这是一篇来自已证抗体库的有关人类 c-Fos的综述,是根据89篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合c-Fos 抗体。
c-Fos 同义词: AP-1; C-FOS; p55

圣克鲁斯生物技术
小鼠 单克隆(E-8)
  • 免疫组化; 大鼠; 1:1000
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, sc-166940)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Transl Psychiatry (2020) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 大鼠; 1:250
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, sc-271243)被用于被用于免疫组化在大鼠样本上浓度为1:250. Transl Psychiatry (2020) ncbi
小鼠 单克隆(E-8)
  • 免疫细胞化学; 人类; 图 4b
圣克鲁斯生物技术 c-Fos抗体(Santa, sc-166940)被用于被用于免疫细胞化学在人类样本上 (图 4b). Cancer Cell Int (2019) ncbi
小鼠 单克隆(E-8)
  • 免疫组化-冰冻切片; 小鼠; 图 6c
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz Biotechnology, E-8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6c). elife (2019) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 斑马鱼; 1:100; 图 4k
圣克鲁斯生物技术 c-Fos抗体(SantaCruz, sc-166940X)被用于被用于免疫印迹在斑马鱼样本上浓度为1:100 (图 4k). Genetics (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠; 图 1b
圣克鲁斯生物技术 c-Fos抗体(SantaCruz, SC-271243)被用于被用于免疫组化在小鼠样本上 (图 1b). Neuron (2017) ncbi
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz Biotechnology, H-125)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Death Dis (2017) ncbi
小鼠 单克隆(34E4)
  • 免疫印迹; 小鼠; 图 2d
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz Biotechnology, sc-81485)被用于被用于免疫印迹在小鼠样本上 (图 2d). Sci Rep (2017) ncbi
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, sc-7202)被用于被用于免疫印迹在小鼠样本上 (图 2b). Int J Mol Sci (2017) ncbi
小鼠 单克隆(D-1)
  • 免疫组化; 大鼠; 1:500; 图 1
圣克鲁斯生物技术 c-Fos抗体(SantaCruz, sc-8047)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠; 1:500; 图 4a
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz Biotechnology, sc-271243)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). Dis Model Mech (2017) ncbi
小鼠 单克隆(34E4)
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术 c-Fos抗体(SantaCruz, sc-81485)被用于被用于免疫印迹在人类样本上 (图 5e). Cell (2017) ncbi
小鼠 单克隆(D-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1a
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, sc-8047)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 1a). Front Physiol (2016) ncbi
小鼠 单克隆(34E4)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, sc-81485)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Biol Chem (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, sc-271243)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2e
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, H-125)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2e). Neuropsychopharmacology (2017) ncbi
  • 免疫印迹; 人类; 图 9a
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, sc-7202)被用于被用于免疫印迹在人类样本上 (图 9a). J Biol Chem (2016) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 人类; 图 9a
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, sc-166940)被用于被用于免疫印迹在人类样本上 (图 9a). J Biol Chem (2016) ncbi
  • EMSA; 人类; 图 s2a
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, sc-7202)被用于被用于EMSA在人类样本上 (图 s2a). Nat Commun (2016) ncbi
小鼠 单克隆(6-2H-2F)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, sc-447)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Med (2016) ncbi
  • 免疫组化; 小鼠; 1:50; 图 4g
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, sc7202)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4g). Sci Rep (2015) ncbi
小鼠 单克隆(6-2H-2F)
  • EMSA; 人类; 图 4b
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz Biotechnology, sc-447)被用于被用于EMSA在人类样本上 (图 4b). Int J Mol Med (2015) ncbi
小鼠 单克隆(6-2H-2F)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, sc-447)被用于被用于免疫印迹在人类样本上 (图 2). Arch Med Sci (2015) ncbi
小鼠 单克隆(34E4)
  • 免疫印迹; 人类; 0.2 ug/ml; 图 2
  • 免疫印迹; 小鼠; 0.2 ug/ml; 图 2
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz Biotechnology, sc-81485)被用于被用于免疫印迹在人类样本上浓度为0.2 ug/ml (图 2) 和 被用于免疫印迹在小鼠样本上浓度为0.2 ug/ml (图 2). Oncotarget (2015) ncbi
