这是一篇来自已证抗体库的有关人类 β1整合素 (beta1 integrin) 的综述,是根据286篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合β1整合素 抗体。
β1整合素 同义词: CD29; FNRB; GPIIA; MDF2; MSK12; VLA-BETA; VLAB

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR1040Y)
  • 免疫细胞化学; 人类; 1:200; 图 2c
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab134179)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c). Stem Cell Res Ther (2019) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 1:100; 图 1a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1a). J Cell Sci (2019) ncbi
domestic rabbit 单克隆(EPR16895)
  • 免疫印迹; 人类; 1:1000; 图 1s1a
  • 免疫印迹; 小鼠; 1:1000; 图 1s1a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab179471)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1s1a). elife (2019) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 人类; 图 s4e, s2e
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫印迹在人类样本上 (图 s4e, s2e). Cell (2019) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 图 5c
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫细胞化学在人类样本上 (图 5c). Neuron (2018) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 人类; 图 s5c-d
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫印迹在人类样本上 (图 s5c-d). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(EPR1040Y)
  • 免疫印迹; 仓鼠; 1:500; 图 1L
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab134179)被用于被用于免疫印迹在仓鼠样本上浓度为1:500 (图 1L). J Cell Biol (2017) ncbi
小鼠 单克隆(12G10)
  • 抑制或激活实验; 人类; 图 1a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, 12G10)被用于被用于抑制或激活实验在人类样本上 (图 1a). Mol Biol Cell (2017) ncbi
小鼠 单克隆(12G10)
  • 流式细胞仪; 人类; 图 5
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, 12G10)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(EPR16895)
  • 流式细胞仪; brown rat; 图 1
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab179471)被用于被用于流式细胞仪在brown rat样本上 (图 1). Am J Transl Res (2016) ncbi
domestic rabbit 单克隆(EPR16895)
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab179471)被用于被用于免疫印迹在小鼠样本上 (图 7a). JCI Insight (2016) ncbi
domestic rabbit 单克隆(EPR16896)
  • 免疫沉淀; 人类; 1:1000; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 4d
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab179472)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(EPR16895)
  • 免疫印迹; 人类; 1:1000; 图 10
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab179471)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 10). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 小鼠; 图 5d
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫印迹在小鼠样本上 (图 5d). Mucosal Immunol (2017) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫印迹在人类样本上 (图 5). J Cancer (2016) ncbi
小鼠 单克隆(12G10)
  • 免疫组化; 人类; 1:200; 图 4d
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, 12G10)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4d). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(EPR16895)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s4
  • 免疫印迹; 人类; 1:2000; 图 s1
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab179471)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s4) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 s1). Oncotarget (2016) ncbi
小鼠 单克隆(12G10)
  • 流式细胞仪; 人类; 7.5 ug/ml; 图 s6a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于流式细胞仪在人类样本上浓度为7.5 ug/ml (图 s6a). Exp Cell Res (2016) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫组化; brown rat; 1:100; 图 4
艾博抗(上海)贸易有限公司β1整合素抗体(abcam, EP1041Y)被用于被用于免疫组化在brown rat样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 图 s3
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, Ab30394)被用于被用于免疫细胞化学在人类样本上 (图 s3). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫组化; 人类; 1:50; 图 4a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫组化在人类样本上浓度为1:50 (图 4a). Biomaterials (2016) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类; 图 5A
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫印迹在人类样本上 (图 5A). Oncotarget (2016) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 图 2f
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab24693)被用于被用于抑制或激活实验在人类样本上 (图 2f). Oncotarget (2015) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 人类; 1:500; 图 4
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 1:300
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Biomaterials (2015) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫组化-石蜡切片; 人类; 1:1000
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 1:300; 图 2
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, mab12G10)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫印迹在人类样本上. Int J Mol Sci (2014) ncbi
domestic rabbit 单克隆(EPR1040Y)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab134179)被用于被用于免疫细胞化学在人类样本上. Int J Mol Sci (2014) ncbi
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab24693)被用于被用于免疫细胞化学在人类样本上. Int J Mol Sci (2014) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫细胞化学; 小鼠; 1:2500; 图 3
  • 免疫印迹; 小鼠; 1:500; 图 6
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, 52971)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2500 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Cell Cycle (2014) ncbi
小鼠 单克隆(12G10)
  • 流式细胞仪; 人类; 图 8d
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于流式细胞仪在人类样本上 (图 8d). Exp Cell Res (2015) ncbi
domestic rabbit 单克隆(EPR1040Y)
  • 免疫细胞化学; brown rat; 1:50; 图 7l
艾博抗(上海)贸易有限公司β1整合素抗体(Epitomics, 2288-1)被用于被用于免疫细胞化学在brown rat样本上浓度为1:50 (图 7l). Am J Pathol (2015) ncbi
小鼠 单克隆(JB1B)
  • 抑制或激活实验; 人类; 图 5a-c
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30388)被用于被用于抑制或激活实验在人类样本上 (图 5a-c). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 5 ug/ml
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab24693)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml. Oncogene (2015) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫印迹在人类样本上 (图 1a). Biomaterials (2014) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司β1整合素抗体(abcam, ab52971)被用于被用于免疫印迹在人类样本上. J Biomater Sci Polym Ed (2014) ncbi
仓鼠 单克隆(HM beta 1-1)
  • 流式细胞仪; 小鼠; 1:25
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab36219)被用于被用于流式细胞仪在小鼠样本上浓度为1:25. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫组化-石蜡切片; 人类; 1:1000
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, AB52971)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Acta Biomater (2014) ncbi
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, P5D2)被用于被用于免疫细胞化学在小鼠样本上. Oncogene (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(K-20)
  • 免疫细胞化学; 人类; 图 s1a
圣克鲁斯生物技术β1整合素抗体(Santa, sc-18887)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(12G10)
  • 流式细胞仪; 人类; 图 s2c
圣克鲁斯生物技术β1整合素抗体(Santa Cruz Biotechnology Inc, Sc-59827)被用于被用于流式细胞仪在人类样本上 (图 s2c). Cell (2018) ncbi
小鼠 单克隆(TS2/16)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术β1整合素抗体(SantaCruz Biotechnology, TS2/16)被用于被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2017) ncbi
小鼠 单克隆(K-20)
  • 免疫印迹; 人类; 图 s5
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-18887)被用于被用于免疫印迹在人类样本上 (图 s5). Nat Commun (2017) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 图 2e
圣克鲁斯生物技术β1整合素抗体(SantaCruz, P5D2)被用于被用于抑制或激活实验在人类样本上 (图 2e). Sci Rep (2017) ncbi
小鼠 单克隆(102DF5)
  • 免疫印迹; 人类; 1:1500; 图 s2a
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, SC-73610)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 s2a). J Clin Invest (2017) ncbi
小鼠 单克隆(JB1B)
  • 流式细胞仪; 人类; 图 1c
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-59829)被用于被用于流式细胞仪在人类样本上 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(4B7R)
  • 免疫印迹; 人类; 1:200; 图 4
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-9970)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 4
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-53711)被用于被用于流式细胞仪在人类样本上 (图 4). Cell Death Dis (2016) ncbi
小鼠 单克隆(TS2/16)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-53711)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 人类; 1:200; 图 5a
圣克鲁斯生物技术β1整合素抗体(SantaCruz, sc-374429)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(A-4)
  • 免疫组化; brown rat; 1:250; 图 st1
  • 免疫组化-自由浮动切片; 家羊; 1:250
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, SC-374429)被用于被用于免疫组化在brown rat样本上浓度为1:250 (图 st1) 和 被用于免疫组化-自由浮动切片在家羊样本上浓度为1:250. Endocrinology (2016) ncbi
小鼠 单克隆(4B7R)
  • 免疫组化-石蜡切片; 人类; 图 2
圣克鲁斯生物技术β1整合素抗体(santa Cruz, sc-9970)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(K-20)
  • 免疫细胞化学; 人类; 1:50; 图 3
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-18887)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(TS2/16)
  • 免疫细胞化学; 人类; 1:500; 图 3
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-53711)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-374429)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(P5D2)
  • 免疫印迹; 人类; 1:200; 图 1b
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-13590)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1b). Mol Med Rep (2015) ncbi
小鼠 单克隆(Y9A2)
  • 流式细胞仪; 人类
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, Y9A2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(K-20)
  • 流式细胞仪; 小鼠; 图 2
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc18887)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(JB1B)
  • 免疫沉淀; 小鼠; 图 3
  • 免疫细胞化学; 小鼠; 图 8
  • 免疫印迹; 小鼠; 图 9
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc59829)被用于被用于免疫沉淀在小鼠样本上 (图 3), 被用于免疫细胞化学在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 9). Mol Biol Cell (2015) ncbi
小鼠 单克隆(P1H5)
  • 免疫印迹; 人类; 1:200; 图 4
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-13546)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(4B7R)
  • 流式细胞仪; 人类; 图 1
圣克鲁斯生物技术β1整合素抗体(santa Cruz, sc-9970)被用于被用于流式细胞仪在人类样本上 (图 1). Biomed Res Int (2015) ncbi
小鼠 单克隆(102DF5)
  • 免疫细胞化学; 人类; 1:200; 图 5
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-73610)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(4B7R)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术β1整合素抗体(Santa Cruz Biotechnology, SC-9970)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术β1整合素抗体(Santa Cruz Biotechnology, sc-374429)被用于被用于免疫印迹在人类样本上. Colloids Surf B Biointerfaces (2015) ncbi
小鼠 单克隆(K-20)
  • 流式细胞仪; 人类; 图 8d
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-18887)被用于被用于流式细胞仪在人类样本上 (图 8d). Exp Cell Res (2015) ncbi
小鼠 单克隆(A-4)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-374429)被用于被用于免疫细胞化学在人类样本上. Int J Med Sci (2014) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类
圣克鲁斯生物技术β1整合素抗体(Santa Cruz Biotechnology, sc-59827)被用于被用于免疫印迹在人类样本上. J Periodontal Res (2015) ncbi
小鼠 单克隆(12G10)
  • 抑制或激活实验; 人类; 2 ug 1:25
圣克鲁斯生物技术β1整合素抗体(Santa Cruz Biotechnology, sc-59827)被用于被用于抑制或激活实验在人类样本上浓度为2 ug 1:25. Biomacromolecules (2014) ncbi
小鼠 单克隆(4B7R)
  • 免疫细胞化学; brown rat; 1:100
圣克鲁斯生物技术β1整合素抗体(Santa, Sc-9970)被用于被用于免疫细胞化学在brown rat样本上浓度为1:100. Microcirculation (2014) ncbi
小鼠 单克隆(4B7R)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术β1整合素抗体(Santa, 4B7R)被用于被用于免疫组化在人类样本上浓度为1:100. Gut (2015) ncbi
小鼠 单克隆(K-20)
  • 流式细胞仪; 人类
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-18887)被用于被用于流式细胞仪在人类样本上. Biomaterials (2014) ncbi
赛默飞世尔
小鼠 单克隆(3B6)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛默飞世尔β1整合素抗体(Thermo Fisher, MA5-17103)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). elife (2019) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔β1整合素抗体(eBioscience, TS2/16)被用于被用于流式细胞仪在人类样本上 (图 3a). Sci Rep (2018) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 6a
赛默飞世尔β1整合素抗体(Affymetrix, 46-0299-41)被用于被用于流式细胞仪在人类样本上 (图 6a). Nat Commun (2017) ncbi
小鼠 单克隆(TS2/16)
  • 免疫细胞化学; 小鼠; 1:200; 图 4I
赛默飞世尔β1整合素抗体(eBioscience, 12-0299-41)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4I). Nat Commun (2017) ncbi
小鼠 单克隆(TS2/16)
  • 抑制或激活实验; 人类; 20 ug/ml; 图 1
赛默飞世尔β1整合素抗体(Thermo Scientific, TS2/16)被用于被用于抑制或激活实验在人类样本上浓度为20 ug/ml (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 家羊; 1:10; 图 3
赛默飞世尔β1整合素抗体(生活技术, CD2901)被用于被用于流式细胞仪在家羊样本上浓度为1:10 (图 3). Cytometry A (2016) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔β1整合素抗体(eBioscience, T2/16)被用于被用于流式细胞仪在人类样本上 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(MEM-101A)
  • 免疫细胞化学; 人类; 图 1b
赛默飞世尔β1整合素抗体(Invitrogen, CD2901)被用于被用于免疫细胞化学在人类样本上 (图 1b). Photomed Laser Surg (2016) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔β1整合素抗体(eBioscience, 17-0299)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔β1整合素抗体(eBioscience, 11-0299-41)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类; 1:100
