这是一篇来自已证抗体库的有关人类 c-Jun的综述,是根据219篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合c-Jun 抗体。
c-Jun 同义词: AP-1; AP1; c-Jun; cJUN; p39

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(Y172)
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 c-Jun抗体(abcam, ab32385)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Front Oncol (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 c-Jun抗体(abcam, ab40766)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Front Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1a
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab31419)被用于被用于免疫组化在人类样本上 (图 1a). Cancer Commun (Lond) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a, 6c
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab31419)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a, 6c). Int J Oncol (2020) ncbi
domestic rabbit 单克隆(Y172)
  • 免疫印迹; 人类; 1:1000; 图 6a, 6c
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab32385)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a, 6c). Int J Oncol (2020) ncbi
domestic rabbit 单克隆(E254)
  • 免疫细胞化学; 小鼠; 1:200; 图 3g
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab32137)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3g). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EPR2236)
  • 免疫印迹; 小鼠; 图 1f
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab79756)被用于被用于免疫印迹在小鼠样本上 (图 1f). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, Ab31419)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4g
艾博抗(上海)贸易有限公司 c-Jun抗体(abcam, ab31419)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s4
  • EMSA; 人类; 图 s2b
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab31419)被用于被用于染色质免疫沉淀 在人类样本上 (图 s4) 和 被用于EMSA在人类样本上 (图 s2b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a,1b
  • 免疫印迹; 小鼠; 图 1d
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab31419)被用于被用于免疫印迹在人类样本上 (图 1a,1b) 和 被用于免疫印迹在小鼠样本上 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 6
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab31419)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab31419)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 鸡; 图 5
  • 免疫组化; 鸡; 1:1000; 图 4
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab31419)被用于被用于染色质免疫沉淀 在鸡样本上 (图 5) 和 被用于免疫组化在鸡样本上浓度为1:1000 (图 4). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(Y172)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab32385)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Hematol Oncol (2015) ncbi
domestic rabbit 单克隆(E254)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab32137)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Hematol Oncol (2015) ncbi
domestic rabbit 单克隆(E254)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab32137)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
domestic rabbit 单克隆(E254)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 1
艾博抗(上海)贸易有限公司 c-Jun抗体(abcam, ab32137)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 1). J Clin Endocrinol Metab (2015) ncbi
domestic rabbit 单克隆(E254)
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab32137)被用于被用于免疫印迹在人类样本上 (图 5b). Med Oncol (2015) ncbi
domestic rabbit 单克隆(E254)
  • 免疫沉淀; 牛; 图 s9
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, ab32137)被用于被用于免疫沉淀在牛样本上 (图 s9). Nature (2015) ncbi
domestic rabbit 单克隆(E254)
  • 免疫印迹; 人类; 1:1000-1:10,000; 表 4
艾博抗(上海)贸易有限公司 c-Jun抗体(Abcam, AB32137)被用于被用于免疫印迹在人类样本上浓度为1:1000-1:10,000 (表 4). Methods Mol Biol (2014) ncbi
domestic rabbit 单克隆(Y172)
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 c-Jun抗体(abcam, ab32385)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(KM-1)
  • 免疫组化; 小鼠; 1:50; 图 1a
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz Biotechnology, SC-822)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1a). Invest Ophthalmol Vis Sci (2021) ncbi
小鼠 单克隆(G-4)
  • 免疫细胞化学; 人类; 图 4a
圣克鲁斯生物技术 c-Jun抗体(Santa, sc-74543)被用于被用于免疫细胞化学在人类样本上 (图 4a). Cancer Cell Int (2019) ncbi
小鼠 单克隆(G-4)
  • 免疫沉淀; 小鼠; 图 4c
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz Biotechnology, sc-74543)被用于被用于免疫沉淀在小鼠样本上 (图 4c). Nat Commun (2019) ncbi
小鼠 单克隆(KM-1)
  • 免疫印迹; 小鼠; 图 s3d
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz Biotechnologies, K-M-1)被用于被用于免疫印迹在小鼠样本上 (图 s3d). Oncogene (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 s3d
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz Biotechnologies, K-M-1)被用于被用于免疫印迹在小鼠样本上 (图 s3d). Oncogene (2019) ncbi
小鼠 单克隆(KM-1)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz, sc-822)被用于被用于免疫印迹在人类样本上 (图 5). Mol Med Rep (2018) ncbi
小鼠 单克隆(KM-1)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术 c-Jun抗体(Santa cruz, sc-822)被用于被用于免疫印迹在小鼠样本上 (图 4b). BMC Cancer (2017) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 7d
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz Biotechnology, sc-166540)被用于被用于免疫印迹在人类样本上 (图 7d). Oncotarget (2016) ncbi
小鼠 单克隆(KM-1)
  • 免疫细胞化学; 小鼠; 1:400; 图 5
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz, sc-822)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 5). Oncogene (2016) ncbi
小鼠 单克隆(KM-1)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz, sc-822)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(KM-1)
  • 免疫印迹; 大鼠; 图 s5
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz, sc822)被用于被用于免疫印迹在大鼠样本上 (图 s5). Autophagy (2015) ncbi
小鼠 单克隆(G-4)
  • EMSA; 人类; 图 4b
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz Biotechnology, sc-74543)被用于被用于EMSA在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 5a). Int J Mol Med (2015) ncbi
小鼠 单克隆(KM-1)
  • EMSA; 人类; 图 6
圣克鲁斯生物技术 c-Jun抗体(santa Cruz, sc-822X)被用于被用于EMSA在人类样本上 (图 6). J Biol Chem (2015) ncbi
小鼠 单克隆(KM-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
圣克鲁斯生物技术 c-Jun抗体(santa Cruz, SC-822)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). J Clin Endocrinol Metab (2015) ncbi
小鼠 单克隆(KM-1)
  • 免疫印迹; 人类; 0.4 ug/ml; 图 2
  • 免疫印迹; 小鼠; 0.4 ug/ml; 图 2
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz Biotechnology, sc-822)被用于被用于免疫印迹在人类样本上浓度为0.4 ug/ml (图 2) 和 被用于免疫印迹在小鼠样本上浓度为0.4 ug/ml (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(KM-1)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz, sc-822)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2015) ncbi
小鼠 单克隆(KM-1)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz Biotechnology, sc-822)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Death Dis (2015) ncbi
小鼠 单克隆(KM-1)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz, sc-822)被用于被用于免疫印迹在小鼠样本上 (图 7). Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz Biotechnology, sc166540)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(KM-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz, sc-822)被用于被用于免疫印迹在人类样本上. Br J Pharmacol (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 大鼠; 1:100
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz, sc-166540)被用于被用于免疫印迹在大鼠样本上浓度为1:100. Brain Res (2014) ncbi
小鼠 单克隆(KM-1)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz, sc-822)被用于被用于免疫印迹在人类样本上浓度为1:200. BMC Cancer (2014) ncbi
小鼠 单克隆(KM-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz, sc-822)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(KM-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz Biotechnology, sc-822)被用于被用于免疫印迹在人类样本上. Int J Biochem Cell Biol (2014) ncbi
小鼠 单克隆(KM-1)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫印迹; 人类
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz Biotechnology, sc-822)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(KM-1)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 c-Jun抗体(Santa Cruz Biotechnology, sc-822X)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2013) ncbi
赛默飞世尔
domestic rabbit 重组(2H4L1)
  • 免疫印迹; 小鼠; 1:250; 图 4a
赛默飞世尔 c-Jun抗体(Thermo Fisher, 702170)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 4a). Antioxidants (Basel) (2020) ncbi
domestic rabbit 单克隆(2HCLC)
  • 免疫细胞化学; 小鼠; 图 3d
  • 免疫组化; 小鼠; 1:200; 图 3a
  • 免疫印迹; 小鼠; 图 3c
赛默飞世尔 c-Jun抗体(Invitrogen, 711202)被用于被用于免疫细胞化学在小鼠样本上 (图 3d), 被用于免疫组化在小鼠样本上浓度为1:200 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3c). Mol Med Rep (2019) ncbi
小鼠 单克隆(5B1)
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 c-Jun抗体(Thermo Scientific, 5B1)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Cell Proteomics (2017) ncbi
小鼠 单克隆(4H9)
  • 免疫细胞化学; 人类; 1:200; 图 6
赛默飞世尔 c-Jun抗体(Thermo, MA5-15889)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). J Vis Exp (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(60A8)
  • 染色质免疫沉淀 ; 人类; 图 6k
  • 免疫印迹; 人类; 图 s11c
  • 染色质免疫沉淀 ; 小鼠; 图 6l
  • 免疫印迹; 小鼠; 图 s11c
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 60A8)被用于被用于染色质免疫沉淀 在人类样本上 (图 6k), 被用于免疫印迹在人类样本上 (图 s11c), 被用于染色质免疫沉淀 在小鼠样本上 (图 6l) 和 被用于免疫印迹在小鼠样本上 (图 s11c). J Immunother Cancer (2021) ncbi
小鼠 单克隆(L70B11)
  • 免疫印迹; 人类; 1:1000; 图 3??s1a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 2315s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3??s1a). elife (2021) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4c
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 2361)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 9165S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上 (图 1c). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫组化; 小鼠; 1:250; 图 5l
