这是一篇来自已证抗体库的有关人类 脑源性神经营养因子 (brain derived neurotrophic factor) 的综述,是根据25篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合脑源性神经营养因子 抗体。
脑源性神经营养因子 同义词: ANON2; BULN2; brain-derived neurotrophic factor; abrineurin; neurotrophin

艾博抗(上海)贸易有限公司
兔 单克隆(EPR1292)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司脑源性神经营养因子抗体(Abcam, ab108319)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Front Mol Neurosci (2017) ncbi
兔 单克隆(EPR1292)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司脑源性神经营养因子抗体(Abcam, ab108319)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). FASEB J (2017) ncbi
兔 单克隆(EPR1292)
  • 免疫印迹; 小鼠; 1:250; 图 5f
艾博抗(上海)贸易有限公司脑源性神经营养因子抗体(Abcam, 108319)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 5f). J Neurosci Res (2017) ncbi
兔 单克隆(EPR1292)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司脑源性神经营养因子抗体(Abcam, ab108319)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Mol Med Rep (2016) ncbi
兔 单克隆(EPR1292)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司脑源性神经营养因子抗体(Abcam, ab108319)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Int J Neuropsychopharmacol (2014) ncbi
兔 单克隆(EPR1292)
  • 免疫印迹; 大鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司脑源性神经营养因子抗体(Abcam, ab108319)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1b). Int J Neuropsychopharmacol (2015) ncbi
兔 单克隆(EPR1292)
  • 免疫组化-石蜡切片; 小鼠; 1:25
艾博抗(上海)贸易有限公司脑源性神经营养因子抗体(Abcam, ab108319)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25. PLoS Genet (2014) ncbi
兔 单克隆(EPR1292)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司脑源性神经营养因子抗体(Epitomics, 3160-1)被用于被用于免疫印迹在大鼠样本上. J Cereb Blood Flow Metab (2014) ncbi
兔 单克隆(EPR1292)
  • 免疫印迹; 大鼠; 1:3000
艾博抗(上海)贸易有限公司脑源性神经营养因子抗体(Epitomics, 3160-1)被用于被用于免疫印迹在大鼠样本上浓度为1:3000. PLoS ONE (2014) ncbi
兔 单克隆(EPR1292)
  • 酶联免疫吸附测定; 小鼠
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司脑源性神经营养因子抗体(Abcam, ab108319)被用于被用于酶联免疫吸附测定在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:500. Neuroscience (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(5H8)
  • 免疫印迹; 小鼠; 1:100; 图 4e
圣克鲁斯生物技术脑源性神经营养因子抗体(Santa, sc-65514)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4e). J Exp Med (2017) ncbi
小鼠 单克隆(9C1)
  • 免疫印迹; 小鼠; 1:100
圣克鲁斯生物技术脑源性神经营养因子抗体(Santa Cruz Biotechnology, sc-65513)被用于被用于免疫印迹在小鼠样本上浓度为1:100. Exp Gerontol (2014) ncbi
Alomone Labs
兔 多克隆
  • 免疫印迹; 小鼠; 1:400; 图 4a
Alomone Labs脑源性神经营养因子抗体(Alomone Labs, ANT-006)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 4a). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 0.4 ug/ml; 图 1
Alomone Labs脑源性神经营养因子抗体(Alomone Labs, ANT 006)被用于被用于免疫组化在小鼠样本上浓度为0.4 ug/ml (图 1). J Cell Biol (2012) ncbi
赛默飞世尔
兔 单克隆(19HCLC)
  • 免疫印迹; 人类; 图 5
赛默飞世尔脑源性神经营养因子抗体(Thermo, 710306)被用于被用于免疫印迹在人类样本上 (图 5). Neuroscience (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(37141)
  • 免疫印迹; 小鼠; 1:100; 图 2f
西格玛奥德里奇脑源性神经营养因子抗体(Sigma, B9436)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 2f). J Neurosci Res (2017) ncbi
小鼠 单克隆(35928.11)
  • 免疫细胞化学; 人类; 图 4a
西格玛奥德里奇脑源性神经营养因子抗体(Sigma-Aldrich, B5050)被用于被用于免疫细胞化学在人类样本上 (图 4a). Biol Open (2016) ncbi
默克密理博中国
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1b
默克密理博中国脑源性神经营养因子抗体(Chemicon, AB1534)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s9
默克密理博中国脑源性神经营养因子抗体(Millipore, AB1779)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s9). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:2000