赛默飞世尔β1整合素抗体(生活技术, CD2920)被用于被用于流式细胞仪在人类样本上浓度为1:100. Nature (2015) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔β1整合素抗体(eBioscience, 11-0299-41)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Hum Reprod (2015) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔β1整合素抗体(eBioscience, TS2/16)被用于被用于流式细胞仪在人类样本上 (表 2). Cytometry B Clin Cytom (2014) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔β1整合素抗体(eBioscence, TS2/16)被用于被用于流式细胞仪在人类样本上 (图 5). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(eBioscience, 12-0299)被用于被用于流式细胞仪在人类样本上. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(Caltag Laboratories, clone MEM101A)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类; 1:20; 图 1
赛默飞世尔β1整合素抗体(Caltag, CD2904)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1). Regen Med (2012) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(eBioscience, 17-0299-42)被用于被用于流式细胞仪在人类样本上. Biotechnol Bioeng (2013) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(Invitrogen, MEM-101A)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(Invitrogen, CD2901)被用于被用于流式细胞仪在人类样本上. Stem Cell Res Ther (2012) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(eBioscience, 12-0299)被用于被用于流式细胞仪在人类样本上. Pediatr Dev Pathol (2012) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔β1整合素抗体(Caltag, MEM-101A)被用于被用于流式细胞仪在人类样本上 (图 4). Placenta (2011) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类; 1:20; 表 1
赛默飞世尔β1整合素抗体(Invitrogen, CD2901)被用于被用于流式细胞仪在人类样本上浓度为1:20 (表 1). Cell Transplant (2011) ncbi
小鼠 单克隆(4B7R)
  • 免疫组化; 人类; 图 3
赛默飞世尔β1整合素抗体(Lab Vision, 4B7R)被用于被用于免疫组化在人类样本上 (图 3). J Cell Physiol (2010) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(Caltag, MEM101A)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2009) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(Caltag, MEM101A)被用于被用于流式细胞仪在人类样本上. Haematologica (2006) ncbi
小鼠 单克隆(4B7R)
  • 免疫细胞化学; 人类; 1:200; 图 3
赛默飞世尔β1整合素抗体(Lab Vision, 4B7R)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Stem Cells (2006) ncbi
BioLegend
小鼠 单克隆(TS2/16)
  • 免疫细胞化学; 小鼠; 图 s5d
BioLegendβ1整合素抗体(BioLegend, 303002)被用于被用于免疫细胞化学在小鼠样本上 (图 s5d). Science (2020) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 1a
BioLegendβ1整合素抗体(Biolegend, 303002)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 4s1
BioLegendβ1整合素抗体(BioLegend, 303017)被用于被用于流式细胞仪在人类样本上 (图 4s1). elife (2018) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 1b
BioLegendβ1整合素抗体(Biolegend, TS2/16)被用于被用于流式细胞仪在人类样本上 (图 1b). J Cell Sci (2018) ncbi
小鼠 单克隆(TS2/16)
BioLegendβ1整合素抗体(BioLegend, 303015)被用于. Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
BioLegendβ1整合素抗体(biolegend, TS2/16)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 2a
BioLegendβ1整合素抗体(Biolegend, 303004)被用于被用于流式细胞仪在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 7d
BioLegendβ1整合素抗体(BioLegend, P5D2)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 7d). J Clin Invest (2016) ncbi
小鼠 单克隆(TS2/16)
BioLegendβ1整合素抗体(BioLegend, 303008)被用于. Nat Biotechnol (2016) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 小鼠; 1:300; 图 6
BioLegendβ1整合素抗体(BioLegend, TS2/16)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(Y9A2)
  • 免疫印迹; 小鼠; 20 ug/ml; 图 6
BioLegendβ1整合素抗体(Biolegend, Y9A2)被用于被用于免疫印迹在小鼠样本上浓度为20 ug/ml (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(Y9A2)
  • 流式细胞仪; 人类; 图 2a
BioLegendβ1整合素抗体(BioLegend, Y9A2)被用于被用于流式细胞仪在人类样本上 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
BioLegendβ1整合素抗体(Biolegend, TS2/16)被用于被用于流式细胞仪在人类样本上. J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(TS2/16)
  • 免疫细胞化学; 人类; 1:200; 图 2
BioLegendβ1整合素抗体(BioLegend, 303002)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). J Biol Chem (2015) ncbi
小鼠 单克隆(Y9A2)
  • 流式细胞仪; 人类
BioLegendβ1整合素抗体(Biolegend, Y9A2)被用于被用于流式细胞仪在人类样本上. Matrix Biol (2015) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
BioLegendβ1整合素抗体(Biolegend, TS2/16)被用于被用于流式细胞仪在人类样本上. Nanomedicine (2014) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
BioLegendβ1整合素抗体(BioLegend, TS2/16)被用于被用于流式细胞仪在人类样本上. Mol Biol Cell (2014) ncbi
安迪生物R&D
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 图 6d
安迪生物R&Dβ1整合素抗体(Millipore, MAB17781)被用于被用于抑制或激活实验在人类样本上 (图 6d). Nat Commun (2017) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 图 3
  • 免疫组化-冰冻切片; 人类; 图 1
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 图 7
安迪生物R&Dβ1整合素抗体(R&D, P5D2)被用于被用于抑制或激活实验在人类样本上 (图 3), 被用于免疫组化-冰冻切片在人类样本上 (图 1), 被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上 (图 7). J Virol (2017) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 图 5c
安迪生物R&Dβ1整合素抗体(R&D Systems, P5D2)被用于被用于抑制或激活实验在人类样本上 (图 5c). Sci Rep (2016) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 10 ug/ml; 图 3a
安迪生物R&Dβ1整合素抗体(R&D systems, P5D2)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml (图 3a). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 图 2a
  • 流式细胞仪; 人类; 图 2b
安迪生物R&Dβ1整合素抗体(R&D Systems, MAB17781)被用于被用于抑制或激活实验在人类样本上 (图 2a) 和 被用于流式细胞仪在人类样本上 (图 2b). Cell Adh Migr (2015) ncbi
小鼠 单克隆(4B7R)
  • 流式细胞仪; 人类
  • 免疫印迹; 人类
安迪生物R&Dβ1整合素抗体(R&D Systems, 4B7R)被用于被用于流式细胞仪在人类样本上 和 被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 22 ug/ml
安迪生物R&Dβ1整合素抗体(R & D Systems, MAB 17781)被用于被用于抑制或激活实验在人类样本上浓度为22 ug/ml. Cell Commun Signal (2014) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(JB1B)
  • 免疫印迹; 猪; 图 2b
伯乐(Bio-Rad)公司β1整合素抗体(AbD Serotec, MCA1189)被用于被用于免疫印迹在猪样本上 (图 2b). PLoS ONE (2017) ncbi
小鼠 单克隆(4B7R)
  • 流式细胞仪; 人类; 图 3d
伯乐(Bio-Rad)公司β1整合素抗体(Serotec, MCA1949FT)被用于被用于流式细胞仪在人类样本上 (图 3d). Oncotarget (2016) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类; 1:200; 图 4
伯乐(Bio-Rad)公司β1整合素抗体(AbD serotec, MCA2028)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类; 图 4
伯乐(Bio-Rad)公司β1整合素抗体(Serotec, MCA 2028)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(4B7R)
  • 流式细胞仪; 人类; 图 2c
伯乐(Bio-Rad)公司β1整合素抗体(Serotec, MCA1949GA)被用于被用于流式细胞仪在人类样本上 (图 2c). Food Funct (2014) ncbi
Novus Biologicals
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 1:200; 图 2e
Novus Biologicalsβ1整合素抗体(Novus, 63255AF647)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2e). J Cell Sci (2019) ncbi
LifeSpan Biosciences
小鼠 单克隆(HUTS-4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6i
LifeSpan Biosciencesβ1整合素抗体(LSBio, B2861)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6i). EMBO Mol Med (2014) ncbi
美天旎
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
美天旎β1整合素抗体(MiltenyiBiotec, 130-101-255)被用于被用于流式细胞仪在人类样本上. Mol Med Rep (2016) ncbi
Enzo Life Sciences
小鼠 单克隆(DF7)
  • 流式细胞仪; 小鼠; 1:100; 图 s3
Enzo Life Sciencesβ1整合素抗体(Enzo, DF7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3). Nat Commun (2016) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2a
  • 免疫印迹; 人类; 1:500; 图 2a
西格玛奥德里奇β1整合素抗体(Sigma-Aldrich, SAB4501582)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Nitric Oxide (2018) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类; 1:1000; 图 1e
西格玛奥德里奇β1整合素抗体(Sigma-Aldrich, SAB4700394)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 1e). Mol Med Rep (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3d
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 4706)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3d). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 1:100; 图 8f
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signalling Technology, 4706)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 8f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; African green monkey; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 4706S)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 1b). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司β1整合素抗体(CST, 9699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Mol Biol Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2j
赛信通(上海)生物试剂有限公司β1整合素抗体(cell signalling, 4706)被用于被用于免疫印迹在人类样本上 (图 2j). Mol Cancer (2017) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 9699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:1000; 图 s5b
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 9699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5b). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 图 3h
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 9699)被用于被用于免疫印迹在人类样本上 (图 3h). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:1000; 图 ev3b
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 9699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ev3b). Mol Syst Biol (2017) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell signaling, D2E5)被用于被用于免疫印迹在人类样本上 (图 1d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 4706)被用于被用于免疫印迹在人类样本上 (图 6b). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
  • 免疫组化; 小鼠; 1:200; 图 s9b
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 4706)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 s9b). Nat Med (2016) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 9699)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 4
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 9699)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 4). Mol Reprod Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 4706S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 4706)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 4706)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Development (2016) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 9699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 9699)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Tech, 9699)被用于被用于免疫印迹在人类样本上 (图 s6). Mol Biol Cell (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 4706)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2016) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(4B4LDC9LDH8)
  • 免疫细胞化学; 人类; 图 s1a
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 6603113)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 抑制或激活实验; 人类; 图 3h
  • 免疫细胞化学; 人类; 1:1000; 图 s1j
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 6603113)被用于被用于抑制或激活实验在人类样本上 (图 3h) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s1j). J Cell Sci (2018) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 流式细胞仪; 人类; 1:50; 图 1c
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 6604105)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 流式细胞仪; 人类; 1:100; 表 1
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 6604105)被用于被用于流式细胞仪在人类样本上浓度为1:100 (表 1). Biol Open (2016) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 流式细胞仪; African green monkey; 图 s1
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 4B4)被用于被用于流式细胞仪在African green monkey样本上 (图 s1). J Med Primatol (2016) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 免疫细胞化学; 人类; 图 s3
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 6603113)被用于被用于免疫细胞化学在人类样本上 (图 s3). Nat Struct Mol Biol (2016) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 4B4)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2015) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 免疫印迹; 人类; 图 5
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 4B4LDC9LDH8)被用于被用于免疫印迹在人类样本上 (图 5). J Cell Mol Med (2010) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 流式细胞仪; South American squirrel monkey
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman, 4B4LDC9LDH8(4B4))被用于被用于流式细胞仪在South American squirrel monkey样本上. J Immunol Methods (2005) ncbi
Exbio
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类; 图 4a
Exbioβ1整合素抗体(EXBIO Praha, MEM-101A)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(MEM-101A)
  • 其他; 人类; 图 st1
Exbioβ1整合素抗体(Exbio Praha a.s., MEM-101A)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类
Exbioβ1整合素抗体(Exbio, 1A-219-T100)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
碧迪BD
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类; 图 5a
碧迪BDβ1整合素抗体(Becton Dickinson, 556,049)被用于被用于流式细胞仪在人类样本上 (图 5a). BMC Cancer (2019) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; brown rat; 图 3
碧迪BDβ1整合素抗体(BD, 557332)被用于被用于流式细胞仪在brown rat样本上 (图 3). Biosci Rep (2019) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:100; 图 1c
碧迪BDβ1整合素抗体(BD Biosciences, 561794)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1c). elife (2019) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 8a
碧迪BDβ1整合素抗体(BD, MAR4)被用于被用于流式细胞仪在人类样本上 (图 8a). Front Immunol (2019) ncbi
小鼠 单克隆(HUTS-21)
  • 免疫细胞化学; 人类; 1:50; 图 s12a
碧迪BDβ1整合素抗体(BD, 556047)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s12a). Science (2018) ncbi
brown rat 单克隆(Mab 13)
  • 免疫细胞化学; 人类; 图 s6
碧迪BDβ1整合素抗体(BD Biosciences, Mab13)被用于被用于免疫细胞化学在人类样本上 (图 s6). EMBO J (2018) ncbi
小鼠 单克隆(18/CD29)
  • 其他; 人类; 图 4c
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 5a
碧迪BDβ1整合素抗体(BD, 555443)被用于被用于流式细胞仪在人类样本上 (图 5a). J Exp Med (2018) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类; 图 1e
