这是一篇来自已证抗体库的有关人类 c-IAP1 (c-IAP1) 的综述,是根据26篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合c-IAP1 抗体。
c-IAP1 同义词: API1; HIAP2; Hiap-2; MIHB; RNF48; c-IAP1; cIAP1

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e, s9e
艾博抗(上海)贸易有限公司c-IAP1抗体(Abcam, ab2399)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e, s9e). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EPR4673)
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司c-IAP1抗体(Abcam, ab108361)被用于被用于免疫印迹在人类样本上 (图 5b). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司c-IAP1抗体(Abcam, ab2399)被用于被用于免疫印迹在人类样本上 (图 5). J Cancer (2016) ncbi
domestic rabbit 单克隆(EPR4673)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司c-IAP1抗体(Abcam, ab108361)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(EPR4673)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司c-IAP1抗体(Abcam, ab108361)被用于被用于免疫组化在人类样本上. Oncotarget (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-4)
  • 免疫印迹; 人类; 图 s6a
圣克鲁斯生物技术c-IAP1抗体(Santa Cruz, sc-271419)被用于被用于免疫印迹在人类样本上 (图 s6a). Sci Adv (2021) ncbi
小鼠 单克隆(F-4)
  • 免疫印迹; 人类; 图 s4
圣克鲁斯生物技术c-IAP1抗体(Santa Cruz Biotechnology, sc-271419)被用于被用于免疫印迹在人类样本上 (图 s4). Autophagy (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛默飞世尔c-IAP1抗体(Fisher, PAS-29085)被用于被用于免疫印迹在人类样本上. Oncotarget (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 人类; 图 1j
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signaling Technology, D5G9)被用于被用于免疫印迹在人类样本上 (图 1j). elife (2021) ncbi
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signaling, 7065)被用于被用于免疫印迹在人类样本上 (图 6a). Oncogenesis (2021) ncbi
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell signaling, 7065)被用于被用于免疫印迹在人类样本上. Cell Commun Signal (2020) ncbi
domestic rabbit 单克隆(D5G9)
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signaling, D5G9)被用于. Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signaling Technology, 4952)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). J Cell Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signalling Technology, 4952)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h). Redox Biol (2019) ncbi
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 人类; 图 s5c
赛信通(上海)生物试剂有限公司c-IAP1抗体(CST, 7065)被用于被用于免疫印迹在人类样本上 (图 s5c). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signaling Technology, 7065)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司c-IAP1抗体(cell signalling, 4952)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell signaling, 7065p)被用于被用于免疫印迹在人类样本上 (图 2a). Front Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signaling, 4952)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signaling, 7065)被用于被用于免疫印迹在人类样本上 (图 s4b). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signaling, 7065)被用于被用于免疫印迹在人类样本上. Cell Microbiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signaling Tech, 4952)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Oncogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signaling, 4952)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signaling, 7065)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signaling Technologies, 7065)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司c-IAP1抗体(Cell Signaling, #7065)被用于被用于免疫印迹在人类样本上浓度为1:500. Oncotarget (2014) ncbi
碧迪BD
小鼠 (B75-1)
  • 免疫印迹; 人类; 1:1000; 图 5a
碧迪BDc-IAP1抗体(Pharmingen, B75-1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Mol Cell Biol (2017) ncbi
文章列表
  1. Zhang X, Xiong T, Gao L, Wang Y, Liu L, Tian T, et al. Extracellular fibrinogen-binding protein released by intracellular Staphylococcus aureus suppresses host immunity by targeting TRAF3. Nat Commun. 2022;13:5493 pubmed 出版商
  2. Jeong D, Kim H, Kim H, Kang M, Jung H, Oh Y, et al. Soluble Fas ligand drives autoantibody-induced arthritis by binding to DR5/TRAIL-R2. elife. 2021;10: pubmed 出版商
  3. Nagamura Y, Miyazaki M, Nagano Y, Yuki M, Fukami K, Yanagihara K, et al. PLEKHA5 regulates the survival and peritoneal dissemination of diffuse-type gastric carcinoma cells with Met gene amplification. Oncogenesis. 2021;10:25 pubmed 出版商