  • 免疫印迹; 人类; 图 7b
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz Biotechnology, H-125)被用于被用于免疫印迹在人类样本上 (图 7b). PLoS Pathog (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫组化-石蜡切片; 大鼠; 1:5000
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, sc-166940)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:5000. Neuroscience (2015) ncbi
小鼠 单克隆(D-1)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 4
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz, SC-8047)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 4). Nat Biotechnol (2014) ncbi
小鼠 单克隆(C-10)
  • EMSA; 人类
圣克鲁斯生物技术 c-Fos抗体(Santa Cruz Biotechnology, sc271243)被用于被用于EMSA在人类样本上. Int Immunol (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(2H2)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 c-Fos抗体(Abcam, ab208942)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 c-Fos抗体(Abcam, 190289)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3b). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 s1a
艾博抗(上海)贸易有限公司 c-Fos抗体(Abcam, ab190289)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 s1a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 6c
艾博抗(上海)贸易有限公司 c-Fos抗体(Abcam, ab190289)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 6c). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 ev4c
艾博抗(上海)贸易有限公司 c-Fos抗体(Abcam, ab209794)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 ev4c). EMBO Mol Med (2020) ncbi
domestic rabbit 单克隆(EPR883(2))
  • 免疫印迹; 人类; 图 s4e
艾博抗(上海)贸易有限公司 c-Fos抗体(Abcam, ab134122)被用于被用于免疫印迹在人类样本上 (图 s4e). Cancers (Basel) (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s8b
艾博抗(上海)贸易有限公司 c-Fos抗体(Abcam, ab190289)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s8b). Mol Psychiatry (2019) ncbi
domestic rabbit 单克隆(EPR883(2))
  • 免疫组化-冰冻切片; 人类; 1:500
  • 免疫细胞化学; 人类; 1:500; 图 4i
艾博抗(上海)贸易有限公司 c-Fos抗体(Abcam, AB134122)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 4i). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4b
艾博抗(上海)贸易有限公司 c-Fos抗体(Abcam, ab209794)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(EPR883(2))
  • 免疫印迹; 小鼠; 图 4e
艾博抗(上海)贸易有限公司 c-Fos抗体(Abcam, ab134122)被用于被用于免疫印迹在小鼠样本上 (图 4e). elife (2016) ncbi
domestic rabbit 单克隆(EPR883(2))
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 c-Fos抗体(Epitomics, 3620-1)被用于被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 单克隆(EPR883(2))
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 c-Fos抗体(Abcam, ab134122)被用于被用于免疫印迹在人类样本上 (图 5a). Med Oncol (2015) ncbi
Synaptic Systems
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1d
Synaptic Systems c-Fos抗体(Synaptic Systems, 226033)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图 1e
Synaptic Systems c-Fos抗体(SYSY, 226 003)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 1e). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 1a, 1b, 1c, 1d
Synaptic Systems c-Fos抗体(Synaptic Systems, 226003)被用于被用于免疫组化在大鼠样本上 (图 1a, 1b, 1c, 1d). J Neuroendocrinol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2b
Synaptic Systems c-Fos抗体(Synaptic Systems, 226003)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2b). Nat Commun (2020) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3f
Synaptic Systems c-Fos抗体(Synaptic systems, 226004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3f). Cell Rep (2019) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4a
Synaptic Systems c-Fos抗体(Synaptic Systems, 226004)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). Sci Adv (2019) ncbi
豚鼠 多克隆
  • 免疫组化; 大鼠; 1:5000; 图 3c
Synaptic Systems c-Fos抗体(Synaptic Systems, 226 004)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (图 3c). Brain Struct Funct (2017) ncbi
亚诺法生技股份有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
亚诺法生技股份有限公司 c-Fos抗体(Abnova, PAB14840)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Aging Cell (2020) ncbi
LifeSpan Biosciences