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5l). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a, 7e
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9261)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a, 7e). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:1000; 图 6a, 7e
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a, 7e). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 1a
  • 免疫印迹; 小鼠; 1:250; 图 2b, 3b
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 9261)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:250 (图 2b, 3b). Pain (2021) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 3g, 3h
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 9165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g, 3h). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9261)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). PLoS Genet (2021) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫组化; 小鼠; 1:200; 图 s4-1a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 3270S)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4-1a). elife (2021) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 3a, 3s1
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 3270)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 3a, 3s1). elife (2021) ncbi
domestic rabbit 单克隆(60A8)
  • 其他; 人类; 1:25; 图 4d
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technologies, 9165)被用于被用于其他在人类样本上浓度为1:25 (图 4d). elife (2020) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 小鼠; 1:500; 图 3s1e
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signalling Technologies, 3270)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3s1e). elife (2020) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 3270)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Discov (2020) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 9165)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Discov (2020) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 60A8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). elife (2020) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9164)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). elife (2020) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:1000; 图 4s1a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4s1a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2i
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9261)被用于被用于免疫印迹在人类样本上 (图 2i). Cell Death Differ (2020) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 2i
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上 (图 2i). Cell Death Differ (2020) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫细胞化学; 人类; 1:400; 图 7b
  • 免疫印迹; 人类; 1:500; 图 7a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 7b) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 7a). elife (2020) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 8e
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270 S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 8e). Nat Commun (2020) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫组化-石蜡切片; 小鼠; 1:70; 图 6b
  • 免疫印迹; 小鼠; 1:1000; 图 6k
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 9165S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:70 (图 6b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6k). Front Aging Neurosci (2020) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 犬; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在犬样本上浓度为1:2000 (图 3b). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9164)被用于被用于免疫印迹在犬样本上浓度为1:2000 (图 3b). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 6a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 6a). elife (2020) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 60A8)被用于被用于免疫印迹在人类样本上 (图 2d). Nature (2019) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, D47G9)被用于被用于免疫印迹在人类样本上 (图 2e). Nature (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). EBioMedicine (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 9165)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 60A8)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Cancers (Basel) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9164)被用于被用于免疫印迹在小鼠样本上 (图 2i). Nature (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 60A8)被用于被用于免疫印迹在小鼠样本上 (图 2i). Nature (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 9165)被用于被用于免疫印迹在人类样本上 (图 4h). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:2000; 图 5d
  • 免疫印迹; 小鼠; 1:5000; 图 1a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1a). Curr Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9164)被用于被用于免疫印迹在人类样本上 (图 s3a). Sci Adv (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上 (图 6b). EMBO J (2019) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫细胞化学; 小鼠; 1:100; 图 6e
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 3270)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). elife (2019) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 13c
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 3270)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 13c). Histochem Cell Biol (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 5i
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在人类样本上 (图 5i). Front Mol Neurosci (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Front Neurosci (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫组化-石蜡切片; 人类; 图 1a
  • 免疫组化-石蜡切片; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在小鼠样本上 (图 1h). Cancer Cell (2019) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 2361)被用于被用于免疫印迹在小鼠样本上 (图 3c). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在小鼠样本上 (图 3c). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9261)被用于被用于免疫印迹在人类样本上 (图 4c). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上 (图 4c). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 9165)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 60A8)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Front Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9261)被用于被用于免疫印迹在人类样本上 (图 5b). Drug Metab Dispos (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在人类样本上 (图 5b). Drug Metab Dispos (2019) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫组化; 小鼠; 1:100; 图 s11c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s11c). Science (2018) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9261)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Science (2018) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在人类样本上 (图 4d). Oncoimmunology (2018) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 3270)被用于被用于免疫印迹在人类样本上 (图 4d). Oncoimmunology (2018) ncbi
小鼠 单克隆(L70B11)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 2315)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Res (2018) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 2361)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Res (2018) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 3270S)被用于被用于免疫印迹在小鼠样本上 (图 6d). Neurotherapeutics (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9164)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 60A8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Glia (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9261)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Glia (2018) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 s2m
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2m). Dev Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2m
赛信通(上海)生物试剂有限公司 c-Jun抗体(Santa Cruz, 9164)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2m). Dev Cell (2017) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫组化-石蜡切片; 小鼠; 图 15a
赛信通(上海)生物试剂有限公司 c-Jun抗体(cell signaling, 60A8)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 15a). J Neurosci (2017) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Cardiovasc Diabetol (2017) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫组化; 小鼠; 1:1000; 图 s6c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165S)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s6c). Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 c-Jun抗体(cell signalling, 9261)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Death Dis (2017) ncbi
  • 免疫印迹; 人类; 1:500; 图 4E
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 8221S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4E). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫细胞化学; 小鼠; 1:200; 图 1g
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1g). Invest Ophthalmol Vis Sci (2017) ncbi
小鼠 单克隆(L70B11)
  • 免疫印迹; 大鼠; 图 5c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 2315)被用于被用于免疫印迹在大鼠样本上 (图 5c). Toxicology (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 9164)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫细胞化学在人类样本上 (图 s1). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 c-Jun抗体(cell signalling, 9261)被用于被用于免疫印迹在人类样本上 (图 7a). EMBO J (2017) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 c-Jun抗体(cell signalling, 9165)被用于被用于免疫印迹在人类样本上 (图 7a). EMBO J (2017) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫细胞化学; 大鼠; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 5b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫组化; 小鼠; 图 s8i
