这是一篇来自已证抗体库的有关人类 雄激素受体 (androgen receptor) 的综述,是根据95篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合雄激素受体 抗体。
雄激素受体 同义词: AIS; AR8; DHTR; HUMARA; HYSP1; KD; NR3C4; SBMA; SMAX1; TFM

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(ER179(2))
  • 免疫印迹; 人类; 图 1c, 1d, 4d
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab108341)被用于被用于免疫印迹在人类样本上 (图 1c, 1d, 4d). Cancer Sci (2020) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; ; 图 1j
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab74272)被用于被用于染色质免疫沉淀 在人类样本上浓度为 (图 1j). elife (2019) ncbi
domestic rabbit 单克隆(ER179(2))
  • 免疫印迹; 小鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab108341)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Mol Cancer Ther (2019) ncbi
domestic rabbit 单克隆(ER179(2))
  • ChIP-Seq; 小鼠; 1:1000; 图 ex5a
  • 免疫印迹; 人类; 1:1000; 图 ex3c
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ER179(2))被用于被用于ChIP-Seq在小鼠样本上浓度为1:1000 (图 ex5a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 ex3c). Nature (2019) ncbi
domestic rabbit 单克隆(ER179(2))
  • 免疫沉淀; 人类; 图 3d
  • 免疫印迹; 人类; 1:1000; 图 1e, 1s1c
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab108341)被用于被用于免疫沉淀在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1e, 1s1c). elife (2019) ncbi
domestic rabbit 单克隆(EPR15656)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab198394)被用于被用于免疫印迹在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(EP670Y)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab52615)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(ER179(2))
  • 染色质免疫沉淀 ; 人类; 图 4a
艾博抗(上海)贸易有限公司雄激素受体抗体(abcam, ab108341)被用于被用于染色质免疫沉淀 在人类样本上 (图 4a). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 S3a
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab74272)被用于被用于免疫印迹在人类样本上 (图 S3a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 大鼠; 表 1
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, 74272)被用于被用于染色质免疫沉淀 在大鼠样本上 (表 1). J Steroid Biochem Mol Biol (2017) ncbi
domestic rabbit 单克隆(EPR1535(2))
  • 免疫组化-石蜡切片; 大鼠; 图 5a
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5a). Ann Anat (2017) ncbi
domestic rabbit 单克隆(EPR1535(2))
  • 免疫组化; 小鼠; 1:1000; 图 7b
  • 免疫印迹; 小鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司雄激素受体抗体(Epitomics, ab133273)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). J Comp Neurol (2017) ncbi
domestic rabbit 单克隆(EPR1535(2))
  • 免疫组化-石蜡切片; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EPR1535(2))
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Science (2016) ncbi
domestic rabbit 单克隆(EPR1535(2))
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2016) ncbi
小鼠 单克隆(AR 441)
  • 免疫组化; 人类; 图 5
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab9474)被用于被用于免疫组化在人类样本上 (图 5). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(EPR1535(2))
  • 免疫组化; 人类; 1:100; 图 s1c
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s1c). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 4
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, Ab74272)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR1535(2))
  • 免疫组化-石蜡切片; 犬; 1:200; 图 3c
  • 免疫印迹; 犬; 1:1000; 图 3b
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, EPR1535)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 3c), 被用于免疫印迹在犬样本上浓度为1:1000 (图 3b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Vet Comp Oncol (2017) ncbi
domestic rabbit 单克隆(EPR1535(2))
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncotarget (2015) ncbi
小鼠 单克隆(AR 441)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab9474)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3) 和 被用于免疫组化-石蜡切片在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(AR 441)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, Ab9474)被用于被用于免疫印迹在人类样本上浓度为1:1000. Scand J Med Sci Sports (2016) ncbi
domestic rabbit 单克隆(EPR1535(2))
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab133273)被用于被用于免疫组化-石蜡切片在小鼠样本上. Prostate (2014) ncbi
domestic rabbit 单克隆(EP670Y)
  • 免疫组化基因敲除验证; 小鼠; 图 2
艾博抗(上海)贸易有限公司雄激素受体抗体(Abcam, ab52615)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 2). Horm Behav (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(441)
  • 免疫沉淀; 人类; 图 2a
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology Inc, sc-7305)被用于被用于免疫沉淀在人类样本上 (图 2a). Oncogene (2018) ncbi