小鼠 单克隆(2G9C3)
  • 免疫印迹; 家羊; 图 s2
  • 免疫印迹; 人类
LifeSpan Biosciences c-Fos抗体(LSBio, LS-C77393)被用于被用于免疫印迹在家羊样本上 (图 s2) 和 被用于免疫印迹在人类样本上. J Neuroinflammation (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(9F6)
  • 免疫组化; 小鼠; 1:1000; 图 3, 4
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3, 4). Nat Commun (2020) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250)被用于被用于免疫印迹在人类样本上 (图 s5a). J Exp Med (2020) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫印迹; 人类; 1:1000; 图 4b, s1b
赛信通(上海)生物试剂有限公司 c-Fos抗体(CST, 2250S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b, s1b). Biol Open (2019) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫组化; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 2250)被用于被用于免疫组化在小鼠样本上 (图 4c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Biotechnology, 4384)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2019) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫组化-自由浮动切片; 小鼠; 1:400; 图 4i
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 9F6)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400 (图 4i). Nature (2019) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫组化; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250S)被用于被用于免疫组化在小鼠样本上 (图 2e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D82C12)
  • 免疫组化; 小鼠; 1:500; 图 1c
赛信通(上海)生物试剂有限公司 c-Fos抗体(CST, 5348)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 2250)被用于被用于免疫印迹在小鼠样本上 (图 3c). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D82C12)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 5348)被用于被用于免疫印迹在小鼠样本上 (图 3c). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫组化; 小鼠; 1:500; 图 1d
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1d). Science (2018) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250)被用于被用于免疫印迹在人类样本上 (图 7b). Nat Immunol (2018) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫组化; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250)被用于被用于免疫组化在小鼠样本上 (图 5a). Cell (2018) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250)被用于被用于免疫印迹在小鼠样本上 (图 2e). Bone (2018) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫组化; 小鼠; 1:200; 图 4
赛信通(上海)生物试剂有限公司 c-Fos抗体(cell signalling, 2250)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). J Physiol (2017) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫组化-自由浮动切片; 小鼠; 1:400; 图 s4a
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 9F6)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400 (图 s4a). Nature (2017) ncbi
domestic rabbit 单克隆(D82C12)
  • 免疫印迹; 人类; 1:500; 图 4E
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 5348S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4E). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(9F6)
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D82C12)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 5348)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫组化; 小鼠; 1:200; 图 4
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Tech, 9F6)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Tech, 2250)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(9F6)
  • 染色质免疫沉淀 ; 人类; 图 5
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 2250S)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(D82C12)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell signaling, 5348)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 4384)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫组化; 小鼠; 1:500; 图 2d
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 2250S)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(9F6)
  • 染色质免疫沉淀 ; 人类; 1:40; 图 3
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Tech, 9F6)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:40 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 4384)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 c-Fos抗体(CST, 4384)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). J Alzheimers Dis (2016) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250s)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 7). elife (2015) ncbi
