这是一篇来自已证抗体库的有关人类 雄激素受体 (androgen receptor) 的综述,是根据99篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合雄激素受体 抗体。
雄激素受体 同义词: AIS; AR8; DHTR; HUMARA; HYSP1; NR3C4; SBMA; SMAX1; TFM; androgen receptor; dihydrotestosterone receptor; nuclear receptor subfamily 3 group C member 4

圣克鲁斯生物技术
小鼠 单克隆(441)
  • 免疫沉淀; 人类; 图 2a
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology Inc, sc-7305)被用于被用于免疫沉淀在人类样品上 (图 2a). Oncogene (2018) ncbi
小鼠 单克隆(441)
  • 流式细胞仪; 人类; 图 2c
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于流式细胞仪在人类样品上 (图 2c). Mol Cancer Res (2017) ncbi
小鼠 单克隆(441)
  • 免疫组化; 人类; 1:800; 图 1a
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫组化在人类样品上浓度为1:800 (图 1a). J Cell Sci (2017) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类; 图 e10b
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫印迹在人类样品上 (图 e10b). Nature (2017) ncbi
小鼠 单克隆
  • 免疫沉淀; 人类; 图 3d
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, 441)被用于被用于免疫沉淀在人类样品上 (图 3d). Sci Transl Med (2016) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 小鼠; 图 s4
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 大鼠; 图 3g
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫印迹在小鼠样品上 (图 s4), 被用于免疫沉淀在人类样品上, 被用于免疫印迹在人类样品上 (图 1a) 和 被用于免疫印迹在大鼠样品上 (图 3g). Sci Transl Med (2016) ncbi
小鼠 单克隆(441)
  • 免疫印迹; African green monkey; 图 4c
圣克鲁斯生物技术雄激素受体抗体(santa cruz, sc-7305)被用于被用于免疫印迹在African green monkey样品上 (图 4c). Oncotarget (2016) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:500; 图 4d
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, 441)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 4d) 和 被用于免疫印迹在人类样品上 (图 4a). Cancer Res (2016) ncbi
小鼠 单克隆(441)
  • 免疫细胞化学; 人类; 1:500; 图 4d
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, 441)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 4d) 和 被用于免疫印迹在人类样品上 (图 4a). Cancer Res (2016) ncbi
小鼠 单克隆(441)
  • 免疫沉淀; 大鼠; 图 3b
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫沉淀在大鼠样品上 (图 3b). Sci Rep (2016) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫印迹在人类样品上 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫印迹在人类样品上 (图 1). elife (2016) ncbi
小鼠 单克隆(441)
  • 免疫沉淀; 人类; 图 1c
  • 免疫细胞化学; 人类; 1:400; 图 1a
圣克鲁斯生物技术雄激素受体抗体(Santa-Cruz, sc-7305)被用于被用于免疫沉淀在人类样品上 (图 1c) 和 被用于免疫细胞化学在人类样品上浓度为1:400 (图 1a). Oncotarget (2016) ncbi
小鼠 单克隆(441)
  • 免疫组化-石蜡切片; 小鼠; 1:30; 图 2
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:30 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(441)
  • 免疫沉淀; 人类; 图 8
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫沉淀在人类样品上 (图 8), 被用于免疫细胞化学在人类样品上 和 被用于免疫印迹在人类样品上 (图 5). Genes Cancer (2015) ncbi
小鼠 单克隆(441)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc7305)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样品上 (图 1). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(441)
  • 免疫组化-石蜡切片; 人类; 图 7
  • 染色质免疫沉淀 ; 人类; 图 4
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 2
  • 免疫组化-石蜡切片; 小鼠; 图 3
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫组化-石蜡切片在人类样品上 (图 7), 被用于染色质免疫沉淀 在人类样品上 (图 4), 被用于免疫沉淀在人类样品上 (图 2), 被用于免疫印迹在人类样品上 (图 2) 和 被用于免疫组化-石蜡切片在小鼠样品上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(441)
  • 免疫细胞化学; 人类; 图 2a
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫细胞化学在人类样品上 (图 2a). Oncotarget (2015) ncbi
小鼠 单克隆(441)
  • 免疫沉淀; 人类; 图 1
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫沉淀在人类样品上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(441)
  • 免疫沉淀; 人类; 图 s3
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫沉淀在人类样品上 (图 s3). Carcinogenesis (2015) ncbi
小鼠 单克隆(441)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 1) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术雄激素受体抗体(Santa-Cruz, sc-7305)被用于被用于免疫印迹在人类样品上 (图 5). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(441)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫细胞化学在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(441)
  • 染色质免疫沉淀 ; 人类
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于染色质免疫沉淀 在人类样品上. BMC Cancer (2014) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫印迹在人类样品上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫印迹在人类样品上 (图 3). Genes Dev (2013) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫印迹在人类样品上. Oncogene (2014) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫印迹在人类样品上. Am J Physiol Endocrinol Metab (2011) ncbi
艾博抗(上海)贸易有限公司
