这是一篇来自已证抗体库的有关人类 β微管蛋白 (beta-tubulin) 的综述,是根据87篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合β微管蛋白 抗体。
β微管蛋白 同义词: tubulin beta-1 chain; tubulin, beta 1

赛默飞世尔
小鼠 单克隆(BT7R)
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔β微管蛋白抗体(Thermo Scientific, MA5-16308)被用于被用于免疫印迹在小鼠样品上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔β微管蛋白抗体(Thermo Scientific, MA5-16308)被用于被用于免疫印迹在人类样品上 (图 3a). Autophagy (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:4000; 图 8a
赛默飞世尔β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在小鼠样品上浓度为1:4000 (图 8a). J Physiol (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 5d
赛默飞世尔β微管蛋白抗体(生活技术, 1559509A)被用于被用于免疫印迹在人类样品上 (图 5d). J Biol Chem (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1e
赛默飞世尔β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 s1e). Neurotherapeutics (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 5
赛默飞世尔β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在人类样品上 (图 5). Reprod Biol (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 3b
赛默飞世尔β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在人类样品上 (图 3b). J Hematol Oncol (2016) ncbi
小鼠 单克隆(AA10)
  • 免疫细胞化学; 人类; 1:1000; 图 4d
赛默飞世尔β微管蛋白抗体(Novex, 480011)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 4d). Mol Neurobiol (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠; 1:500; 图 4
赛默飞世尔β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 大鼠; 1:5000; 表 1
赛默飞世尔β微管蛋白抗体(Thermo Fisher, MA5-16308)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (表 1). J Nutr Biochem (2016) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 人类; 1:10,000; 图 1
赛默飞世尔β微管蛋白抗体(Thermo Scientific, MA5-16308)被用于被用于免疫印迹在人类样品上浓度为1:10,000 (图 1). Cancer Res (2016) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛默飞世尔β微管蛋白抗体(ThermoFisher, BT7R)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 4). PLoS Genet (2016) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 图 4
赛默飞世尔β微管蛋白抗体(生活技术, 32-2600)被用于被用于免疫印迹在大鼠样品上 (图 4). J Neurotrauma (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1s1
赛默飞世尔β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 1s1). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 面包酵母; 图 6
赛默飞世尔β微管蛋白抗体(ThermoFisher Scientific, PA5-16863)被用于被用于免疫印迹在面包酵母样品上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(TBN06 (Tub 2.5))
赛默飞世尔β微管蛋白抗体(Thermo Fisher Scientific, MA5-11732)被用于. J Cell Biol (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠
赛默飞世尔β微管蛋白抗体(生活技术, 32?C2600)被用于被用于免疫细胞化学在小鼠样品上. Eur J Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔β微管蛋白抗体(Thermo Scientific, PA1-16947)被用于被用于免疫印迹在小鼠样品上 (图 3). Chem Pharm Bull (Tokyo) (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类
赛默飞世尔β微管蛋白抗体(Invitrogen, 32?C2600)被用于被用于免疫印迹在人类样品上. Clin Transl Gastroenterol (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 人类; 1:500; 图 1,4
赛默飞世尔β微管蛋白抗体(生活技术, 32-C2600)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 1,4). Sci Rep (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 s5
赛默飞世尔β微管蛋白抗体(生活技术, 32-2600)被用于被用于免疫印迹在人类样品上 (图 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 0.5 ng/ml
赛默飞世尔β微管蛋白抗体(生活技术, 32-2600)被用于被用于免疫印迹在大鼠样品上浓度为0.5 ng/ml. J Cell Physiol (2015) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 大鼠; 1:5000; 图 4a
赛默飞世尔β微管蛋白抗体(Thermo, BT7R)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 4a). Exp Eye Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:10000
赛默飞世尔β微管蛋白抗体(Thermo Fisher Scientific, PA1-41331)被用于被用于免疫印迹在大鼠样品上浓度为1:10000. Mol Med (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠
赛默飞世尔β微管蛋白抗体(生活技术, 32-2600)被用于被用于免疫印迹在小鼠样品上. J Cereb Blood Flow Metab (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔β微管蛋白抗体(Thermo Scientific, PA1-16947)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(AA10)
  • 免疫印迹; 小鼠; 1:5000
赛默飞世尔β微管蛋白抗体(生活技术, 480011)被用于被用于免疫印迹在小鼠样品上浓度为1:5000. PLoS ONE (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔β微管蛋白抗体(Invitrogen, 322600)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Med (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔β微管蛋白抗体(ZYMED, 22833)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Front Cell Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛默飞世尔β微管蛋白抗体(Thermo Fischer Scientific, PA1-41331)被用于被用于免疫印迹在人类样品上浓度为1:1000. Am J Pathol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔β微管蛋白抗体(Thermo, RB-9249-PO)被用于被用于免疫印迹在小鼠样品上浓度为1:2000. Hum Mol Genet (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔β微管蛋白抗体(Thermo Scientific Pierce Antibodies, PA1-16947)被用于被用于免疫印迹在人类样品上. Cereb Cortex (2016) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 狗
赛默飞世尔β微管蛋白抗体(Zymed, 32-2600)被用于被用于免疫印迹在狗样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. BMC Neurosci (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 2
赛默飞世尔β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在人类样品上 (图 2). Nat Commun (2014) ncbi
兔 多克隆
赛默飞世尔β微管蛋白抗体(Thermo Fisher Scientific, RB-9249)被用于. Biol Open (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠
赛默飞世尔β微管蛋白抗体(生活技术, 32-2600)被用于被用于免疫印迹在大鼠样品上. Brain Res (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔β微管蛋白抗体(Invitrogen, 2-28-33)被用于被用于免疫组化在小鼠样品上浓度为1:300. Brain Struct Funct (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 人类
赛默飞世尔β微管蛋白抗体(Novex, 32-2600)被用于被用于免疫细胞化学在人类样品上. Histochem Cell Biol (2014) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 小鼠; 1:3000
赛默飞世尔β微管蛋白抗体(Pierce, MA5-16308)被用于被用于免疫印迹在小鼠样品上浓度为1:3000. Front Neurosci (2013) ncbi
小鼠 单克隆(AA10)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔β微管蛋白抗体(Novex, 480011)被用于被用于免疫细胞化学在人类样品上浓度为1:1000. Oxid Med Cell Longev (2013) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:2000; 图 3
赛默飞世尔β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 3). J Biol Chem (2013) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 1
赛默飞世尔β微管蛋白抗体(生活技术, clone 2-28-33)被用于被用于免疫印迹在人类样品上 (图 1). Int J Cancer (2013) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 4, 5
赛默飞世尔β微管蛋白抗体(Zymed, 32-2600)被用于被用于免疫印迹在人类样品上 (图 4, 5). Exp Cell Res (2011) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 2
赛默飞世尔β微管蛋白抗体(Thermo Fisher, RB-9249-P0)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 2). PLoS ONE (2011) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔β微管蛋白抗体(Zymed Laboratories, 32-2600)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). Neuro Oncol (2011) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔β微管蛋白抗体(Zymed Laboratories, 32-2600)被用于被用于免疫印迹在小鼠样品上 (图 3). Free Radic Biol Med (2009) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; African green monkey; 图 2
赛默飞世尔β微管蛋白抗体(Invitrogen, 2-28-33)被用于被用于免疫细胞化学在African green monkey样品上 (图 2). Angew Chem Int Ed Engl (2008) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 8
赛默飞世尔β微管蛋白抗体(Zymed, 32-2600)被用于被用于免疫印迹在人类样品上 (图 8). J Invest Dermatol (2008) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔β微管蛋白抗体(Zymed Laboratories, 2-28-33)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Biochim Biophys Acta (2007) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔β微管蛋白抗体(生活技术, 32-2600)被用于被用于免疫印迹在小鼠样品上 (图 6). J Immunol (2006) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 5