碧迪BDβ1整合素抗体(BD, 556049)被用于被用于流式细胞仪在人类样本上 (图 1e). J Exp Med (2018) ncbi
小鼠 单克隆(HUTS-21)
  • 抑制或激活实验; 人类; 图 4b
碧迪BDβ1整合素抗体(BD Biosciences, 556048)被用于被用于抑制或激活实验在人类样本上 (图 4b). J Cell Sci (2018) ncbi
小鼠 单克隆(18/CD29)
碧迪BDβ1整合素抗体(BD Biosciences, 18)被用于. Nat Commun (2017) ncbi
小鼠 单克隆(18/CD29)
碧迪BDβ1整合素抗体(BD Transduction Laboratories, 610468)被用于. Cancer Metab (2017) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 1:1000; 图 4b
碧迪BDβ1整合素抗体(Becton Dickinson, 610468)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Mol Cell Biochem (2017) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 1:1000; 图 3b
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncol Lett (2017) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:50; 表 1
碧迪BDβ1整合素抗体(Becton, 555443)被用于被用于流式细胞仪在人类样本上浓度为1:50 (表 1). Sci Rep (2017) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 2a
  • 免疫沉淀; 人类; 图 3a
  • 免疫细胞化学; 人类; 图 4c
  • 免疫印迹; 人类; 图 2f
碧迪BDβ1整合素抗体(BD Pharmingen, MAR4)被用于被用于流式细胞仪在人类样本上 (图 2a), 被用于免疫沉淀在人类样本上 (图 3a), 被用于免疫细胞化学在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 2f). Oncotarget (2017) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:50; 图 st2
碧迪BDβ1整合素抗体(BD Biosciences, 563513)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 st2). Sci Rep (2017) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 1:1000; 图 s11a
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11a). Nat Commun (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(Becton, Dickinson, and Company, Mar-4)被用于被用于流式细胞仪在人类样本上. Cytotherapy (2017) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 小鼠; 1:100; 图 2g
碧迪BDβ1整合素抗体(BD Biosciences, 610468)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 2g). J Neurosci Res (2017) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 小鼠
碧迪BDβ1整合素抗体(BD Transduction Laboratories, 610467)被用于被用于免疫印迹在小鼠样本上. Oncotarget (2016) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 1:1000
碧迪BDβ1整合素抗体(BD, 610467)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Med (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 2
碧迪BDβ1整合素抗体(BD Biosciences, 555443)被用于被用于流式细胞仪在人类样本上 (图 2). Mol Med Rep (2016) ncbi
brown rat 单克隆(Mab 13)
  • 抑制或激活实验; 人类; 1:500; 图 3a
碧迪BDβ1整合素抗体(BD Biosciences, 552828)被用于被用于抑制或激活实验在人类样本上浓度为1:500 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(18/CD29)
  • 免疫细胞化学; 人类; 图 1
碧迪BDβ1整合素抗体(BD Bioscience, 610467)被用于被用于免疫细胞化学在人类样本上 (图 1). Arch Oral Biol (2016) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BDβ1整合素抗体(BD Transduction Laboratories, 610467)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD Bioscience, 555443)被用于被用于流式细胞仪在人类样本上. Mol Med Rep (2016) ncbi
小鼠 单克隆(18/CD29)
  • 免疫细胞化学; 小鼠; 1:100; 图 6
碧迪BDβ1整合素抗体(BD Biosciences, 18/CD29)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 st1
碧迪BDβ1整合素抗体(BD, 555443)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(HUTS-21)
  • 免疫细胞化学; 人类; 1:250; 图 3
碧迪BDβ1整合素抗体(BD Pharmigen, 556048)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 3). Nat Commun (2016) ncbi
brown rat 单克隆(Mab 13)
  • 流式细胞仪; 人类; 7.5 ug/ml; 图 s6a
碧迪BDβ1整合素抗体(BD Pharmingen, BD552828)被用于被用于流式细胞仪在人类样本上浓度为7.5 ug/ml (图 s6a). Exp Cell Res (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 表 s1
碧迪BDβ1整合素抗体(BD Pharmingen, BD555443)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 图 4
碧迪BDβ1整合素抗体(BD Transduction Laboratories, 610467)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Sci (2016) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类; 表 2
碧迪BDβ1整合素抗体(BD Pharmingen, 556048)被用于被用于流式细胞仪在人类样本上 (表 2). Int J Mol Med (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:100; 图 2g
碧迪BDβ1整合素抗体(BD Pharmingen, MAR4)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2g). Stem Cells Transl Med (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:500; 图 1d
碧迪BDβ1整合素抗体(BD Pharmingen, 555443)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 1d). Eur J Immunol (2016) ncbi
小鼠 单克隆(18/CD29)
  • 流式细胞仪; 犬; 1:2000; 图 5
  • 免疫细胞化学; 犬; 1:500; 图 7
  • 免疫印迹; 犬; 1:200; 图 9
碧迪BDβ1整合素抗体(BD Biosciences, 610468)被用于被用于流式细胞仪在犬样本上浓度为1:2000 (图 5), 被用于免疫细胞化学在犬样本上浓度为1:500 (图 7) 和 被用于免疫印迹在犬样本上浓度为1:200 (图 9). Stem Cell Rev (2016) ncbi
小鼠 单克隆(18/CD29)
  • 免疫组化-石蜡切片; 小鼠; 图 2
碧迪BDβ1整合素抗体(BD -Transduction Laboratories, 610468)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; brown rat; 1:100; 图 4e
碧迪BDβ1整合素抗体(BD Bioscience, 610468)被用于被用于免疫印迹在brown rat样本上浓度为1:100 (图 4e). Nat Commun (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 1:2000; 图 1a
碧迪BDβ1整合素抗体(BD Transduction Laboratories, 610468)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Cell Biol (2015) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 2
碧迪BDβ1整合素抗体(BD Biosciences, 559883)被用于被用于流式细胞仪在人类样本上 (图 2). J Endod (2015) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD, HUTS21)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 小鼠; 1:3000; 图 5
碧迪BDβ1整合素抗体(BD, 610468)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 2
碧迪BDβ1整合素抗体(BD Biosciences, 555442)被用于被用于流式细胞仪在人类样本上 (图 2). Int J Mol Med (2015) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类; 图 s4
碧迪BDβ1整合素抗体(BD Pharmingen, 556048)被用于被用于流式细胞仪在人类样本上 (图 s4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(18/CD29)
碧迪BDβ1整合素抗体(BD, 610468)被用于. Mol Cancer (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 小鼠; 图 3
碧迪BDβ1整合素抗体(BD Transduction Laboratories, 610468)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncotarget (2015) ncbi
brown rat 单克隆(Mab 13)
  • 免疫组化-冰冻切片; 人类; 图 1
  • 免疫组化-石蜡切片; 人类; 图 4
碧迪BDβ1整合素抗体(BD Biosciences, mAb13)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1) 和 被用于免疫组化-石蜡切片在人类样本上 (图 4). Acta Neuropathol (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
碧迪BDβ1整合素抗体(BD Bioscience, 610467)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Oncotarget (2015) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 s2
碧迪BDβ1整合素抗体(BD Biosciences, MAR4)被用于被用于流式细胞仪在人类样本上 (图 s2). J Immunol (2015) ncbi
小鼠 单克隆(HUTS-21)
  • 免疫沉淀; 人类; 1:200; 图 3
碧迪BDβ1整合素抗体(BD Pharmingen, HUTS-21)被用于被用于免疫沉淀在人类样本上浓度为1:200 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 图 5
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2015) ncbi
brown rat 单克隆(Mab 13)
  • 抑制或激活实验; 人类; 4 ug/ml; 图 3
  • 免疫细胞化学; 人类; 图 3
碧迪BDβ1整合素抗体(BD Biosciences, mAb13)被用于被用于抑制或激活实验在人类样本上浓度为4 ug/ml (图 3) 和 被用于免疫细胞化学在人类样本上 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(B.D. Biosciences, 561795)被用于被用于流式细胞仪在人类样本上. World J Stem Cells (2015) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD Pharmingen, 559883)被用于被用于流式细胞仪在人类样本上. Exp Cell Res (2015) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD Biosciences, 563513)被用于被用于流式细胞仪在人类样本上. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 图 3, 4
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于免疫印迹在人类样本上 (图 3, 4). Mol Cancer Res (2015) ncbi
brown rat 单克隆(Mab 13)
  • 免疫印迹; 人类
碧迪BDβ1整合素抗体(BD Biosciences, Mab 13)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD Bioscience, MAR4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD Biosciences, MAR4)被用于被用于流式细胞仪在人类样本上. Neoplasia (2014) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于免疫印迹在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD, 556049)被用于被用于流式细胞仪在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD, 555443)被用于被用于流式细胞仪在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(18/CD29)
  • 免疫细胞化学; 人类; 1:50
碧迪BDβ1整合素抗体(Becton Dickinson, 610468)被用于被用于免疫细胞化学在人类样本上浓度为1:50. J Mol Endocrinol (2014) ncbi
小鼠 单克隆(18/CD29)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BDβ1整合素抗体(BD, 18/CD29)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Gut (2015) ncbi
brown rat 单克隆(Mab 13)
  • 抑制或激活实验; 人类; 图 6f
碧迪BDβ1整合素抗体(BD Biosciences, 552828)被用于被用于抑制或激活实验在人类样本上 (图 6f). EMBO Mol Med (2014) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类; 1 ug/1x106 cells
碧迪BDβ1整合素抗体(BD pharmingen, 556048)被用于被用于流式细胞仪在人类样本上浓度为1 ug/1x106 cells. J Cell Mol Med (2014) ncbi
brown rat 单克隆(Mab 13)
  • 抑制或激活实验; 人类
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
碧迪BDβ1整合素抗体(BD Biosciences, mAb13)被用于被用于抑制或激活实验在人类样本上, 被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:100
碧迪BDβ1整合素抗体(BD Biosciences, 555443)被用于被用于流式细胞仪在人类样本上浓度为1:100. J Neurosci Res (2013) ncbi
brown rat 单克隆(Mab 13)
  • 抑制或激活实验; 人类
碧迪BDβ1整合素抗体(BD Biosciences, 552828)被用于被用于抑制或激活实验在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类
碧迪BDβ1整合素抗体(BD, 610467)被用于被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类
碧迪BDβ1整合素抗体(BD, 610467)被用于被用于免疫印迹在人类样本上. J Cell Biol (2012) ncbi
默克密理博中国
domestic rabbit 多克隆
  • 免疫细胞化学; leopard danio; 图 6a
默克密理博中国β1整合素抗体(Chemicon, AB1952)被用于被用于免疫细胞化学在leopard danio样本上 (图 6a). Cell (2019) ncbi
小鼠 单克隆(LM534)
  • 免疫印迹; 人类; 图 s2a
默克密理博中国β1整合素抗体(EMD Millipore, LM534)被用于被用于免疫印迹在人类样本上 (图 s2a). PLoS Pathog (2018) ncbi
brown rat 单克隆(AIIB2)
  • 免疫细胞化学; 人类; 1:200; 图 6a
默克密理博中国β1整合素抗体(Millipore, AIIB2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6a). PLoS Pathog (2018) ncbi
小鼠 单克隆(JB1A)
  • 抑制或激活实验; 人类; 图 4b
默克密理博中国β1整合素抗体(Merck Millipore, MAB1965)被用于被用于抑制或激活实验在人类样本上 (图 4b). Biochem J (2018) ncbi
小鼠 单克隆(HUTS-4)
默克密理博中国β1整合素抗体(EMD Millipore, MAB2079Z)被用于. Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 图 2d
默克密理博中国β1整合素抗体(Millipore, AB1952)被用于被用于免疫印迹在犬样本上 (图 2d). Oncogene (2017) ncbi
小鼠 单克隆(N29)
  • 流式细胞仪; 人类; 图 5
默克密理博中国β1整合素抗体(Millipore, N29)被用于被用于流式细胞仪在人类样本上 (图 5). Respir Res (2017) ncbi
小鼠 单克隆(HUTS-4)
  • 免疫细胞化学; 人类; 1:300; 图 6a2
  • 免疫印迹; 人类; 1:1000; 图 5a1
默克密理博中国β1整合素抗体(Millipore, MAB2079Z)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 6a2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a1). Int J Mol Med (2017) ncbi
小鼠 单克隆(HUTS-4)
  • 免疫组化; 小鼠; 1:100; 图 5a
默克密理博中国β1整合素抗体(Millipore, MAB2079Z)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(P4C10)
  • 免疫组化-石蜡切片; 人类; 图 3b
  • 免疫印迹; 人类; 图 3c
默克密理博中国β1整合素抗体(Millipore, P4C10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 3c). Am J Reprod Immunol (2017) ncbi
小鼠 单克隆(2B1)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 6
  • 免疫印迹; 小鼠; 1:500; 图 6
  • 免疫印迹; brown rat; 1:500; 图 6s1
默克密理博中国β1整合素抗体(Millipore, MAB1900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 6), 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6) 和 被用于免疫印迹在brown rat样本上浓度为1:500 (图 6s1). elife (2016) ncbi
小鼠 单克隆(HB1.1)
  • 流式细胞仪; 牛
默克密理博中国β1整合素抗体(Chemicon, 2000)被用于被用于流式细胞仪在牛样本上. J Gen Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brown rat; 1:500; 图 1
默克密理博中国β1整合素抗体(Chemicon, AB1952)被用于被用于免疫印迹在brown rat样本上浓度为1:500 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; brown rat; 1:100; 图 9
默克密理博中国β1整合素抗体(Millipore, AB1952)被用于被用于免疫组化-冰冻切片在brown rat样本上浓度为1:100 (图 9). Sci Rep (2016) ncbi
小鼠 单克隆(P5D2)
  • 流式细胞仪; 人类; 图 4
默克密理博中国β1整合素抗体(Millipore, MAB1959)被用于被用于流式细胞仪在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(12G10)
  • 流式细胞仪; 人类; 图 4
默克密理博中国β1整合素抗体(Millipore, 12G10)被用于被用于流式细胞仪在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(B44)
  • 免疫组化; brown rat; 1:400; 图 2b
  • 免疫组化基因敲除验证; 小鼠; 1:400; 图 4c
默克密理博中国β1整合素抗体(Millipore, MAB2259Z)被用于被用于免疫组化在brown rat样本上浓度为1:400 (图 2b) 和 被用于免疫组化基因敲除验证在小鼠样本上浓度为1:400 (图 4c). Neuropsychopharmacology (2016) ncbi
小鼠 单克隆(P4C10)
  • 抑制或激活实验; 人类; 图 s1c
默克密理博中国β1整合素抗体(Millipore, P4C10)被用于被用于抑制或激活实验在人类样本上 (图 s1c). Cytotherapy (2016) ncbi
小鼠 单克隆(2B1)
  • 免疫印迹; brown rat; 图 5e
默克密理博中国β1整合素抗体(EMD Millipore, MAB1900)被用于被用于免疫印迹在brown rat样本上 (图 5e). Cell Signal (2016) ncbi
小鼠 单克隆(HUTS-4)
  • 免疫细胞化学; 人类; 图 4e
  • 免疫印迹; 人类; 图 4c
默克密理博中国β1整合素抗体(Chemicon International, MAB2079Z)被用于被用于免疫细胞化学在人类样本上 (图 4e) 和 被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2016) ncbi
brown rat 单克隆(AIIB2)
  • 免疫组化; 小鼠; 图 2
默克密理博中国β1整合素抗体(Millipore, MABT409)被用于被用于免疫组化在小鼠样本上 (图 2). Nat Med (2016) ncbi
小鼠 单克隆(HUTS-4)
  • 免疫组化; 人类; 1:100; 图 s6a
默克密理博中国β1整合素抗体(Chemicon, HUTS-4)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s6a). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 4f
默克密理博中国β1整合素抗体(Millipore, AB1929)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Cell Death Differ (2016) ncbi
小鼠 单克隆(P4G11)
  • 流式细胞仪; 豚鼠; 1:75; 图 4
  • 免疫组化; 豚鼠; 图 3
  • 免疫印迹; 豚鼠; 图 4
默克密理博中国β1整合素抗体(Chemicon, P4G11)被用于被用于流式细胞仪在豚鼠样本上浓度为1:75 (图 4), 被用于免疫组化在豚鼠样本上 (图 3) 和 被用于免疫印迹在豚鼠样本上 (图 4). J Cell Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 豚鼠; 1:1000; 图 4
默克密理博中国β1整合素抗体(Millipore, AB1952P)被用于被用于免疫印迹在豚鼠样本上浓度为1:1000 (图 4). J Cell Biochem (2016) ncbi
小鼠 单克隆(HB1.1)
  • 免疫细胞化学; 人类; 图 5b
默克密理博中国β1整合素抗体(Millipore, MAB2000)被用于被用于免疫细胞化学在人类样本上 (图 5b). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(LM534)
  • 免疫组化; bantam; 1:100; 图 s1