domestic rabbit 单克隆(9F6)
  • 染色质免疫沉淀 ; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250s)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 4). Autophagy (2015) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫印迹; 犬; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 1b). J Vet Intern Med (2015) ncbi
domestic rabbit 单克隆(D82C12)
  • 免疫印迹; 小鼠; 图 2,3,4,5
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 5348s)被用于被用于免疫印迹在小鼠样本上 (图 2,3,4,5). Cell Res (2015) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫组化-石蜡切片; 小鼠; 图 4,5
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signalling, 2250)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4,5). J Neurosci (2015) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 2250)被用于被用于免疫印迹在小鼠样本上. Virol Sin (2015) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫细胞化学; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 4). Biochem Biophys Res Commun (2015) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 2250P)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D82C12)
  • 免疫印迹; 人类; 0.035 ug/ml; 图 2
  • 免疫印迹; 小鼠; 0.035 ug/ml; 图 2
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 5348)被用于被用于免疫印迹在人类样本上浓度为0.035 ug/ml (图 2) 和 被用于免疫印迹在小鼠样本上浓度为0.035 ug/ml (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D82C12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 5348)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫印迹; 人类; 图  3
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 2250)被用于被用于免疫印迹在人类样本上 (图  3). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D82C12)
  • 流式细胞仪; 人类; 图 5b
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 5348P)被用于被用于流式细胞仪在人类样本上 (图 5b). Invest New Drugs (2015) ncbi
domestic rabbit 单克隆(D82C12)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 5348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2014) ncbi
domestic rabbit 单克隆(D82C12)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signalling, 5348S)被用于被用于免疫印迹在大鼠样本上. Basic Res Cardiol (2014) ncbi
domestic rabbit 单克隆(9F6)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 9F6)被用于被用于免疫印迹在小鼠样本上 (图 4c). Eur J Immunol (2014) ncbi
domestic rabbit 单克隆(D82C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling, 5348)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(D82C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 c-Fos抗体(Cell Signaling Technology, 5348)被用于被用于免疫印迹在人类样本上. Neurobiol Dis (2014) ncbi
文章列表
  1. Kim W, Cho J. Encoding of contextual fear memory in hippocampal-amygdala circuit. Nat Commun. 2020;11:1382 pubmed 出版商
  2. Rodriguez Ortiz C, Prieto G, Martini A, Forner S, Trujillo Estrada L, LaFerla F, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13118 pubmed 出版商
  3. Cohen S, Matar M, Vainer E, Zohar J, Kaplan Z, Cohen H. Significance of the orexinergic system in modulating stress-related responses in an animal model of post-traumatic stress disorder. Transl Psychiatry. 2020;10:10 pubmed 出版商
  4. Gulmez Karaca K, Kupke J, Brito D, Zeuch B, Thome C, Weichenhan D, et al. Neuronal ensemble-specific DNA methylation strengthens engram stability. Nat Commun. 2020;11:639 pubmed 出版商
  5. Wu Y, Chen C, Chen M, Qian K, Lv X, Wang H, et al. The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat Commun. 2020;11:640 pubmed 出版商
  6. Yang F, Yang L, Wataya Kaneda M, Teng L, Katayama I. Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. PLoS ONE. 2020;15:e0228204 pubmed 出版商
  7. Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577:676-681 pubmed 出版商
  8. Aggarwal J, Liu W, Montandon G, Liu H, Hughes S, Horner R. Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo. Sci Rep. 2020;10:550 pubmed 出版商