兔 单克隆(EP670Y)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab52615)被用于被用于其他在人类样品上 (图 4c). Cancer Cell (2018) ncbi
兔 单克隆(ER179(2))
  • 染色质免疫沉淀 ; 人类; 图 4a
艾博抗(上海)贸易有限公司雄激素受体抗体(abcam, ab108341)被用于被用于染色质免疫沉淀 在人类样品上 (图 4a). Cancer Cell (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 S3a
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab74272)被用于被用于免疫印迹在人类样品上 (图 S3a). Nat Commun (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 大鼠; 表 1
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, 74272)被用于被用于染色质免疫沉淀 在大鼠样品上 (表 1). J Steroid Biochem Mol Biol (2017) ncbi
兔 单克隆(EPR1535(2))
  • 免疫组化-石蜡切片; 大鼠; 图 5a
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫组化-石蜡切片在大鼠样品上 (图 5a). Ann Anat (2017) ncbi
兔 单克隆(EPR1535(2))
  • 免疫组化; 小鼠; 1:1000; 图 7b
  • 免疫印迹; 小鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司雄激素受体抗体(Epitomics, ab133273)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 7b) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4b). J Comp Neurol (2017) ncbi
兔 单克隆(EPR1535(2))
  • 免疫组化-石蜡切片; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3) 和 被用于免疫印迹在小鼠样品上 (图 1). Oncotarget (2016) ncbi
兔 单克隆(EPR1535(2))
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2b). Science (2016) ncbi
兔 单克隆(EPR1535(2))
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫印迹在人类样品上 (图 5b). Oncotarget (2016) ncbi
小鼠 单克隆(AR 441)
  • 免疫组化; 人类; 图 5
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab9474)被用于被用于免疫组化在人类样品上 (图 5). Int J Oncol (2016) ncbi
兔 单克隆(EPR1535(2))
  • 免疫组化; 人类; 1:100; 图 s1c
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫组化在人类样品上浓度为1:100 (图 s1c). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 4
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, Ab74272)被用于被用于免疫细胞化学在小鼠样品上 (图 4). Nat Commun (2016) ncbi
兔 单克隆(EPR1535(2))
  • 免疫组化-石蜡切片; 狗; 1:200; 图 3c
  • 免疫印迹; 狗; 1:1000; 图 3b
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, EPR1535)被用于被用于免疫组化-石蜡切片在狗样品上浓度为1:200 (图 3c), 被用于免疫印迹在狗样品上浓度为1:1000 (图 3b) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 3b). Vet Comp Oncol (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab74272)被用于被用于免疫组化在人类样品上 (图 3). Int Braz J Urol (2015) ncbi
兔 单克隆(EPR1535(2))
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Oncotarget (2015) ncbi
小鼠 单克隆(AR 441)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫组化-石蜡切片; 小鼠; 图 s3
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab9474)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1) 和 被用于免疫组化-石蜡切片在小鼠样品上 (图 s3). Sci Rep (2015) ncbi
小鼠 单克隆(AR 441)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, Ab9474)被用于被用于免疫印迹在人类样品上浓度为1:1000. Scand J Med Sci Sports (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab74272)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 1
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab74272)被用于被用于免疫细胞化学在小鼠样品上 (图 1). FASEB J (2015) ncbi
兔 单克隆(EPR1535(2))
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫组化-石蜡切片在小鼠样品上. Prostate (2014) ncbi
兔 多克隆
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab74272)被用于被用于免疫沉淀在人类样品上 和 被用于免疫印迹在人类样品上. Nature (2014) ncbi
兔 单克隆(EP670Y)
  • 免疫组化基因敲除验证; 小鼠; 图 2
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab52615)被用于被用于免疫组化基因敲除验证在小鼠样品上 (图 2). Horm Behav (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:200
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, Ab74272)被用于被用于免疫组化在人类样品上浓度为1:200. Mol Hum Reprod (2013) ncbi
赛默飞世尔
小鼠 单克隆(AR 441)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔雄激素受体抗体(Thermo Fisher Scientific, Ab-1)被用于被用于免疫组化-石蜡切片在人类样品上 (图 3b). J Cosmet Dermatol (2017) ncbi
大鼠 单克隆(AN1-15)
  • 免疫组化-石蜡切片; 大鼠; 图 2a
赛默飞世尔雄激素受体抗体(Thermo Fisher, MA1-150)被用于被用于免疫组化-石蜡切片在大鼠样品上 (图 2a). Reprod Biol (2016) ncbi
小鼠 单克隆(AR 441)
  • 免疫印迹; 人类; 1:400; 图 3b
赛默飞世尔雄激素受体抗体(Lab Vision Corporation, AR 441)被用于被用于免疫印迹在人类样品上浓度为1:400 (图 3b). J Cell Physiol (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 1:100; 图 6
赛默飞世尔雄激素受体抗体(Affinity BioReagents, PA1-110)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:100 (图 6). Schizophr Res (2015) ncbi
小鼠 单克隆(AR 441)
  • 免疫印迹; 人类
赛默飞世尔雄激素受体抗体(NeoMarkers-Lab Vision Corporation, AR441)被用于被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
小鼠 单克隆(AR 441)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔雄激素受体抗体(LabVision, AR441)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Int J Oncol (2014) ncbi