默克密理博中国β1整合素抗体(Millipore, MAB1981)被用于被用于免疫组化在bantam样本上浓度为1:100 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(6S6)
  • 免疫组化; 人类; 图 5a
默克密理博中国β1整合素抗体(Millipore, 6S6)被用于被用于免疫组化在人类样本上 (图 5a). Cell Biosci (2016) ncbi
小鼠 单克隆(LM534)
  • 免疫细胞化学; 人类; 1:375
默克密理博中国β1整合素抗体(Millipore, LM534)被用于被用于免疫细胞化学在人类样本上浓度为1:375. Nature (2016) ncbi
小鼠 单克隆(2B1)
  • 免疫印迹; 小鼠; 1:200; 图 5, 6
默克密理博中国β1整合素抗体(Chemicon, MAB1900)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5, 6). Hum Mol Genet (2016) ncbi
小鼠 单克隆(2B1)
  • 免疫印迹; 小鼠; 1:200; 图 5
默克密理博中国β1整合素抗体(Chemicon, MAB1900)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(HUTS-4)
  • proximity ligation assay; 人类; 1:1000; 图 s3
默克密理博中国β1整合素抗体(Millipore, HUTS-4)被用于被用于proximity ligation assay在人类样本上浓度为1:1000 (图 s3). J Cell Biol (2015) ncbi
小鼠 单克隆(HUTS-4)
默克密理博中国β1整合素抗体(Millipore Co, mab2079Z)被用于. J Exp Clin Cancer Res (2015) ncbi
小鼠 单克隆(B3B11)
  • 免疫印迹; 人类; 1:1000
默克密理博中国β1整合素抗体(Millipore, MAB2251)被用于被用于免疫印迹在人类样本上浓度为1:1000. Anal Cell Pathol (Amst) (2015) ncbi
小鼠 单克隆(6S6)
  • 免疫组化; 人类; 表 2
默克密理博中国β1整合素抗体(Millipore, MAB2253Z)被用于被用于免疫组化在人类样本上 (表 2). PLoS ONE (2015) ncbi
小鼠 单克隆(2B1)
  • 免疫细胞化学; 小鼠; 1:40; 图 7q
默克密理博中国β1整合素抗体(Millipore, 1900)被用于被用于免疫细胞化学在小鼠样本上浓度为1:40 (图 7q). Mol Ther (2015) ncbi
小鼠 单克隆(P4G11)
  • 免疫印迹; 人类
默克密理博中国β1整合素抗体(Chemicon, mAB1951)被用于被用于免疫印迹在人类样本上. Mol Cancer (2015) ncbi
小鼠 单克隆(HUTS-4)
  • 流式细胞仪; 人类
  • 免疫印迹; 人类
默克密理博中国β1整合素抗体(Millipore, HUTS-4)被用于被用于流式细胞仪在人类样本上 和 被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(6S6)
  • 抑制或激活实验; 人类; 20 ug/ml
默克密理博中国β1整合素抗体(Millipore, MAB2253)被用于被用于抑制或激活实验在人类样本上浓度为20 ug/ml. J Virol (2015) ncbi
小鼠 单克隆(JB1A)
  • 免疫沉淀; 人类
默克密理博中国β1整合素抗体(Millipore, JB1A)被用于被用于免疫沉淀在人类样本上. Hum Mol Genet (2015) ncbi
小鼠 单克隆(6S6)
  • 免疫细胞化学; 人类; 1:100; 图 6
默克密理博中国β1整合素抗体(Millipore, MAB2253)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). J Cell Mol Med (2015) ncbi
小鼠 单克隆(P4G11)
  • 抑制或激活实验; 人类
默克密理博中国β1整合素抗体(Merck Millipore, MAB1951Z)被用于被用于抑制或激活实验在人类样本上. Biomaterials (2015) ncbi
小鼠 单克隆(6S6)
  • 免疫细胞化学; 人类
默克密理博中国β1整合素抗体(Merck Millipore, MAB2253Z)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2015) ncbi
小鼠 单克隆(JB1A)
  • 其他; 小鼠; 1:250; 图 2a
默克密理博中国β1整合素抗体(EMD Millipore, MAB1965)被用于被用于其他在小鼠样本上浓度为1:250 (图 2a). Cell Death Differ (2015) ncbi
小鼠 单克隆(HUTS-4)
  • 其他; 小鼠; 1:250; 图 2a
默克密理博中国β1整合素抗体(EMD Millipore, HUTS-4)被用于被用于其他在小鼠样本上浓度为1:250 (图 2a). Cell Death Differ (2015) ncbi
小鼠 单克隆(6S6)
  • 抑制或激活实验; 人类; 5 ug/ml; 图 1
默克密理博中国β1整合素抗体(Millipore, 6S6)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(HB1.1)
  • 免疫沉淀; 人类; 图 6
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 图 6
默克密理博中国β1整合素抗体(Millipore, MAB2000)被用于被用于免疫沉淀在人类样本上 (图 6), 被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Mol Cell Biol (2015) ncbi
小鼠 单克隆(2B1)
  • 免疫印迹; 小鼠; 1:200; 图 4
默克密理博中国β1整合素抗体(Chemicon, MAB1900)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4). Hum Mol Genet (2015) ncbi
小鼠 单克隆(LM534)
  • 免疫组化; 人类; 1:200; 图 6
默克密理博中国β1整合素抗体(Millipore, MAB1981)被用于被用于免疫组化在人类样本上浓度为1:200 (图 6). PLoS ONE (2014) ncbi
小鼠 单克隆(LM534)
  • 免疫细胞化学; 人类; 图 s1
默克密理博中国β1整合素抗体(EMD Millipore, MAB1981)被用于被用于免疫细胞化学在人类样本上 (图 s1). J Cell Sci (2015) ncbi
小鼠 单克隆(6S6)
  • 抑制或激活实验; 人类
默克密理博中国β1整合素抗体(Millipore, MAB2253Z)被用于被用于抑制或激活实验在人类样本上. Exp Cell Res (2015) ncbi
小鼠 单克隆(2B1)
  • 免疫印迹; brown rat
默克密理博中国β1整合素抗体(Millipore, MAB1900)被用于被用于免疫印迹在brown rat样本上. Physiol Rep (2014) ncbi
小鼠 单克隆(HUTS-4)
  • 流式细胞仪; 人类; 图 5
默克密理博中国β1整合素抗体(Millipore, HUTS-4)被用于被用于流式细胞仪在人类样本上 (图 5). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(HUTS-4)
  • 免疫印迹; 小鼠
默克密理博中国β1整合素抗体(Millipore, HUTS4)被用于被用于免疫印迹在小鼠样本上. J Cell Sci (2014) ncbi
小鼠 单克隆(LM534)
  • 免疫组化-石蜡切片; 人类
默克密理博中国β1整合素抗体(Millipore, MAB1981)被用于被用于免疫组化-石蜡切片在人类样本上. Arch Toxicol (2014) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类
默克密理博中国β1整合素抗体(Millipore, MAB1959)被用于被用于抑制或激活实验在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 图 6d
默克密理博中国β1整合素抗体(Millipore, 12G10)被用于被用于免疫细胞化学在人类样本上 (图 6d). EMBO Mol Med (2014) ncbi
小鼠 单克隆(JB1A)
  • 其他; 人类; 图 5A
  • 免疫印迹; 人类; 图 6C
默克密理博中国β1整合素抗体(Millipore, MAB1965)被用于被用于其他在人类样本上 (图 5A) 和 被用于免疫印迹在人类样本上 (图 6C). Eur J Immunol (2014) ncbi
小鼠 单克隆(B3B11)
  • 其他; 人类
  • 免疫印迹; 人类; 图 6C
默克密理博中国β1整合素抗体(Millipore, MAB2251Z)被用于被用于其他在人类样本上 和 被用于免疫印迹在人类样本上 (图 6C). Eur J Immunol (2014) ncbi
小鼠 单克隆(HUTS-4)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
默克密理博中国β1整合素抗体(Millipore, HUTS-4)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Mol Cells (2013) ncbi
小鼠 单克隆(HUTS-4)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 1:300
默克密理博中国β1整合素抗体(Millipore, HUTS-4)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上浓度为1:300. Biomaterials (2014) ncbi
小鼠 单克隆(P4C10)
  • 抑制或激活实验; 人类; 1:200
默克密理博中国β1整合素抗体(Millipore, P4C10)被用于被用于抑制或激活实验在人类样本上浓度为1:200. Biomaterials (2014) ncbi
小鼠 单克隆(12G10)
  • 流式细胞仪; 人类; 1:150
  • 免疫印迹; 人类; 1:150; 图 2f
默克密理博中国β1整合素抗体(Millipore, MAB-2247-I)被用于被用于流式细胞仪在人类样本上浓度为1:150 和 被用于免疫印迹在人类样本上浓度为1:150 (图 2f). J Biol Chem (2013) ncbi
小鼠 单克隆(HB1.1)
  • 免疫印迹; 人类; 1:1000
默克密理博中国β1整合素抗体(Millipore, HB1.1)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2013) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类
默克密理博中国β1整合素抗体(Millipore, 12G10)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(6S6)
  • 抑制或激活实验; 人类
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
默克密理博中国β1整合素抗体(Millipore, 6S6)被用于被用于抑制或激活实验在人类样本上, 被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(HUTS-4)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 2
默克密理博中国β1整合素抗体(Millipore, MAB2079Z)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 2). Mol Carcinog (2014) ncbi
小鼠 单克隆(12G10)
  • 流式细胞仪; 人类
默克密理博中国β1整合素抗体(Millipore, 12G10)被用于被用于流式细胞仪在人类样本上. Am J Respir Cell Mol Biol (2013) ncbi
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 人类; 1:500
默克密理博中国β1整合素抗体(Millipore, MAB1959)被用于被用于免疫细胞化学在人类样本上浓度为1:500. BMC Cancer (2013) ncbi
小鼠 单克隆(HUTS-4)
  • 免疫印迹; 人类
默克密理博中国β1整合素抗体(Millipore, HUTS-4)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(LM534)
  • 免疫细胞化学; 人类
默克密理博中国β1整合素抗体(Chemicon, MAB1981)被用于被用于免疫细胞化学在人类样本上. FASEB J (2013) ncbi
小鼠 单克隆(12G10)
  • 免疫组化-冰冻切片; 人类
  • 免疫细胞化学; 人类
  • 免疫组化-冰冻切片; 小鼠
默克密理博中国β1整合素抗体(Millipore, MAB2247)被用于被用于免疫组化-冰冻切片在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫组化-冰冻切片在小鼠样本上. Exp Cell Res (2013) ncbi
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 人类
默克密理博中国β1整合素抗体(Chemicon, MAB1959)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类
默克密理博中国β1整合素抗体(Chemicon International, MAB2247)被用于被用于免疫印迹在人类样本上. Br J Cancer (2012) ncbi
小鼠 单克隆(HB1.1)
  • 免疫细胞化学; 人类; 1:300; 图 1
  • 免疫印迹; 人类; 图 1
默克密理博中国β1整合素抗体(Millipore, MAB 2000)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). BMC Biochem (2012) ncbi
小鼠 单克隆(N29)
  • 免疫组化-冰冻切片; 小鼠; 1:20
默克密理博中国β1整合素抗体(Millipore, MAB2252)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20. J Comp Neurol (2012) ncbi
小鼠 单克隆(P4C10)
  • 免疫组化-冰冻切片; 小鼠; 1:60
默克密理博中国β1整合素抗体(Millipore, MAB1987Z)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:60. J Comp Neurol (2012) ncbi
小鼠 单克隆(P4C10)
  • 免疫细胞化学; 人类; 10 ug/ml
默克密理博中国β1整合素抗体(Millipore, P4C10)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml. Am J Respir Cell Mol Biol (2008) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 人类; 1:200; 图 4h
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Studies Hybridoma Bank, P5D2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4h). J Cell Sci (2019) ncbi
小鼠 单克隆(P5D2)
  • 免疫印迹基因敲除验证; 小鼠; 1:17; 图 2c
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Studies Hybridoma Bank, dilution, P5D2)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:17 (图 2c). Nat Commun (2017) ncbi
小鼠 单克隆(P4C10)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 2b
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Hybridoma Studies Bank, P4C10)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2017) ncbi
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 人类; 1:100; 图 s4
Developmental Studies Hybridoma Bankβ1整合素抗体(R&D, P5D2)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s4). J Cell Sci (2016) ncbi
brown rat 单克隆(AIIB2)
  • 抑制或激活实验; 人类; 图 7
Developmental Studies Hybridoma Bankβ1整合素抗体(DSHB, AIIB2)被用于被用于抑制或激活实验在人类样本上 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(P4C10)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Studies Hybridoma Bank, P4C10)被用于被用于免疫沉淀在人类样本上 和 被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
brown rat 单克隆(AIIB2)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫细胞化学; 人类; 1:50
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Studies Hybridoma Bank, AIIB2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫细胞化学在人类样本上浓度为1:50. PLoS ONE (2013) ncbi
小鼠 单克隆(P5D2)
  • 流式细胞仪; 人类
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Studies Hybridoma Bank, P5D2)被用于被用于流式细胞仪在人类样本上. Biochem J (2013) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 10 ug/ml
  • 免疫细胞化学; 人类; 10 ug/ml; 图 s9f
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Studies Hybridoma Bank, P5D2)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml 和 被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 s9f). PLoS ONE (2012) ncbi
ATCC
小鼠 单克隆
  • 免疫沉淀; 人类; 图 3
ATCCβ1整合素抗体(ATCC, HB-243)被用于被用于免疫沉淀在人类样本上 (图 3). Oncotarget (2015) ncbi
文章列表
  1. Freeman S, Uderhardt S, Saric A, Collins R, Buckley C, Mylvaganam S, et al. Lipid-gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance. Science. 2020;367:301-305 pubmed 出版商
  2. Fusco P, Parisatto B, Rampazzo E, Persano L, Frasson C, Di Meglio A, et al. Patient-derived organoids (PDOs) as a novel in vitro model for neuroblastoma tumours. BMC Cancer. 2019;19:970 pubmed 出版商
  3. Nakamura Y, Dryanovski D, Kimura Y, Jackson S, Woods A, Yasui Y, et al. Cocaine-induced endocannabinoid signaling mediated by sigma-1 receptors and extracellular vesicle secretion. elife. 2019;8: pubmed 出版商
  4. Wang Q, Yang Q, Zhang A, Kang Z, Wang Y, Zhang Z. Silencing of SPARC represses heterotopic ossification via inhibition of the MAPK signaling pathway. Biosci Rep. 2019;39: pubmed 出版商
  5. Essex A, Pineda J, Acharya G, Xin H, Evans J, Iorns E, et al. Replication Study: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. elife. 2019;8: pubmed 出版商
  6. Zhou H, Wang L, Zhang C, Hu J, Chen J, Du W, et al. Feasibility of repairing full-thickness skin defects by iPSC-derived epithelial stem cells seeded on a human acellular amniotic membrane. Stem Cell Res Ther. 2019;10:155 pubmed 出版商
  7. Bayer S, Grither W, Brenot A, Hwang P, Barcus C, Ernst M, et al. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. elife. 2019;8: pubmed 出版商
  8. Navinés Ferrer A, Ainsua Enrich E, Serrano Candelas E, Sayos J, Martin M. Myo1f, an Unconventional Long-Tailed Myosin, Is a New Partner for the Adaptor 3BP2 Involved in Mast Cell Migration. Front Immunol. 2019;10:1058 pubmed 出版商
  9. Kalappurakkal J, Anilkumar A, Patra C, van Zanten T, Sheetz M, Mayor S. Integrin Mechano-chemical Signaling Generates Plasma Membrane Nanodomains that Promote Cell Spreading. Cell. 2019;: pubmed 出版商
  10. Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, et al. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci. 2019;132: pubmed 出版商
  11. Xanthis I, Souilhol C, Serbanovic Canic J, Roddie H, Kalli A, Fragiadaki M, et al. β1 integrin is a sensor of blood flow direction. J Cell Sci. 2019;132: pubmed 出版商
  12. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  13. Li Y, Li K, Hu W, Ojcius D, Fang J, Li S, et al. Endocytic recycling and vesicular transport systems mediate transcytosis of Leptospira interrogans across cell monolayer. elife. 2019;8: pubmed 出版商
  14. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  15. Gorla M, Santiago C, Chaudhari K, Layman A, Oliver P, Bashaw G. Ndfip Proteins Target Robo Receptors for Degradation and Allow Commissural Axons to Cross the Midline in the Developing Spinal Cord. Cell Rep. 2019;26:3298-3312.e4 pubmed 出版商
  16. Wang M, Hinton J, Gard J, Garcia J, Knudsen B, Nagle R, et al. Integrin α6β4E variant is associated with actin and CD9 structures and modifies the biophysical properties of cell-cell and cell-extracellular matrix interactions. Mol Biol Cell. 2019;30:838-850 pubmed 出版商
  17. Xia P, Gütl D, Zheden V, Heisenberg C. Lateral Inhibition in Cell Specification Mediated by Mechanical Signals Modulating TAZ Activity. Cell. 2019;176:1379-1392.e14 pubmed 出版商
  18. Zhao Q, Busch B, Jiménez Soto L, Ishikawa Ankerhold H, Massberg S, Terradot L, et al. Integrin but not CEACAM receptors are dispensable for Helicobacter pylori CagA translocation. PLoS Pathog. 2018;14:e1007359 pubmed 出版商