赛默飞世尔β微管蛋白抗体(Zymed, 2-28-33)被用于被用于免疫印迹在人类样品上 (图 5). J Biol Chem (2004) ncbi
西格玛奥德里奇
小鼠 单克隆(D66)
  • 免疫印迹; great pond snail; 1:2000; 图 2
西格玛奥德里奇β微管蛋白抗体(Sigma, T0198)被用于被用于免疫印迹在great pond snail样品上浓度为1:2000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇β微管蛋白抗体(Sigma, T0198)被用于被用于免疫印迹在小鼠样品上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 小鼠
西格玛奥德里奇β微管蛋白抗体(Sigma, 2-28-33)被用于被用于免疫印迹在小鼠样品上. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(2-28-33)
  • 免疫细胞化学; 人类; 图 4
西格玛奥德里奇β微管蛋白抗体(Sigma, T5293)被用于被用于免疫细胞化学在人类样品上 (图 4). J Biol Chem (2016) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇β微管蛋白抗体(Sigma, T5293)被用于被用于免疫印迹在人类样品上 (图 3). Hum Mutat (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇β微管蛋白抗体(Sigma, T0198)被用于被用于免疫印迹在小鼠样品上 (图 1). J Neurosci (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇β微管蛋白抗体(Sigma, T0198)被用于被用于免疫印迹在人类样品上 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠; 1:5000; 图 2
西格玛奥德里奇β微管蛋白抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 2). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠; 图 s2
西格玛奥德里奇β微管蛋白抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样品上 (图 s2). Autophagy (2015) ncbi
小鼠 单克隆(2-28-33)
  • 免疫细胞化学; 人类; 1:100; 图 s4d
西格玛奥德里奇β微管蛋白抗体(Sigma, T5293)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 s4d). Nat Commun (2015) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇β微管蛋白抗体(Sigma, T5293)被用于被用于免疫印迹在人类样品上 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(D66)
  • 免疫沉淀; 人类
西格玛奥德里奇β微管蛋白抗体(Sigma-Aldrich, T0198)被用于被用于免疫沉淀在人类样品上. J Cell Sci (2015) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 大鼠; 图 2
西格玛奥德里奇β微管蛋白抗体(T5293, T5293)被用于被用于免疫印迹在大鼠样品上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(D66)
  • 免疫细胞化学; 大鼠; 1:1000
西格玛奥德里奇β微管蛋白抗体(Sigma, T0198)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠; 1:10000
西格玛奥德里奇β微管蛋白抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样品上浓度为1:10000. J Cell Physiol (2016) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇β微管蛋白抗体(Sigma-Aldrich, T5293)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Neuroscience (2015) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类
西格玛奥德里奇β微管蛋白抗体(Sigma, T0198)被用于被用于免疫印迹在人类样品上. Oncogene (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇β微管蛋白抗体(Sigma, T0198)被用于被用于免疫印迹在人类样品上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类; 图  3
西格玛奥德里奇β微管蛋白抗体(Sigma, T0198)被用于被用于免疫印迹在人类样品上 (图  3). Clin Exp Metastasis (2015) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 人类; 1:2000; 图 2b
西格玛奥德里奇β微管蛋白抗体(sigma, T5293)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 2b). Nat Commun (2015) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 人类; 1:1000; 图 1d
西格玛奥德里奇β微管蛋白抗体(Sigma, T5293)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1d). Mol Biol Cell (2015) ncbi
小鼠 单克隆(2-28-33)
  • 免疫细胞化学; 人类; 图 s2
西格玛奥德里奇β微管蛋白抗体(Sigma, 2-28-33)被用于被用于免疫细胞化学在人类样品上 (图 s2). J Cell Sci (2014) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 1:4000
西格玛奥德里奇β微管蛋白抗体(Sigma, T-0198)被用于被用于免疫印迹在小鼠样品上浓度为1:4000. Free Radic Biol Med (2014) ncbi
小鼠 单克隆(D66)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇β微管蛋白抗体(Sigma-Aldrich, D66)被用于被用于免疫细胞化学在小鼠样品上 和 被用于免疫印迹在小鼠样品上. Biol Open (2014) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 人类
西格玛奥德里奇β微管蛋白抗体(Sigma-Aldrich, 22833)被用于被用于免疫印迹在人类样品上. Oxid Med Cell Longev (2014) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 小鼠; 1:15000