小鼠 单克隆(H7507)
  • 免疫组化; 人类; 图 2
赛默飞世尔雄激素受体抗体(Invitrogen, H7507)被用于被用于免疫组化在人类样品上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(AR 441)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫组化; 人类; 1:100
赛默飞世尔雄激素受体抗体(Neomarkers, AR 441)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 被用于免疫组化在人类样品上浓度为1:100. Virchows Arch (2006) ncbi
Active Motif
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
Active Motif雄激素受体抗体(Active Motif, 39781)被用于被用于染色质免疫沉淀 在人类样品上 (图 5). Mol Endocrinol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
Active Motif雄激素受体抗体(Active Motif, 39781)被用于被用于免疫印迹在人类样品上 (图 3b). Oncotarget (2016) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D6F11)
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling, 5153)被用于被用于免疫印迹在人类样品上 (图 4j). Cancer Cell (2017) ncbi
兔 单克隆(D6F11)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 6a
  • 免疫印迹; 人类; 1:2000; 图 5b
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling, 5153)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图 6a) 和 被用于免疫印迹在人类样品上浓度为1:2000 (图 5b). Oncotarget (2017) ncbi
兔 单克隆(D6F11)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling, D6F11)被用于被用于免疫印迹在人类样品上 (图 2g). Oncogene (2017) ncbi
兔 单克隆(D6F11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司雄激素受体抗体(CST, 5153)被用于被用于免疫印迹在人类样品上 (图 2a). Science (2017) ncbi
兔 单克隆(D6F11)
  • 免疫组化-石蜡切片; 人类; 图 5a
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell signaling, 5153)被用于被用于免疫组化-石蜡切片在人类样品上 (图 5a) 和 被用于免疫印迹在人类样品上 (图 4b). Oncotarget (2017) ncbi
兔 单克隆(D6F11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell signaling, 5153)被用于被用于免疫印迹在人类样品上 (图 1). Sci Rep (2016) ncbi
兔 单克隆(D6F11)
  • 免疫印迹; 人类; 1:2000; 图 1d
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell signaling, D6F11)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 1d). Oncotarget (2016) ncbi
兔 单克隆(D6F11)
  • 免疫组化; 人类; 图 s3
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling, 5153)被用于被用于免疫组化在人类样品上 (图 s3). Oncotarget (2016) ncbi
兔 单克隆(D6F11)
  • 免疫印迹; 人类; 1:2000; 图 5f
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signalling, 5153)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 5f). Nat Commun (2016) ncbi
兔 单克隆(D6F11)
  • 免疫组化; 人类; 1:200; 图 e9
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling, 5153S)被用于被用于免疫组化在人类样品上浓度为1:200 (图 e9). Nature (2016) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 图 8
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell signaling, 3202)被用于被用于免疫沉淀在人类样品上 (图 8) 和 被用于免疫印迹在人类样品上 (图 7). Biochem Pharmacol (2016) ncbi
兔 单克隆(D6F11)
  • 免疫印迹; 人类; 图 s11
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling, D6F11)被用于被用于免疫印迹在人类样品上 (图 s11). Nat Genet (2015) ncbi
兔 单克隆(D6F11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling Technology, 5153)被用于被用于免疫印迹在人类样品上 (图 3). Am J Transl Res (2015) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(AR441)
  • 免疫组化; 小鼠; 图 4c
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(DAKO, M3562)被用于被用于免疫组化在小鼠样品上 (图 4c). Cell Rep (2018) ncbi
小鼠 单克隆(AR441)
  • 免疫组化-冰冻切片; 人类; 1:400; 图 1e
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, AR441)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:400 (图 1e). Int J Mol Sci (2017) ncbi
小鼠 单克隆(AR441)
  • 免疫组化-石蜡切片; 人类; 1:10; 图 1
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, AR441)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:10 (图 1). Taiwan J Obstet Gynecol (2016) ncbi
小鼠 单克隆(AR441)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, AR441)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 3). Nat Genet (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, M3562)被用于被用于免疫组化在人类样品上浓度为1:100. Hum Pathol (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(DAKO, M3562)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400. J Clin Endocrinol Metab (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, M3562)被用于被用于免疫组化-石蜡切片在人类样品上. Am J Surg Pathol (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(DAKO, AR441)被用于被用于免疫组化在人类样品上浓度为1:50. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫印迹; 小鼠; 图 1b
  • 免疫印迹; 人类; 1:1000; 图 1a
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, AR441)被用于被用于免疫印迹在小鼠样品上 (图 1b) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 1a). Mol Oncol (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, AR441)被用于被用于免疫组化在人类样品上. Head Neck Pathol (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(DakoCytomation, AR441)被用于被用于免疫组化在人类样品上. Head Neck (2014) ncbi