  4. Kitamura Y, Kanaya N, Moleirinho S, Du W, Reinshagen C, Attia N, et al. Anti-EGFR VHH-armed death receptor ligand-engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. Sci Adv. 2021;7: pubmed 出版商
  5. Lomphithak T, Choksi S, Mutirangura A, Tohtong R, Tencomnao T, Usubuchi H, et al. Receptor-interacting protein kinase 1 is a key mediator in TLR3 ligand and Smac mimetic-induced cell death and suppresses TLR3 ligand-promoted invasion in cholangiocarcinoma. Cell Commun Signal. 2020;18:161 pubmed 出版商
  6. Kawalkowska J, Ogbechi J, Venables P, Williams R. cIAP1/2 inhibition synergizes with TNF inhibition in autoimmunity by down-regulating IL-17A and inducing Tregs. Sci Adv. 2019;5:eaaw5422 pubmed 出版商
  7. Wang Z, Feng J, Yu J, Chen G. FKBP12 mediates necroptosis by initiating RIPK1-RIPK3-MLKL signal transduction in response to TNF receptor 1 ligation. J Cell Sci. 2019;132: pubmed 出版商
  8. Li H, Feng J, Zhang Y, Feng J, Wang Q, Zhao S, et al. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biol. 2019;20:261-274 pubmed 出版商
  9. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  10. Wang H, Bu L, Wang C, Zhang Y, Zhou H, Zhang X, et al. The Hsp70 inhibitor 2-phenylethynesulfonamide inhibits replication and carcinogenicity of Epstein-Barr virus by inhibiting the molecular chaperone function of Hsp70. Cell Death Dis. 2018;9:734 pubmed 出版商
  11. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  12. Iurlaro R, Püschel F, León Annicchiarico C, O Connor H, Martin S, Palou Gramón D, et al. Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors. Mol Cell Biol. 2017;37: pubmed 出版商
  13. Ma W, Tummers B, van Esch E, Goedemans R, Melief C, Meyers C, et al. Human Papillomavirus Downregulates the Expression of IFITM1 and RIPK3 to Escape from IFN?- and TNF?-Mediated Antiproliferative Effects and Necroptosis. Front Immunol. 2016;7:496 pubmed
  14. Turner J, Kashyap T, Dawson J, Gomez J, Bauer A, Grant S, et al. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget. 2016;7:78896-78909 pubmed 出版商
  15. Hrgovic I, Doll M, Kleemann J, Wang X, Zoeller N, Pinter A, et al. The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer. 2016;16:763 pubmed
  16. Klingbeil O, Lesche R, Gelato K, Haendler B, Lejeune P. Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents. Cell Death Dis. 2016;7:e2365 pubmed 出版商
  17. Cheng S, Jiang X, Ding C, Du C, Owusu Ansah K, Weng X, et al. Expression and Critical Role of Interleukin Enhancer Binding Factor 2 in Hepatocellular Carcinoma. Int J Mol Sci. 2016;17: pubmed 出版商
  18. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  19. Waguia Kontchou C, Tzivelekidis T, Gentle I, Hacker G. Infection of epithelial cells with Chlamydia trachomatis inhibits TNF-induced apoptosis at the level of receptor internalization while leaving non-apoptotic TNF-signalling intact. Cell Microbiol. 2016;18:1583-1595 pubmed 出版商
  20. West A, Martin B, Andrews D, Hogg S, Banerjee A, Grigoriadis G, et al. The SMAC mimetic, LCL-161, reduces survival in aggressive MYC-driven lymphoma while promoting susceptibility to endotoxic shock. Oncogenesis. 2016;5:e216 pubmed 出版商
  21. Monian P, Jiang X. The Cellular Apoptosis Susceptibility Protein (CAS) Promotes Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-induced Apoptosis and Cell Proliferation. J Biol Chem. 2016;291:2379-88 pubmed 出版商
  22. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed 出版商
  23. Greenfeld H, Takasaki K, Walsh M, Ersing I, Bernhardt K, Ma Y, et al. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. PLoS Pathog. 2015;11:e1004890 pubmed 出版商
  24. Wang Y, Tan B, Mu R, Chang Y, Wu M, Tu H, et al. Ubiquitin-associated domain-containing ubiquitin regulatory X (UBX) protein UBXN1 is a negative regulator of nuclear factor κB (NF-κB) signaling. J Biol Chem. 2015;290:10395-405 pubmed 出版商
  25. Zhang S, Tang W, Weng S, Liu X, Rao B, Gu J, et al. Apollon modulates chemosensitivity in human esophageal squamous cell carcinoma. Oncotarget. 2014;5:7183-97 pubmed
  26. Luk S, Xue H, Cheng H, Lin D, Gout P, Fazli L, et al. The BIRC6 gene as a novel target for therapy of prostate cancer: dual targeting of inhibitors of apoptosis. Oncotarget. 2014;5:6896-908 pubmed