这是一篇来自已证抗体库的有关人类 c-Myc (c-Myc) 的综述,是根据837篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合c-Myc 抗体。
c-Myc 同义词: MRTL; MYCC; bHLHe39; c-Myc

圣克鲁斯生物技术
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于被用于免疫印迹在人类样本上浓度为1:2000. J Exp Med (2020) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:1000; 图 2e
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). elife (2020) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:500; 图 7c
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7c). elife (2020) ncbi
小鼠 单克隆(9E10)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1e, 2e
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1e, 2e). Int J Nanomedicine (2020) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 小鼠; 图 1
  • 免疫沉淀; 人类; 图 1, 4
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫沉淀在人类样本上 (图 1, 4). Cell Death Dis (2020) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于被用于免疫印迹在人类样本上. elife (2020) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 小鼠; 1:500; 图 3b, c, s8c
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3b, c, s8c). Nat Commun (2020) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 图 s2a
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40)被用于被用于免疫印迹在人类样本上 (图 s2a). EBioMedicine (2020) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; 人类; 1:20,000; 图 3s1b
圣克鲁斯生物技术c-Myc抗体(SCBT, SC-40)被用于被用于免疫细胞化学在人类样本上浓度为1:20,000 (图 3s1b). elife (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:1000; 图 1b
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Acta Neuropathol (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 图 2k
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于被用于免疫印迹在人类样本上 (图 2k). Theranostics (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 小鼠; 图 4c
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cancer Cell (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:1000; 图 7a
圣克鲁斯生物技术c-Myc抗体(Santa, sc-40)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Nat Commun (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术c-Myc抗体(Santa, sc-40)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogene (2019) ncbi
小鼠 单克隆(C-33)
  • 免疫印迹; 人类; 图 4e
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-42)被用于被用于免疫印迹在人类样本上 (图 4e). Cancer Lett (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; 人类; 1:150; 图 s4i
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫细胞化学在人类样本上浓度为1:150 (图 s4i). Science (2018) ncbi
小鼠 单克隆(C-33)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, C33)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2018) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Biochim Biophys Acta Mol Cell Biol Lipids (2018) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 7g
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 7g). Nat Commun (2017) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(SantaCruz, sc-40)被用于. Mol Cancer Res (2017) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Mol Cancer (2017) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 图 8a
圣克鲁斯生物技术c-Myc抗体(SantaCruz, sc-40)被用于被用于免疫印迹在人类样本上 (图 8a). Reprod Fertil Dev (2017) ncbi
小鼠 单克隆(C-8)
  • 免疫印迹; 小鼠; 图 4d
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-41)被用于被用于免疫印迹在小鼠样本上 (图 4d). Nat Commun (2017) ncbi
小鼠 单克隆(C-33)
  • EMSA; 人类; 图 5d
圣克鲁斯生物技术c-Myc抗体(SantaCruz, sc42x)被用于被用于EMSA在人类样本上 (图 5d). Epigenetics (2017) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40)被用于. Nat Commun (2017) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nat Commun (2017) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40HRP)被用于. Nat Commun (2017) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa cruz, 9E10)被用于. elife (2017) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; fruit fly ; 1:500; 图 2d
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于被用于免疫印迹在fruit fly 样本上浓度为1:500 (图 2d). Sci Rep (2017) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC40)被用于. Sci Signal (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Oncol Lett (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Oncol Lett (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40)被用于. Oncotarget (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. Exp Cell Res (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Sci Rep (2016) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; 人类; 1:200; 图 s4
  • 免疫印迹; 人类; 1:1000; 图 6b
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc40)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). J Cell Sci (2016) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术c-Myc抗体(Santa cruz, 9E10)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). J Cell Sci (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40)被用于. Sci Rep (2016) ncbi
小鼠 单克隆(9E10)
  • 抑制或激活实验; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于抑制或激活实验在人类样本上. Oncotarget (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Oncotarget (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. Sci Rep (2016) ncbi
小鼠 单克隆(9E11)
  • 免疫印迹; 人类; 1:2500; 图 5a
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-47694)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 5a). Mol Med Rep (2016) ncbi
小鼠 单克隆(9E11)
  • 免疫印迹; 人类; 图 s1a
圣克鲁斯生物技术c-Myc抗体(SantaCruz, sc-47694)被用于被用于免疫印迹在人类样本上 (图 s1a). Oncotarget (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Genome Biol (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. PLoS Pathog (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40)被用于. Aging (Albany NY) (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Sci Rep (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Nat Immunol (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Nat Med (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Development (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. J Biol Chem (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. J Biol Chem (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Cancer Res (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. elife (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotech, sc-40)被用于. J Korean Med Sci (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. EMBO Rep (2016) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 小鼠; 图 s1b
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于被用于免疫印迹在小鼠样本上 (图 s1b). Nature (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Oncotarget (2016) ncbi
小鼠 单克隆(C-33)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-42)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. Nat Commun (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(SantaCruz, sc-40)被用于. Oncol Lett (2016) ncbi
小鼠 单克隆(C-33)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-42)被用于被用于免疫印迹在人类样本上 (图 6). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(9E10)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
圣克鲁斯生物技术c-Myc抗体(SantaCruz, 9E10)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Neoplasia (2016) ncbi
小鼠 单克隆(9E11)
  • 免疫组化-石蜡切片; 人类; 图 7