小鼠 单克隆(AR441)
  • 免疫印迹; 人类; 1:500; 图 1
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, M3562)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 1). PLoS ONE (2012) ncbi
默克密理博中国
兔 多克隆
  • 免疫印迹; 人类; 图 1a
默克密理博中国雄激素受体抗体(EMD Millipore, 07-1375)被用于被用于免疫印迹在人类样品上 (图 1a). Nucleic Acids Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5b
默克密理博中国雄激素受体抗体(Millipore, 07-1375)被用于被用于免疫印迹在人类样品上 (图 5b). Oncotarget (2016) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 1
  • 染色质免疫沉淀 ; 人类; 图 1
  • 免疫印迹; 人类; 图 1
默克密理博中国雄激素受体抗体(Millipore, 06-680)被用于被用于ChIP-Seq在人类样品上 (图 1), 被用于染色质免疫沉淀 在人类样品上 (图 1) 和 被用于免疫印迹在人类样品上 (图 1). Oncogene (2016) ncbi
兔 单克隆
  • 免疫印迹; 人类; 图 7
默克密理博中国雄激素受体抗体(Millipore, 04-078)被用于被用于免疫印迹在人类样品上 (图 7). Genes Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1a
默克密理博中国雄激素受体抗体(Millipore, 06-680)被用于被用于免疫印迹在人类样品上 (图 1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 5
默克密理博中国雄激素受体抗体(Millipore, 06-680)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250 (图 5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 8
  • 免疫印迹; 小鼠; 1:500; 图 6
默克密理博中国雄激素受体抗体(Millipore, 06-080)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 8) 和 被用于免疫印迹在小鼠样品上浓度为1:500 (图 6). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
默克密理博中国雄激素受体抗体(Upstate, 06-680)被用于被用于免疫印迹在人类样品上 (图 3). EMBO Mol Med (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
默克密理博中国雄激素受体抗体(Millipore, 06-680)被用于被用于染色质免疫沉淀 在人类样品上. Prostate (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
默克密理博中国雄激素受体抗体(Millipore, 06-680)被用于被用于免疫印迹在大鼠样品上浓度为1:500. J Psychiatr Res (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 7
  • 免疫印迹; 小鼠; 1:4000; 图 15
默克密理博中国雄激素受体抗体(Millipore, 06-680)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 7) 和 被用于免疫印迹在小鼠样品上浓度为1:4000 (图 15). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
默克密理博中国雄激素受体抗体(Millipore, 06-680)被用于被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
默克密理博中国雄激素受体抗体(Millipore, 06-680)被用于被用于染色质免疫沉淀 在人类样品上. Int J Cancer (2012) ncbi
碧迪BD
小鼠 单克隆(G122-25)
  • 免疫组化-石蜡切片; 兔; 1:100
  • 免疫组化; 兔; 图 18
碧迪BD雄激素受体抗体(BD Biosciences, 554224)被用于被用于免疫组化-石蜡切片在兔样品上浓度为1:100 和 被用于免疫组化在兔样品上 (图 18). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(G122-77)
  • 免疫印迹; 人类; 图 3
碧迪BD雄激素受体抗体(BD Bioscience, 554226)被用于被用于免疫印迹在人类样品上 (图 3). Oncoscience (2015) ncbi
小鼠 单克隆(G122-434)
  • 免疫细胞化学; 人类
碧迪BD雄激素受体抗体(BD Biosciences, 554225)被用于被用于免疫细胞化学在人类样品上. Br J Cancer (2015) ncbi
小鼠 单克隆(G122-77)
  • 免疫印迹; 人类
碧迪BD雄激素受体抗体(BD, G122-77)被用于被用于免疫印迹在人类样品上. PLoS ONE (2012) ncbi
文章列表
  1. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  2. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  3. Li N, Truong S, Nouri M, Moore J, Al Nakouzi N, Lubik A, et al. Non-canonical activation of hedgehog in prostate cancer cells mediated by the interaction of transcriptionally active androgen receptor proteins with Gli3. Oncogene. 2018;37:2313-2325 pubmed 出版商
  4. Shukla S, Cyrta J, Murphy D, Walczak E, Ran L, Agrawal P, et al. Aberrant Activation of a Gastrointestinal Transcriptional Circuit in Prostate Cancer Mediates Castration Resistance. Cancer Cell. 2017;32:792-806.e7 pubmed 出版商
  5. Mahajan K, Malla P, Lawrence H, Chen Z, Kumar Sinha C, Malik R, et al. ACK1/TNK2 Regulates Histone H4 Tyr88-phosphorylation and AR Gene Expression in Castration-Resistant Prostate Cancer. Cancer Cell. 2017;31:790-803.e8 pubmed 出版商
  6. Kristiansen I, Stephan C, Jung K, Dietel M, Rieger A, Tolkach Y, et al. Sensitivity of HOXB13 as a Diagnostic Immunohistochemical Marker of Prostatic Origin in Prostate Cancer Metastases: Comparison to PSA, Prostein, Androgen Receptor, ERG, NKX3.1, PSAP, and PSMA. Int J Mol Sci. 2017;18: pubmed 出版商
  7. White M, Lin C, Rajapakshe K, Dong J, Shi Y, Tsouko E, et al. Glutamine Transporters Are Targets of Multiple Oncogenic Signaling Pathways in Prostate Cancer. Mol Cancer Res. 2017;15:1017-1028 pubmed 出版商
  8. Frank S, Berger P, Ljungman M, Miranti C. Human prostate luminal cell differentiation requires NOTCH3 induction by p38-MAPK and MYC. J Cell Sci. 2017;130:1952-1964 pubmed 出版商
  9. Ashkenazi A, Bento C, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature. 2017;545:108-111 pubmed 出版商