  19. Chen X, Wanggou S, Bodalia A, Zhu M, Dong W, Fan J, et al. A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression. Neuron. 2018;100:799-815.e7 pubmed 出版商
  20. Albrengues J, Shields M, Ng D, Park C, Ambrico A, Poindexter M, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361: pubmed 出版商
  21. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277-1292.e14 pubmed 出版商
  22. Singh V, Erady C, Balasubramanian N. Cell-matrix adhesion controls Golgi organization and function through Arf1 activation in anchorage-dependent cells. J Cell Sci. 2018;131: pubmed 出版商
  23. Almeida Souza L, Frank R, García Nafría J, Colussi A, Gunawardana N, Johnson C, et al. A Flat BAR Protein Promotes Actin Polymerization at the Base of Clathrin-Coated Pits. Cell. 2018;174:325-337.e14 pubmed 出版商
  24. Sakai Takemura F, Narita A, Masuda S, Wakamatsu T, Watanabe N, Nishiyama T, et al. Premyogenic progenitors derived from human pluripotent stem cells expand in floating culture and differentiate into transplantable myogenic progenitors. Sci Rep. 2018;8:6555 pubmed 出版商
  25. Zhan R, Wang F, Wu Y, Wang Y, Qian W, Liu M, et al. Nitric oxide induces epidermal stem cell de-adhesion by targeting integrin β1 and Talin via the cGMP signalling pathway. Nitric Oxide. 2018;78:1-10 pubmed 出版商
  26. Oyama M, Kariya Y, Kariya Y, Matsumoto K, Kanno M, Yamaguchi Y, et al. Biological role of site-specific O-glycosylation in cell adhesion activity and phosphorylation of osteopontin. Biochem J. 2018;475:1583-1595 pubmed 出版商
  27. Takada N, Naito T, Inoue T, Nakayama K, Takatsu H, Shin H. Phospholipid-flipping activity of P4-ATPase drives membrane curvature. EMBO J. 2018;37: pubmed 出版商
  28. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  29. Lee C, Zhang H, Singh S, Koo L, Kabat J, Tsang H, et al. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. elife. 2018;7: pubmed 出版商
  30. Tissino E, Benedetti D, Herman S, ten Hacken E, Ahn I, Chaffee K, et al. Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia. J Exp Med. 2018;215:681-697 pubmed 出版商
  31. Buffone A, Anderson N, Hammer D. Migration against the direction of flow is LFA-1-dependent in human hematopoietic stem and progenitor cells. J Cell Sci. 2018;131: pubmed 出版商
  32. Huet Calderwood C, Rivera Molina F, Iwamoto D, Kromann E, Toomre D, Calderwood D. Novel ecto-tagged integrins reveal their trafficking in live cells. Nat Commun. 2017;8:570 pubmed 出版商
  33. Lin Y, Ohbayashi N, Hongu T, Katagiri N, Funakoshi Y, Lee H, et al. Arf6 in lymphatic endothelial cells regulates lymphangiogenesis by controlling directional cell migration. Sci Rep. 2017;7:11431 pubmed 出版商
  34. Huang N, Pishesha N, Mukherjee J, Zhang S, Deshycka R, Sudaryo V, et al. Genetically engineered red cells expressing single domain camelid antibodies confer long-term protection against botulinum neurotoxin. Nat Commun. 2017;8:423 pubmed 出版商
  35. Wan Q, TruongVo T, Steele H, Ozcelikkale A, Han B, Wang Y, et al. Subcellular domain-dependent molecular hierarchy of SFK and FAK in mechanotransduction and cytokine signaling. Sci Rep. 2017;7:9033 pubmed 出版商
  36. Brasher M, Martynowicz D, Grafinger O, Hucik A, Shanks Skinner E, Uniacke J, et al. Interaction of Munc18c and syntaxin4 facilitates invadopodium formation and extracellular matrix invasion of tumor cells. J Biol Chem. 2017;292:16199-16210 pubmed 出版商
  37. Ren D, Yang Q, Dai Y, Guo W, Du H, Song L, et al. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-?B signaling pathway. Mol Cancer. 2017;16:117 pubmed 出版商
  38. Miikkulainen P, Högel H, Rantanen K, Suomi T, Kouvonen P, Elo L, et al. HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma. Cancer Metab. 2017;5:5 pubmed 出版商
  39. Agrawal P, Fontanals Cirera B, Sokolova E, Jacob S, Vaiana C, Argibay D, et al. A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis. Cancer Cell. 2017;31:804-819.e7 pubmed 出版商
  40. Zhang K, Myllymäki S, Gao P, Devarajan R, Kytölä V, Nykter M, et al. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene. 2017;36:5681-5694 pubmed 出版商
  41. Loi A, Hoonhorst S, van Aalst C, Langereis J, Kamp V, Sluis Eising S, et al. Proteomic profiling of peripheral blood neutrophils identifies two inflammatory phenotypes in stable COPD patients. Respir Res. 2017;18:100 pubmed 出版商
  42. Szoka L, Karna E, Hlebowicz Sarat K, Karaszewski J, Palka J. Exogenous proline stimulates type I collagen and HIF-1? expression and the process is attenuated by glutamine in human skin fibroblasts. Mol Cell Biochem. 2017;435:197-206 pubmed 出版商
  43. Nardone G, Oliver De La Cruz J, Vrbsky J, Martini C, Pribyl J, Skladal P, et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun. 2017;8:15321 pubmed 出版商
  44. Wu Y, Jhao Y, Cheng Y, Chen Y. 15-Deoxy-?12,14-prostaglandin J2 inhibits migration of human thyroid carcinoma cells by disrupting focal adhesion complex and adherens junction. Oncol Lett. 2017;13:2569-2576 pubmed 出版商
  45. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  46. Esteves C, Sheldrake T, Mesquita S, Pesántez J, Menghini T, Dawson L, et al. Isolation and characterization of equine native MSC populations. Stem Cell Res Ther. 2017;8:80 pubmed 出版商
  47. Wei X, Wang X, Zhan J, Chen Y, Fang W, Zhang L, et al. Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation. J Cell Biol. 2017;216:1455-1471 pubmed 出版商
  48. Starchenko A, Graves Deal R, Yang Y, Li C, Zent R, Singh B, et al. Clustering of integrin α5 at the lateral membrane restores epithelial polarity in invasive colorectal cancer cells. Mol Biol Cell. 2017;28:1288-1300 pubmed 出版商
  49. Eirin A, Zhu X, Puranik A, Woollard J, Tang H, Dasari S, et al. Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells. PLoS ONE. 2017;12:e0174303 pubmed 出版商
  50. Langley S, Willeit K, Didangelos A, Matic L, Skroblin P, Barallobre Barreiro J, et al. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J Clin Invest. 2017;127:1546-1560 pubmed 出版商
  51. Merhi A, Delree P, Marini A. The metabolic waste ammonium regulates mTORC2 and mTORC1 signaling. Sci Rep. 2017;7:44602 pubmed 出版商
  52. Grasso S, Chapelle J, Salemme V, Aramu S, Russo I, Vitale N, et al. The scaffold protein p140Cap limits ERBB2-mediated breast cancer progression interfering with Rac GTPase-controlled circuitries. Nat Commun. 2017;8:14797 pubmed 出版商
  53. Shen C, Sun L, Zhu N, Qi F. Kindlin-1 contributes to EGF-induced re-epithelialization in skin wound healing. Int J Mol Med. 2017;39:949-959 pubmed 出版商
  54. Di Maggio N, Martella E, Frismantiene A, Resink T, Schreiner S, Lucarelli E, et al. Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells. Sci Rep. 2017;7:44398 pubmed 出版商
  55. Eppler F, Quast T, Kolanus W. Dynamin2 controls Rap1 activation and integrin clustering in human T lymphocyte adhesion. PLoS ONE. 2017;12:e0172443 pubmed 出版商
  56. El Kharbili M, Robert C, Witkowski T, Danty Berger E, Barbollat Boutrand L, Masse I, et al. Tetraspanin 8 is a novel regulator of ILK-driven ?1 integrin adhesion and signaling in invasive melanoma cells. Oncotarget. 2017;8:17140-17155 pubmed 出版商
  57. Rao D, Gurish M, Marshall J, Slowikowski K, Fonseka C, Liu Y, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542:110-114 pubmed 出版商
  58. Gamal W, Treskes P, Samuel K, Sullivan G, Siller R, Srsen V, et al. Low-dose acetaminophen induces early disruption of cell-cell tight junctions in human hepatic cells and mouse liver. Sci Rep. 2017;7:37541 pubmed 出版商
  59. Chen Z, Givens C, Reader J, Tzima E. Haemodynamics Regulate Fibronectin Assembly via PECAM. Sci Rep. 2017;7:41223 pubmed 出版商
  60. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun. 2017;8:14105 pubmed 出版商
  61. Zhu J, Wang P, Yu Z, Lai W, Cao Y, Huang P, et al. Advanced glycosylation end product promotes forkhead box O1 and inhibits Wnt pathway to suppress capacities of epidermal stem cells. Am J Transl Res. 2016;8:5569-5579 pubmed
  62. Fallahi Sichani M, Becker V, Izar B, Baker G, Lin J, Boswell S, et al. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. Mol Syst Biol. 2017;13:905 pubmed 出版商
  63. Hammers D, Sleeper M, Forbes S, Coker C, Jirousek M, Zimmer M, et al. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016;1:e90341 pubmed 出版商
  64. Storm R, Persson B, Skalman L, Frängsmyr L, Lindström M, Rankin G, et al. Human Adenovirus Type 37 Uses αVβ1 and α3β1 Integrins for Infection of Human Corneal Cells. J Virol. 2017;91: pubmed 出版商
  65. Pavel M, Imarisio S, Menzies F, Jimenez Sanchez M, Siddiqi F, Wu X, et al. CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat Commun. 2016;7:13821 pubmed 出版商
  66. Suginami K, Sato Y, Horie A, Matsumoto H, Kyo S, Araki Y, et al. Platelets are a possible regulator of human endometrial re-epithelialization during menstruation. Am J Reprod Immunol. 2017;77: pubmed 出版商
  67. Parag Sharma K, Leyme A, DiGiacomo V, Marivin A, Broselid S, Garcia Marcos M. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (G?-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling. J Biol Chem. 2016;291:27098-27111 pubmed 出版商
  68. Leibacher J, Dauber K, Ehser S, Brixner V, Kollar K, Vogel A, et al. Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy. 2017;19:61-74 pubmed 出版商
  69. Weitzenfeld P, Meshel T, Ben Baruch A. Microenvironmental networks promote tumor heterogeneity and enrich for metastatic cancer stem-like cells in Luminal-A breast tumor cells. Oncotarget. 2016;7:81123-81143 pubmed 出版商
  70. Yu Z, Zou Y, Fan J, Li C, Ma L. Notch1 is associated with the differentiation of human bone marrow?derived mesenchymal stem cells to cardiomyocytes. Mol Med Rep. 2016;14:5065-5071 pubmed 出版商
  71. Bryukhovetskiy I, Dyuizen I, Shevchenko V, Bryukhovetskiy A, Mischenko P, Milkina E, et al. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 2016;14:4511-4520 pubmed 出版商
  72. Shapiro L, Parsons R, Koleske A, Gourley S. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. J Neurosci Res. 2017;95:1123-1143 pubmed 出版商
  73. Chia J, Zhu T, Chyou S, Dasoveanu D, Carballo C, Tian S, et al. Dendritic cells maintain dermal adipose-derived stromal cells in skin fibrosis. J Clin Invest. 2016;126:4331-4345 pubmed 出版商
  74. Zhou Z, Xu Z, Wang F, Lu Y, Yin P, Jiang C, et al. New strategy to rescue the inhibition of osteogenesis of human bone marrow-derived mesenchymal stem cells under oxidative stress: combination of vitamin C and graphene foams. Oncotarget. 2016;7:71998-72010 pubmed 出版商
  75. Kishi T, Mayanagi T, Iwabuchi S, Akasaka T, Sobue K. Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity. Oncotarget. 2016;7:72113-72130 pubmed 出版商
  76. Qi L, Jafari N, Li X, Chen Z, Li L, Hytönen V, et al. Talin2-mediated traction force drives matrix degradation and cell invasion. J Cell Sci. 2016;129:3661-3674 pubmed
  77. Yeap W, Wong K, Shimasaki N, Teo E, Quek J, Yong H, et al. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci Rep. 2016;6:34310 pubmed 出版商
  78. Vanhoutte D, Schips T, Kwong J, Davis J, Tjondrokoesoemo A, Brody M, et al. Thrombospondin expression in myofibers stabilizes muscle membranes. elife. 2016;5: pubmed 出版商
  79. Jiang M, Qiu J, Zhang L, Lu D, Long M, Chen L, et al. Changes in tension regulates proliferation and migration of fibroblasts by remodeling expression of ECM proteins. Exp Ther Med. 2016;12:1542-1550 pubmed
  80. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  81. Machacek C, Supper V, Leksa V, Mitulovic G, Spittler A, Drbal K, et al. Folate Receptor ? Regulates Integrin CD11b/CD18 Adhesion of a Macrophage Subset to Collagen. J Immunol. 2016;197:2229-38 pubmed 出版商
  82. Guzman E, Taylor G, Hope J, Herbert R, Cubillos Zapata C, Charleston B. Transduction of skin-migrating dendritic cells by human adenovirus 5 occurs via an actin-dependent phagocytic pathway. J Gen Virol. 2016;97:2703-2718 pubmed 出版商
  83. Heintz T, Eva R, Fawcett J. Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins. PLoS ONE. 2016;11:e0158558 pubmed 出版商
  84. Hammers D, Sleeper M, Forbes S, Shima A, Walter G, Sweeney H. Tadalafil Treatment Delays the Onset of Cardiomyopathy in Dystrophin-Deficient Hearts. J Am Heart Assoc. 2016;5: pubmed 出版商
  85. LAW M, Ferreira R, Davis B, Higgins P, Kim J, Castellano R, et al. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res. 2016;18:80 pubmed 出版商
  86. Tang Y, Bao W, Yang J, Ma L, Yang J, Xu Y, et al. Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells. Mol Med Rep. 2016;14:2717-24 pubmed 出版商
  87. Amara S, Alotaibi D, Tiriveedhi V. NFAT5/STAT3 interaction mediates synergism of high salt with IL-17 towards induction of VEGF-A expression in breast cancer cells. Oncol Lett. 2016;12:933-943 pubmed