  • 免疫印迹; 小鼠; 图 s8e
  • 免疫组化-石蜡切片; 人类; 图 s5g
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫组化在小鼠样本上 (图 s8i), 被用于免疫印迹在小鼠样本上 (图 s8e) 和 被用于免疫组化-石蜡切片在人类样本上 (图 s5g). Nature (2017) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 小鼠; 图 s5e
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫印迹在小鼠样本上 (图 s5e). Nature (2017) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9261)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6c). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 c-Jun抗体(cell signalling, 9164)被用于. Nat Commun (2017) ncbi
domestic rabbit 单克隆(60A8)
赛信通(上海)生物试剂有限公司 c-Jun抗体(cell signalling, 9165)被用于. Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:50; 图 s16c
赛信通(上海)生物试剂有限公司 c-Jun抗体(cell signaling, 9261S)被用于被用于免疫组化在人类样本上浓度为1:50 (图 s16c). Am J Hum Genet (2017) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫细胞化学; 人类; 1:800; 图 6g
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 6g). Mol Syst Biol (2017) ncbi
小鼠 单克隆(L70B11)
  • 免疫细胞化学; 人类; 1:200; 图 6g
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 2315)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6g). Mol Syst Biol (2017) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫细胞化学; 人类; 1:800; 图 6g
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 6g). Mol Syst Biol (2017) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 c-Jun抗体(cell signalling, 3270)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9261)被用于被用于免疫印迹在人类样本上 (图 8a). J Cell Mol Med (2017) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 3270)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 9261)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(60A8)
  • 染色质免疫沉淀 ; 人类; 图 3h
  • 免疫沉淀; 人类; 图 2b
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 9165)被用于被用于染色质免疫沉淀 在人类样本上 (图 3h), 被用于免疫沉淀在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 2361)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 9165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9164)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165p)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
  • 免疫细胞化学; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9261)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b), 被用于免疫细胞化学在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Neuroreport (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Neuroreport (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 9165)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Neoplasia (2016) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270S)被用于被用于免疫印迹在人类样本上 (图 4c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 人类; 1:100; 图 st1
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 2361)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165P)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165L)被用于被用于免疫印迹在小鼠样本上 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9261S)被用于被用于免疫印迹在小鼠样本上 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signalling Technology, 3270)被用于被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 9165)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Biol Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 9261)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Biol Reprod (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 9165S)被用于被用于免疫印迹在小鼠样本上 (图 6a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9261S)被用于被用于免疫印迹在小鼠样本上 (图 7d). elife (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165L)被用于被用于免疫印迹在小鼠样本上 (图 7d). elife (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9164)被用于被用于免疫印迹在小鼠样本上 (图 4b). Autophagy (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在小鼠样本上 (图 4b). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9164)被用于被用于免疫组化在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). elife (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 8b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165S)被用于被用于免疫印迹在人类样本上 (图 8b). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). FEBS Lett (2016) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 2361)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 2361)被用于被用于免疫印迹在人类样本上 (图 6c). Oncotarget (2016) ncbi
小鼠 单克隆(L70B11)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 2315)被用于被用于免疫印迹在人类样本上 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 小鼠; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Tech, 2361S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Tech, 9165S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9164)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9261)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 8752)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Acta Neuropathol (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 2993)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9164)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Rep (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9261)被用于被用于免疫印迹在人类样本上 (图 1c). EMBO Rep (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 染色质免疫沉淀 ; 人类; 图 5
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165S)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 9165)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Neurodegener (2016) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫组化-冰冻切片; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 3270)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Mol Neurodegener (2016) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 人类; 1:1000; 图 6
  • 免疫沉淀; 小鼠; 图 8
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 3270)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6), 被用于免疫沉淀在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 3270)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(L70B11)
  • 免疫印迹; 大鼠; 1:200; 图 2
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, L70B11)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:800
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
  • 免疫印迹; 人类; 1:800
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Tech, 9164)被用于被用于免疫印迹在大鼠样本上浓度为1:800, 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:800. Sci Rep (2016) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 2361)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9164)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 9164)被用于被用于免疫印迹在大鼠样本上 (图 3). Cell Stress Chaperones (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9164)被用于被用于免疫印迹在小鼠样本上 (图 4). Cardiovasc Res (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4) 和 被用于免疫印迹在人类样本上 (图 1). Clin Exp Metastasis (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹基因敲除验证; 人类; 图 4
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 9165)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 4). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 9164)被用于被用于免疫印迹在人类样本上 (图 4). Cell Rep (2016) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1a
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 2361)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 54B3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 3270)被用于被用于免疫印迹在小鼠样本上 (图 s1). Sci Rep (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在小鼠样本上 (图 s1). Sci Rep (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:250; 图 4
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 4). Nat Commun (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫组化-冰冻切片; 人类
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 60A8)被用于被用于免疫组化-冰冻切片在人类样本上. Nat Methods (2016) ncbi
小鼠 单克隆(L70B11)
  • 免疫印迹; 大鼠; 图 4b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, L70B11)被用于被用于免疫印迹在大鼠样本上 (图 4b). Mol Neurobiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9261)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫组化-石蜡切片; 小鼠; 图 1c
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 1b). Cell Death Differ (2016) ncbi
小鼠 单克隆(L70B11)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 2315)被用于被用于免疫印迹在人类样本上 (图 2). Genes Dev (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 犬; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 1b). J Vet Intern Med (2015) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 犬; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 1b). J Vet Intern Med (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signalling, 9165)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signalling, 2361)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technologies, 9165)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Cardiovasc Diabetol (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technologies, 9165)被用于被用于免疫印迹在小鼠样本上浓度为1:500. BMC Endocr Disord (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 3b
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Oncol Lett (2015) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫组化-石蜡切片; 斑马鱼; 1:200; 图 5
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 3270)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200 (图 5) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5). PLoS Genet (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在小鼠样本上 (图 4b). ASN Neuro (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫细胞化学; 小鼠; 1:100; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 c-Jun抗体(CST, 9165)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165P)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 大鼠; 1:1500