  10. Xue M, Liu H, Zhang L, Chang H, Liu Y, Du S, et al. Computational identification of mutually exclusive transcriptional drivers dysregulating metastatic microRNAs in prostate cancer. Nat Commun. 2017;8:14917 pubmed 出版商
  11. Youssef S, El Khateeb E, Aly D, Moussa M. Striae distensae: Immunohistochemical assessment of hormone receptors in multigravida and nulligravida. J Cosmet Dermatol. 2017;16:279-286 pubmed 出版商
  12. Kumar A, Dumasia K, Deshpande S, Balasinor N. Direct regulation of genes involved in sperm release by estrogen and androgen through their receptors and coregulators. J Steroid Biochem Mol Biol. 2017;171:66-74 pubmed 出版商
  13. Ibrahim M, Elwan W. Role of topical dehydroepiandrosterone in ameliorating isotretinoin-induced Meibomian gland dysfunction in adult male albino rat. Ann Anat. 2017;211:78-87 pubmed 出版商
  14. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  15. Hashimoto Y, Shiina M, Kato T, Yamamura S, Tanaka Y, Majid S, et al. The role of miR-24 as a race related genetic factor in prostate cancer. Oncotarget. 2017;8:16581-16593 pubmed 出版商
  16. Tse B, Volpert M, Ratther E, Stylianou N, Nouri M, McGowan K, et al. Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene. 2017;36:3417-3427 pubmed 出版商
  17. Liu X, Gao Y, Ye H, Gerrin S, Ma F, Wu Y, et al. Positive feedback loop mediated by protein phosphatase 1? mobilization of P-TEFb and basal CDK1 drives androgen receptor in prostate cancer. Nucleic Acids Res. 2017;45:3738-3751 pubmed 出版商
  18. Mu P, Zhang Z, Benelli M, Karthaus W, Hoover E, Chen C, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84-88 pubmed 出版商
  19. Shiina M, Hashimoto Y, Kato T, Yamamura S, Tanaka Y, Majid S, et al. Differential expression of miR-34b and androgen receptor pathway regulate prostate cancer aggressiveness between African-Americans and Caucasians. Oncotarget. 2017;8:8356-8368 pubmed 出版商
  20. Polanco M, Parodi S, Piol D, Stack C, Chivet M, Contestabile A, et al. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy. Sci Transl Med. 2016;8:370ra181 pubmed 出版商
  21. Abdelrazek H, Helmy S, Elsayed D, Ebaid H, Mohamed R. Ameliorating effects of green tea extract on cadmium induced reproductive injury in male Wistar rats with respect to androgen receptors and caspase- 3. Reprod Biol. 2016;16:300-308 pubmed 出版商
  22. Tamura K, Kobayashi Y, Hirooka A, Takanami K, Oti T, Jogahara T, et al. Identification of the sexually dimorphic gastrin-releasing peptide system in the lumbosacral spinal cord that controls male reproductive function in the mouse and Asian house musk shrew (Suncus murinus). J Comp Neurol. 2017;525:1586-1598 pubmed 出版商
  23. Loverro G, Resta L, Dellino M, Edoardo D, Cascarano M, Loverro M, et al. Uterine and ovarian changes during testosterone administration in young female-to-male transsexuals. Taiwan J Obstet Gynecol. 2016;55:686-691 pubmed 出版商
  24. Ho T, Huang J, Zhou N, Zhang Z, Koirala P, Zhou X, et al. Regulation of PCGEM1 by p54/nrb in prostate cancer. Sci Rep. 2016;6:34529 pubmed 出版商
  25. Depaolo J, Wang Z, Guo J, Zhang G, Qian C, Zhang H, et al. Acetylation of androgen receptor by ARD1 promotes dissociation from HSP90 complex and prostate tumorigenesis. Oncotarget. 2016;7:71417-71428 pubmed 出版商
  26. Mirkheshti N, Park S, Jiang S, Cropper J, Werner S, Song C, et al. Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer. Oncotarget. 2016;7:62240-62254 pubmed 出版商
  27. Shen H, Zhao L, Feng X, Xu C, Li C, Niu Y. Lin28A activates androgen receptor via regulation of c-myc and promotes malignancy of ER-/Her2+ breast cancer. Oncotarget. 2016;7:60407-60418 pubmed 出版商
  28. Lu H, Wang T, Li J, Fedele C, Liu Q, Zhang J, et al. ?v?6 Integrin Promotes Castrate-Resistant Prostate Cancer through JNK1-Mediated Activation of Androgen Receptor. Cancer Res. 2016;76:5163-74 pubmed 出版商
  29. Xiao L, Feng Q, Zhang Z, Wang F, Lydon J, Ittmann M, et al. The essential role of GATA transcription factors in adult murine prostate. Oncotarget. 2016;7:47891-47903 pubmed 出版商
  30. Hatem R, El Botty R, Chateau Joubert S, Servely J, Labiod D, de Plater L, et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. 2016;7:48206-48219 pubmed 出版商
  31. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science. 2016;352:1576-80 pubmed 出版商
  32. Bott L, Salomons F, Maric D, Liu Y, Merry D, Fischbeck K, et al. The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/C(Cdh1) ubiquitin ligase complex. Sci Rep. 2016;6:27703 pubmed 出版商