  9. Johnson C, Hong W, Micevych P. Optogenetic Activation of β-Endorphin Terminals in the Medial Preoptic Nucleus Regulates Female Sexual Receptivity. Eneuro. 2020;7: pubmed 出版商
  10. Plaisier F, Hume C, Menzies J. Neural connectivity between the hypothalamic supramammillary nucleus and appetite- and motivation-related regions of the rat brain. J Neuroendocrinol. 2020;32:e12829 pubmed 出版商
  11. Berdugo Vega G, Arias Gil G, López Fernández A, Artegiani B, Wasielewska J, Lee C, et al. Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. Nat Commun. 2020;11:135 pubmed 出版商
  12. Ehinger Y, Bruyère J, Panayotis N, Abada Y, Borloz E, Matagne V, et al. Huntingtin phosphorylation governs BDNF homeostasis and improves the phenotype of Mecp2 knockout mice. EMBO Mol Med. 2020;12:e10889 pubmed 出版商
  13. Yukawa M, Jagannathan S, Vallabh S, Kartashov A, Chen X, Weirauch M, et al. AP-1 activity induced by co-stimulation is required for chromatin opening during T cell activation. J Exp Med. 2020;217: pubmed 出版商
  14. Tian M, Gong W, Guo J. Long non-coding RNA SNHG1 indicates poor prognosis and facilitates disease progression in acute myeloid leukemia. Biol Open. 2019;8: pubmed 出版商
  15. Del Mar Díaz González S, Rodríguez Aguilar E, Meneses Acosta A, Valadez Graham V, Deas J, Gómez Cerón C, et al. Transregulation of microRNA miR-21 promoter by AP-1 transcription factor in cervical cancer cells. Cancer Cell Int. 2019;19:214 pubmed 出版商
  16. Chowdhury S, Hung C, Izawa S, Inutsuka A, Kawamura M, Kawashima T, et al. Dissociating orexin-dependent and -independent functions of orexin neurons using novel Orexin-Flp knock-in mice. elife. 2019;8: pubmed 出版商
  17. Ioannou M, Jackson J, Sheu S, Chang C, Weigel A, Liu H, et al. Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell. 2019;: pubmed 出版商
  18. Octeau J, Gangwani M, Allam S, Tran D, Huang S, Hoang Trong T, et al. Transient, Consequential Increases in Extracellular Potassium Ions Accompany Channelrhodopsin2 Excitation. Cell Rep. 2019;27:2249-2261.e7 pubmed 出版商
  19. Yoo S, Lee C, An H, Lee J, Lee H, Kang H, et al. RSK2-Mediated ELK3 Activation Enhances Cell Transformation and Breast Cancer Cell Growth by Regulation of c-fos Promoter Activity. Int J Mol Sci. 2019;20: pubmed 出版商
  20. Pluvinage J, Haney M, Smith B, Sun J, Iram T, Bonanno L, et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature. 2019;568:187-192 pubmed 出版商
  21. Dong J, Pan Y, Wu X, He L, Liu X, Feng D, et al. A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells. Sci Adv. 2019;5:eaav4416 pubmed 出版商
  22. Song J, Shao D, Guo X, Zhao Y, Cui D, Ma Q, et al. Crucial role of feedback signals from prelimbic cortex to basolateral amygdala in the retrieval of morphine withdrawal memory. Sci Adv. 2019;5:eaat3210 pubmed 出版商
  23. Xie C, Zhu J, Wang X, Chen J, Geng S, Wu J, et al. Tobacco smoke induced hepatic cancer stem cell-like properties through IL-33/p38 pathway. J Exp Clin Cancer Res. 2019;38:39 pubmed 出版商
  24. Qiu L, Wang M, Hu S, Ru X, Ren Y, Zhang Z, et al. Oncogenic Activation of Nrf2, Though as a Master Antioxidant Transcription Factor, Liberated by Specific Knockout of the Full-Length Nrf1α that Acts as a Dominant Tumor Repressor. Cancers (Basel). 2018;10: pubmed 出版商
  25. Soiza Reilly M, Meye F, Olusakin J, Telley L, Petit E, Chen X, et al. SSRIs target prefrontal to raphe circuits during development modulating synaptic connectivity and emotional behavior. Mol Psychiatry. 2019;24:726-745 pubmed 出版商
  26. Luo S, Huang J, Li Q, Mohammad H, Lee C, Krishna K, et al. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science. 2018;361:76-81 pubmed 出版商
  27. Borlido J, Sakuma S, Raices M, Carrette F, Tinoco R, Bradley L, et al. Nuclear pore complex-mediated modulation of TCR signaling is required for naïve CD4+ T cell homeostasis. Nat Immunol. 2018;19:594-605 pubmed 出版商
