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell. 1999;10:947-59 pubmed
  824. Koester S, Schlossman S, Zhang C, Decker S, Bolton W. APO2.7 defines a shared apoptotic-necrotic pathway in a breast tumor hypoxia model. Cytometry. 1998;33:324-32 pubmed
  825. Roos U, De Brabander M, De Mey J. Indirect immunofluorescence of microtubules in Dictyostelium discoideum. A study with polyclonal and monoclonal antibodies to tubulins. Exp Cell Res. 1984;151:183-93 pubmed
  826. Hime G, Saint R. Zygotic expression of the pebble locus is required for cytokinesis during the postblastoderm mitoses of Drosophila. Development. 1992;114:165-71 pubmed