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 3270)被用于被用于免疫印迹在大鼠样本上浓度为1:1500. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Tech, 3270)被用于被用于免疫印迹在大鼠样本上 (图 6). J Immunol (2015) ncbi
小鼠 单克隆(L70B11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 2315S)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell signaling, 9165)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; Leishmania ; 图 2b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 60A8)被用于被用于免疫印迹在Leishmania 样本上 (图 2b). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(60A8)
  • reverse phase protein lysate microarray; 人类; 表 s2
  • 免疫细胞化学; 人类; 1:800; 图 5
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于reverse phase protein lysate microarray在人类样本上 (表 s2) 和 被用于免疫细胞化学在人类样本上浓度为1:800 (图 5). Mol Syst Biol (2015) ncbi
小鼠 单克隆(L70B11)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 2315)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Mol Syst Biol (2015) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫细胞化学; 人类; 1:800; 图 5
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 3270P)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 5). Mol Syst Biol (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 2361)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 人类; 1:200; 图 3b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 3270s)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3b). Int J Oncol (2015) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫组化-石蜡切片; 斑马鱼; 1:100
  • 染色质免疫沉淀 ; 斑马鱼
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:100 和 被用于染色质免疫沉淀 在斑马鱼样本上. J Immunol (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫组化-石蜡切片; 大鼠; 1:100
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫细胞化学; 人类; 图 s7g
  • 免疫细胞化学; African green monkey; 图 s7g
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫细胞化学在人类样本上 (图 s7g) 和 被用于免疫细胞化学在African green monkey样本上 (图 s7g). Nature (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 s7
赛信通(上海)生物试剂有限公司 c-Jun抗体(cell signaling, 9165)被用于被用于免疫印迹在人类样本上 (图 s7). J Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 c-Jun抗体(cst, 9165)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D47G9)
  • 流式细胞仪; 人类; 图 5b
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270P)被用于被用于流式细胞仪在人类样本上 (图 5b). Invest New Drugs (2015) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2014) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 2361)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2014) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫组化-石蜡切片; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2014) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上. Cancer Cell (2014) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 2361)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technologies, 9165L)被用于被用于免疫印迹在人类样本上. Free Radic Biol Med (2014) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 2361)被用于被用于免疫印迹在人类样本上. Br J Pharmacol (2014) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165S)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Neurobiol Dis (2014) ncbi
domestic rabbit 单克隆(54B3)
  • 免疫印迹; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 54B3)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Brain Res (2014) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncotarget (2014) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technologies, 9165)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Oncogene (2015) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫印迹在小鼠样本上. Drug Discov Ther (2014) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 60A8)被用于被用于免疫印迹在小鼠样本上 (图 4c). Eur J Immunol (2014) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 3270)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Lab Invest (2014) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 3270)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Clin Cancer Res (2014) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 小鼠; 1:500; 图 3, 5
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 9165)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3, 5). Am J Physiol Endocrinol Metab (2014) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 3270)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类; 图 3d, 3e, 3f
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 9165)被用于被用于免疫印迹在人类样本上 (图 3d, 3e, 3f). Int J Oncol (2014) ncbi
domestic rabbit 单克隆(60A8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 c-Jun抗体(cell signaling, #9165)被用于被用于免疫印迹在人类样本上. J Cell Biochem (2014) ncbi
domestic rabbit 单克隆(D47G9)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling Technology, 3270)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Cereb Blood Flow Metab (2013) ncbi
domestic rabbit 单克隆(54B3)
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠; 图 1, 2
赛信通(上海)生物试剂有限公司 c-Jun抗体(Cell Signaling, 2361)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 1, 2). J Immunol (2009) ncbi
Bioworld
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5A
Bioworld c-Jun抗体(Bioworld, BS4046)被用于被用于免疫印迹在人类样本上 (图 5A). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5A
Bioworld c-Jun抗体(Bioworld, BS4045)被用于被用于免疫印迹在人类样本上 (图 5A). Oncotarget (2016) ncbi
碧迪BD
小鼠 单克隆(3/Jun)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
碧迪BD c-Jun抗体(BD Transduction, 610326)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). elife (2020) ncbi
小鼠 单克隆(3/Jun)
  • 免疫印迹; 大鼠; 图 6i
碧迪BD c-Jun抗体(Becton-Dickinson, 610327)被用于被用于免疫印迹在大鼠样本上 (图 6i). Development (2017) ncbi
小鼠 单克隆(3/Jun)
  • 免疫印迹; 小鼠; 图 4a
碧迪BD c-Jun抗体(BD Transduction lab, 610326)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell Death Dis (2017) ncbi
小鼠 单克隆(3/Jun)
  • 免疫印迹; 小鼠; 1:200; 图 3b
碧迪BD c-Jun抗体(BD Bioscience, 610327)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3b). Nat Commun (2017) ncbi
小鼠 单克隆(3/Jun)
  • 免疫细胞化学; 小鼠; 图 7c
碧迪BD c-Jun抗体(BD Transduction, 610327)被用于被用于免疫细胞化学在小鼠样本上 (图 7c). Nat Neurosci (2016) ncbi
小鼠 单克隆(3/Jun)
  • 其他; 人类; 图 st1
碧迪BD c-Jun抗体(BD, 3)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(3/Jun)
  • 免疫印迹; 人类
碧迪BD c-Jun抗体(BD Transduction Laboratories, 610326)被用于被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(3/Jun)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
  • 免疫印迹; 人类; 1:1000
碧迪BD c-Jun抗体(BD Biosciences, 610326)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2015) ncbi
文章列表
  1. Wang Z, He L, Li W, Xu C, Zhang J, Wang D, et al. GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma. J Immunother Cancer. 2021;9: pubmed 出版商
  2. He L, Pratt H, Gao M, Wei F, Weng Z, Struhl K. YAP and TAZ are transcriptional co-activators of AP-1 proteins and STAT3 during breast cellular transformation. elife. 2021;10: pubmed 出版商
  3. Tan X, Tong L, Li L, Xu J, Xie S, Ji L, et al. Loss of Smad4 promotes aggressive lung cancer metastasis by de-repression of PAK3 via miRNA regulation. Nat Commun. 2021;12:4853 pubmed 出版商
  4. Ding B, Bao C, Jin L, Xu L, Fan W, Lou W. CASK Silence Overcomes Sorafenib Resistance of Hepatocellular Carcinoma Through Activating Apoptosis and Autophagic Cell Death. Front Oncol. 2021;11:681683 pubmed 出版商
  5. Chen H, Padia R, Li T, Li Y, Li B, Jin L, et al. Signaling of MK2 sustains robust AP1 activity for triple negative breast cancer tumorigenesis through direct phosphorylation of JAB1. NPJ Breast Cancer. 2021;7:91 pubmed 出版商
  6. Beaulac H, Gilels F, Zhang J, Jeoung S, White P. Primed to die: an investigation of the genetic mechanisms underlying noise-induced hearing loss and cochlear damage in homozygous Foxo3-knockout mice. Cell Death Dis. 2021;12:682 pubmed 出版商
  7. Wu X, Shu L, Zhang Z, Li J, Zong J, Cheong L, et al. Adipocyte Fatty Acid Binding Protein Promotes the Onset and Progression of Liver Fibrosis via Mediating the Crosstalk between Liver Sinusoidal Endothelial Cells and Hepatic Stellate Cells. Adv Sci (Weinh). 2021;8:e2003721 pubmed 出版商
  8. Kodati B, Stankowska D, Krishnamoorthy V, Krishnamoorthy R. Involvement of c-Jun N-terminal kinase 2 (JNK2) in Endothelin-1 (ET-1) Mediated Neurodegeneration of Retinal Ganglion Cells. Invest Ophthalmol Vis Sci. 2021;62:13 pubmed 出版商
  9. Yang Y, Xia L, Wu Y, Zhou H, Chen X, Li H, et al. Programmed death ligand-1 regulates angiogenesis and metastasis by participating in the c-JUN/VEGFR2 signaling axis in ovarian cancer. Cancer Commun (Lond). 2021;41:511-527 pubmed 出版商
  10. Ma J, Goodwani S, Acton P, Buggia Prevot V, Kesler S, Jamal I, et al. Inhibition of dual leucine zipper kinase prevents chemotherapy-induced peripheral neuropathy and cognitive impairments. Pain. 2021;162:2599-2612 pubmed 出版商
  11. Zhu X, Chen L, Huang B, Li X, Yang L, Hu X, et al. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J Exp Clin Cancer Res. 2021;40:122 pubmed 出版商
  12. Sanchez Vazquez R, Martinez P, Blasco M. AKT-dependent signaling of extracellular cues through telomeres impact on tumorigenesis. PLoS Genet. 2021;17:e1009410 pubmed 出版商
  13. Sela Y, Li J, Kuri P, Merrell A, Li N, Lengner C, et al. Dissecting phenotypic transitions in metastatic disease via photoconversion-based isolation. elife. 2021;10: pubmed 出版商