  33. Lu Y, Liu Y, Liao S, Tu W, Shen Y, Yan Y, et al. Epigenetic modifications promote the expression of the orphan nuclear receptor NR0B1 in human lung adenocarcinoma cells. Oncotarget. 2016;7:43162-43176 pubmed 出版商
  34. Kim J, Yu J, Abdulkadir S, Chakravarti D. KAT8 Regulates Androgen Signaling in Prostate Cancer Cells. Mol Endocrinol. 2016;30:925-36 pubmed 出版商
  35. Okato A, Goto Y, Kurozumi A, Kato M, Kojima S, Matsushita R, et al. Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer. Int J Oncol. 2016;49:111-22 pubmed 出版商
  36. Kaushik A, Shojaie A, Panzitt K, Sonavane R, Venghatakrishnan H, Manikkam M, et al. Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate cancer. Nat Commun. 2016;7:11612 pubmed 出版商
  37. Mounir Z, Korn J, Westerling T, Lin F, Kirby C, Schirle M, et al. ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor. elife. 2016;5: pubmed 出版商
  38. Feng Z, Wen H, Bi R, Ju X, Chen X, Yang W, et al. A clinically applicable molecular classification for high-grade serous ovarian cancer based on hormone receptor expression. Sci Rep. 2016;6:25408 pubmed 出版商
  39. Yard B, Adams D, Chie E, Tamayo P, Battaglia J, Gopal P, et al. A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nat Commun. 2016;7:11428 pubmed 出版商
  40. Zhu M, Bakhru P, Conley B, Nelson J, Free M, Martin A, et al. Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nat Commun. 2016;7:11350 pubmed 出版商
  41. Destouches D, Sader M, Terry S, Marchand C, Maillé P, Soyeux P, et al. Implication of NPM1 phosphorylation and preclinical evaluation of the nucleoprotein antagonist N6L in prostate cancer. Oncotarget. 2016;7:69397-69411 pubmed 出版商
  42. Kumar P, Sharad S, Petrovics G, Mohamed A, Dobi A, Sreenath T, et al. Loss of miR-449a in ERG-associated prostate cancer promotes the invasive phenotype by inducing SIRT1. Oncotarget. 2016;7:22791-806 pubmed 出版商
  43. Olokpa E, Bolden A, Stewart L. The Androgen Receptor Regulates PPAR? Expression and Activity in Human Prostate Cancer Cells. J Cell Physiol. 2016;231:2664-72 pubmed 出版商
  44. Johnson D, Hooker E, Luong R, Yu E, He Y, Gonzalgo M, et al. Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice. PLoS ONE. 2016;11:e0148851 pubmed 出版商
  45. Azakami D, Nakahira R, Kato Y, Michishita M, Onozawa E, Bonkobara M, et al. The canine prostate cancer cell line CHP-1 shows over-expression of the co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α. Vet Comp Oncol. 2017;15:557-562 pubmed 出版商
  46. Zhao J, Fong K, Jin H, Yang Y, Kim J, Yu J. FOXA1 acts upstream of GATA2 and AR in hormonal regulation of gene expression. Oncogene. 2016;35:4335-44 pubmed 出版商
  47. Shu S, Lin C, He H, Witwicki R, Tabassum D, Roberts J, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529:413-417 pubmed 出版商
  48. Silva M, Matheus W, Garcia P, Stopiglia R, Billis A, Ferreira U, et al. Characterization of reactive stroma in prostate cancer: involvement of growth factors, metalloproteinase matrix, sexual hormones receptors and prostatic stem cells. Int Braz J Urol. 2015;41:849-58 pubmed 出版商
  49. Mehraein Ghomi F, Church D, Schreiber C, Weichmann A, Basu H, Wilding G. Inhibitor of p52 NF-κB subunit and androgen receptor (AR) interaction reduces growth of human prostate cancer cells by abrogating nuclear translocation of p52 and phosphorylated AR(ser81). Genes Cancer. 2015;6:428-44 pubmed
  50. Hagberg Thulin M, Nilsson M, Thulin P, Céraline J, Ohlsson C, Damber J, et al. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis. Mol Cell Endocrinol. 2016;422:182-191 pubmed 出版商
  51. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  52. Munkley J, Livermore K, McClurg U, Kalna G, Knight B, McCullagh P, et al. The PI3K regulatory subunit gene PIK3R1 is under direct control of androgens and repressed in prostate cancer cells. Oncoscience. 2015;2:755-64 pubmed
  53. Pomerantz M, Li F, Takeda D, Lenci R, Chonkar A, Chabot M, et al. The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat Genet. 2015;47:1346-51 pubmed 出版商
  54. Qiu M, Fan Q, Zhu Z, Kwan S, Chen L, Chen J, et al. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1. Oncotarget. 2015;6:31702-20 pubmed 出版商
  55. Kim Y, Chen C, Bolton E. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells. PLoS ONE. 2015;10:e0138286 pubmed 出版商