小鼠 单克隆(441)
  • 流式细胞仪; 人类; 图 2c
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于流式细胞仪在人类样本上 (图 2c). Mol Cancer Res (2017) ncbi
小鼠 单克隆(441)
  • 免疫组化; 人类; 1:800; 图 1a
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫组化在人类样本上浓度为1:800 (图 1a). J Cell Sci (2017) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类; 图 e10b
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫印迹在人类样本上 (图 e10b). Nature (2017) ncbi
小鼠 单克隆
  • 免疫沉淀; 人类; 图 3d
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, 441)被用于被用于免疫沉淀在人类样本上 (图 3d). Sci Transl Med (2016) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 大鼠; 图 3g
  • 免疫印迹; 小鼠; 图 s4
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫印迹在大鼠样本上 (图 3g), 被用于免疫印迹在小鼠样本上 (图 s4), 被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上 (图 1a). Sci Transl Med (2016) ncbi
小鼠 单克隆(441)
  • 免疫印迹; African green monkey; 图 4c
圣克鲁斯生物技术雄激素受体抗体(santa cruz, sc-7305)被用于被用于免疫印迹在African green monkey样本上 (图 4c). Oncotarget (2016) ncbi
小鼠 单克隆(441)
  • 免疫细胞化学; 人类; 1:500; 图 4d
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, 441)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4d) 和 被用于免疫印迹在人类样本上 (图 4a). Cancer Res (2016) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:500; 图 4d
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, 441)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4d) 和 被用于免疫印迹在人类样本上 (图 4a). Cancer Res (2016) ncbi
小鼠 单克隆(441)
  • 免疫沉淀; 大鼠; 图 3b
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫沉淀在大鼠样本上 (图 3b). Sci Rep (2016) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫印迹在人类样本上 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫印迹在人类样本上 (图 1). elife (2016) ncbi
小鼠 单克隆(441)
  • 免疫沉淀; 人类; 图 1c
  • 免疫细胞化学; 人类; 1:400; 图 1a
圣克鲁斯生物技术雄激素受体抗体(Santa-Cruz, sc-7305)被用于被用于免疫沉淀在人类样本上 (图 1c) 和 被用于免疫细胞化学在人类样本上浓度为1:400 (图 1a). Oncotarget (2016) ncbi
小鼠 单克隆(441)
  • 免疫组化-石蜡切片; 小鼠; 1:30; 图 2
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:30 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(441)
  • 免疫沉淀; 人类; 图 8
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫沉淀在人类样本上 (图 8), 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 5). Genes Cancer (2015) ncbi
小鼠 单克隆(441)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc7305)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(441)
  • 免疫组化-石蜡切片; 人类; 图 7
  • 染色质免疫沉淀 ; 人类; 图 4
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 2
  • 免疫组化-石蜡切片; 小鼠; 图 3
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7), 被用于染色质免疫沉淀 在人类样本上 (图 4), 被用于免疫沉淀在人类样本上 (图 2), 被用于免疫印迹在人类样本上 (图 2) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(441)
  • 免疫细胞化学; 人类; 图 2a
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫细胞化学在人类样本上 (图 2a). Oncotarget (2015) ncbi
小鼠 单克隆(441)
  • 免疫沉淀; 人类; 图 1
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫沉淀在人类样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(441)
  • 免疫沉淀; 人类; 图 s3
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫沉淀在人类样本上 (图 s3). Carcinogenesis (2015) ncbi
小鼠 单克隆(441)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术雄激素受体抗体(Santa-Cruz, sc-7305)被用于被用于免疫印迹在人类样本上 (图 5). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(441)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(441)
  • 染色质免疫沉淀 ; 人类
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于染色质免疫沉淀 在人类样本上. BMC Cancer (2014) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz, sc-7305)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫印迹在人类样本上 (图 3). Genes Dev (2013) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(441)
  • 免疫印迹; 人类
圣克鲁斯生物技术雄激素受体抗体(Santa Cruz Biotechnology, sc-7305)被用于被用于免疫印迹在人类样本上. Am J Physiol Endocrinol Metab (2011) ncbi
赛默飞世尔
小鼠 单克隆(AR 441)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔雄激素受体抗体(Thermo Fisher Scientific, Ab-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). J Cosmet Dermatol (2017) ncbi
大鼠 单克隆(AN1-15)
  • 免疫组化-石蜡切片; 大鼠; 图 2a
赛默飞世尔雄激素受体抗体(Thermo Fisher, MA1-150)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2a). Reprod Biol (2016) ncbi
小鼠 单克隆(AR 441)
  • 免疫印迹; 人类; 1:400; 图 3b
赛默飞世尔雄激素受体抗体(Lab Vision Corporation, AR 441)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 3b). J Cell Physiol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔雄激素受体抗体(Affinity BioReagents, PA1-110)被用于. Schizophr Res (2015) ncbi