  28. Alhadeff A, Su Z, Hernandez E, Klima M, Phillips S, Holland R, et al. A Neural Circuit for the Suppression of Pain by a Competing Need State. Cell. 2018;173:140-152.e15 pubmed 出版商
  29. Pena I, Roussel Y, Daniel K, Mongeon K, Johnstone D, Weinschutz Mendes H, et al. Pyridoxine-Dependent Epilepsy in Zebrafish Caused by Aldh7a1 Deficiency. Genetics. 2017;207:1501-1518 pubmed 出版商
  30. Liu J, Conde K, Zhang P, Lilascharoen V, Xu Z, Lim B, et al. Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon-like Peptide-1 in the Paraventricular Hypothalamus. Neuron. 2017;96:897-909.e5 pubmed 出版商
  31. Fujita S, Mukai T, Mito T, Kodama S, Nagasu A, Kittaka M, et al. Pharmacological inhibition of tankyrase induces bone loss in mice by increasing osteoclastogenesis. Bone. 2018;106:156-166 pubmed 出版商
  32. Fu C, Xue J, Wang R, Chen J, Ma L, Liu Y, et al. Chemosensitive Phox2b-expressing neurons are crucial for hypercapnic ventilatory response in the nucleus tractus solitarius. J Physiol. 2017;595:4973-4989 pubmed 出版商
  33. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  34. Castellano J, Mosher K, Abbey R, McBride A, James M, Berdnik D, et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature. 2017;544:488-492 pubmed 出版商
  35. Wassermann Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis. 2017;8:e2733 pubmed 出版商
  36. Cong Q, Jia H, Li P, Qiu S, Yeh J, Wang Y, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep. 2017;7:45964 pubmed 出版商
  37. Hu X, Zhang Z, Liang Z, Xie D, Zhang T, Yu D, et al. Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma. Oncol Lett. 2017;13:686-694 pubmed 出版商
  38. Ting W, Huang C, Jiang C, Lin Y, Chung L, Shen C, et al. Treatment with 17?-Estradiol Reduced Body Weight and the Risk of Cardiovascular Disease in a High-Fat Diet-Induced Animal Model of Obesity. Int J Mol Sci. 2017;18: pubmed 出版商
  39. Parker L, Le S, Wearne T, Hardwick K, Kumar N, Robinson K, et al. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation?. J Comp Neurol. 2017;525:2249-2264 pubmed 出版商
  40. Vallejo A, Perurena N, Guruceaga E, Mazur P, Martínez Canarias S, Zandueta C, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun. 2017;8:14294 pubmed 出版商
  41. Ladrón de Guevara Miranda D, Millón C, Rosell Valle C, Pérez Fernández M, Missiroli M, Serrano A, et al. Long-lasting memory deficits in mice withdrawn from cocaine are concomitant with neuroadaptations in hippocampal basal activity, GABAergic interneurons and adult neurogenesis. Dis Model Mech. 2017;10:323-336 pubmed 出版商
  42. Huang Y, Zhou B, Wernig M, Sudhof T. ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and A? Secretion. Cell. 2017;168:427-441.e21 pubmed 出版商
  43. Gao S, Guo F, Sun X, Zhang N, Gong Y, Xu L. The Inhibitory Effects of Nesfatin-1 in Ventromedial Hypothalamus on Gastric Function and Its Regulation by Nucleus Accumbens. Front Physiol. 2016;7:634 pubmed 出版商
  44. Wang S, Kugelman T, Buch A, Herman M, Han Y, Karakatsani M, et al. Non-invasive, Focused Ultrasound-Facilitated Gene Delivery for Optogenetics. Sci Rep. 2017;7:39955 pubmed 出版商
  45. Hichino A, Okamoto M, Taga S, Akizuki R, Endo S, Matsunaga T, et al. Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells. J Biol Chem. 2017;292:2411-2421 pubmed 出版商
  46. Biró L, Toth M, Sipos E, Bruzsik B, Tulogdi A, Bendahan S, et al. Structural and functional alterations in the prefrontal cortex after post-weaning social isolation: relationship with species-typical and deviant aggression. Brain Struct Funct. 2017;222:1861-1875 pubmed 出版商
  47. Liu W, Zhou L, Zhou C, Zhang S, Jing J, Xie L, et al. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. Nat Commun. 2016;7:12794 pubmed 出版商
  48. Shang W, Zhao L, Dong X, Zhao Z, Li J, Zhang B, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14:3620-6 pubmed 出版商