  14. Li Y, Ritchie E, Steinke C, Qi C, Chen L, Zheng B, et al. Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. elife. 2021;10: pubmed 出版商
  15. Orlando K, Douglas A, Abudu A, Wang Y, Tessier Cloutier B, Su W, et al. Re-expression of SMARCA4/BRG1 in small cell carcinoma of ovary, hypercalcemic type (SCCOHT) promotes an epithelial-like gene signature through an AP-1-dependent mechanism. elife. 2020;9: pubmed 出版商
  16. Cuddy S, Schinlever A, Dochnal S, Seegren P, Suzich J, Kundu P, et al. Neuronal hyperexcitability is a DLK-dependent trigger of herpes simplex virus reactivation that can be induced by IL-1. elife. 2020;9: pubmed 出版商
  17. Guo C, Sileikaite I, Davies M, Hawkins C. Myeloperoxidase Modulates Hydrogen Peroxide Mediated Cellular Damage in Murine Macrophages. Antioxidants (Basel). 2020;9: pubmed 出版商
  18. Karnan S, Ota A, Murakami H, Rahman M, Hasan M, Wahiduzzaman M, et al. Identification of CD24 as a potential diagnostic and therapeutic target for malignant pleural mesothelioma. Cell Death Discov. 2020;6:127 pubmed 出版商
  19. Crespo M, González Terán B, Nikolic I, Mora A, Folgueira C, Rodriguez E, et al. Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. elife. 2020;9: pubmed 出版商
  20. Sinha N, Ordureau A, Best K, Saba J, Zinshteyn B, Sundaramoorthy E, et al. EDF1 coordinates cellular responses to ribosome collisions. elife. 2020;9: pubmed 出版商
  21. Grove M, Lee H, Zhao H, Son Y. Axon-dependent expression of YAP/TAZ mediates Schwann cell remyelination but not proliferation after nerve injury. elife. 2020;9: pubmed 出版商
  22. Simula L, Corrado M, Accordi B, Di Rita A, Nazio F, Antonucci Y, et al. JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death Differ. 2020;: pubmed 出版商
  23. Bogucka K, Pompaiah M, Marini F, Binder H, Harms G, Kaulich M, et al. ERK3/MAPK6 controls IL-8 production and chemotaxis. elife. 2020;9: pubmed 出版商
  24. Pein M, Insua Rodríguez J, Hongu T, Riedel A, Meier J, Wiedmann L, et al. Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs. Nat Commun. 2020;11:1494 pubmed 出版商
  25. Tang Y, Xu A, Shao S, Zhou Y, Xiong B, Li Z. Electroacupuncture Ameliorates Cognitive Impairment by Inhibiting the JNK Signaling Pathway in a Mouse Model of Alzheimer's Disease. Front Aging Neurosci. 2020;12:23 pubmed 出版商
  26. Siu M, Jiang Y, Wang J, Leung T, Ngu S, Cheung A, et al. PDK1 promotes ovarian cancer metastasis by modulating tumor-mesothelial adhesion, invasion, and angiogenesis via α5β1 integrin and JNK/IL-8 signaling. Oncogenesis. 2020;9:24 pubmed 出版商
  27. Wu Q, Li G, Wen C, Zeng T, Fan Y, Liu C, et al. Monoubiquitination of p120-catenin is essential for TGFβ-induced epithelial-mesenchymal transition and tumor metastasis. Sci Adv. 2020;6:eaay9819 pubmed 出版商
  28. Podyma B, Johnson D, Sipe L, Remcho T, Battin K, Liu Y, et al. The p75 neurotrophin receptor in AgRP neurons is necessary for homeostatic feeding and food anticipation. elife. 2020;9: pubmed 出版商
  29. Lynn R, Weber E, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293-300 pubmed 出版商
  30. Fan B, Jin Y, Zhang H, Zhao R, Sun M, Sun M, et al. MicroRNA‑21 contributes to renal cell carcinoma cell invasiveness and angiogenesis via the PDCD4/c‑Jun (AP‑1) signalling pathway. Int J Oncol. 2020;56:178-192 pubmed 出版商
  31. Liu Y, Jiang Q, Liu X, Lin X, Tang Z, Liu C, et al. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine. 2019;48:386-404 pubmed 出版商
  32. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  33. Xiao W, Wang L, Howard J, Kolhe R, Rojiani A, Rojiani M. TIMP-1-Mediated Chemoresistance via Induction of IL-6 in NSCLC. Cancers (Basel). 2019;11: pubmed 出版商
  34. Solis A, Bielecki P, Steach H, Sharma L, Harman C, Yun S, et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature. 2019;573:69-74 pubmed 出版商
  35. Del Mar Díaz González S, Rodríguez Aguilar E, Meneses Acosta A, Valadez Graham V, Deas J, Gómez Cerón C, et al. Transregulation of microRNA miR-21 promoter by AP-1 transcription factor in cervical cancer cells. Cancer Cell Int. 2019;19:214 pubmed 出版商
  36. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed 出版商
  37. Rizzini L, Levine D, Perelis M, Bass J, Peek C, Pagano M. Cryptochromes-Mediated Inhibition of the CRL4Cop1-Complex Assembly Defines an Evolutionary Conserved Signaling Mechanism. Curr Biol. 2019;29:1954-1962.e4 pubmed 出版商
  38. Xu D, Li X, Shao F, Lv G, Lv H, Lee J, et al. The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62. Sci Adv. 2019;5:eaav4570 pubmed 出版商
  39. Guo M, Hartlova A, Gierlinski M, Prescott A, Castellvi J, Losa J, et al. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J. 2019;38: pubmed 出版商
  40. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  41. Sun D, Zhang M, Li Y, Mei S, Qin J, Yan J. c‑Jun/Ap‑1 is upregulated in an Ang II‑induced abdominal aortic aneurysm formation model and mediates Chop expression in mouse aortic smooth muscle cells. Mol Med Rep. 2019;19:3459-3468 pubmed 出版商
  42. Mammone T, Chidlow G, Casson R, Wood J. Improved immunohistochemical detection of phosphorylated mitogen-activated protein kinases in the injured rat optic nerve head. Histochem Cell Biol. 2019;151:435-456 pubmed 出版商
  43. Park H, Chung K, An H, Gim J, Hong J, Woo H, et al. Parkin Promotes Mitophagic Cell Death in Adult Hippocampal Neural Stem Cells Following Insulin Withdrawal. Front Mol Neurosci. 2019;12:46 pubmed 出版商
  44. Dong H, Ye X, Zhong L, Xu J, Qiu J, Wang J, et al. Role of FOXO3 Activated by HIV-1 Tat in HIV-Associated Neurocognitive Disorder Neuronal Apoptosis. Front Neurosci. 2019;13:44 pubmed 出版商
  45. Schulien I, Hockenjos B, Schmitt Graeff A, Perdekamp M, Follo M, Thimme R, et al. The transcription factor c-Jun/AP-1 promotes liver fibrosis during non-alcoholic steatohepatitis by regulating Osteopontin expression. Cell Death Differ. 2019;: pubmed 出版商
  46. Carugo A, Minelli R, Sapio L, Soeung M, Carbone F, Robinson F, et al. p53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors. Cancer Cell. 2019;35:204-220.e9 pubmed 出版商
  47. Xie C, Zhu J, Wang X, Chen J, Geng S, Wu J, et al. Tobacco smoke induced hepatic cancer stem cell-like properties through IL-33/p38 pathway. J Exp Clin Cancer Res. 2019;38:39 pubmed 出版商
  48. Hwang J, Kim A, Kim K, Il Park J, Oh H, Moon S, et al. TAZ couples Hippo/Wnt signalling and insulin sensitivity through Irs1 expression. Nat Commun. 2019;10:421 pubmed 出版商
  49. Li Z, Mbah N, Overmeyer J, Sarver J, George S, Trabbic C, et al. The JNK signaling pathway plays a key role in methuosis (non-apoptotic cell death) induced by MOMIPP in glioblastoma. BMC Cancer. 2019;19:77 pubmed 出版商
  50. Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira J, et al. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. elife. 2019;8: pubmed 出版商
  51. Alam M, Yang D, Trivett A, Meyer T, Oppenheim J. HMGN1 and R848 Synergistically Activate Dendritic Cells Using Multiple Signaling Pathways. Front Immunol. 2018;9:2982 pubmed 出版商
  52. Idris M, Butcher N, Minchin R. The MBNL/CELF Splicing Factors Regulate Cytosolic Sulfotransferase 4A1 Protein Expression during Cell Differentiation. Drug Metab Dispos. 2019;47:314-319 pubmed 出版商
  53. Kolb R, Kluz P, Tan Z, Borcherding N, Bormann N, Vishwakarma A, et al. Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene. 2019;38:2351-2363 pubmed 出版商
  54. Bugaj L, Sabnis A, Mitchell A, Garbarino J, Toettcher J, Bivona T, et al. Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science. 2018;361: pubmed 出版商
  55. Cuchet Lourenço D, Eletto D, Wu C, Plagnol V, Papapietro O, CURTIS J, et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science. 2018;361:810-813 pubmed 出版商
  56. Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, et al. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086 pubmed 出版商
  57. Xue Z, Vis D, Bruna A, Sustic T, van Wageningen S, Batra A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018;28:719-729 pubmed 出版商
  58. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed 出版商
  59. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  60. Rizzi C, Tiberi A, Giustizieri M, Marrone M, Gobbo F, Carucci N, et al. NGF steers microglia toward a neuroprotective phenotype. Glia. 2018;66:1395-1416 pubmed 出版商
  61. Qian Z, Ryu B, Kang K, Heo S, Kang D, Bae S, et al. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG?63 cells. Mol Med Rep. 2018;17:2044-2050 pubmed 出版商
  62. Bajikar S, Wang C, Borten M, Pereira E, Atkins K, Janes K. Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Dev Cell. 2017;43:418-435.e13 pubmed 出版商
  63. Roberts S, Dun X, Doddrell R, Mindos T, Drake L, Onaitis M, et al. Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Development. 2017;144:3114-3125 pubmed 出版商
  64. Smith R, Huang Y, Tian T, Vojtasova D, Mesalles Naranjo O, Pollard S, et al. The Transcription Factor Foxg1 Promotes Optic Fissure Closure in the Mouse by Suppressing Wnt8b in the Nasal Optic Stalk. J Neurosci. 2017;37:7975-7993 pubmed 出版商
  65. Aroor A, Habibi J, Kandikattu H, Garro Kacher M, Barron B, Chen D, et al. Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovasc Diabetol. 2017;16:61 pubmed 出版商