西格玛奥德里奇β微管蛋白抗体(Sigma, T5293)被用于被用于免疫印迹在小鼠样品上浓度为1:15000. Genes Brain Behav (2014) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠
西格玛奥德里奇β微管蛋白抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样品上. Physiol Behav (2014) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇β微管蛋白抗体(Sigma-Aldrich, 22833)被用于被用于免疫印迹在小鼠样品上浓度为1:2000. Neuro Oncol (2009) ncbi
默克密理博中国
小鼠 单克隆(2G10)
  • 免疫细胞化学; 大鼠; 1:500; 图 1
默克密理博中国β微管蛋白抗体(Millipore, 05-559)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(2G10)
  • 免疫印迹; 小鼠; 图 7
默克密理博中国β微管蛋白抗体(Millipore, 05-559)被用于被用于免疫印迹在小鼠样品上 (图 7). Autophagy (2015) ncbi
小鼠 单克隆(2G10)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 4d
默克密理博中国β微管蛋白抗体(Millipore, 05-559)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000 (图 4d). BMC Neurosci (2015) ncbi
小鼠 单克隆(2G10)
  • 免疫印迹; 猕猴; 1:20000
默克密理博中国β微管蛋白抗体(Millipore, 05-559)被用于被用于免疫印迹在猕猴样品上浓度为1:20000. Neurosci Lett (2014) ncbi
小鼠 单克隆(2G10)
  • immunohistochemistry - free floating section; 小鼠; 1:1000
默克密理博中国β微管蛋白抗体(Millipore, 05-559)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 大鼠; 1:400
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国β微管蛋白抗体(Millipore, 05-559)被用于被用于免疫细胞化学在大鼠样品上浓度为1:400 和 被用于免疫印迹在大鼠样品上浓度为1:1000. Biomaterials (2013) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 人类; 1:200
默克密理博中国β微管蛋白抗体(Millipore, 05-559)被用于被用于免疫细胞化学在人类样品上浓度为1:200. J Biol Chem (2013) ncbi
小鼠 单克隆(2G10)
  • 免疫印迹; 小鼠
默克密理博中国β微管蛋白抗体(Millipore, 05-559)被用于被用于免疫印迹在小鼠样品上. Mol Neurobiol (2013) ncbi
文章列表
  1. Nandi S, Mishra P. H2S and homocysteine control a novel feedback regulation of cystathionine beta synthase and cystathionine gamma lyase in cardiomyocytes. Sci Rep. 2017;7:3639 pubmed 出版商
  2. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed 出版商
  3. García Castañeda M, Vega A, Rodríguez R, Montiel Jaen M, Cisneros B, Zarain Herzberg A, et al. Functional impact of an oculopharyngeal muscular dystrophy mutation in PABPN1. J Physiol. 2017;595:4167-4187 pubmed 出版商
  4. Gao S, Geng C, Song T, Lin X, Liu J, Cai Z, et al. Activation of c-Abl Kinase Potentiates the Anti-myeloma Drug Lenalidomide by Promoting DDA1 Protein Recruitment to the CRL4 Ubiquitin Ligase. J Biol Chem. 2017;292:3683-3691 pubmed 出版商
  5. Aggarwal T, Hoeber J, Ivert P, Vasylovska S, Kozlova E. Boundary Cap Neural Crest Stem Cells Promote Survival of Mutant SOD1 Motor Neurons. Neurotherapeutics. 2017;14:773-783 pubmed 出版商
  6. Alcoba D, Schneider J, Arruda L, Martiny P, Capp E, von Eye Corleta H, et al. Brilliant cresyl blue staining does not present cytotoxic effects on human luteinized follicular cells, according to gene/protein expression, as well as to cytotoxicity tests. Reprod Biol. 2017;17:60-68 pubmed 出版商
  7. Wang W, Ye H, Wei P, Han B, He B, Chen Z, et al. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol. 2016;9:117 pubmed
  8. Kunzler A, Zeidán Chuliá F, Gasparotto J, Girardi C, Klafke K, Petiz L, et al. Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol. 2017;54:6903-6916 pubmed 出版商
  9. Tang Y, Hendriks J, Gensch T, Dai L, Li J. Automatic Bayesian single molecule identification for localization microscopy. Sci Rep. 2016;6:33521 pubmed 出版商
  10. Dias T, Alves M, Rato L, Casal S, Silva B, Oliveira P. White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality. J Nutr Biochem. 2016;37:83-93 pubmed 出版商
  11. Yan X, Liu J, Ye Z, Huang J, He F, Xiao W, et al. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation. PLoS ONE. 2016;11:e0162784 pubmed 出版商