小鼠 单克隆(AR 441)
  • 免疫印迹; 人类
赛默飞世尔雄激素受体抗体(NeoMarkers-Lab Vision Corporation, AR441)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(AR 441)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔雄激素受体抗体(LabVision, AR441)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Oncol (2014) ncbi
小鼠 单克隆(H7507)
  • 免疫组化; 人类; 图 2
赛默飞世尔雄激素受体抗体(Invitrogen, H7507)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(AR 441)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫组化; 人类; 1:100
赛默飞世尔雄激素受体抗体(Neomarkers, AR 441)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫组化在人类样本上浓度为1:100. Virchows Arch (2006) ncbi
Novus Biologicals
小鼠 单克隆(AR441 + DHTR/882)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1b
Novus Biologicals雄激素受体抗体(Novus, NBP2-44789)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1b). Cancer Sci (2020) ncbi
Active Motif
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
Active Motif雄激素受体抗体(Active Motif, 39781)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Mol Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
Active Motif雄激素受体抗体(Active Motif, 39781)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D6F11)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling Technologies, 5153)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(D6F11)
  • 免疫印迹; 人类; 图 s2a
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling, 5153)被用于被用于免疫印迹在人类样本上 (图 s2a). Theranostics (2018) ncbi
domestic rabbit 单克隆(D6F11)
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling, 5153)被用于被用于免疫印迹在人类样本上 (图 4j). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(D6F11)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 6a
  • 免疫印迹; 人类; 1:2000; 图 5b
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling, 5153)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 6a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 5b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D6F11)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling, D6F11)被用于被用于免疫印迹在人类样本上 (图 2g). Oncogene (2017) ncbi
domestic rabbit 单克隆(D6F11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司雄激素受体抗体(CST, 5153)被用于被用于免疫印迹在人类样本上 (图 2a). Science (2017) ncbi
domestic rabbit 单克隆(D6F11)
  • 免疫组化-石蜡切片; 人类; 图 5a
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell signaling, 5153)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D6F11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell signaling, 5153)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D6F11)
  • 免疫印迹; 人类; 1:2000; 图 1d
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell signaling, D6F11)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D6F11)
  • 免疫组化; 人类; 图 s3
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling, 5153)被用于被用于免疫组化在人类样本上 (图 s3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D6F11)
  • 免疫印迹; 人类; 1:2000; 图 5f
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signalling, 5153)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5f). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D6F11)
  • 免疫组化; 人类; 1:200; 图 e9
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling, 5153S)被用于被用于免疫组化在人类样本上浓度为1:200 (图 e9). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 8
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell signaling, 3202)被用于被用于免疫沉淀在人类样本上 (图 8) 和 被用于免疫印迹在人类样本上 (图 7). Biochem Pharmacol (2016) ncbi
domestic rabbit 单克隆(D6F11)
  • 免疫印迹; 人类; 图 s11
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling, D6F11)被用于被用于免疫印迹在人类样本上 (图 s11). Nat Genet (2015) ncbi
domestic rabbit 单克隆(D6F11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司雄激素受体抗体(Cell Signaling Technology, 5153)被用于被用于免疫印迹在人类样本上 (图 3). Am J Transl Res (2015) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(AR441)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, AR 441)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Cureus (2020) ncbi
小鼠 单克隆(AR441)
  • 免疫组化; 小鼠; 图 4c
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(DAKO, M3562)被用于被用于免疫组化在小鼠样本上 (图 4c). Cell Rep (2018) ncbi
小鼠 单克隆(AR441)
  • 免疫组化-冰冻切片; 人类; 1:400; 图 1e
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, AR441)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 (图 1e). Int J Mol Sci (2017) ncbi
小鼠 单克隆(AR441)
  • 免疫组化-石蜡切片; 人类; 1:10; 图 1