  66. Ge Y, Gomez N, Adam R, Nikolova M, Yang H, Verma A, et al. Stem Cell Lineage Infidelity Drives Wound Repair and Cancer. Cell. 2017;169:636-650.e14 pubmed 出版商
  67. Wassermann Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis. 2017;8:e2733 pubmed 出版商
  68. Hu X, Zhang Z, Liang Z, Xie D, Zhang T, Yu D, et al. Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma. Oncol Lett. 2017;13:686-694 pubmed 出版商
  69. Yungher B, Ribeiro M, Park K. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice. Invest Ophthalmol Vis Sci. 2017;58:1743-1750 pubmed 出版商
  70. Chambers T, Santiesteban L, Gomez D, Chambers J. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017;382:24-35 pubmed 出版商
  71. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  72. Loo L, Bougen Zhukov N, Tan W. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments. Sci Rep. 2017;7:43541 pubmed 出版商
  73. Lafont E, Kantari Mimoun C, Dráber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 2017;36:1147-1166 pubmed 出版商
  74. Singh V, Katta S, Kumar S. WD-repeat protein WDR13 is a novel transcriptional regulator of c-Jun and modulates intestinal homeostasis in mice. BMC Cancer. 2017;17:148 pubmed 出版商
  75. Vallejo A, Perurena N, Guruceaga E, Mazur P, Martínez Canarias S, Zandueta C, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun. 2017;8:14294 pubmed 出版商
  76. König H, Schwamborn R, Andresen S, Kinsella S, Watters O, Fenner B, et al. NF-κB regulates neuronal ankyrin-G via a negative feedback loop. Sci Rep. 2017;7:42006 pubmed 出版商
  77. Genovese G, Carugo A, TEPPER J, Robinson F, Li L, Svelto M, et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature. 2017;542:362-366 pubmed 出版商
  78. Brügger V, Duman M, Bochud M, Münger E, Heller M, Ruff S, et al. Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration. Nat Commun. 2017;8:14272 pubmed 出版商
  79. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  80. Wu M, Chen W, Lu Y, Zhu G, Hao L, Li Y. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun. 2017;8:13700 pubmed 出版商
  81. Macia M, Halbritter J, Delous M, Bredrup C, Gutter A, Filhol E, et al. Mutations in MAPKBP1 Cause Juvenile or Late-Onset Cilia-Independent Nephronophthisis. Am J Hum Genet. 2017;100:323-333 pubmed 出版商
  82. Fallahi Sichani M, Becker V, Izar B, Baker G, Lin J, Boswell S, et al. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. Mol Syst Biol. 2017;13:905 pubmed 出版商
  83. Sommer J, Mahli A, Freese K, Schiergens T, Kuecuekoktay F, Teufel A, et al. Analysis of molecular mechanisms of 5-fluorouracil-induced steatosis and inflammation in vitro and in mice. Oncotarget. 2017;8:13059-13072 pubmed 出版商
  84. Van Puyenbroeck V, Claeys E, Schols D, Bell T, Vermeire K. A Proteomic Survey Indicates Sortilin as a Secondary Substrate of the ER Translocation Inhibitor Cyclotriazadisulfonamide (CADA). Mol Cell Proteomics. 2017;16:157-167 pubmed 出版商
  85. Su J, Zhou H, Liu X, Nilsson J, Fredrikson G, Zhao M. oxLDL antibody inhibits MCP-1 release in monocytes/macrophages by regulating Ca2+ /K+ channel flow. J Cell Mol Med. 2017;21:929-940 pubmed 出版商
  86. Liu L, Guan H, Li Y, Ying Z, Wu J, Zhu X, et al. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness. Mol Cell Biol. 2017;37: pubmed 出版商
  87. Farsam V, Basu A, Gatzka M, Treiber N, Schneider L, Mulaw M, et al. Senescent fibroblast-derived Chemerin promotes squamous cell carcinoma migration. Oncotarget. 2016;7:83554-83569 pubmed 出版商
  88. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  89. Gong J, Tu W, Han J, He J, Liu J, Han P, et al. Hepatic SATB1 induces paracrine activation of hepatic stellate cells and is upregulated by HBx. Sci Rep. 2016;6:37717 pubmed 出版商
  90. Amigo Jiménez I, Bailón E, Aguilera Montilla N, García Marco J, García Pardo A. Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget. 2016;7:83359-83377 pubmed 出版商
  91. Flütsch A, Henry K, Mantuano E, Lam M, Shibayama M, Takahashi K, et al. Evidence that LDL receptor-related protein 1 acts as an early injury detection receptor and activates c-Jun in Schwann cells. Neuroreport. 2016;27:1305-1311 pubmed
  92. Zhang Q, Zhang Y, Parsels J, Lohse I, Lawrence T, Pasca di Magliano M, et al. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation. Neoplasia. 2016;18:666-673 pubmed 出版商
  93. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  94. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  95. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  96. Chi H, Chen S, Tsai C, Chuang W, Huang Y, Tsai M, et al. Thyroid hormone suppresses hepatocarcinogenesis via DAPK2 and SQSTM1-dependent selective autophagy. Autophagy. 2016;12:2271-2285 pubmed
  97. Vernia S, Edwards Y, Han M, Cavanagh Kyros J, Barrett T, Kim J, et al. An alternative splicing program promotes adipose tissue thermogenesis. elife. 2016;5: pubmed 出版商
  98. Zhang K, Cai H, Gao S, Yang G, Deng H, Xu G, et al. TNFSF15 suppresses VEGF production in endothelial cells by stimulating miR-29b expression via activation of JNK-GATA3 signals. Oncotarget. 2016;7:69436-69449 pubmed 出版商
  99. Vickers T, Crooke S. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions. PLoS ONE. 2016;11:e0161930 pubmed 出版商
  100. Boß M, Newbatt Y, Gupta S, Collins I, Brüne B, Namgaladze D. AMPK-independent inhibition of human macrophage ER stress response by AICAR. Sci Rep. 2016;6:32111 pubmed 出版商
  101. Hu G, Huang K, Hu Y, Du G, Xue Z, Zhu X, et al. Single-cell RNA-seq reveals distinct injury responses in different types of DRG sensory neurons. Sci Rep. 2016;6:31851 pubmed 出版商
  102. Nadeau Vallée M, Boudreault A, Leimert K, Hou X, Obari D, Madaan A, et al. Uterotonic Neuromedin U Receptor 2 and Its Ligands Are Upregulated by Inflammation in Mice and Humans, and Elicit Preterm Birth. Biol Reprod. 2016;95:72 pubmed
  103. Pfister J, D Mello S. Regulation of Neuronal Survival by Nucleophosmin 1 (NPM1) Is Dependent on Its Expression Level, Subcellular Localization, and Oligomerization Status. J Biol Chem. 2016;291:20787-97 pubmed 出版商
  104. Ramo K, Sugamura K, Craige S, Keaney J, Davis R. Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development. elife. 2016;5: pubmed 出版商
  105. Lee A, Kranzusch P, Doudna J, Cate J. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature. 2016;536:96-9 pubmed
  106. Wang J, Zhou J, Kho D, Reiners J, Wu G. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy. 2016;12:1791-1803 pubmed
  107. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  108. Li Y, Jiang D, Zhang Q, Liu X, Cai Z. Ubiquitin-specific protease 4 inhibits breast cancer cell growth through the upregulation of PDCD4. Int J Mol Med. 2016;38:803-11 pubmed 出版商
  109. Tambe M, Narvi E, Kallio M. Reduced levels of Dusp3/Vhr phosphatase impair normal spindle bipolarity in an Erk1/2 activity-dependent manner. FEBS Lett. 2016;590:2757-67 pubmed 出版商
  110. Egea Jimenez A, Gallardo R, Garcia Pino A, Ivarsson Y, Wawrzyniak A, Kashyap R, et al. Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling. Nat Commun. 2016;7:12101 pubmed 出版商
  111. Bigot P, Colli L, Machiela M, Jessop L, Myers T, Carrouget J, et al. Functional characterization of the 12p12.1 renal cancer-susceptibility locus implicates BHLHE41. Nat Commun. 2016;7:12098 pubmed 出版商
  112. Xiao B, Chen D, Luo S, Hao W, Jing F, Liu T, et al. Extracellular translationally controlled tumor protein promotes colorectal cancer invasion and metastasis through Cdc42/JNK/ MMP9 signaling. Oncotarget. 2016;7:50057-50073 pubmed 出版商
  113. Xiang N, Liu J, Liao Y, Huang Y, Wu Z, Bai Z, et al. Abrogating ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB Pathway. Sci Rep. 2016;6:27583 pubmed 出版商
  114. Quintes S, Brinkmann B, Ebert M, Fröb F, Kungl T, Arlt F, et al. Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nat Neurosci. 2016;19:1050-1059 pubmed 出版商
  115. Liu L, Lv G, Ning C, Yang Y, Zhu J. Therapeutic effects of 1,25-dihydroxyvitamin D3 on diabetes-induced liver complications in a rat model. Exp Ther Med. 2016;11:2284-2292 pubmed
  116. Jeong A, Han S, Lee S, Su Park J, Lu Y, Yu S, et al. Patient derived mutation W257G of PPP2R1A enhances cancer cell migration through SRC-JNK-c-Jun pathway. Sci Rep. 2016;6:27391 pubmed 出版商
  117. Schulz A, Büttner R, Hagel C, Baader S, Kluwe L, Salamon J, et al. The importance of nerve microenvironment for schwannoma development. Acta Neuropathol. 2016;132:289-307 pubmed 出版商
  118. Marescotti D, Gonzalez Suarez I, Acali S, Johne S, Laurent A, Frentzel S, et al. High Content Screening Analysis to Evaluate the Toxicological Effects of Harmful and Potentially Harmful Constituents (HPHC). J Vis Exp. 2016;: pubmed 出版商
  119. Hanson R, Brown R, Steele M, Grandgenett P, Grunkemeyer J, Hollingsworth M. Identification of FRA-1 as a novel player in pancreatic cancer in cooperation with a MUC1: ERK signaling axis. Oncotarget. 2016;7:39996-40011 pubmed 出版商
  120. Xu Z, Bu Y, Chitnis N, Koumenis C, Fuchs S, Diehl J. miR-216b regulation of c-Jun mediates GADD153/CHOP-dependent apoptosis. Nat Commun. 2016;7:11422 pubmed 出版商
  121. Giovannini C, Minguzzi M, Genovese F, Baglioni M, Gualandi A, Ravaioli M, et al. Molecular and proteomic insight into Notch1 characterization in hepatocellular carcinoma. Oncotarget. 2016;7:39609-39626 pubmed 出版商