  56. Krakstad C, Tangen I, Hoivik E, Halle M, Berg A, Werner H, et al. ATAD2 overexpression links to enrichment of B-MYB-translational signatures and development of aggressive endometrial carcinoma. Oncotarget. 2015;6:28440-52 pubmed 出版商
  57. Adachi K, Miki Y, Saito R, Hata S, Yamauchi M, Mikami Y, et al. Intracrine steroid production and mammalian target of rapamycin pathways in pulmonary lymphangioleiomyomatosis. Hum Pathol. 2015;46:1685-93 pubmed 出版商
  58. Fu Y, Cruz Monserrate Z, Helen Lin H, Chung Y, Ji B, Lin S, et al. Ductal activation of oncogenic KRAS alone induces sarcomatoid phenotype. Sci Rep. 2015;5:13347 pubmed 出版商
  59. Mieritz M, Rakêt L, Hagen C, Nielsen J, Talman M, Petersen J, et al. A Longitudinal Study of Growth, Sex Steroids, and IGF-1 in Boys With Physiological Gynecomastia. J Clin Endocrinol Metab. 2015;100:3752-9 pubmed 出版商
  60. Nilsen T, Thorsen L, FossÃ¥ S, Wiig M, Kirkegaard C, Skovlund E, et al. Effects of strength training on muscle cellular outcomes in prostate cancer patients on androgen deprivation therapy. Scand J Med Sci Sports. 2016;26:1026-35 pubmed 出版商
  61. Liu X, Chen X, Rycaj K, Chao H, Deng Q, Jeter C, et al. Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget. 2015;6:23959-86 pubmed
  62. Morris R, Purves Tyson T, Weickert C, Rothmond D, Lenroot R, Weickert T. Testosterone and reward prediction-errors in healthy men and men with schizophrenia. Schizophr Res. 2015;168:649-60 pubmed 出版商
  63. Chen S, Okada M, Nakato R, Izumi K, Bando M, Shirahige K. The Deubiquitinating Enzyme USP7 Regulates Androgen Receptor Activity by Modulating Its Binding to Chromatin. J Biol Chem. 2015;290:21713-23 pubmed 出版商
  64. Lokody I, Francis J, Gardiner J, Erler J, Swain A. Pten Regulates Epithelial Cytodifferentiation during Prostate Development. PLoS ONE. 2015;10:e0129470 pubmed 出版商
  65. Li X, Cui P, Jiang H, Guo Y, Pishdari B, Hu M, et al. Reversing the reduced level of endometrial GLUT4 expression in polycystic ovary syndrome: a mechanistic study of metformin action. Am J Transl Res. 2015;7:574-86 pubmed
  66. Khanna A, Rane J, Kivinummi K, Urbanucci A, Helenius M, Tolonen T, et al. CIP2A is a candidate therapeutic target in clinically challenging prostate cancer cell populations. Oncotarget. 2015;6:19661-70 pubmed
  67. Sun F, Indran I, Zhang Z, Tan M, Li Y, Lim Z, et al. A novel prostate cancer therapeutic strategy using icaritin-activated arylhydrocarbon-receptor to co-target androgen receptor and its splice variants. Carcinogenesis. 2015;36:757-68 pubmed 出版商
  68. Lee S, Luong R, Johnson D, Cunha G, Rivina L, Gonzalgo M, et al. Androgen signaling is a confounding factor for β-catenin-mediated prostate tumorigenesis. Oncogene. 2016;35:702-14 pubmed 出版商
  69. Sheean R, Weston R, Perera N, D Amico A, Nutt S, Turner B. Effect of thymic stimulation of CD4+ T cell expansion on disease onset and progression in mutant SOD1 mice. J Neuroinflammation. 2015;12:40 pubmed 出版商
  70. Sheng X, Arnoldussen Y, Storm M, Tesikova M, Nenseth H, Zhao S, et al. Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol Med. 2015;7:788-801 pubmed 出版商
  71. O Hara L, Curley M, Tedim Ferreira M, Cruickshanks L, Milne L, Smith L. Pituitary androgen receptor signalling regulates prolactin but not gonadotrophins in the male mouse. PLoS ONE. 2015;10:e0121657 pubmed 出版商
  72. Yang S, Zhang J, Zhang Y, Wan X, Zhang C, Huang X, et al. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation. Prostate. 2015;75:936-46 pubmed 出版商
  73. Toropainen S, Malinen M, Kaikkonen S, Rytinki M, Jääskeläinen T, Sahu B, et al. SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Res. 2015;43:848-61 pubmed 出版商
  74. Moser B, Schiefer A, Janik S, Marx A, Prosch H, Pohl W, et al. Adenocarcinoma of the thymus, enteric type: report of 2 cases, and proposal for a novel subtype of thymic carcinoma. Am J Surg Pathol. 2015;39:541-8 pubmed 出版商
  75. Tanaka S, Miki Y, Hashimoto C, Takagi K, Doe Z, Li B, et al. The role of 5α-reductase type 1 associated with intratumoral dihydrotestosterone concentrations in human endometrial carcinoma. Mol Cell Endocrinol. 2015;401:56-64 pubmed 出版商
  76. Kuo P, Huang C, Lee C, Chang H, Hsieh S, Chung Y, et al. BCAS2 promotes prostate cancer cells proliferation by enhancing AR mRNA transcription and protein stability. Br J Cancer. 2015;112:391-402 pubmed 出版商