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, AR441)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10 (图 1). Taiwan J Obstet Gynecol (2016) ncbi
小鼠 单克隆(AR441)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, AR441)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3). Nat Genet (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, M3562)被用于被用于免疫组化在人类样本上浓度为1:100. Hum Pathol (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(DAKO, M3562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. J Clin Endocrinol Metab (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, M3562)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Surg Pathol (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(DAKO, AR441)被用于被用于免疫组化在人类样本上浓度为1:50. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫印迹; 人类; 1:1000; 图 1a
  • 免疫印迹; 小鼠; 图 1b
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, AR441)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1b). Mol Oncol (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, AR441)被用于被用于免疫组化在人类样本上. Head Neck Pathol (2015) ncbi
小鼠 单克隆(AR441)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(DakoCytomation, AR441)被用于被用于免疫组化在人类样本上. Head Neck (2014) ncbi
小鼠 单克隆(AR441)
  • 免疫印迹; 人类; 1:500; 图 1
丹科医疗器械技术服务(上海)有限公司雄激素受体抗体(Dako, M3562)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). PLoS ONE (2012) ncbi
碧迪BD
小鼠 单克隆(G122-77)
  • 免疫印迹; 人类; 1:10,000; 图 6s1a
碧迪BD雄激素受体抗体(BD Bioscience, 554226)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6s1a). elife (2019) ncbi
小鼠 单克隆(G122-25)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
  • 免疫组化; domestic rabbit; 图 18
碧迪BD雄激素受体抗体(BD Biosciences, 554224)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100 和 被用于免疫组化在domestic rabbit样本上 (图 18). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(G122-77)
  • 免疫印迹; 人类; 图 3
碧迪BD雄激素受体抗体(BD Bioscience, 554226)被用于被用于免疫印迹在人类样本上 (图 3). Oncoscience (2015) ncbi
小鼠 单克隆(G122-434)
  • 免疫细胞化学; 人类
碧迪BD雄激素受体抗体(BD Biosciences, 554225)被用于被用于免疫细胞化学在人类样本上. Br J Cancer (2015) ncbi
小鼠 单克隆(G122-77)
  • 免疫印迹; 人类
碧迪BD雄激素受体抗体(BD, G122-77)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(AR27)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
徕卡显微系统(上海)贸易有限公司雄激素受体抗体(Novocastra, NCL-AR-318)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(AR27)
  • 免疫组化; 人类; 1:50
徕卡显微系统(上海)贸易有限公司雄激素受体抗体(Novacastra, 318-CE)被用于被用于免疫组化在人类样本上浓度为1:50. Clin Cancer Res (2016) ncbi
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
徕卡显微系统(上海)贸易有限公司雄激素受体抗体(Novocastra, NCL-AR-2F12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Asian J Androl (2015) ncbi
小鼠 单克隆(AR27)
  • 免疫组化-石蜡切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司雄激素受体抗体(Novocatra Laboratories, AR27)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Malays J Pathol (2014) ncbi
文章列表
  1. Mumtaz S, Hussain Z, Janjua T, Hashmi A, Qureshi S, Tariq M, et al. Androgen Receptor: Evaluation and Correlation with Recurrence and Clinicopathological Parameters in Papillary Urothelial Carcinomas of the Urinary Bladder. Cureus. 2020;12:e6715 pubmed 出版商
  2. Zhao J, Zhang Y, Liu X, Zhu F, Xie F, Jiang C, et al. RNA-binding protein Musashi2 stabilizing androgen receptor drives prostate cancer progression. Cancer Sci. 2020;111:369-382 pubmed 出版商
  3. Munkley J, Li L, Krishnan S, Hysenaj G, Scott E, Dalgliesh C, et al. Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer. elife. 2019;8: pubmed 出版商
  4. Mao N, Gao D, Hu W, Hieronymus H, Wang S, Lee Y, et al. Aberrant Expression of ERG Promotes Resistance to Combined PI3K and AR Pathway Inhibition through Maintenance of AR Target Genes. Mol Cancer Ther. 2019;18:1577-1586 pubmed 出版商
  5. Adams E, Karthaus W, Hoover E, Liu D, Gruet A, Zhang Z, et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature. 2019;571:408-412 pubmed 出版商
  6. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  7. Lee E, Wongvipat J, Choi D, Wang P, Lee Y, Zheng D, et al. GREB1 amplifies androgen receptor output in human prostate cancer and contributes to antiandrogen resistance. elife. 2019;8: pubmed 出版商
  8. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  9. Fan L, Zhang F, Xu S, Cui X, Hussain A, Fazli L, et al. Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proc Natl Acad Sci U S A. 2018;115:E4584-E4593 pubmed 出版商