  49. D Amico D, Gener T, de Lagrán M, Sanchez Vives M, Santos M, Dierssen M. Infralimbic Neurotrophin-3 Infusion Rescues Fear Extinction Impairment in a Mouse Model of Pathological Fear. Neuropsychopharmacology. 2017;42:462-472 pubmed 出版商
  50. Li Y, Dillon T, Takahashi M, Earley K, Stork P. Protein Kinase A-independent Ras Protein Activation Cooperates with Rap1 Protein to Mediate Activation of the Extracellular Signal-regulated Kinases (ERK) by cAMP. J Biol Chem. 2016;291:21584-21595 pubmed
  51. Bigot P, Colli L, Machiela M, Jessop L, Myers T, Carrouget J, et al. Functional characterization of the 12p12.1 renal cancer-susceptibility locus implicates BHLHE41. Nat Commun. 2016;7:12098 pubmed 出版商
  52. Hughes S, Rodgers J, Hickey D, Foster R, Peirson S, Hankins M. Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways. Sci Rep. 2016;6:28086 pubmed 出版商
  53. Qiao Y, Qian Y, Wang J, Tang X. Melanoma cell adhesion molecule stimulates yes-associated protein transcription by enhancing CREB activity via c-Jun/c-Fos in hepatocellular carcinoma cells. Oncol Lett. 2016;11:3702-3708 pubmed
  54. Frasch M, Szynkaruk M, Prout A, Nygard K, Cao M, Veldhuizen R, et al. Decreased neuroinflammation correlates to higher vagus nerve activity fluctuations in near-term ovine fetuses: a case for the afferent cholinergic anti-inflammatory pathway?. J Neuroinflammation. 2016;13:103 pubmed 出版商
  55. Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang Z, et al. Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol. 2016;23:522-30 pubmed 出版商
  56. Yang Y, Huycke M, Herman T, Wang X. Glutathione S-transferase alpha 4 induction by activator protein 1 in colorectal cancer. Oncogene. 2016;35:5795-5806 pubmed 出版商
  57. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed 出版商
  58. Kumar A, Jagadeeshan S, Subramanian A, Chidambaram S, Surabhi R, Singhal M, et al. Molecular Mechanism of Regulation of MTA1 Expression by Granulocyte Colony-stimulating Factor. J Biol Chem. 2016;291:12310-21 pubmed 出版商
  59. Zhu X, Liu X, Sun S, Zhuang H, Yang J, Henkemeyer M, et al. Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour. Nat Commun. 2016;7:11096 pubmed 出版商
  60. Weigel C, Veldwijk M, Oakes C, Seibold P, Slynko A, Liesenfeld D, et al. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nat Commun. 2016;7:10893 pubmed 出版商
  61. Antony A, Paillard M, Moffat C, Juskeviciute E, Correnti J, Bolon B, et al. MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration. Nat Commun. 2016;7:10955 pubmed 出版商
  62. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  63. Kim J, Kim E, Lee B, Min J, Song D, Lim J, et al. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells. Int J Mol Med. 2016;37:649-58 pubmed 出版商
  64. Hsu T, Hahn J, Konanur V, Noble E, Suarez A, Thai J, et al. Hippocampus ghrelin signaling mediates appetite through lateral hypothalamic orexin pathways. elife. 2015;4: pubmed 出版商
  65. Han X, Zha Z, Yuan H, Feng X, Xia Y, Lei Q, et al. KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation. Oncogene. 2016;35:4179-90 pubmed 出版商
  66. Wang J, Cao Y, Li Q, Yang Y, Jin M, Chen D, et al. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy. 2015;11:2057-2073 pubmed 出版商
  67. Jimenez Mateos E, Arribas Blázquez M, Sanz Rodriguez A, Concannon C, Olivos Ore L, Reschke C, et al. microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep. 2015;5:17486 pubmed 出版商
  68. Liu B, Wu S, Han L, Zhang C. β-catenin signaling induces the osteoblastogenic differentiation of human pre-osteoblastic and bone marrow stromal cells mainly through the upregulation of osterix expression. Int J Mol Med. 2015;36:1572-82 pubmed 出版商
  69. Neumann Z, Pondenis H, Masyr A, Byrum M, Wycislo K, Fan T. The Association of Endothelin-1 Signaling with Bone Alkaline Phosphatase Expression and Protumorigenic Activities in Canine Osteosarcoma. J Vet Intern Med. 2015;29:1584-94 pubmed 出版商