  122. Tortola L, Nitsch R, Bertrand M, Kogler M, Redouane Y, Kozieradzki I, et al. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep. 2016;15:1481-1492 pubmed 出版商
  123. Afonina I, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 2016;17:914-27 pubmed 出版商
  124. Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang Z, et al. Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol. 2016;23:522-30 pubmed 出版商
  125. Kim B, Silverman S, Liu Y, Wordinger R, Pang I, Clark A. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener. 2016;11:30 pubmed 出版商
  126. Yang Y, Huycke M, Herman T, Wang X. Glutathione S-transferase alpha 4 induction by activator protein 1 in colorectal cancer. Oncogene. 2016;35:5795-5806 pubmed 出版商
  127. Balakrishnan A, Stykel M, Touahri Y, Stratton J, Biernaskie J, Schuurmans C. Temporal Analysis of Gene Expression in the Murine Schwann Cell Lineage and the Acutely Injured Postnatal Nerve. PLoS ONE. 2016;11:e0153256 pubmed 出版商
  128. An X, Zhao Z, Luo Y, Zhang R, Tang X, Hao D, et al. Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget. 2016;7:24719-33 pubmed 出版商
  129. Antony A, Paillard M, Moffat C, Juskeviciute E, Correnti J, Bolon B, et al. MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration. Nat Commun. 2016;7:10955 pubmed 出版商
  130. Rubattu S, Di Castro S, Schulz H, Geurts A, Cotugno M, Bianchi F, et al. Ndufc2 Gene Inhibition Is Associated With Mitochondrial Dysfunction and Increased Stroke Susceptibility in an Animal Model of Complex Human Disease. J Am Heart Assoc. 2016;5: pubmed 出版商
  131. Zhao J, Wang L, Dong X, Hu X, Zhou L, Liu Q, et al. The c-Jun N-terminal kinase (JNK) pathway is activated in human interstitial cystitis (IC) and rat protamine sulfate induced cystitis. Sci Rep. 2016;6:19670 pubmed 出版商
  132. Wang P, Zhang X, Luo P, Jiang X, Zhang P, Guo J, et al. Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling. Nat Commun. 2016;7:10592 pubmed 出版商
  133. Hong M, Nam K, Kim K, Kim S, Kim I. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha. Cell Stress Chaperones. 2016;21:485-97 pubmed 出版商
  134. Gupta S, Itagaki R, Zheng X, Batkai S, Thum S, Ahmad F, et al. miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovasc Res. 2016;110:215-26 pubmed 出版商
  135. Bleckmann A, Conradi L, Menck K, Schmick N, Schubert A, Rietkötter E, et al. β-catenin-independent WNT signaling and Ki67 in contrast to the estrogen receptor status are prognostic and associated with poor prognosis in breast cancer liver metastases. Clin Exp Metastasis. 2016;33:309-23 pubmed 出版商
  136. Vincent K, Cornea V, Jong Y, Laferriere A, Kumar N, Mickeviciute A, et al. Intracellular mGluR5 plays a critical role in neuropathic pain. Nat Commun. 2016;7:10604 pubmed 出版商
  137. Liu X, Li H, Rajurkar M, Li Q, Cotton J, Ou J, et al. Tead and AP1 Coordinate Transcription and Motility. Cell Rep. 2016;14:1169-1180 pubmed 出版商
  138. El Karoui K, Viau A, Dellis O, Bagattin A, Nguyen C, BARON W, et al. Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2. Nat Commun. 2016;7:10330 pubmed 出版商
  139. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  140. Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 2016;7:10305 pubmed 出版商
  141. Lv H, Zhang Z, Wu X, Wang Y, Li C, Gong W, et al. Preclinical Evaluation of Liposomal C8 Ceramide as a Potent anti-Hepatocellular Carcinoma Agent. PLoS ONE. 2016;11:e0145195 pubmed 出版商
  142. Xie Q, McGreal R, Harris R, Gao C, Liu W, Reneker L, et al. Regulation of c-Maf and αA-Crystallin in Ocular Lens by Fibroblast Growth Factor Signaling. J Biol Chem. 2016;291:3947-58 pubmed 出版商
  143. Xu Y, Wu D, Zheng W, Yu F, Yang F, Yao Y, et al. Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells. Oncotarget. 2016;7:6146-58 pubmed 出版商
  144. Wang J, Cao Y, Li Q, Yang Y, Jin M, Chen D, et al. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy. 2015;11:2057-2073 pubmed 出版商
  145. Ni Y, Nagashimada M, Zhuge F, Zhan L, Nagata N, Tsutsui A, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci Rep. 2015;5:17192 pubmed 出版商
  146. Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7:509-23 pubmed 出版商
  147. Riesenberg S, Groetchen A, Siddaway R, Bald T, Reinhardt J, Smorra D, et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun. 2015;6:8755 pubmed 出版商
  148. Thomsen E, Mich J, Yao Z, Hodge R, Doyle A, Jang S, et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods. 2016;13:87-93 pubmed 出版商
  149. Suwei D, Liang Z, Zhimin L, Ruilei L, Yingying Z, Zhen L, et al. NLK functions to maintain proliferation and stemness of NSCLC and is a target of metformin. J Hematol Oncol. 2015;8:120 pubmed 出版商
  150. Liu B, Wu S, Han L, Zhang C. β-catenin signaling induces the osteoblastogenic differentiation of human pre-osteoblastic and bone marrow stromal cells mainly through the upregulation of osterix expression. Int J Mol Med. 2015;36:1572-82 pubmed 出版商
  151. Smith C, D Mello S. Cell and Context-Dependent Effects of the Heat Shock Protein DNAJB6 on Neuronal Survival. Mol Neurobiol. 2016;53:5628-39 pubmed 出版商
  152. Trierweiler C, Hockenjos B, Zatloukal K, Thimme R, Blum H, Wagner E, et al. The transcription factor c-JUN/AP-1 promotes HBV-related liver tumorigenesis in mice. Cell Death Differ. 2016;23:576-82 pubmed 出版商
  153. Martinez N, Agosto L, Qiu J, Mallory M, Gazzara M, Barash Y, et al. Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes Dev. 2015;29:2054-66 pubmed 出版商
  154. Neumann Z, Pondenis H, Masyr A, Byrum M, Wycislo K, Fan T. The Association of Endothelin-1 Signaling with Bone Alkaline Phosphatase Expression and Protumorigenic Activities in Canine Osteosarcoma. J Vet Intern Med. 2015;29:1584-94 pubmed 出版商
  155. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed 出版商
  156. Wunsch E, Milkiewicz M, Wasik U, Trottier J, KempiÅ„ska Podhorodecka A, Elias E, et al. Expression of hepatic Fibroblast Growth Factor 19 is enhanced in Primary Biliary Cirrhosis and correlates with severity of the disease. Sci Rep. 2015;5:13462 pubmed 出版商
  157. He J, Quintana M, Sullivan J, L Parry T, J Grevengoed T, Schisler J, et al. MuRF2 regulates PPARγ1 activity to protect against diabetic cardiomyopathy and enhance weight gain induced by a high fat diet. Cardiovasc Diabetol. 2015;14:97 pubmed 出版商
  158. Quintana M, He J, Sullivan J, Grevengoed T, Schisler J, Han Y, et al. Muscle ring finger-3 protects against diabetic cardiomyopathy induced by a high fat diet. BMC Endocr Disord. 2015;15:36 pubmed 出版商
  159. Zhang S, Hu Y, Huang Y, Xu H, Wu G, Dai H. Heat shock protein 27 promotes cell proliferation through activator protein-1 in lung cancer. Oncol Lett. 2015;9:2572-2576 pubmed
  160. Evason K, Francisco M, Juric V, Balakrishnan S, Lopez Pazmino M, Gordan J, et al. Identification of Chemical Inhibitors of β-Catenin-Driven Liver Tumorigenesis in Zebrafish. PLoS Genet. 2015;11:e1005305 pubmed 出版商
  161. Lebrun Julien F, Suter U. Combined HDAC1 and HDAC2 Depletion Promotes Retinal Ganglion Cell Survival After Injury Through Reduction of p53 Target Gene Expression. ASN Neuro. 2015;7: pubmed 出版商
  162. Liu J, Han Q, Peng T, Peng M, Wei B, Li D, et al. The oncogene c-Jun impedes somatic cell reprogramming. Nat Cell Biol. 2015;17:856-67 pubmed 出版商
  163. Sha X, Meng S, Li X, Xi H, Maddaloni M, Pascual D, et al. Interleukin-35 Inhibits Endothelial Cell Activation by Suppressing MAPK-AP-1 Pathway. J Biol Chem. 2015;290:19307-18 pubmed 出版商
  164. Krokowski D, Jobava R, Guan B, Farabaugh K, Wu J, Majumder M, et al. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity. J Biol Chem. 2015;290:17822-37 pubmed 出版商
  165. Teng Y, Radde B, Litchfield L, Ivanova M, Prough R, Clark B, et al. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells. J Biol Chem. 2015;290:15799-811 pubmed 出版商
  166. Heinen A, Beyer F, Tzekova N, Hartung H, Küry P. Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype. Exp Neurol. 2015;271:25-35 pubmed 出版商
  167. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  168. Bhushan S, Tchatalbachev S, Lu Y, Fröhlich S, Fijak M, Vijayan V, et al. Differential activation of inflammatory pathways in testicular macrophages provides a rationale for their subdued inflammatory capacity. J Immunol. 2015;194:5455-64 pubmed 出版商
  169. Shaikh L, Zhou J, Teo A, Garg S, Neogi S, Figg N, et al. LGR5 Activates Noncanonical Wnt Signaling and Inhibits Aldosterone Production in the Human Adrenal. J Clin Endocrinol Metab. 2015;100:E836-44 pubmed 出版商
  170. Peiris Pagès M, Sotgia F, Lisanti M. Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells. Oncotarget. 2015;6:10728-45 pubmed
  171. Chakraborty A, Diefenbacher M, Mylona A, Kassel O, Behrens A. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling. Nat Commun. 2015;6:6782 pubmed 出版商
  172. Ko R, Park J, Ha H, Choi Y, Lee S. Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun. 2015;6:6765 pubmed 出版商
  173. Isnard A, Christian J, Kodiha M, Stochaj U, McMaster W, Olivier M. Impact of Leishmania infection on host macrophage nuclear physiology and nucleopore complex integrity. PLoS Pathog. 2015;11:e1004776 pubmed 出版商
  174. Tabariès S, Annis M, Hsu B, Tam C, Savage P, Park M, et al. Lyn modulates Claudin-2 expression and is a therapeutic target for breast cancer liver metastasis. Oncotarget. 2015;6:9476-87 pubmed