  10. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  11. Li N, Truong S, Nouri M, Moore J, Al Nakouzi N, Lubik A, et al. Non-canonical activation of hedgehog in prostate cancer cells mediated by the interaction of transcriptionally active androgen receptor proteins with Gli3. Oncogene. 2018;37:2313-2325 pubmed 出版商
  12. Zeng J, Liu W, Fan Y, He D, Li L. PrLZ increases prostate cancer docetaxel resistance by inhibiting LKB1/AMPK-mediated autophagy. Theranostics. 2018;8:109-123 pubmed 出版商
  13. Shukla S, Cyrta J, Murphy D, Walczak E, Ran L, Agrawal P, et al. Aberrant Activation of a Gastrointestinal Transcriptional Circuit in Prostate Cancer Mediates Castration Resistance. Cancer Cell. 2017;32:792-806.e7 pubmed 出版商
  14. Mahajan K, Malla P, Lawrence H, Chen Z, Kumar Sinha C, Malik R, et al. ACK1/TNK2 Regulates Histone H4 Tyr88-phosphorylation and AR Gene Expression in Castration-Resistant Prostate Cancer. Cancer Cell. 2017;31:790-803.e8 pubmed 出版商
  15. Kristiansen I, Stephan C, Jung K, Dietel M, Rieger A, Tolkach Y, et al. Sensitivity of HOXB13 as a Diagnostic Immunohistochemical Marker of Prostatic Origin in Prostate Cancer Metastases: Comparison to PSA, Prostein, Androgen Receptor, ERG, NKX3.1, PSAP, and PSMA. Int J Mol Sci. 2017;18: pubmed 出版商
  16. White M, Lin C, Rajapakshe K, Dong J, Shi Y, Tsouko E, et al. Glutamine Transporters Are Targets of Multiple Oncogenic Signaling Pathways in Prostate Cancer. Mol Cancer Res. 2017;15:1017-1028 pubmed 出版商
  17. Frank S, Berger P, Ljungman M, Miranti C. Human prostate luminal cell differentiation requires NOTCH3 induction by p38-MAPK and MYC. J Cell Sci. 2017;130:1952-1964 pubmed 出版商
  18. Ashkenazi A, Bento C, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature. 2017;545:108-111 pubmed 出版商
  19. Xue M, Liu H, Zhang L, Chang H, Liu Y, Du S, et al. Computational identification of mutually exclusive transcriptional drivers dysregulating metastatic microRNAs in prostate cancer. Nat Commun. 2017;8:14917 pubmed 出版商
  20. Youssef S, El Khateeb E, Aly D, Moussa M. Striae distensae: Immunohistochemical assessment of hormone receptors in multigravida and nulligravida. J Cosmet Dermatol. 2017;16:279-286 pubmed 出版商
  21. Kumar A, Dumasia K, Deshpande S, Balasinor N. Direct regulation of genes involved in sperm release by estrogen and androgen through their receptors and coregulators. J Steroid Biochem Mol Biol. 2017;171:66-74 pubmed 出版商
  22. Ibrahim M, Elwan W. Role of topical dehydroepiandrosterone in ameliorating isotretinoin-induced Meibomian gland dysfunction in adult male albino rat. Ann Anat. 2017;211:78-87 pubmed 出版商
  23. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  24. Hashimoto Y, Shiina M, Kato T, Yamamura S, Tanaka Y, Majid S, et al. The role of miR-24 as a race related genetic factor in prostate cancer. Oncotarget. 2017;8:16581-16593 pubmed 出版商
  25. Tse B, Volpert M, Ratther E, Stylianou N, Nouri M, McGowan K, et al. Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene. 2017;36:3417-3427 pubmed 出版商
  26. Mu P, Zhang Z, Benelli M, Karthaus W, Hoover E, Chen C, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84-88 pubmed 出版商
  27. Shiina M, Hashimoto Y, Kato T, Yamamura S, Tanaka Y, Majid S, et al. Differential expression of miR-34b and androgen receptor pathway regulate prostate cancer aggressiveness between African-Americans and Caucasians. Oncotarget. 2017;8:8356-8368 pubmed 出版商
  28. Polanco M, Parodi S, Piol D, Stack C, Chivet M, Contestabile A, et al. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy. Sci Transl Med. 2016;8:370ra181 pubmed 出版商
  29. Abdelrazek H, Helmy S, Elsayed D, Ebaid H, Mohamed R. Ameliorating effects of green tea extract on cadmium induced reproductive injury in male Wistar rats with respect to androgen receptors and caspase- 3. Reprod Biol. 2016;16:300-308 pubmed 出版商
  30. Tamura K, Kobayashi Y, Hirooka A, Takanami K, Oti T, Jogahara T, et al. Identification of the sexually dimorphic gastrin-releasing peptide system in the lumbosacral spinal cord that controls male reproductive function in the mouse and Asian house musk shrew (Suncus murinus). J Comp Neurol. 2017;525:1586-1598 pubmed 出版商