  12. Getz A, Visser F, Bell E, Xu F, Flynn N, Zaidi W, et al. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons. Sci Rep. 2016;6:31779 pubmed 出版商
  13. Li S, Qu Z, Haas M, Ngo L, Heo Y, Kang H, et al. The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down Syndrome. Sci Rep. 2016;6:29514 pubmed 出版商
  14. Kanemori Y, Koga Y, Sudo M, Kang W, Kashiwabara S, Ikawa M, et al. Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proc Natl Acad Sci U S A. 2016;113:E3696-705 pubmed 出版商
  15. Cormerais Y, Giuliano S, Lefloch R, Front B, Durivault J, Tambutte E, et al. Genetic Disruption of the Multifunctional CD98/LAT1 Complex Demonstrates the Key Role of Essential Amino Acid Transport in the Control of mTORC1 and Tumor Growth. Cancer Res. 2016;76:4481-92 pubmed 出版商
  16. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  17. Topalidou I, Cattin Ortolá J, Pappas A, Cooper K, Merrihew G, MacCoss M, et al. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet. 2016;12:e1006074 pubmed 出版商
  18. Saunier C, Støve S, Popp B, Gerard B, Blenski M, AhMew N, et al. Expanding the Phenotype Associated with NAA10-Related N-Terminal Acetylation Deficiency. Hum Mutat. 2016;37:755-64 pubmed 出版商
  19. Lamprecht M, Elkin B, Kesavabhotla K, Crary J, Hammers J, Huh J, et al. Strong Correlation of Genome-Wide Expression after Traumatic Brain Injury In Vitro and In Vivo Implicates a Role for SORLA. J Neurotrauma. 2017;34:97-108 pubmed 出版商
  20. Wahl S, Magupalli V, Dembla M, Katiyar R, Schwarz K, Köblitz L, et al. The Disease Protein Tulp1 Is Essential for Periactive Zone Endocytosis in Photoreceptor Ribbon Synapses. J Neurosci. 2016;36:2473-93 pubmed 出版商
  21. Le Pen J, Maillet L, Sarosiek K, Vuillier C, Gautier F, Montessuit S, et al. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis. 2016;7:e2083 pubmed 出版商
  22. Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño Roa L, et al. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. elife. 2016;5: pubmed 出版商
  23. Torres G, Morales P, García Miguel M, Norambuena Soto I, Cartes Saavedra B, Vidal Peña G, et al. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation. Biochem Pharmacol. 2016;104:52-61 pubmed 出版商
  24. Fokina A, Chechenova M, Karginov A, Ter Avanesyan M, Agaphonov M. Genetic Evidence for the Role of the Vacuole in Supplying Secretory Organelles with Ca2+ in Hansenula polymorpha. PLoS ONE. 2015;10:e0145915 pubmed 出版商
  25. Wang J, Cao Y, Li Q, Yang Y, Jin M, Chen D, et al. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy. 2015;11:2057-2073 pubmed 出版商
  26. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed 出版商
  27. Maxfield K, Taus P, Corcoran K, Wooten J, Macion J, Zhou Y, et al. Comprehensive functional characterization of cancer-testis antigens defines obligate participation in multiple hallmarks of cancer. Nat Commun. 2015;6:8840 pubmed 出版商
  28. Casey J, Støve S, McGorrian C, Galvin J, Blenski M, Dunne A, et al. NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment. Sci Rep. 2015;5:16022 pubmed 出版商
  29. Riquelme S, Pogu J, Anegon I, Bueno S, Kalergis A. Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells. Eur J Immunol. 2015;45:3269-88 pubmed 出版商
  30. Jamieson C, Lui C, Brocardo M, Martino Echarri E, Henderson B. Rac1 augments Wnt signaling by stimulating β-catenin-lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import. J Cell Sci. 2015;128:3933-46 pubmed 出版商