  • 免疫印迹; 大鼠; 1:2000
默克密理博中国脑源性神经营养因子抗体(Millipore Corporation, AB5613P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 和 被用于免疫印迹在大鼠样本上浓度为1:2000. J Neurochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:300
默克密理博中国脑源性神经营养因子抗体(Millipore, AB1534)被用于被用于免疫印迹在大鼠样本上浓度为1:300. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:2000
默克密理博中国脑源性神经营养因子抗体(Merck-Millipore, AB5613P)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500
默克密理博中国脑源性神经营养因子抗体(Millipore, AB1779)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. BMC Complement Altern Med (2014) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:300
默克密理博中国脑源性神经营养因子抗体(Millipore, AB9042)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:300. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
默克密理博中国脑源性神经营养因子抗体(Millipore, AB1779)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Dev Neurobiol (2013) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
默克密理博中国脑源性神经营养因子抗体(Millipore, AB1779)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
默克密理博中国脑源性神经营养因子抗体(Millipore, AB1779)被用于被用于免疫组化在大鼠样本上浓度为1:500. Acta Pharmacol Sin (2013) ncbi
Biosensis
兔 多克隆
  • 免疫印迹; 大鼠
Biosensis脑源性神经营养因子抗体(Biosensis, R-083-100)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
文章列表
  1. Khrimian L, Obri A, Ramos Brossier M, Rousseaud A, Moriceau S, Nicot A, et al. Gpr158 mediates osteocalcin's regulation of cognition. J Exp Med. 2017;214:2859-2873 pubmed 出版商
  2. Li J, Xie X, Li Y, Liu X, Liao X, Su Y, et al. Differential Behavioral and Neurobiological Effects of Chronic Corticosterone Treatment in Adolescent and Adult Rats. Front Mol Neurosci. 2017;10:25 pubmed 出版商
  3. Qian Q, Liu Q, Zhou D, Pan H, Liu Z, He F, et al. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway. FASEB J. 2017;31:2104-2113 pubmed 出版商
  4. Hinckelmann M, Virlogeux A, Niehage C, Poujol C, Choquet D, Hoflack B, et al. Self-propelling vesicles define glycolysis as the minimal energy machinery for neuronal transport. Nat Commun. 2016;7:13233 pubmed 出版商
  5. Shapiro L, Parsons R, Koleske A, Gourley S. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. J Neurosci Res. 2017;95:1123-1143 pubmed 出版商
  6. Polacchini A, Albani C, Baj G, Colliva A, Carpinelli P, Tongiorgi E. Combined cisplatin and aurora inhibitor treatment increase neuroblastoma cell death but surviving cells overproduce BDNF. Biol Open. 2016;5:899-907 pubmed 出版商
  7. Huang Y, Lin C, Liao H, Liu C, Chen Y, Chiu W, et al. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling. Neuroscience. 2016;328:201-9 pubmed 出版商
  8. Lin R, Chen J, Li X, Mao J, Wu Y, Zhuo P, et al. Electroacupuncture at the Baihui acupoint alleviates cognitive impairment and exerts neuroprotective effects by modulating the expression and processing of brain-derived neurotrophic factor in APP/PS1 transgenic mice. Mol Med Rep. 2016;13:1611-7 pubmed 出版商
  9. Tang J, Rudolph S, Dhande O, Abraira V, Choi S, Lapan S, et al. Cell type-specific manipulation with GFP-dependent Cre recombinase. Nat Neurosci. 2015;18:1334-41 pubmed 出版商
  10. Wei Y, Melas P, Wegener G, Mathé A, Lavebratt C. Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxymethylation levels in the Bdnf gene. Int J Neuropsychopharmacol. 2014;18: pubmed 出版商