  31. Loverro G, Resta L, Dellino M, Edoardo D, Cascarano M, Loverro M, et al. Uterine and ovarian changes during testosterone administration in young female-to-male transsexuals. Taiwan J Obstet Gynecol. 2016;55:686-691 pubmed 出版商
  32. Ho T, Huang J, Zhou N, Zhang Z, Koirala P, Zhou X, et al. Regulation of PCGEM1 by p54/nrb in prostate cancer. Sci Rep. 2016;6:34529 pubmed 出版商
  33. Depaolo J, Wang Z, Guo J, Zhang G, Qian C, Zhang H, et al. Acetylation of androgen receptor by ARD1 promotes dissociation from HSP90 complex and prostate tumorigenesis. Oncotarget. 2016;7:71417-71428 pubmed 出版商
  34. Shen H, Zhao L, Feng X, Xu C, Li C, Niu Y. Lin28A activates androgen receptor via regulation of c-myc and promotes malignancy of ER-/Her2+ breast cancer. Oncotarget. 2016;7:60407-60418 pubmed 出版商
  35. Lu H, Wang T, Li J, Fedele C, Liu Q, Zhang J, et al. ?v?6 Integrin Promotes Castrate-Resistant Prostate Cancer through JNK1-Mediated Activation of Androgen Receptor. Cancer Res. 2016;76:5163-74 pubmed 出版商
  36. Liu Y, Wang K, Xing H, Zhai X, Wang L, Wang W. Attempt towards a novel classification of triple-negative breast cancer using immunohistochemical markers. Oncol Lett. 2016;12:1240-1256 pubmed
  37. Xiao L, Feng Q, Zhang Z, Wang F, Lydon J, Ittmann M, et al. The essential role of GATA transcription factors in adult murine prostate. Oncotarget. 2016;7:47891-47903 pubmed 出版商
  38. Hatem R, El Botty R, Chateau Joubert S, Servely J, Labiod D, de Plater L, et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. 2016;7:48206-48219 pubmed 出版商
  39. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science. 2016;352:1576-80 pubmed 出版商
  40. Bott L, Salomons F, Maric D, Liu Y, Merry D, Fischbeck K, et al. The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/C(Cdh1) ubiquitin ligase complex. Sci Rep. 2016;6:27703 pubmed 出版商
  41. Lu Y, Liu Y, Liao S, Tu W, Shen Y, Yan Y, et al. Epigenetic modifications promote the expression of the orphan nuclear receptor NR0B1 in human lung adenocarcinoma cells. Oncotarget. 2016;7:43162-43176 pubmed 出版商
  42. Kim J, Yu J, Abdulkadir S, Chakravarti D. KAT8 Regulates Androgen Signaling in Prostate Cancer Cells. Mol Endocrinol. 2016;30:925-36 pubmed 出版商
  43. Okato A, Goto Y, Kurozumi A, Kato M, Kojima S, Matsushita R, et al. Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer. Int J Oncol. 2016;49:111-22 pubmed 出版商
  44. Kaushik A, Shojaie A, Panzitt K, Sonavane R, Venghatakrishnan H, Manikkam M, et al. Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate cancer. Nat Commun. 2016;7:11612 pubmed 出版商
  45. Mounir Z, Korn J, Westerling T, Lin F, Kirby C, Schirle M, et al. ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor. elife. 2016;5: pubmed 出版商
  46. Feng Z, Wen H, Bi R, Ju X, Chen X, Yang W, et al. A clinically applicable molecular classification for high-grade serous ovarian cancer based on hormone receptor expression. Sci Rep. 2016;6:25408 pubmed 出版商
  47. Yard B, Adams D, Chie E, Tamayo P, Battaglia J, Gopal P, et al. A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nat Commun. 2016;7:11428 pubmed 出版商
  48. Zhu M, Bakhru P, Conley B, Nelson J, Free M, Martin A, et al. Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nat Commun. 2016;7:11350 pubmed 出版商
  49. Destouches D, Sader M, Terry S, Marchand C, Maillé P, Soyeux P, et al. Implication of NPM1 phosphorylation and preclinical evaluation of the nucleoprotein antagonist N6L in prostate cancer. Oncotarget. 2016;7:69397-69411 pubmed 出版商
  50. Kumar P, Sharad S, Petrovics G, Mohamed A, Dobi A, Sreenath T, et al. Loss of miR-449a in ERG-associated prostate cancer promotes the invasive phenotype by inducing SIRT1. Oncotarget. 2016;7:22791-806 pubmed 出版商
  51. Olokpa E, Bolden A, Stewart L. The Androgen Receptor Regulates PPAR? Expression and Activity in Human Prostate Cancer Cells. J Cell Physiol. 2016;231:2664-72 pubmed 出版商
  52. Johnson D, Hooker E, Luong R, Yu E, He Y, Gonzalgo M, et al. Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice. PLoS ONE. 2016;11:e0148851 pubmed 出版商
  53. Varešlija D, McBryan J, Fagan A, Redmond A, Hao Y, Sims A, et al. Adaptation to AI Therapy in Breast Cancer Can Induce Dynamic Alterations in ER Activity Resulting in Estrogen-Independent Metastatic Tumors. Clin Cancer Res. 2016;22:2765-77 pubmed 出版商