  70. Zhang W, Zheng X, Du L, Sun J, Shen Z, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015;25:893-910 pubmed 出版商
  71. Gingras S, Earls L, Howell S, Smeyne R, Zakharenko S, Pelletier S. SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus. J Neurosci. 2015;35:10510-22 pubmed 出版商
  72. Lan G, Yang L, Xie X, Peng L, Wang Y. MicroRNA-490-5p is a novel tumor suppressor targeting c-FOS in human bladder cancer. Arch Med Sci. 2015;11:561-9 pubmed 出版商
  73. He L, Zang A, Du M, Ma D, Yuan C, Zhou C, et al. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines. Virol Sin. 2015;30:174-89 pubmed 出版商
  74. Cohen S, Li B, Tsien R, Ma H. Evolutionary and functional perspectives on signaling from neuronal surface to nucleus. Biochem Biophys Res Commun. 2015;460:88-99 pubmed 出版商
  75. Teng Y, Radde B, Litchfield L, Ivanova M, Prough R, Clark B, et al. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells. J Biol Chem. 2015;290:15799-811 pubmed 出版商
  76. Tabariès S, Annis M, Hsu B, Tam C, Savage P, Park M, et al. Lyn modulates Claudin-2 expression and is a therapeutic target for breast cancer liver metastasis. Oncotarget. 2015;6:9476-87 pubmed
  77. Li T, Su L, Lei Y, Liu X, Zhang Y, Liu X. DDIT3 and KAT2A Proteins Regulate TNFRSF10A and TNFRSF10B Expression in Endoplasmic Reticulum Stress-mediated Apoptosis in Human Lung Cancer Cells. J Biol Chem. 2015;290:11108-18 pubmed 出版商
  78. Moon S, Blackinton J, Anderson J, Dozier M, Dodd B, Keene J, et al. XRN1 stalling in the 5' UTR of Hepatitis C virus and Bovine Viral Diarrhea virus is associated with dysregulated host mRNA stability. PLoS Pathog. 2015;11:e1004708 pubmed 出版商
  79. Liu W, Crews F. Adolescent intermittent ethanol exposure enhances ethanol activation of the nucleus accumbens while blunting the prefrontal cortex responses in adult rat. Neuroscience. 2015;293:92-108 pubmed 出版商
  80. Dong A, Wodziak D, Lowe A. Epidermal growth factor receptor (EGFR) signaling requires a specific endoplasmic reticulum thioredoxin for the post-translational control of receptor presentation to the cell surface. J Biol Chem. 2015;290:8016-27 pubmed 出版商
  81. Bai L, Mao R, Wang J, Ding L, Jiang S, Gao C, et al. ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol. 2015;32:57 pubmed 出版商
  82. Guzmán E, Maers K, Roberts J, Kemami Wangun H, Harmody D, Wright A. The marine natural product microsclerodermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. Invest New Drugs. 2015;33:86-94 pubmed 出版商
  83. Lin C, Chen P, Hsu L, Kuo D, Chu S, Hsieh Y. Inhibition of the invasion and migration of renal carcinoma 786‑o‑si3 cells in vitro and in vivo by Koelreuteria formosana extract. Mol Med Rep. 2014;10:3334-42 pubmed 出版商
  84. Pollen A, Nowakowski T, Shuga J, Wang X, Leyrat A, Lui J, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014;32:1053-8 pubmed 出版商
  85. Kopaliani I, Martin M, Zatschler B, Bortlik K, Müller B, Deussen A. Cell-specific and endothelium-dependent regulations of matrix metalloproteinase-2 in rat aorta. Basic Res Cardiol. 2014;109:419 pubmed 出版商
  86. Shiheido H, Aoyama T, Takahashi H, Hanaoka K, Abe T, Nishida E, et al. Novel CD3-specific antibody induces immunosuppression via impaired phosphorylation of LAT and PLC?1 following T-cell stimulation. Eur J Immunol. 2014;44:1770-80 pubmed 出版商
  87. Chen Y, Thang M, Chan Y, Huang Y, Ma N, Yu A, et al. Global assessment of Antrodia cinnamomea-induced microRNA alterations in hepatocarcinoma cells. PLoS ONE. 2013;8:e82751 pubmed 出版商
  88. Gómez Sánchez R, Gegg M, Bravo San Pedro J, Niso Santano M, Alvarez Erviti L, Pizarro Estrella E, et al. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiol Dis. 2014;62:426-40 pubmed 出版商
  89. Davidson C, Cameron L, Burshtyn D. The AP-1 transcription factor JunD activates the leukocyte immunoglobulin-like receptor 1 distal promoter. Int Immunol. 2014;26:21-33 pubmed 出版商