  88. Ashley S, Wilke C, Kim K, Moore B. Periostin regulates fibrocyte function to promote myofibroblast differentiation and lung fibrosis. Mucosal Immunol. 2017;10:341-351 pubmed 出版商
  89. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  90. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  91. Gao Y, Lui W, Lee W, Cheng C. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep. 2016;6:28589 pubmed 出版商
  92. Barcus C, Keely P, Eliceiri K, Schuler L. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093-48106 pubmed 出版商
  93. Høye A, Couchman J, Wewer U, Yoneda A. The Phosphorylation and Distribution of Cortactin Downstream of Integrin α9β1 Affects Cancer Cell Behaviour. Sci Rep. 2016;6:28529 pubmed 出版商
  94. Barrow McGee R, Kishi N, Joffre C, Ménard L, Hervieu A, Bakhouche B, et al. Beta 1-integrin-c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes. Nat Commun. 2016;7:11942 pubmed 出版商
  95. Kosheleva N, Ilina I, Zurina I, Roskova A, Gorkun A, Ovchinnikov A, et al. Laser-based technique for controlled damage of mesenchymal cell spheroids: a first step in studying reparation in vitro. Biol Open. 2016;5:993-1000 pubmed 出版商
  96. Liu C, LeClair P, Monajemi M, Sly L, Reid G, Lim C. α-Integrin expression and function modulates presentation of cell surface calreticulin. Cell Death Dis. 2016;7:e2268 pubmed 出版商
  97. Matsumura S, Kojidani T, Kamioka Y, Uchida S, Haraguchi T, Kimura A, et al. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1. Nat Commun. 2016;7:ncomms11858 pubmed 出版商
  98. Wang W, Kantorovich S, Babayan A, Hou B, Gall C, Lynch G. Estrogen's Effects on Excitatory Synaptic Transmission Entail Integrin and TrkB Transactivation and Depend Upon ?1-integrin function. Neuropsychopharmacology. 2016;41:2723-32 pubmed 出版商
  99. Quarta M, Brett J, DiMarco R, de Morrée A, Boutet S, Chacon R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752-9 pubmed 出版商
  100. Wang B, Qi T, Chen S, Ye L, Huang Z, Li H. RFX1 maintains testis cord integrity by regulating the expression of Itga6 in male mouse embryos. Mol Reprod Dev. 2016;83:606-14 pubmed 出版商
  101. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  102. Kolanowski S, van Schijndel G, Van Ham S, ten Brinke A. Adaptation to replating of dendritic cells synergizes with Toll-like receptor stimuli and enhances the pro-inflammatory cytokine profile. Cytotherapy. 2016;18:902-10 pubmed 出版商
  103. Lin Y, Warren C, Li J, McKinsey T, Russell B. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ. Cell Signal. 2016;28:1015-24 pubmed 出版商
  104. Ozdal Kurt F, Sen B, Tuglu I, Vatansever S, Türk B, Deliloglu Gurhan I. Attachment and growth of dental pulp stem cells on dentin in presence of extra calcium. Arch Oral Biol. 2016;68:131-41 pubmed 出版商
  105. Tokhtaeva E, Sun H, Deiss Yehiely N, Wen Y, Soni P, Gabrielli N, et al. The O-glycosylated ectodomain of FXYD5 impairs adhesion by disrupting cell-cell trans-dimerization of Na,K-ATPase β1 subunits. J Cell Sci. 2016;129:2394-406 pubmed 出版商
  106. Merilahti P, Tauriainen S, Susi P. Human Parechovirus 1 Infection Occurs via αVβ1 Integrin. PLoS ONE. 2016;11:e0154769 pubmed 出版商
  107. Wang X, Zhu Y, Xu B, Wang J, Liu X. Identification of TLR2 and TLR4?induced microRNAs in human mesenchymal stem cells and their possible roles in regulating TLR signals. Mol Med Rep. 2016;13:4969-80 pubmed 出版商
  108. SILVA P, Mendoza P, Rivas S, Diaz J, Moraga C, Quest A, et al. Hypoxia promotes Rab5 activation, leading to tumor cell migration, invasion and metastasis. Oncotarget. 2016;7:29548-62 pubmed 出版商
  109. Liu S, Zhou F, Shen Y, Zhang Y, Yin H, Zeng Y, et al. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget. 2016;7:32876-92 pubmed 出版商
  110. Laklai H, Miroshnikova Y, Pickup M, Collisson E, Kim G, Barrett A, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med. 2016;22:497-505 pubmed 出版商
  111. Wang Q, Yang J, Lin X, Huang Z, Xie C, Fan H. Spot14/Spot14R expression may be involved in MSC adipogenic differentiation in patients with adolescent idiopathic scoliosis. Mol Med Rep. 2016;13:4636-42 pubmed 出版商
  112. Khan M, Chandrashekran A, Smith R, Dudhia J. Immunophenotypic characterization of ovine mesenchymal stem cells. Cytometry A. 2016;89:443-50 pubmed 出版商
  113. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  114. Conway A, Van Nostrand E, Pratt G, Aigner S, Wilbert M, Sundararaman B, et al. Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. Cell Rep. 2016;15:666-679 pubmed 出版商
  115. Chen W, Cao Z, Sugaya S, Lopez M, Sendra V, Laver N, et al. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat Commun. 2016;7:11302 pubmed 出版商
  116. Weems P, Witty C, Amstalden M, Coolen L, Goodman R, Lehman M. ?-Opioid Receptor Is Colocalized in GnRH and KNDy Cells in the Female Ovine and Rat Brain. Endocrinology. 2016;157:2367-79 pubmed 出版商
  117. Kawamoto E, Okamoto T, Takagi Y, Honda G, Suzuki K, Imai H, et al. LFA-1 and Mac-1 integrins bind to the serine/threonine-rich domain of thrombomodulin. Biochem Biophys Res Commun. 2016;473:1005-1012 pubmed 出版商
  118. Nader G, Ezratty E, Gundersen G. FAK, talin and PIPKI? regulate endocytosed integrin activation to polarize focal adhesion assembly. Nat Cell Biol. 2016;18:491-503 pubmed 出版商
  119. Choi H, Nam K, Lee H, Yang S, Kim Y, Lee J, et al. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen. Oxid Med Cell Longev. 2016;2016:3859721 pubmed 出版商
  120. Winkler J, Roessler S, Sticht C, DiGuilio A, Drucker E, Hölzer K, et al. Cellular apoptosis susceptibility (CAS) is linked to integrin ?1 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC). Oncotarget. 2016;7:22883-92 pubmed 出版商
  121. Anselmo A, Lauranzano E, Soldani C, Ploia C, Angioni R, D Amico G, et al. Identification of a novel agrin-dependent pathway in cell signaling and adhesion within the erythroid niche. Cell Death Differ. 2016;23:1322-30 pubmed 出版商
  122. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  123. Álvarez Santos M, Carbajal V, Tellez Jiménez O, Martínez Cordero E, Ruiz V, Hernández Pando R, et al. Airway Hyperresponsiveness in Asthma Model Occurs Independently of Secretion of β1 Integrins in Airway Wall and Focal Adhesions Proteins Down Regulation. J Cell Biochem. 2016;117:2385-96 pubmed 出版商
  124. Petridou N, Skourides P. A ligand-independent integrin β1 mechanosensory complex guides spindle orientation. Nat Commun. 2016;7:10899 pubmed 出版商
  125. Ryu S, Park K, Lee S. Gleditsia sinensis Thorn Attenuates the Collagen-Based Migration of PC3 Prostate Cancer Cells through the Suppression of α2β1 Integrin Expression. Int J Mol Sci. 2016;17:328 pubmed 出版商
  126. Santio N, Salmela M, Arola H, Eerola S, Heino J, Rainio E, et al. The PIM1 kinase promotes prostate cancer cell migration and adhesion via multiple signalling pathways. Exp Cell Res. 2016;342:113-24 pubmed 出版商
  127. Zhao W, Wang C, Liu R, Wei C, Duan J, Liu K, et al. Effect of TGF-β1 on the Migration and Recruitment of Mesenchymal Stem Cells after Vascular Balloon Injury: Involvement of Matrix Metalloproteinase-14. Sci Rep. 2016;6:21176 pubmed 出版商
  128. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  129. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  130. Cott C, Thuenauer R, Landi A, Kühn K, Juillot S, Imberty A, et al. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation. Biochim Biophys Acta. 2016;1863:1106-18 pubmed 出版商
  131. Jürets A, Le Bras M, Staffler G, Stein G, Leitner L, Neuhofer A, et al. Inhibition of Cellular Adhesion by Immunological Targeting of Osteopontin Neoepitopes Generated through Matrix Metalloproteinase and Thrombin Cleavage. PLoS ONE. 2016;11:e0148333 pubmed 出版商
  132. Long K, Moss L, Laursen L, Boulter L, ffrench Constant C. Integrin signalling regulates the expansion of neuroepithelial progenitors and neurogenesis via Wnt7a and Decorin. Nat Commun. 2016;7:10354 pubmed 出版商
  133. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  134. De Franceschi N, Arjonen A, Elkhatib N, Denessiouk K, Wrobel A, Wilson T, et al. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2. Nat Struct Mol Biol. 2016;23:172-9 pubmed 出版商
  135. Walker L, Hussein H, Akula S. Subcellular fractionation method to study endosomal trafficking of Kaposi's sarcoma-associated herpesvirus. Cell Biosci. 2016;6:1 pubmed 出版商
  136. Dave J, Abbey C, Duran C, Seo H, Johnson G, Bayless K. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci. 2016;129:743-56 pubmed 出版商
  137. Ketel K, Krauss M, Nicot A, Puchkov D, Wieffer M, Müller R, et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature. 2016;529:408-12 pubmed 出版商
  138. Tjondrokoesoemo A, Schips T, Kanisicak O, Sargent M, Molkentin J. Genetic overexpression of Serpina3n attenuates muscular dystrophy in mice. Hum Mol Genet. 2016;25:1192-202 pubmed 出版商
  139. Heo J, Choi Y, Kim H, Kim H. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37:115-25 pubmed 出版商
  140. van Essen T, van Zijl L, Possemiers T, Mulder A, Zwart S, Chou C, et al. Biocompatibility of a fish scale-derived artificial cornea: Cytotoxicity, cellular adhesion and phenotype, and in vivo immunogenicity. Biomaterials. 2016;81:36-45 pubmed 出版商
  141. Parvatiyar M, Marshall J, Nguyen R, Jordan M, Richardson V, Roos K, et al. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy. J Am Heart Assoc. 2015;4: pubmed 出版商
  142. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  143. Kraft S, Klemis V, Sens C, Lenhard T, Jacobi C, Samstag Y, et al. Identification and characterization of a unique role for EDB fibronectin in phagocytosis. J Mol Med (Berl). 2016;94:567-81 pubmed 出版商
  144. Mvula B, Abrahamse H. Differentiation Potential of Adipose-Derived Stem Cells When Cocultured with Smooth Muscle Cells, and the Role of Low-Intensity Laser Irradiation. Photomed Laser Surg. 2016;34:509-515 pubmed
  145. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med. 2016;5:117-28 pubmed 出版商
  146. Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7:509-23 pubmed 出版商
  147. Schminke B, Trautmann S, Mai B, Miosge N, Blaschke S. Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage. Eur J Immunol. 2016;46:440-5 pubmed 出版商
  148. Duan W, Lopez M. Effects of Cryopreservation on Canine Multipotent Stromal Cells from Subcutaneous and Infrapatellar Adipose Tissue. Stem Cell Rev. 2016;12:257-68 pubmed 出版商
  149. Banerjee S, Li G, Li Y, Gaughan C, Baskar D, Parker Y, et al. RNase L is a negative regulator of cell migration. Oncotarget. 2015;6:44360-72 pubmed 出版商
  150. Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, et al. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci. 2016;107:84-94 pubmed 出版商
  151. Zhang L, Zou W. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway. Mol Med Rep. 2015;12:7869-76 pubmed 出版商
  152. Fiore V, Strane P, Bryksin A, White E, Hagood J, Barker T. Conformational coupling of integrin and Thy-1 regulates Fyn priming and fibroblast mechanotransduction. J Cell Biol. 2015;211:173-90 pubmed 出版商
  153. Wu B, Wang Y, Yang X, Xu B, Feng F, Wang B, et al. Basigin-mediated redistribution of CD98 promotes cell spreading and tumorigenicity in hepatocellular carcinoma. J Exp Clin Cancer Res. 2015;34:110 pubmed 出版商
  154. Jeannot P, Callot C, Baer R, Duquesnes N, Guerra C, Guillermet Guibert J, et al. Loss of p27Kip¹ promotes metaplasia in the pancreas via the regulation of Sox9 expression. Oncotarget. 2015;6:35880-92 pubmed 出版商
  155. Agarwal S, Bell C, Taylor S, Moran R. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66-77 pubmed 出版商
  156. Poitelon Y, Bogni S, Matafora V, Della Flora Nunes G, Hurley E, Ghidinelli M, et al. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nat Commun. 2015;6:8303 pubmed 出版商
  157. Okolicsanyi R, Camilleri E, Oikari L, Yu C, Cool S, Van Wijnen A, et al. Human Mesenchymal Stem Cells Retain Multilineage Differentiation Capacity Including Neural Marker Expression after Extended In Vitro Expansion. PLoS ONE. 2015;10:e0137255 pubmed 出版商
  158. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed 出版商
  159. Zhang J, Tripathi D, Jing J, Alexander A, Kim J, Powell R, et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol. 2015;17:1259-1269 pubmed 出版商
  160. Pocheć E, Bocian K, ZÄ…bczyÅ„ska M, Korczak Kowalska G, LityÅ„ska A. Immunosuppressive drugs affect high-mannose/hybrid N-glycans on human allostimulated leukocytes. Anal Cell Pathol (Amst). 2015;2015:324980 pubmed 出版商
  161. Mori S, Kodaira M, Ito A, Okazaki M, Kawaguchi N, Hamada Y, et al. Enhanced Expression of Integrin αvβ3 Induced by TGF-β Is Required for the Enhancing Effect of Fibroblast Growth Factor 1 (FGF1) in TGF-β-Induced Epithelial-Mesenchymal Transition (EMT) in Mammary Epithelial Cells. PLoS ONE. 2015;10:e0137486 pubmed 出版商