  175. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  176. Li T, Su L, Lei Y, Liu X, Zhang Y, Liu X. DDIT3 and KAT2A Proteins Regulate TNFRSF10A and TNFRSF10B Expression in Endoplasmic Reticulum Stress-mediated Apoptosis in Human Lung Cancer Cells. J Biol Chem. 2015;290:11108-18 pubmed 出版商
  177. Liu C, Tan F, Xiao Z, Dawe G. Amyloid precursor protein enhances Nav1.6 sodium channel cell surface expression. J Biol Chem. 2015;290:12048-57 pubmed 出版商
  178. Qiao Y, Shiue C, Zhu J, Zhuang T, Jonsson P, Wright A, et al. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial-mesenchymal transition in triple-negative breast cancer. Oncotarget. 2015;6:7804-14 pubmed
  179. Chung Y, Kim H, Park S, Yoon J, Kim M, Nam S, et al. Transcriptome analysis reveals that Müllerian inhibiting substance regulates signaling pathways that contribute to endometrial carcinogenesis. Int J Oncol. 2015;46:2039-46 pubmed 出版商
  180. Bai L, Mao R, Wang J, Ding L, Jiang S, Gao C, et al. ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol. 2015;32:57 pubmed 出版商
  181. Marsolier J, Perichon M, Debarry J, Villoutreix B, Chluba J, Lopez T, et al. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation. Nature. 2015;520:378-82 pubmed 出版商
  182. de Oliveira S, Boudinot P, Calado Ã, Mulero V. Duox1-derived H2O2 modulates Cxcl8 expression and neutrophil recruitment via JNK/c-JUN/AP-1 signaling and chromatin modifications. J Immunol. 2015;194:1523-33 pubmed 出版商
  183. Saveljeva S, Mc Laughlin S, Vandenabeele P, Samali A, Bertrand M. Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death Dis. 2015;6:e1587 pubmed 出版商
  184. Gao Z, Zhang J, Henagan T, Lee J, Ye X, Wang H, et al. P65 inactivation in adipocytes and macrophages attenuates adipose inflammatory response in lean but not in obese mice. Am J Physiol Endocrinol Metab. 2015;308:E496-505 pubmed 出版商
  185. Hollis E, Ishiko N, Tolentino K, Doherty E, Rodríguez M, Calcutt N, et al. A novel and robust conditioning lesion induced by ethidium bromide. Exp Neurol. 2015;265:30-9 pubmed 出版商
  186. Boucrot E, Ferreira A, Almeida Souza L, Debard S, Vallis Y, Howard G, et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature. 2015;517:460-5 pubmed 出版商
  187. Menck K, Scharf C, Bleckmann A, Dyck L, Rost U, Wenzel D, et al. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN. J Mol Cell Biol. 2015;7:143-53 pubmed 出版商
  188. Suzuki S, Okada M, Shibuya K, Seino M, Sato A, Takeda H, et al. JNK suppression of chemotherapeutic agents-induced ROS confers chemoresistance on pancreatic cancer stem cells. Oncotarget. 2015;6:458-70 pubmed
  189. Guzmán E, Maers K, Roberts J, Kemami Wangun H, Harmody D, Wright A. The marine natural product microsclerodermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. Invest New Drugs. 2015;33:86-94 pubmed 出版商
  190. Leung C, Yeung T, Yip K, Pradeep S, Balasubramanian L, Liu J, et al. Calcium-dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic potential. Nat Commun. 2014;5:5092 pubmed 出版商
  191. Matsuyama M, Nomori A, Nakakuni K, Shimono A, Fukushima M. Secreted Frizzled-related protein 1 (Sfrp1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy. J Biol Chem. 2014;289:31526-33 pubmed 出版商
  192. Lin C, Chen P, Hsu L, Kuo D, Chu S, Hsieh Y. Inhibition of the invasion and migration of renal carcinoma 786‑o‑si3 cells in vitro and in vivo by Koelreuteria formosana extract. Mol Med Rep. 2014;10:3334-42 pubmed 出版商
  193. Chang Y, Huang Y. Arsenite-activated JNK signaling enhances CPEB4-Vinexin interaction to facilitate stress granule assembly and cell survival. PLoS ONE. 2014;9:e107961 pubmed 出版商
  194. Tun A, Chaiyarit S, Kaewsutthi S, Katanyoo W, Chuenkongkaew W, Kuwano M, et al. Profiling the mitochondrial proteome of Leber's Hereditary Optic Neuropathy (LHON) in Thailand: down-regulation of bioenergetics and mitochondrial protein quality control pathways in fibroblasts with the 11778G>A mutation. PLoS ONE. 2014;9:e106779 pubmed 出版商
  195. Cox S. Intracellular signaling of CTLs. Methods Mol Biol. 2014;1186:49-63 pubmed 出版商
  196. Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell. 2014;26:222-34 pubmed 出版商
  197. Wang F, Cai M, Mai S, Chen J, Bai H, Li Y, et al. Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response to chemotherapy via regulation of matrix metalloproteinase 2 expression. Oncotarget. 2014;5:6716-33 pubmed
  198. Resch U, Cuapio A, Sturtzel C, Hofer E, de Martin R, Holper Schichl Y. Polyubiquitinated tristetraprolin protects from TNF-induced, caspase-mediated apoptosis. J Biol Chem. 2014;289:25088-100 pubmed 出版商
  199. Bartling T, Subbaram S, Clark R, Chandrasekaran A, Kar S, Melendez J. Redox-sensitive gene-regulatory events controlling aberrant matrix metalloproteinase-1 expression. Free Radic Biol Med. 2014;74:99-107 pubmed 出版商
  200. Chien P, Hsieh H, Chi P, Yang C. PAR1-dependent COX-2/PGE2 production contributes to cell proliferation via EP2 receptors in primary human cardiomyocytes. Br J Pharmacol. 2014;171:4504-19 pubmed 出版商
  201. Fernandes K, Harder J, JOHN S, Shrager P, Libby R. DLK-dependent signaling is important for somal but not axonal degeneration of retinal ganglion cells following axonal injury. Neurobiol Dis. 2014;69:108-16 pubmed 出版商
  202. Wei X, Zhang F, Wang K, Zhang Q, Rong L. Assembly of the FKBP51-PHLPP2-AKT signaling complex in cerebral ischemia/reperfusion injury in rats. Brain Res. 2014;1566:60-8 pubmed 出版商
  203. Romanov V, Brichkina A, Morrison H, Pospelova T, Pospelov V, Herrlich P. Novel mechanism of JNK pathway activation by adenoviral E1A. Oncotarget. 2014;5:2176-86 pubmed
  204. Feuerborn A, Mathow D, Srivastava P, Gretz N, Grone H. Basonuclin-1 modulates epithelial plasticity and TGF-?1-induced loss of epithelial cell integrity. Oncogene. 2015;34:1185-95 pubmed 出版商
  205. Wang R, Wang Y, Gao Z, Qu X. The comparative study of acetyl-11-keto-beta-boswellic acid (AKBA) and aspirin in the prevention of intestinal adenomatous polyposis in APC(Min/+) mice. Drug Discov Ther. 2014;8:25-32 pubmed
  206. Shiheido H, Aoyama T, Takahashi H, Hanaoka K, Abe T, Nishida E, et al. Novel CD3-specific antibody induces immunosuppression via impaired phosphorylation of LAT and PLC?1 following T-cell stimulation. Eur J Immunol. 2014;44:1770-80 pubmed 出版商
  207. Stofas A, Levidou G, Piperi C, Adamopoulos C, Dalagiorgou G, Bamias A, et al. The role of CXC-chemokine receptor CXCR2 and suppressor of cytokine signaling-3 (SOCS-3) in renal cell carcinoma. BMC Cancer. 2014;14:149 pubmed 出版商
  208. Cheng J, Fan Y, Xu X, Dou J, Tang Y, Zhong X, et al. A small-molecule inhibitor of UBE2N induces neuroblastoma cell death via activation of p53 and JNK pathways. Cell Death Dis. 2014;5:e1079 pubmed 出版商
  209. Dorn C, Engelmann J, Saugspier M, Koch A, Hartmann A, Müller M, et al. Increased expression of c-Jun in nonalcoholic fatty liver disease. Lab Invest. 2014;94:394-408 pubmed 出版商
  210. Delgado O, Batten K, Richardson J, Xie X, Gazdar A, Kaisani A, et al. Radiation-enhanced lung cancer progression in a transgenic mouse model of lung cancer is predictive of outcomes in human lung and breast cancer. Clin Cancer Res. 2014;20:1610-22 pubmed 出版商
  211. Wadosky K, Rodriguez J, Hite R, Min J, Walton B, Willis M. Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling. Am J Physiol Endocrinol Metab. 2014;306:E723-39 pubmed 出版商
  212. Chen Y, Thang M, Chan Y, Huang Y, Ma N, Yu A, et al. Global assessment of Antrodia cinnamomea-induced microRNA alterations in hepatocarcinoma cells. PLoS ONE. 2013;8:e82751 pubmed 出版商
  213. Okada M, Sato A, Shibuya K, Watanabe E, Seino S, Suzuki S, et al. JNK contributes to temozolomide resistance of stem-like glioblastoma cells via regulation of MGMT expression. Int J Oncol. 2014;44:591-9 pubmed 出版商
  214. Ashlin T, Buckley M, Salter R, Johnson J, Kwan A, Ramji D. The anti-atherogenic cytokine interleukin-33 inhibits the expression of a disintegrin and metalloproteinase with thrombospondin motifs-1, -4 and -5 in human macrophages: Requirement of extracellular signal-regulated kinase, c-Jun N-terminal kinase an. Int J Biochem Cell Biol. 2014;46:113-23 pubmed 出版商
  215. Parseghian S, Onstead Haas L, Wong N, Mooradian A, Haas M. Inhibition of apolipoprotein A-I expression by TNF-alpha in HepG2 cells: requirement for c-jun. J Cell Biochem. 2014;115:253-60 pubmed 出版商
  216. Yuan F, Xu Z, Yang M, Wei Q, Zhang Y, Yu J, et al. Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer. PLoS ONE. 2013;8:e69317 pubmed 出版商
  217. Muppala S, Mudduluru G, Leupold J, Buergy D, Sleeman J, Allgayer H. CD24 induces expression of the oncomir miR-21 via Src, and CD24 and Src are both post-transcriptionally downregulated by the tumor suppressor miR-34a. PLoS ONE. 2013;8:e59563 pubmed 出版商
  218. Okami N, Narasimhan P, Yoshioka H, Sakata H, Kim G, Jung J, et al. Prevention of JNK phosphorylation as a mechanism for rosiglitazone in neuroprotection after transient cerebral ischemia: activation of dual specificity phosphatase. J Cereb Blood Flow Metab. 2013;33:106-14 pubmed 出版商
  219. Leng J, Butcher B, Egan C, Abi Abdallah D, Denkers E. Toxoplasma gondii prevents chromatin remodeling initiated by TLR-triggered macrophage activation. J Immunol. 2009;182:489-97 pubmed