  54. Azakami D, Nakahira R, Kato Y, Michishita M, Onozawa E, Bonkobara M, et al. The canine prostate cancer cell line CHP-1 shows over-expression of the co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α. Vet Comp Oncol. 2017;15:557-562 pubmed 出版商
  55. Shu S, Lin C, He H, Witwicki R, Tabassum D, Roberts J, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529:413-417 pubmed 出版商
  56. Mehraein Ghomi F, Church D, Schreiber C, Weichmann A, Basu H, Wilding G. Inhibitor of p52 NF-κB subunit and androgen receptor (AR) interaction reduces growth of human prostate cancer cells by abrogating nuclear translocation of p52 and phosphorylated AR(ser81). Genes Cancer. 2015;6:428-44 pubmed
  57. Hagberg Thulin M, Nilsson M, Thulin P, Céraline J, Ohlsson C, Damber J, et al. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis. Mol Cell Endocrinol. 2016;422:182-191 pubmed 出版商
  58. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  59. Munkley J, Livermore K, McClurg U, Kalna G, Knight B, McCullagh P, et al. The PI3K regulatory subunit gene PIK3R1 is under direct control of androgens and repressed in prostate cancer cells. Oncoscience. 2015;2:755-64 pubmed
  60. Pomerantz M, Li F, Takeda D, Lenci R, Chonkar A, Chabot M, et al. The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat Genet. 2015;47:1346-51 pubmed 出版商
  61. Qiu M, Fan Q, Zhu Z, Kwan S, Chen L, Chen J, et al. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1. Oncotarget. 2015;6:31702-20 pubmed 出版商
  62. Krakstad C, Tangen I, Hoivik E, Halle M, Berg A, Werner H, et al. ATAD2 overexpression links to enrichment of B-MYB-translational signatures and development of aggressive endometrial carcinoma. Oncotarget. 2015;6:28440-52 pubmed 出版商
  63. Adachi K, Miki Y, Saito R, Hata S, Yamauchi M, Mikami Y, et al. Intracrine steroid production and mammalian target of rapamycin pathways in pulmonary lymphangioleiomyomatosis. Hum Pathol. 2015;46:1685-93 pubmed 出版商
  64. Fu Y, Cruz Monserrate Z, Helen Lin H, Chung Y, Ji B, Lin S, et al. Ductal activation of oncogenic KRAS alone induces sarcomatoid phenotype. Sci Rep. 2015;5:13347 pubmed 出版商
  65. Mieritz M, Rakêt L, Hagen C, Nielsen J, Talman M, Petersen J, et al. A Longitudinal Study of Growth, Sex Steroids, and IGF-1 in Boys With Physiological Gynecomastia. J Clin Endocrinol Metab. 2015;100:3752-9 pubmed 出版商
  66. Nilsen T, Thorsen L, FossÃ¥ S, Wiig M, Kirkegaard C, Skovlund E, et al. Effects of strength training on muscle cellular outcomes in prostate cancer patients on androgen deprivation therapy. Scand J Med Sci Sports. 2016;26:1026-35 pubmed 出版商
  67. Liu X, Chen X, Rycaj K, Chao H, Deng Q, Jeter C, et al. Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget. 2015;6:23959-86 pubmed
  68. Morris R, Purves Tyson T, Weickert C, Rothmond D, Lenroot R, Weickert T. Testosterone and reward prediction-errors in healthy men and men with schizophrenia. Schizophr Res. 2015;168:649-60 pubmed 出版商
  69. Chen S, Okada M, Nakato R, Izumi K, Bando M, Shirahige K. The Deubiquitinating Enzyme USP7 Regulates Androgen Receptor Activity by Modulating Its Binding to Chromatin. J Biol Chem. 2015;290:21713-23 pubmed 出版商
  70. Li X, Cui P, Jiang H, Guo Y, Pishdari B, Hu M, et al. Reversing the reduced level of endometrial GLUT4 expression in polycystic ovary syndrome: a mechanistic study of metformin action. Am J Transl Res. 2015;7:574-86 pubmed
  71. Khanna A, Rane J, Kivinummi K, Urbanucci A, Helenius M, Tolonen T, et al. CIP2A is a candidate therapeutic target in clinically challenging prostate cancer cell populations. Oncotarget. 2015;6:19661-70 pubmed
  72. Sun F, Indran I, Zhang Z, Tan M, Li Y, Lim Z, et al. A novel prostate cancer therapeutic strategy using icaritin-activated arylhydrocarbon-receptor to co-target androgen receptor and its splice variants. Carcinogenesis. 2015;36:757-68 pubmed 出版商
  73. Lee S, Luong R, Johnson D, Cunha G, Rivina L, Gonzalgo M, et al. Androgen signaling is a confounding factor for β-catenin-mediated prostate tumorigenesis. Oncogene. 2016;35:702-14 pubmed 出版商
  74. Toropainen S, Malinen M, Kaikkonen S, Rytinki M, Jääskeläinen T, Sahu B, et al. SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Res. 2015;43:848-61 pubmed 出版商