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-47694)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7). PLoS Genet (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Oncotarget (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. J Biol Chem (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40)被用于. J Biol Chem (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Oncotarget (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40HRP)被用于. Oncotarget (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Nat Immunol (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. ACS Chem Neurosci (2016) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 人类; 图 4
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫沉淀在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Cell Cycle (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nat Commun (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nat Commun (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Nature (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Nat Neurosci (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(C-33)
  • 免疫印迹; 小鼠; 1:500; 图 6
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc42)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). EMBO J (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Int J Mol Sci (2015) ncbi
小鼠 单克隆(9E11)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-47694)被用于被用于免疫印迹在人类样本上 (图 7). J Cell Biol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. EMBO Rep (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. EMBO Rep (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Mol Cell Biol (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. J Virol (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nucleic Acids Res (2016) ncbi
小鼠 单克隆(C-33)
  • 免疫印迹; 人类; 图 s3
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-42)被用于被用于免疫印迹在人类样本上 (图 s3). Oncotarget (2015) ncbi
小鼠 单克隆(C-33)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-42)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nature (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40AC)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa cruz, sc-40)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, SC-40)被用于. Nucleic Acids Res (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(santa cruz, 9E10)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, SC-40)被用于. Oncogene (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Plant Physiol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Oncol Rep (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(santa cruz, SC-40)被用于. Nat Cell Biol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Oncogene (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Skelet Muscle (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(santa cruz, sc-40)被用于. Nat Cell Biol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. EMBO Rep (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. elife (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫印迹在人类样本上 (图 3d). BMC Cancer (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Oncogene (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40)被用于. J Cell Sci (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(C-8)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-41)被用于. Oncol Lett (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa cruz, sc-40)被用于. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. Oncogene (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40)被用于. Int J Oncol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Mol Cell Biol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. PLoS Pathog (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40)被用于. Oncogene (2016) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Mol Biol Cell (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Cancer Cell Int (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, SC-40)被用于. Anal Biochem (2015) ncbi
小鼠 单克隆(C-33)
  • 免疫印迹; 人类; 图 7b
圣克鲁斯生物技术c-Myc抗体(SantaCruz Technologies, sc-42)被用于被用于免疫印迹在人类样本上 (图 7b). Mol Cancer (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Kobe J Med Sci (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. J Neurosci (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nat Neurosci (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. Mutat Res (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Methods Mol Biol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Biol Open (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术c-Myc抗体(SantaCruz, 9E10)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology Inc., 9E10)被用于. Mol Cancer Res (2015) ncbi
小鼠 单克隆(C-33)
  • 免疫印迹; 人类; 1:1000; 图 6e
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-42)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Int J Oncol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, Sc-40)被用于. J Cell Biochem (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. J Immunol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nature (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Plant Cell (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Mol Cell Biol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. Am J Physiol Heart Circ Physiol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Cell Death Dis (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. J Neurosci (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于被用于免疫印迹在人类样本上. Br J Cancer (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40 AC)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. FEBS Lett (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nat Cell Biol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc40)被用于. PLoS Genet (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Nat Commun (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Mol Cell Biol (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. Nature (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nat Commun (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 小鼠; 图 2e
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于被用于免疫印迹在小鼠样本上 (图 2e). J Immunol (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. J Cell Biol (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Gastric Cancer (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. Cell Death Differ (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Infect Immun (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. J Gen Virol (2015) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40)被用于被用于免疫印迹在人类样本上. Biomed Res Int (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotech, sc40)被用于. elife (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Nat Neurosci (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E-10)被用于. Oncogene (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC-40)被用于. Mol Biol Cell (2014) ncbi
小鼠 单克隆(9E10)
  • 染色质免疫沉淀 ; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Technology, 9E10)被用于被用于染色质免疫沉淀 在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(C-33)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, C33)被用于. Head Neck (2015) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Cell (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. FEBS J (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. Int J Biochem Cell Biol (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Blood (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Methods Cell Biol (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(SCBT, sc-40)被用于. J Neurosci (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上 (图 6). Mol Cell Biol (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc40)被用于. FASEB J (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. elife (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术c-Myc抗体(SCBT, SC-40)被用于被用于免疫印迹在小鼠样本上. Leukemia (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotech, 9E10)被用于. Nature (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Cell Rep (2014) ncbi