  162. Shen B, Estevez B, Xu Z, Kreutz B, Karginov A, Bai Y, et al. The interaction of Gα13 with integrin β1 mediates cell migration by dynamic regulation of RhoA. Mol Biol Cell. 2015;26:3658-70 pubmed 出版商
  163. Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther. 2015;6:144 pubmed 出版商
  164. Scott D, Tolbert C, Graham D, Wittchen E, Bear J, Burridge K. N-glycosylation controls the function of junctional adhesion molecule-A. Mol Biol Cell. 2015;26:3205-14 pubmed 出版商
  165. Martin A, Cardoso A, Selistre de Araujo H, Cominetti M. Recombinant disintegrin domain of human ADAM9 inhibits migration and invasion of DU145 prostate tumor cells. Cell Adh Migr. 2015;9:293-9 pubmed 出版商
  166. Ducret M, Fabre H, Farges J, Degoul O, Atzeni G, McGuckin C, et al. Production of Human Dental Pulp Cells with a Medicinal Manufacturing Approach. J Endod. 2015;41:1492-9 pubmed 出版商
  167. Burkhalter R, Westfall S, Liu Y, Stack M. Lysophosphatidic Acid Initiates Epithelial to Mesenchymal Transition and Induces β-Catenin-mediated Transcription in Epithelial Ovarian Carcinoma. J Biol Chem. 2015;290:22143-54 pubmed 出版商
  168. Kontro H, Cannino G, Rustin P, Dufour E, Kainulainen H. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells. PLoS ONE. 2015;10:e0131990 pubmed 出版商
  169. Wu C, Jiao H, Lai Y, Zheng W, Chen K, Qu H, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun. 2015;6:7531 pubmed 出版商
  170. Bian Y, Qian W, Li H, Zhao R, Shan W, Weng X. Pathogenesis of glucocorticoid-induced avascular necrosis: A microarray analysis of gene expression in vitro. Int J Mol Med. 2015;36:678-84 pubmed 出版商
  171. de Carvalho J, Zonari A, de Paula A, Martins T, Gomes D, Goes A. Production of Human Endothelial Cells Free from Soluble Xenogeneic Antigens for Bioartificial Small Diameter Vascular Graft Endothelization. Biomed Res Int. 2015;2015:652474 pubmed 出版商
  172. Lin Y, Bhuwania R, Gromova K, Failla A, Lange T, Riecken K, et al. Drosophila homologue of Diaphanous 1 (DIAPH1) controls the metastatic potential of colon cancer cells by regulating microtubule-dependent adhesion. Oncotarget. 2015;6:18577-89 pubmed
  173. Ruppender N, Larson S, Lakely B, Kollath L, Brown L, Coleman I, et al. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS ONE. 2015;10:e0130565 pubmed 出版商
  174. Fedorenko I, Abel E, Koomen J, Fang B, Wood E, Chen Y, et al. Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells. Oncogene. 2016;35:1225-35 pubmed 出版商
  175. Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. Biochim Biophys Acta. 2015;1853:2296-305 pubmed 出版商
  176. James S, Fox J, Afsari F, Lee J, Clough S, Knight C, et al. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. Stem Cell Reports. 2015;4:1004-15 pubmed 出版商
  177. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  178. Van Ry P, Wuebbles R, Key M, Burkin D. Galectin-1 Protein Therapy Prevents Pathology and Improves Muscle Function in the mdx Mouse Model of Duchenne Muscular Dystrophy. Mol Ther. 2015;23:1285-1297 pubmed 出版商
  179. Min H, Yun H, Lee J, Lee H, Cho J, Jang H, et al. Targeting the insulin-like growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer. Mol Cancer. 2015;14:113 pubmed 出版商
  180. Tang K, Cai Y, Joshi S, Tovar E, Tucker S, Maddipati K, et al. Convergence of eicosanoid and integrin biology: 12-lipoxygenase seeks a partner. Mol Cancer. 2015;14:111 pubmed 出版商
  181. Trerotola M, Ganguly K, Fazli L, Fedele C, Lu H, Dutta A, et al. Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget. 2015;6:14318-28 pubmed
  182. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  183. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed 出版商
  184. Ho F, Zhang W, Li Y, Chan B. Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix. Biomaterials. 2015;53:392-405 pubmed 出版商
  185. Yu M, Selvaraj S, Liang Chu M, Aghajani S, Busse M, Yuan J, et al. A resource for cell line authentication, annotation and quality control. Nature. 2015;520:307-11 pubmed 出版商
  186. Vassena L, Giuliani E, Koppensteiner H, Bolduan S, Schindler M, Doria M. HIV-1 Nef and Vpu Interfere with L-Selectin (CD62L) Cell Surface Expression To Inhibit Adhesion and Signaling in Infected CD4+ T Lymphocytes. J Virol. 2015;89:5687-700 pubmed 出版商
  187. Haarmann A, Nowak E, Deiß A, van der Pol S, Monoranu C, Kooij G, et al. Soluble VCAM-1 impairs human brain endothelial barrier integrity via integrin α-4-transduced outside-in signalling. Acta Neuropathol. 2015;129:639-52 pubmed 出版商
  188. Yalcin E, He Y, Orhan D, Pazzagli C, Emiralioğlu N, Has C. Crucial role of posttranslational modifications of integrin α3 in interstitial lung disease and nephrotic syndrome. Hum Mol Genet. 2015;24:3679-88 pubmed 出版商
  189. Kim S, Wen W, Prowse P, Hamilton D. Regulation of matrix remodelling phenotype in gingival fibroblasts by substratum topography. J Cell Mol Med. 2015;19:1183-96 pubmed 出版商
  190. Toh Y, Xing J, Yu H. Modulation of integrin and E-cadherin-mediated adhesions to spatially control heterogeneity in human pluripotent stem cell differentiation. Biomaterials. 2015;50:87-97 pubmed 出版商
  191. Woo J, Zhao X, Khan H, Penn C, Wang X, Joly Amado A, et al. Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Aβ ligation to β1-integrin conformers. Cell Death Differ. 2015;22:921-34 pubmed 出版商
  192. Ishihara S, Yasuda M, Ishizu A, Ishikawa M, Shirato H, Haga H. Activating transcription factor 5 enhances radioresistance and malignancy in cancer cells. Oncotarget. 2015;6:4602-14 pubmed
  193. Marquardt N, Béziat V, Nyström S, Hengst J, Ivarsson M, Kekäläinen E, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol. 2015;194:2467-71 pubmed 出版商
  194. Morris E, Assi K, Salh B, Dedhar S. Integrin-linked kinase links dynactin-1/dynactin-2 with cortical integrin receptors to orient the mitotic spindle relative to the substratum. Sci Rep. 2015;5:8389 pubmed 出版商
  195. Dong A, Wodziak D, Lowe A. Epidermal growth factor receptor (EGFR) signaling requires a specific endoplasmic reticulum thioredoxin for the post-translational control of receptor presentation to the cell surface. J Biol Chem. 2015;290:8016-27 pubmed 出版商
  196. Shafiq M, Jung Y, Kim S. Stem cell recruitment, angiogenesis, and tissue regeneration in substance P-conjugated poly(l-lactide-co-É›-caprolactone) nonwoven meshes. J Biomed Mater Res A. 2015;103:2673-88 pubmed 出版商
  197. Hakanpaa L, Sipilä T, Leppänen V, Gautam P, Nurmi H, Jacquemet G, et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun. 2015;6:5962 pubmed 出版商
  198. Lankford L, Selby T, Becker J, Ryzhuk V, Long C, Farmer D, et al. Early gestation chorionic villi-derived stromal cells for fetal tissue engineering. World J Stem Cells. 2015;7:195-207 pubmed 出版商
  199. Byron A, Askari J, Humphries J, Jacquemet G, Koper E, Warwood S, et al. A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting. Nat Commun. 2015;6:6135 pubmed 出版商
  200. Iwano S, Satou A, Matsumura S, Sugiyama N, Ishihama Y, Toyoshima F. PCTK1 regulates integrin-dependent spindle orientation via protein kinase A regulatory subunit KAP0 and myosin X. Mol Cell Biol. 2015;35:1197-208 pubmed 出版商
  201. Harrer A, Pilz G, Wipfler P, Oppermann K, Sellner J, Hitzl W, et al. High interindividual variability in the CD4/CD8 T cell ratio and natalizumab concentration levels in the cerebrospinal fluid of patients with multiple sclerosis. Clin Exp Immunol. 2015;180:383-92 pubmed 出版商
  202. Shen Y, Gao M, Ma Y, Yu H, Cui F, Gregersen H, et al. Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration. Colloids Surf B Biointerfaces. 2015;126:188-97 pubmed 出版商
  203. Inaba J, McConnell E, Davis K. Lunasin sensitivity in non-small cell lung cancer cells is linked to suppression of integrin signaling and changes in histone acetylation. Int J Mol Sci. 2014;15:23705-24 pubmed 出版商
  204. Marshall J, Oh J, Chou E, Lee J, Holmberg J, Burkin D, et al. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin. Hum Mol Genet. 2015;24:2011-22 pubmed 出版商
  205. Winkler M, Dib C, Ljubimov A, Saghizadeh M. Targeting miR-146a to treat delayed wound healing in human diabetic organ-cultured corneas. PLoS ONE. 2014;9:e114692 pubmed 出版商
  206. Qiao X, Roth I, Féraille E, Hasler U. Different effects of ZO-1, ZO-2 and ZO-3 silencing on kidney collecting duct principal cell proliferation and adhesion. Cell Cycle. 2014;13:3059-75 pubmed 出版商
  207. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  208. Elloumi Hannachi I, García J, Shekeran A, García A. Contributions of the integrin β1 tail to cell adhesive forces. Exp Cell Res. 2015;332:212-22 pubmed 出版商
  209. Weber Boyvat M, Kentala H, Lilja J, Vihervaara T, Hanninen R, Zhou Y, et al. OSBP-related protein 3 (ORP3) coupling with VAMP-associated protein A regulates R-Ras activity. Exp Cell Res. 2015;331:278-91 pubmed 出版商
  210. Liu D, Yovchev M, Zhang J, Alfieri A, Tchaikovskaya T, Laconi E, et al. Identification and characterization of mesenchymal-epithelial progenitor-like cells in normal and injured rat liver. Am J Pathol. 2015;185:110-28 pubmed 出版商
  211. Hui T, Sørensen E, Rittling S. Osteopontin binding to the alpha 4 integrin requires highest affinity integrin conformation, but is independent of post-translational modifications of osteopontin. Matrix Biol. 2015;41:19-25 pubmed 出版商
  212. Green C, Fraser S, Day M. Insulin-like growth factor 1 increases apical fibronectin in blastocysts to increase blastocyst attachment to endometrial epithelial cells in vitro. Hum Reprod. 2015;30:284-98 pubmed 出版商
  213. Chovancová J, Bernard T, Stehlíková O, Sálek D, Janíková A, Mayer J, et al. Detection of Minimal Residual Disease in Mantle Cell Lymphoma. Establishment of Novel 8-Color Flow Cytometry Approach. Cytometry B Clin Cytom. 2014;: pubmed 出版商
  214. Ogasawara R, Nakazato K, Sato K, Boppart M, Fujita S. Resistance exercise increases active MMP and β1-integrin protein expression in skeletal muscle. Physiol Rep. 2014;2: pubmed 出版商
  215. Shen S, Berry G, Castellanos Rivera R, Cheung R, Troupes A, Brown S, et al. Functional analysis of the putative integrin recognition motif on adeno-associated virus 9. J Biol Chem. 2015;290:1496-504 pubmed 出版商
  216. Sugahara K, Braun G, de Mendoza T, Kotamraju V, French R, Lowy A, et al. Tumor-penetrating iRGD peptide inhibits metastasis. Mol Cancer Ther. 2015;14:120-8 pubmed 出版商
  217. Guerrero J, Oliveira H, Catros S, Siadous R, Derkaoui S, Bareille R, et al. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis. Tissue Eng Part A. 2015;21:861-74 pubmed 出版商
  218. Ribeiro Resende V, Araújo Gomes T, de Lima S, Nascimento Lima M, Bargas Rega M, Santiago M, et al. Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration. PLoS ONE. 2014;9:e108919 pubmed 出版商
  219. Puig M, Lugo R, Gabasa M, Giménez A, Velásquez A, Galgoczy R, et al. Matrix stiffening and β1 integrin drive subtype-specific fibroblast accumulation in lung cancer. Mol Cancer Res. 2015;13:161-73 pubmed 出版商
  220. Uotila L, Jahan F, Soto Hinojosa L, Melandri E, Grönholm M, Gahmberg C. Specific phosphorylations transmit signals from leukocyte β2 to β1 integrins and regulate adhesion. J Biol Chem. 2014;289:32230-42 pubmed 出版商
  221. Brandau S, Jakob M, Bruderek K, Bootz F, Giebel B, Radtke S, et al. Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. PLoS ONE. 2014;9:e106903 pubmed 出版商
  222. De Rossi G, Evans A, Kay E, Woodfin A, McKay T, Nourshargh S, et al. Shed syndecan-2 inhibits angiogenesis. J Cell Sci. 2014;127:4788-99 pubmed 出版商
  223. Rothan H, Djordjevic I, Bahrani H, Paydar M, Ibrahim F, Abd Rahmanh N, et al. Three-dimensional culture environment increases the efficacy of platelet rich plasma releasate in prompting skin fibroblast differentiation and extracellular matrix formation. Int J Med Sci. 2014;11:1029-38 pubmed 出版商
  224. Romero A, Caceres M, Arancibia R, Silva D, Couve E, Martinez C, et al. Cigarette smoke condensate inhibits collagen gel contraction and prostaglandin E2 production in human gingival fibroblasts. J Periodontal Res. 2015;50:371-9 pubmed 出版商
  225. Yuan S, Guo Y, Zhou X, Shen W, Chen H. PDGFR-? (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo. Int J Clin Exp Pathol. 2014;7:2861-70 pubmed
  226. Dotterweich J, Ebert R, Kraus S, Tower R, Jakob F, Schutze N. Mesenchymal stem cell contact promotes CCN1 splicing and transcription in myeloma cells. Cell Commun Signal. 2014;12:36 pubmed 出版商