  11. Wei Y, Backlund L, Wegener G, Mathé A, Lavebratt C. Telomerase dysregulation in the hippocampus of a rat model of depression: normalization by lithium. Int J Neuropsychopharmacol. 2015;18:pyv002 pubmed 出版商
  12. Bifsha P, Yang J, Fisher R, Drouin J. Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet. 2014;10:e1004863 pubmed 出版商
  13. McLean N, Popescu B, Gordon T, Zochodne D, Verge V. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves. PLoS ONE. 2014;9:e110174 pubmed 出版商
  14. Stansfield K, Bichell T, Bowman A, Guilarte T. BDNF and Huntingtin protein modifications by manganese: implications for striatal medium spiny neuron pathology in manganese neurotoxicity. J Neurochem. 2014;131:655-66 pubmed 出版商
  15. Banoujaafar H, Van Hoecke J, Mossiat C, Marie C. Brain BDNF levels elevation induced by physical training is reduced after unilateral common carotid artery occlusion in rats. J Cereb Blood Flow Metab. 2014;34:1681-7 pubmed 出版商
  16. Kraemer B, Snow J, Vollbrecht P, Pathak A, Valentine W, Deutch A, et al. A role for the p75 neurotrophin receptor in axonal degeneration and apoptosis induced by oxidative stress. J Biol Chem. 2014;289:21205-16 pubmed 出版商
  17. Di Loreto S, Falone S, D Alessandro A, Santini S, Sebastiani P, Cacchio M, et al. Regular and moderate exercise initiated in middle age prevents age-related amyloidogenesis and preserves synaptic and neuroprotective signaling in mouse brain cortex. Exp Gerontol. 2014;57:57-65 pubmed 出版商
  18. Rodier M, Prigent Tessier A, B jot Y, Jacquin A, Mossiat C, Marie C, et al. Exogenous t-PA administration increases hippocampal mature BDNF levels. plasmin- or NMDA-dependent mechanism?. PLoS ONE. 2014;9:e92416 pubmed 出版商
  19. Cheng C, Lin J, Su S, Tang N, Kao S, Hsieh C. Electroacupuncture-like stimulation at Baihui and Dazhui acupoints exerts neuroprotective effects through activation of the brain-derived neurotrophic factor-mediated MEK1/2/ERK1/2/p90RSK/bad signaling pathway in mild transient focal cerebral ischemi. BMC Complement Altern Med. 2014;14:92 pubmed 出版商
  20. Chavez Valdez R, Martin L, Razdan S, Gauda E, Northington F. Sexual dimorphism in BDNF signaling after neonatal hypoxia-ischemia and treatment with necrostatin-1. Neuroscience. 2014;260:106-19 pubmed 出版商
  21. Bergami M, Vignoli B, Motori E, Pifferi S, Zuccaro E, Menini A, et al. TrkB signaling directs the incorporation of newly generated periglomerular cells in the adult olfactory bulb. J Neurosci. 2013;33:11464-78 pubmed 出版商
  22. Verhovshek T, Sengelaub D. Androgen action at the target musculature regulates brain-derived neurotrophic factor protein in the spinal nucleus of the bulbocavernosus. Dev Neurobiol. 2013;73:587-98 pubmed 出版商
  23. Li X, DeJoseph M, Urban J, Bahi A, Dreyer J, Meredith G, et al. Different roles of BDNF in nucleus accumbens core versus shell during the incubation of cue-induced cocaine craving and its long-term maintenance. J Neurosci. 2013;33:1130-42 pubmed 出版商
  24. Livingston Thomas J, Hume A, Doucette T, Tasker R. A novel approach to induction and rehabilitation of deficits in forelimb function in a rat model of ischemic stroke. Acta Pharmacol Sin. 2013;34:104-12 pubmed 出版商
  25. Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu M, Deogracias R, et al. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol. 2012;196:775-88 pubmed 出版商