  75. Moser B, Schiefer A, Janik S, Marx A, Prosch H, Pohl W, et al. Adenocarcinoma of the thymus, enteric type: report of 2 cases, and proposal for a novel subtype of thymic carcinoma. Am J Surg Pathol. 2015;39:541-8 pubmed 出版商
  76. Tanaka S, Miki Y, Hashimoto C, Takagi K, Doe Z, Li B, et al. The role of 5α-reductase type 1 associated with intratumoral dihydrotestosterone concentrations in human endometrial carcinoma. Mol Cell Endocrinol. 2015;401:56-64 pubmed 出版商
  77. Kuo P, Huang C, Lee C, Chang H, Hsieh S, Chung Y, et al. BCAS2 promotes prostate cancer cells proliferation by enhancing AR mRNA transcription and protein stability. Br J Cancer. 2015;112:391-402 pubmed 出版商
  78. Cano L, Lavery D, Sin S, Spanjaard E, Brooke G, Tilman J, et al. The co-chaperone p23 promotes prostate cancer motility and metastasis. Mol Oncol. 2015;9:295-308 pubmed 出版商
  79. Megas G, Chrisofos M, Anastasiou I, Tsitlidou A, Choreftaki T, Deliveliotis C. Estrogen receptor (α and β) but not androgen receptor expression is correlated with recurrence, progression and survival in post prostatectomy T3N0M0 locally advanced prostate cancer in an urban Greek population. Asian J Androl. 2015;17:98-105 pubmed 出版商
  80. Kuroda N, Fujishima N, Hayes M, Moritani S, Ichihara S. Encapsulated papillary carcinoma, apocrine type, of the breast. Malays J Pathol. 2014;36:139-43 pubmed
  81. Valkenburg K, Yu X, De Marzo A, Spiering T, Matusik R, Williams B. Activation of Wnt/β-catenin signaling in a subpopulation of murine prostate luminal epithelial cells induces high grade prostate intraepithelial neoplasia. Prostate. 2014;74:1506-20 pubmed 出版商
  82. Thompson L, Bauer J, Chiosea S, McHugh J, Seethala R, Miettinen M, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9:181-95 pubmed 出版商
  83. Wosnitzer M, Mielnik A, Dabaja A, Robinson B, Schlegel P, Paduch D. Ubiquitin Specific Protease 26 (USP26) expression analysis in human testicular and extragonadal tissues indicates diverse action of USP26 in cell differentiation and tumorigenesis. PLoS ONE. 2014;9:e98638 pubmed 出版商
  84. Qiu M, Bao W, Wang J, Yang T, He X, Liao Y, et al. FOXA1 promotes tumor cell proliferation through AR involving the Notch pathway in endometrial cancer. BMC Cancer. 2014;14:78 pubmed 出版商
  85. Chen C, Brummet J, Lonstein J, Jordan C, Breedlove S. New knockout model confirms a role for androgen receptors in regulating anxiety-like behaviors and HPA response in mice. Horm Behav. 2014;65:211-8 pubmed 出版商
  86. Samaan S, Tranchevent L, Dardenne E, Polay Espinoza M, Zonta E, Germann S, et al. The Ddx5 and Ddx17 RNA helicases are cornerstones in the complex regulatory array of steroid hormone-signaling pathways. Nucleic Acids Res. 2014;42:2197-207 pubmed 出版商
  87. Lyu S, Yu Q, Ying G, Wang S, Wang Y, Zhang J, et al. Androgen receptor decreases CMYC and KRAS expression by upregulating let-7a expression in ER-, PR-, AR+ breast cancer. Int J Oncol. 2014;44:229-37 pubmed 出版商
  88. Kusafuka K, Onitsuka T, Muramatsu K, Miki T, Murai C, Suda T, et al. Salivary duct carcinoma with rhabdoid features: report of 2 cases with immunohistochemical and ultrastructural analyses. Head Neck. 2014;36:E28-35 pubmed 出版商
  89. Ni M, Chen Y, Fei T, Li D, Lim E, Liu X, et al. Amplitude modulation of androgen signaling by c-MYC. Genes Dev. 2013;27:734-48 pubmed 出版商
  90. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  91. Sarkar S, Brautigan D, Parsons S, Larner J. Androgen receptor degradation by the E3 ligase CHIP modulates mitotic arrest in prostate cancer cells. Oncogene. 2014;33:26-33 pubmed 出版商
  92. Lei K, Chen L, Georgiou E, Sooranna S, Khanjani S, Brosens J, et al. Progesterone acts via the nuclear glucocorticoid receptor to suppress IL-1?-induced COX-2 expression in human term myometrial cells. PLoS ONE. 2012;7:e50167 pubmed 出版商
  93. Coffey K, Blackburn T, Cook S, Golding B, Griffin R, Hardcastle I, et al. Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS ONE. 2012;7:e45539 pubmed 出版商
  94. Hsu F, Yang M, Lin E, Tseng C, Lin H. The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells. Am J Physiol Endocrinol Metab. 2011;300:E902-8 pubmed 出版商
  95. Asioli S, Marucci G, Ficarra G, Stephens M, Foschini M, Ellis I, et al. Polymorphous adenocarcinoma of the breast. Report of three cases. Virchows Arch. 2006;448:29-34 pubmed