  31. Han Y, Wang Z, Bae E. Synthesis of the Proposed Structure of Damaurone D and Evaluation of Its Anti-inflammatory Activity. Chem Pharm Bull (Tokyo). 2015;63:907-12 pubmed 出版商
  32. Simard E, Söllradl T, Maltais J, Boucher J, D Orléans Juste P, Grandbois M. Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function. PLoS ONE. 2015;10:e0128881 pubmed 出版商
  33. Zhou J, Joshi B, Duan X, Pant A, Qiu Z, Kuick R, et al. EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging. Clin Transl Gastroenterol. 2015;6:e101 pubmed 出版商
  34. Zajkowski T, Nieznanska H, Nieznanski K. Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein. Biochim Biophys Acta. 2015;1853:2228-39 pubmed 出版商
  35. Tang Y, Dai L, Zhang X, Li J, Hendriks J, Fan X, et al. SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy. Sci Rep. 2015;5:11073 pubmed 出版商
  36. Nan X, Tamgüney T, Collisson E, Lin L, Pitt C, Galeas J, et al. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A. 2015;112:7996-8001 pubmed 出版商
  37. Tang N, Lyu D, Liu T, Chen F, Jing S, Hao T, et al. Different Effects of p52SHC1 and p52SHC3 on the Cell Cycle of Neurons and Neural Stem Cells. J Cell Physiol. 2016;231:172-80 pubmed 出版商
  38. Reigada D, Nieto Díaz M, Navarro Ruiz R, Caballero López M, Del Águila A, Muñoz Galdeano T, et al. Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience. 2015;300:404-17 pubmed 出版商
  39. Torres Fuentes J, Rios M, Moreno R. Involvement of a P2X7 Receptor in the Acrosome Reaction Induced by ATP in Rat Spermatozoa. J Cell Physiol. 2015;230:3068-75 pubmed 出版商
  40. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed 出版商
  41. Kim Y, Kang Y, Lee N, Kim K, Hwang Y, Kim H, et al. Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency. Autophagy. 2015;11:796-811 pubmed 出版商
  42. Thierry M, Pasquis B, Buteau B, Fourgeux C, Dembele D, Leclère L, et al. Early adaptive response of the retina to a pro-diabetogenic diet: Impairment of cone response and gene expression changes in high-fructose fed rats. Exp Eye Res. 2015;135:37-46 pubmed 出版商
  43. Raha Chowdhury R, Raha A, Forostyak S, Zhao J, Stott S, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci. 2015;16:24 pubmed 出版商
  44. Ding Y, Xu Y, Shuai X, Shi X, Chen X, Huang W, et al. Reg3? Overexpression Protects Pancreatic ? Cells from Cytokine-Induced Damage and Improves Islet Transplant Outcome. Mol Med. 2015;20:548-558 pubmed 出版商
  45. Giehl K, Keller C, Muehlich S, Goppelt Struebe M. Actin-mediated gene expression depends on RhoA and Rac1 signaling in proximal tubular epithelial cells. PLoS ONE. 2015;10:e0121589 pubmed 出版商
  46. Bi Q, Ranjan A, Fan R, Agarwal N, Welch D, Weinman S, et al. MTBP inhibits migration and metastasis of hepatocellular carcinoma. Clin Exp Metastasis. 2015;32:301-11 pubmed 出版商
  47. Hue C, Cho F, Cao S, Dale Bass C, Meaney D, Morrison B. Dexamethasone potentiates in vitro blood-brain barrier recovery after primary blast injury by glucocorticoid receptor-mediated upregulation of ZO-1 tight junction protein. J Cereb Blood Flow Metab. 2015;35:1191-8 pubmed 出版商
  48. Kim S, Ka S, Lee Y, Park B, Fei X, Jung J, et al. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation. PLoS ONE. 2015;10:e0117120 pubmed 出版商
  49. Feeney S, McGrath M, Sriratana A, Gehrig S, Lynch G, D Arcy C, et al. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1). PLoS ONE. 2015;10:e0117665 pubmed 出版商
  50. Zimmermann M, Aguilera F, Castellucci M, Rossato M, Costa S, Lunardi C, et al. Chromatin remodelling and autocrine TNFα are required for optimal interleukin-6 expression in activated human neutrophils. Nat Commun. 2015;6:6061 pubmed 出版商