  77. O Hara L, McInnes K, Simitsidellis I, Morgan S, Atanassova N, Slowikowska Hilczer J, et al. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FASEB J. 2015;29:894-910 pubmed 出版商
  78. Cano L, Lavery D, Sin S, Spanjaard E, Brooke G, Tilman J, et al. The co-chaperone p23 promotes prostate cancer motility and metastasis. Mol Oncol. 2015;9:295-308 pubmed 出版商
  79. Valkenburg K, Yu X, De Marzo A, Spiering T, Matusik R, Williams B. Activation of Wnt/β-catenin signaling in a subpopulation of murine prostate luminal epithelial cells induces high grade prostate intraepithelial neoplasia. Prostate. 2014;74:1506-20 pubmed 出版商
  80. Thompson L, Bauer J, Chiosea S, McHugh J, Seethala R, Miettinen M, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9:181-95 pubmed 出版商
  81. Poirier G, Imamura N, Zanoletti O, Sandi C. Social deficits induced by peripubertal stress in rats are reversed by resveratrol. J Psychiatr Res. 2014;57:157-64 pubmed 出版商
  82. Wosnitzer M, Mielnik A, Dabaja A, Robinson B, Schlegel P, Paduch D. Ubiquitin Specific Protease 26 (USP26) expression analysis in human testicular and extragonadal tissues indicates diverse action of USP26 in cell differentiation and tumorigenesis. PLoS ONE. 2014;9:e98638 pubmed 出版商
  83. Asangani I, Dommeti V, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510:278-82 pubmed 出版商
  84. Stanic D, Dubois S, Chua H, Tonge B, Rinehart N, Horne M, et al. Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors ? and ?, and androgen receptors. PLoS ONE. 2014;9:e90451 pubmed 出版商
  85. Chang P, Wang T, Chang Y, Chu C, Lee C, Hsu H, et al. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. PLoS ONE. 2014;9:e88556 pubmed 出版商
  86. Qiu M, Bao W, Wang J, Yang T, He X, Liao Y, et al. FOXA1 promotes tumor cell proliferation through AR involving the Notch pathway in endometrial cancer. BMC Cancer. 2014;14:78 pubmed 出版商
  87. Chen C, Brummet J, Lonstein J, Jordan C, Breedlove S. New knockout model confirms a role for androgen receptors in regulating anxiety-like behaviors and HPA response in mice. Horm Behav. 2014;65:211-8 pubmed 出版商
  88. Samaan S, Tranchevent L, Dardenne E, Polay Espinoza M, Zonta E, Germann S, et al. The Ddx5 and Ddx17 RNA helicases are cornerstones in the complex regulatory array of steroid hormone-signaling pathways. Nucleic Acids Res. 2014;42:2197-207 pubmed 出版商
  89. Lyu S, Yu Q, Ying G, Wang S, Wang Y, Zhang J, et al. Androgen receptor decreases CMYC and KRAS expression by upregulating let-7a expression in ER-, PR-, AR+ breast cancer. Int J Oncol. 2014;44:229-37 pubmed 出版商
  90. Kusafuka K, Onitsuka T, Muramatsu K, Miki T, Murai C, Suda T, et al. Salivary duct carcinoma with rhabdoid features: report of 2 cases with immunohistochemical and ultrastructural analyses. Head Neck. 2014;36:E28-35 pubmed 出版商
  91. Ni M, Chen Y, Fei T, Li D, Lim E, Liu X, et al. Amplitude modulation of androgen signaling by c-MYC. Genes Dev. 2013;27:734-48 pubmed 出版商
  92. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  93. Sarkar S, Brautigan D, Parsons S, Larner J. Androgen receptor degradation by the E3 ligase CHIP modulates mitotic arrest in prostate cancer cells. Oncogene. 2014;33:26-33 pubmed 出版商
  94. Lei K, Chen L, Georgiou E, Sooranna S, Khanjani S, Brosens J, et al. Progesterone acts via the nuclear glucocorticoid receptor to suppress IL-1?-induced COX-2 expression in human term myometrial cells. PLoS ONE. 2012;7:e50167 pubmed 出版商
  95. O Shaughnessy P, Monteiro A, Bhattacharya S, Fraser M, Fowler P. Steroidogenic enzyme expression in the human fetal liver and potential role in the endocrinology of pregnancy. Mol Hum Reprod. 2013;19:177-87 pubmed 出版商
  96. Coffey K, Blackburn T, Cook S, Golding B, Griffin R, Hardcastle I, et al. Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS ONE. 2012;7:e45539 pubmed 出版商
  97. Willmann D, Lim S, Wetzel S, Metzger E, Jandausch A, Wilk W, et al. Impairment of prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitor. Int J Cancer. 2012;131:2704-9 pubmed 出版商
  98. Hsu F, Yang M, Lin E, Tseng C, Lin H. The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells. Am J Physiol Endocrinol Metab. 2011;300:E902-8 pubmed 出版商
  99. Asioli S, Marucci G, Ficarra G, Stephens M, Foschini M, Ellis I, et al. Polymorphous adenocarcinoma of the breast. Report of three cases. Virchows Arch. 2006;448:29-34 pubmed