  227. Juengel E, Makarevic J, Reiter M, Mani J, Tsaur I, Bartsch G, et al. Resistance to the mTOR inhibitor temsirolimus alters adhesion and migration behavior of renal cell carcinoma cells through an integrin ?5- and integrin ?3-dependent mechanism. Neoplasia. 2014;16:291-300 pubmed 出版商
  228. Hashim Y, Worthington J, Allsopp P, Ternan N, Brown E, McCann M, et al. Virgin olive oil phenolics extract inhibit invasion of HT115 human colon cancer cells in vitro and in vivo. Food Funct. 2014;5:1513-9 pubmed 出版商
  229. Mrosewski I, Jork N, Gorte K, Conrad C, Wiegand E, Kohl B, et al. Regulation of osteoarthritis-associated key mediators by TNF? and IL-10: effects of IL-10 overexpression in human synovial fibroblasts and a synovial cell line. Cell Tissue Res. 2014;357:207-23 pubmed 出版商
  230. Williams K, McNeilly R, Coppolino M. SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) mediate trafficking of membrane type 1-matrix metalloproteinase (MT1-MMP) during invadopodium formation and tumor cell invasion. Mol Biol Cell. 2014;25:2061-70 pubmed 出版商
  231. Kandasamy K, Narayanan K, Ni M, Du C, Wan A, Zink D. Polysulfone membranes coated with polymerized 3,4-dihydroxy-l-phenylalanine are a versatile and cost-effective synthetic substrate for defined long-term cultures of human pluripotent stem cells. Biomacromolecules. 2014;15:2067-78 pubmed 出版商
  232. Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res. 2014;356:391-403 pubmed 出版商
  233. Lozano Fernández T, Ballester Antxordoki L, Pérez Temprano N, Rojas E, Sanz D, Iglesias Gaspar M, et al. Potential impact of metal oxide nanoparticles on the immune system: The role of integrins, L-selectin and the chemokine receptor CXCR4. Nanomedicine. 2014;10:1301-10 pubmed 出版商
  234. Mato E, Gonzalez C, Moral A, Pérez J, Bell O, Lerma E, et al. ABCG2/BCRP gene expression is related to epithelial-mesenchymal transition inducer genes in a papillary thyroid carcinoma cell line (TPC-1). J Mol Endocrinol. 2014;52:289-300 pubmed 出版商
  235. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene. 2015;34:1006-18 pubmed 出版商
  236. Termini C, Cotter M, Marjon K, Buranda T, Lidke K, Gillette J. The membrane scaffold CD82 regulates cell adhesion by altering α4 integrin stability and molecular density. Mol Biol Cell. 2014;25:1560-73 pubmed 出版商
  237. Ramaiahgari S, den Braver M, Herpers B, Terpstra V, Commandeur J, van de Water B, et al. A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol. 2014;88:1083-95 pubmed 出版商
  238. Li W, Li Y, Song D, Wang X, Liu M, Wu X, et al. Calreticulin protects rat microvascular endothelial cells against microwave radiation-induced injury by attenuating endoplasmic reticulum stress. Microcirculation. 2014;21:506-15 pubmed 出版商
  239. Barbera M, Di Pietro M, Walker E, Brierley C, Macrae S, Simons B, et al. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut. 2015;64:11-9 pubmed 出版商
  240. Wei Y, Zhang Y, Cai H, Mirza A, Iorio R, Peeples M, et al. Roles of the putative integrin-binding motif of the human metapneumovirus fusion (f) protein in cell-cell fusion, viral infectivity, and pathogenesis. J Virol. 2014;88:4338-52 pubmed 出版商
  241. Ahn E, Kim Y, Kshitiz -, An S, Afzal J, Lee S, et al. Spatial control of adult stem cell fate using nanotopographic cues. Biomaterials. 2014;35:2401-2410 pubmed 出版商
  242. Romagnoli M, Mineva N, Polmear M, Conrad C, Srinivasan S, Loussouarn D, et al. ADAM8 expression in invasive breast cancer promotes tumor dissemination and metastasis. EMBO Mol Med. 2014;6:278-94 pubmed 出版商
  243. Zhou J, Lu P, Ren H, Zheng Z, Ji J, Liu H, et al. 17?-estradiol protects human eyelid-derived adipose stem cells against cytotoxicity and increases transplanted cell survival in spinal cord injury. J Cell Mol Med. 2014;18:326-43 pubmed 出版商
  244. Lee H, Kim Y, Kim D. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking. Eur J Immunol. 2014;44:1156-69 pubmed 出版商
  245. Bi J, Wang R, Zhang Y, Han X, Ampah K, Liu W, et al. Identification of nucleolin as a lipid-raft-dependent ?1-integrin-interacting protein in A375 cell migration. Mol Cells. 2013;36:507-17 pubmed 出版商
  246. Fu X, Xu M, Liu J, Qi Y, Li S, Wang H. Regulation of migratory activity of human keratinocytes by topography of multiscale collagen-containing nanofibrous matrices. Biomaterials. 2014;35:1496-506 pubmed 出版商
  247. Valtcheva N, Primorac A, Jurisic G, Hollmen M, Detmar M. The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42. J Biol Chem. 2013;288:35736-48 pubmed 出版商
  248. Kim G, Yong Y, Kang H, Park K, Kim S, Lee M, et al. Zwitterionic polymer-coated immunobeads for blood-based cancer diagnostics. Biomaterials. 2014;35:294-303 pubmed 出版商
  249. Lorion C, Faye C, Maret B, Trimaille T, Regnier T, Sommer P, et al. Biosynthetic support based on dendritic poly(L-lysine) improves human skin fibroblasts attachment. J Biomater Sci Polym Ed. 2014;25:136-49 pubmed 出版商
  250. Faralli J, Gagen D, Filla M, Crotti T, Peters D. Dexamethasone increases ?v?3 integrin expression and affinity through a calcineurin/NFAT pathway. Biochim Biophys Acta. 2013;1833:3306-3313 pubmed 出版商
  251. Ghazvini M, Sonneveld P, Kremer A, Franken P, Sacchetti A, Atlasi Y, et al. Cancer stemness in Apc- vs. Apc/KRAS-driven intestinal tumorigenesis. PLoS ONE. 2013;8:e73872 pubmed 出版商
  252. Faulk D, Carruthers C, Warner H, Kramer C, Reing J, Zhang L, et al. The effect of detergents on the basement membrane complex of a biologic scaffold material. Acta Biomater. 2014;10:183-93 pubmed 出版商
  253. Costa P, Scales T, Ivaska J, Parsons M. Integrin-specific control of focal adhesion kinase and RhoA regulates membrane protrusion and invasion. PLoS ONE. 2013;8:e74659 pubmed 出版商
  254. Kikkawa Y, Ogawa T, Sudo R, Yamada Y, Katagiri F, Hozumi K, et al. The lutheran/basal cell adhesion molecule promotes tumor cell migration by modulating integrin-mediated cell attachment to laminin-511 protein. J Biol Chem. 2013;288:30990-1001 pubmed 出版商
  255. Khotskaya Y, Beck B, Hurst D, Han Z, Xia W, Hung M, et al. Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix. Mol Carcinog. 2014;53:1011-26 pubmed 出版商
  256. Avanzi S, Leoni V, Rotola A, Alviano F, Solimando L, Lanzoni G, et al. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection. PLoS ONE. 2013;8:e71412 pubmed 出版商
  257. Priglinger C, Szober C, Priglinger S, Merl J, Euler K, Kernt M, et al. Galectin-3 induces clustering of CD147 and integrin-?1 transmembrane glycoprotein receptors on the RPE cell surface. PLoS ONE. 2013;8:e70011 pubmed 出版商
  258. Stover A, Brick D, Nethercott H, Banuelos M, Sun L, O Dowd D, et al. Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling. J Neurosci Res. 2013;91:1247-62 pubmed 出版商
  259. Iwai L, Payne L, Luczynski M, Chang F, Xu H, Clinton R, et al. Phosphoproteomics of collagen receptor networks reveals SHP-2 phosphorylation downstream of wild-type DDR2 and its lung cancer mutants. Biochem J. 2013;454:501-13 pubmed 出版商
  260. Kligys K, Wu Y, Hamill K, Lewandowski K, Hopkinson S, Budinger G, et al. Laminin-332 and ?3?1 integrin-supported migration of bronchial epithelial cells is modulated by fibronectin. Am J Respir Cell Mol Biol. 2013;49:731-40 pubmed 出版商
  261. Ohlund D, Franklin O, Lundberg E, Lundin C, Sund M. Type IV collagen stimulates pancreatic cancer cell proliferation, migration, and inhibits apoptosis through an autocrine loop. BMC Cancer. 2013;13:154 pubmed 出版商
  262. Abbonante V, Gruppi C, Rubel D, Gross O, Moratti R, Balduini A. Discoidin domain receptor 1 protein is a novel modulator of megakaryocyte-collagen interactions. J Biol Chem. 2013;288:16738-46 pubmed 出版商
  263. Barcus C, Keely P, Eliceiri K, Schuler L. Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J Biol Chem. 2013;288:12722-32 pubmed 出版商
  264. Wu H, Downs D, Ghosh K, Ghosh A, Staib P, Monod M, et al. Candida albicans secreted aspartic proteases 4-6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism. FASEB J. 2013;27:2132-44 pubmed 出版商
  265. Coulson Thomas V, Coulson Thomas Y, Gesteira T, Andrade de Paula C, Carneiro C, Ortiz V, et al. Lumican expression, localization and antitumor activity in prostate cancer. Exp Cell Res. 2013;319:967-81 pubmed 出版商
  266. Strauss S, Neumeister A, Barcikowski S, Kracht D, Kuhbier J, Radtke C, et al. Adhesion, vitality and osteogenic differentiation capacity of adipose derived stem cells seeded on nitinol nanoparticle coatings. PLoS ONE. 2013;8:e53309 pubmed 出版商
  267. Xu H, Bihan D, Chang F, Huang P, Farndale R, Leitinger B. Discoidin domain receptors promote α1β1- and α2β1-integrin mediated cell adhesion to collagen by enhancing integrin activation. PLoS ONE. 2012;7:e52209 pubmed 出版商
  268. Niimi K, Yamamoto E, Fujiwara S, Shinjo K, Kotani T, Umezu T, et al. High expression of N-acetylglucosaminyltransferase IVa promotes invasion of choriocarcinoma. Br J Cancer. 2012;107:1969-77 pubmed 出版商
  269. Boddy S, Chen W, Romero Guevara R, Kottam L, Bellantuono I, Rivolta M. Inner ear progenitor cells can be generated in vitro from human bone marrow mesenchymal stem cells. Regen Med. 2012;7:757-67 pubmed 出版商
  270. Tian W, Qu L, Meng L, Liu C, Wu J, Shou C. Phosphatase of regenerating liver-3 directly interacts with integrin ?1 and regulates its phosphorylation at tyrosine 783. BMC Biochem. 2012;13:22 pubmed 出版商
  271. Yang Y, Li J, Pan X, Zhou P, Yu X, Cao H, et al. Co-culture with mesenchymal stem cells enhances metabolic functions of liver cells in bioartificial liver system. Biotechnol Bioeng. 2013;110:958-68 pubmed 出版商
  272. Moravec R, Conger K, D Souza R, Allison A, Casanova J. BRAG2/GEP100/IQSec1 interacts with clathrin and regulates ?5?1 integrin endocytosis through activation of ADP ribosylation factor 5 (Arf5). J Biol Chem. 2012;287:31138-47 pubmed 出版商
  273. Steinberg F, Heesom K, Bass M, Cullen P. SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways. J Cell Biol. 2012;197:219-30 pubmed 出版商
  274. Mortillo S, Elste A, Ge Y, Patil S, Hsiao K, Huntley G, et al. Compensatory redistribution of neuroligins and N-cadherin following deletion of synaptic ?1-integrin. J Comp Neurol. 2012;520:2041-52 pubmed 出版商
  275. Adesida A, Mulet Sierra A, Jomha N. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Ther. 2012;3:9 pubmed 出版商
  276. Yuan S, Chen R, Shen W, Chen H, Zhou X. Mesenchymal stem cells in infantile hemangioma reside in the perivascular region. Pediatr Dev Pathol. 2012;15:5-12 pubmed 出版商
  277. Fernández R, Ruiz Miró M, Dolcet X, Aldea M, Gari E. Cyclin D1 interacts and collaborates with Ral GTPases enhancing cell detachment and motility. Oncogene. 2011;30:1936-46 pubmed 出版商
  278. Farias V, Linares Fernández J, Peñalver J, Payá Colmenero J, Ferrón G, Duran E, et al. Human umbilical cord stromal stem cell express CD10 and exert contractile properties. Placenta. 2011;32:86-95 pubmed 出版商
  279. Chui K, Trivedi A, Cheng C, Cherbavaz D, Dazin P, Huynh A, et al. Characterization and functionality of proliferative human Sertoli cells. Cell Transplant. 2011;20:619-35 pubmed 出版商
  280. Qi H, Zheng X, Yuan X, Pflugfelder S, Li D. Potential localization of putative stem/progenitor cells in human bulbar conjunctival epithelium. J Cell Physiol. 2010;225:180-5 pubmed 出版商
  281. Walenda T, Bork S, Horn P, Wein F, Saffrich R, Diehlmann A, et al. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J Cell Mol Med. 2010;14:337-50 pubmed 出版商
  282. Campioni D, Rizzo R, Stignani M, Melchiorri L, Ferrari L, Moretti S, et al. A decreased positivity for CD90 on human mesenchymal stromal cells (MSCs) is associated with a loss of immunosuppressive activity by MSCs. Cytometry B Clin Cytom. 2009;76:225-30 pubmed 出版商
  283. Queisser M, Kouri F, Konigshoff M, Wygrecka M, Schubert U, Eickelberg O, et al. Loss of RAGE in pulmonary fibrosis: molecular relations to functional changes in pulmonary cell types. Am J Respir Cell Mol Biol. 2008;39:337-45 pubmed 出版商
  284. Campioni D, Moretti S, Ferrari L, Punturieri M, Castoldi G, Lanza F. Immunophenotypic heterogeneity of bone marrow-derived mesenchymal stromal cells from patients with hematologic disorders: correlation with bone marrow microenvironment. Haematologica. 2006;91:364-8 pubmed
  285. Chen Z, Evans W, Pflugfelder S, Li D. Gap junction protein connexin 43 serves as a negative marker for a stem cell-containing population of human limbal epithelial cells. Stem Cells. 2006;24:1265-73 pubmed
  286. Contamin H, Loizon S, Bourreau E, Michel J, Garraud O, Mercereau Puijalon O, et al. Flow cytometry identification and characterization of mononuclear cell subsets in the neotropical primate Saimiri sciureus (squirrel monkey). J Immunol Methods. 2005;297:61-71 pubmed