  51. Jin Z, Chung J, Mei W, Strack S, He C, Lau G, et al. Regulation of nuclear-cytoplasmic shuttling and function of Family with sequence similarity 13, member A (Fam13a), by B56-containing PP2As and Akt. Mol Biol Cell. 2015;26:1160-73 pubmed 出版商
  52. Crane J, Palanivel R, Mottillo E, Bujak A, Wang H, Ford R, et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med. 2015;21:166-72 pubmed 出版商
  53. Arredondo Zamarripa D, Díaz Lezama N, Meléndez García R, Chávez Balderas J, Adán N, Ledesma Colunga M, et al. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress. Front Cell Neurosci. 2014;8:333 pubmed 出版商
  54. Bakirtzi K, West G, Fiocchi C, Law I, Iliopoulos D, Pothoulakis C. The neurotensin-HIF-1α-VEGFα axis orchestrates hypoxia, colonic inflammation, and intestinal angiogenesis. Am J Pathol. 2014;184:3405-14 pubmed 出版商
  55. Cottle D, Ursino G, Ip S, Jones L, DiTommaso T, Hacking D, et al. Fetal inhibition of inflammation improves disease phenotypes in harlequin ichthyosis. Hum Mol Genet. 2015;24:436-49 pubmed 出版商
  56. Lucken Ardjomande Häsler S, Vallis Y, Jolin H, McKenzie A, McMahon H. GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci. 2014;127:4602-19 pubmed 出版商
  57. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  58. Tanti G, Goswami S. SG2NA recruits DJ-1 and Akt into the mitochondria and membrane to protect cells from oxidative damage. Free Radic Biol Med. 2014;75:1-13 pubmed 出版商
  59. Spadaro D, Tapia R, Jond L, Sudol M, Fanning A, Citi S. ZO proteins redundantly regulate the transcription factor DbpA/ZONAB. J Biol Chem. 2014;289:22500-11 pubmed 出版商
  60. Trolle C, König N, Abrahamsson N, Vasylovska S, Kozlova E. Boundary cap neural crest stem cells homotopically implanted to the injured dorsal root transitional zone give rise to different types of neurons and glia in adult rodents. BMC Neurosci. 2014;15:60 pubmed 出版商
  61. Liu J, Ye J, Zou X, Xu Z, Feng Y, Zou X, et al. CRL4A(CRBN) E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis. Nat Commun. 2014;5:3924 pubmed 出版商
  62. Asano S, Nemoto T, Kitayama T, Harada K, Zhang J, Harada K, et al. Phospholipase C-related catalytically inactive protein (PRIP) controls KIF5B-mediated insulin secretion. Biol Open. 2014;3:463-74 pubmed 出版商
  63. Shinmura K, Goto M, Tao H, Kato H, Suzuki R, Nakamura S, et al. Impaired 8-hydroxyguanine repair activity of MUTYH variant p.Arg109Trp found in a Japanese patient with early-onset colorectal cancer. Oxid Med Cell Longev. 2014;2014:617351 pubmed 出版商
  64. Lamprecht M, Morrison B. GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17?-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res. 2014;1563:131-7 pubmed 出版商
  65. Verslegers M, Van Hove I, Dekeyster E, Gantois I, Hu T, D Hooge R, et al. MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum. Brain Struct Funct. 2015;220:1601-17 pubmed 出版商
  66. Endesfelder U, Malkusch S, Fricke F, Heilemann M. A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem Cell Biol. 2014;141:629-38 pubmed 出版商
  67. Willard S, Hemby S, Register T, McIntosh S, Shively C. Altered expression of glial and synaptic markers in the anterior hippocampus of behaviorally depressed female monkeys. Neurosci Lett. 2014;563:1-5 pubmed 出版商
  68. Severi I, Perugini J, Mondini E, Smorlesi A, Frontini A, Cinti S, et al. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus. Front Neurosci. 2013;7:263 pubmed 出版商
  69. Price M, Gong H, Parsons M, Kundert J, Reznikov L, Bernardinelli L, et al. Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli. Genes Brain Behav. 2014;13:179-94 pubmed 出版商
  70. Raha A, VAISHNAV R, FRIEDLAND R, Bomford A, Raha Chowdhury R. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease. Acta Neuropathol Commun. 2013;1:55 pubmed 出版商
  71. Heydendael W, Sengupta A, Beck S, Bhatnagar S. Optogenetic examination identifies a context-specific role for orexins/hypocretins in anxiety-related behavior. Physiol Behav. 2014;130:182-90 pubmed 出版商
  72. Zeidán Chuliá F, Gelain D, Kolling E, Rybarczyk Filho J, Ambrosi P, Terra S, et al. Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxid Med Cell Longev. 2013;2013:791795 pubmed 出版商
  73. Li X, Xiao Z, Han J, Chen L, Xiao H, Ma F, et al. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials. 2013;34:5107-16 pubmed 出版商
  74. Nihei Y, Ito D, Okada Y, Akamatsu W, Yagi T, Yoshizaki T, et al. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy. J Biol Chem. 2013;288:8043-52 pubmed 出版商
  75. Siebert A, Ma Z, Grevet J, Demuro A, Parker I, Foskett J. Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins. J Biol Chem. 2013;288:6140-53 pubmed 出版商
  76. Schrama D, Hesbacher S, Becker J, Houben R. Survivin downregulation is not required for T antigen knockdown mediated cell growth inhibition in MCV infected merkel cell carcinoma cells. Int J Cancer. 2013;132:2980-2 pubmed 出版商
  77. Jung M, Kim K, Lee N, Kang Y, Hwang Y, Kim Y, et al. Expression of taurine transporter (TauT) is modulated by heat shock factor 1 (HSF1) in motor neurons of ALS. Mol Neurobiol. 2013;47:699-710 pubmed 出版商
  78. Coso S, Zeng Y, Sooraj D, Williams E. Conserved signaling through vascular endothelial growth (VEGF) receptor family members in murine lymphatic endothelial cells. Exp Cell Res. 2011;317:2397-407 pubmed 出版商
  79. Bischof J, Müller A, Fänder M, Knippschild U, Fischer D. Neurite outgrowth of mature retinal ganglion cells and PC12 cells requires activity of CK1? and CK1?. PLoS ONE. 2011;6:e20857 pubmed 出版商
  80. Gursel D, Connell Albert Y, Tuskan R, Anastassiadis T, Walrath J, Hawes J, et al. Control of proliferation in astrocytoma cells by the receptor tyrosine kinase/PI3K/AKT signaling axis and the use of PI-103 and TCN as potential anti-astrocytoma therapies. Neuro Oncol. 2011;13:610-21 pubmed 出版商
  81. Liang H, Ran Q, Jang Y, Holstein D, Lechleiter J, McDonald Marsh T, et al. Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radic Biol Med. 2009;47:312-20 pubmed 出版商
  82. Li L, Dutra A, Pak E, Labrie J, Gerstein R, Pandolfi P, et al. EGFRvIII expression and PTEN loss synergistically induce chromosomal instability and glial tumors. Neuro Oncol. 2009;11:9-21 pubmed 出版商
  83. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl. 2008;47:6172-6 pubmed 出版商
  84. Howell M, Fairchild H, Kim B, Bin L, Boguniewicz M, Redzic J, et al. Th2 cytokines act on S100/A11 to downregulate keratinocyte differentiation. J Invest Dermatol. 2008;128:2248-58 pubmed 出版商
  85. Talmadge R, Paalani M. Sarco(endo)plasmic reticulum calcium pump isoforms in paralyzed rat slow muscle. Biochim Biophys Acta. 2007;1770:1187-93 pubmed
  86. Li C, Capan E, Zhao Y, Zhao J, Stolz D, Watkins S, et al. Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J Immunol. 2006;177:5163-8 pubmed
  87. Li Q, Ching A, Chan B, Chow S, Lim P, Ho T, et al. A death receptor-associated anti-apoptotic protein, BRE, inhibits mitochondrial apoptotic pathway. J Biol Chem. 2004;279:52106-16 pubmed