小鼠 单克隆(9E11)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E11)被用于. Chin J Cancer Res (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于. Microbiologyopen (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; 人类; 1:200
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cell Death Dis (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa, sc-40)被用于. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. J Cell Physiol (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. FASEB J (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Genes Cells (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa, sc-40)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Mol Oncol (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, Sc-40)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa, sc-40)被用于. Epigenetics (2014) ncbi
小鼠 单克隆(9E11)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E11)被用于. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz biotechnology, sc-40)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Technology, 9E10)被用于. Int J Oncol (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, SC-40)被用于. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. Cancer Res (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(SantaCruz, sc-40)被用于. Genes Cells (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于. FEBS J (2014) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Int J Oncol (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于被用于免疫细胞化学在人类样本上. Mol Cells (2013) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Anal Biochem (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40 HRP)被用于被用于免疫印迹在人类样本上浓度为1:500. Oncogene (2014) ncbi
小鼠 单克隆(9E10)
  • 染色质免疫沉淀 ; fission yeast
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于被用于染色质免疫沉淀 在fission yeast样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于. Oncogene (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于被用于免疫印迹在人类样本上. BMC Genomics (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, SC40)被用于被用于免疫印迹在人类样本上. Methods Mol Biol (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(9E10)
  • 流式细胞仪; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于被用于流式细胞仪在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 人类; 2 ugs
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于被用于免疫沉淀在人类样本上浓度为2 ugs. PLoS ONE (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 图 5
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotech, 9E10)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 图 6e
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 6e). J Biol Chem (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫印迹在人类样本上. Mol Oncol (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; fruit fly ; 1:20
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:20. PLoS ONE (2012) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa, SC-40)被用于. Mol Cell Biol (2012) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Breast Cancer (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 非洲爪蛙
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于被用于免疫印迹在非洲爪蛙样本上 和 被用于免疫印迹在人类样本上. PLoS Biol (2012) ncbi
小鼠 单克隆(9E11)
  • 免疫组化-石蜡切片; 小鼠; 1:50
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E11)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Oncotarget (2011) ncbi
小鼠 单克隆(9E10)
  • 染色质免疫沉淀 ; 人类
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, Sc-40)被用于被用于染色质免疫沉淀 在人类样本上, 被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Int J Biochem Cell Biol (2011) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于被用于免疫印迹在人类样本上浓度为1:100. Eur J Cancer (2012) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, sc-40)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2009) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. J Biol Chem (2008) ncbi
小鼠 单克隆(9E10)
  • 免疫组化-冰冻切片; 小鼠; 1 ug/ml
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1 ug/ml. J Comp Neurol (2006) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于被用于免疫细胞化学在小鼠样本上. Mol Cell Biol (2006) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, sc-40)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2005) ncbi
小鼠 单克隆(9E10)
圣克鲁斯生物技术c-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. Cell (2002) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术c-Myc抗体(Santa Cruz, 9E10)被用于被用于免疫印迹在人类样本上浓度为1:500. Genes Dev (2000) ncbi
赛默飞世尔
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(ThermoFisher, 13-C2500)被用于. elife (2020) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 132500)被用于. elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 6c
赛默飞世尔c-Myc抗体(Thermo Fisher Scientific, PA1-981)被用于被用于免疫组化在人类样本上 (图 6c). PLoS Pathog (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 人类; 图 2a
  • 免疫印迹; 人类; 图 2a
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于被用于免疫沉淀在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2a). J Biol Chem (2017) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Thermo Scientific, #MA1-81357)被用于. Oncogene (2017) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. PLoS ONE (2017) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. Oxid Med Cell Longev (2017) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R951-25)被用于. BMC Cancer (2017) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. Sci Rep (2017) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 132500)被用于. Sci Rep (2017) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(生活技术, 289-19510)被用于. Clin Breast Cancer (2017) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Fisher Scientific, MS-139-P1)被用于. Am J Hum Genet (2017) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Fisher Scientific, MS-139-P1)被用于. Am J Hum Genet (2017) ncbi
domestic rabbit 多克隆
赛默飞世尔c-Myc抗体(Invitrogen, PA1-981)被用于. Mol Microbiol (2017) ncbi
小鼠 单克隆(Myc.A7)
赛默飞世尔c-Myc抗体(Thermo Fisher, MA1-21316)被用于. J Biol Chem (2017) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; Trypanosoma brucei; 1:50; 图 3b
  • 免疫印迹; Trypanosoma brucei; 1:2000; 图 3a
赛默飞世尔c-Myc抗体(Invitrogen, 132500)被用于被用于免疫细胞化学在Trypanosoma brucei样本上浓度为1:50 (图 3b) 和 被用于免疫印迹在Trypanosoma brucei样本上浓度为1:2000 (图 3a). Nat Commun (2016) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(ThermoFisher, MA1-980)被用于. Genes (Basel) (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔c-Myc抗体(Thermo scientific, PA1-981)被用于. Sci Rep (2016) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Thermo Scientific, 9E10)被用于. N Biotechnol (2017) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Fisher, MAI-980)被用于. Oncotarget (2016) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R951-25)被用于. Nat Microbiol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔c-Myc抗体(Thermo-Scientific, PA1-981)被用于. J Virol (2016) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(生活技术, 9E10)被用于. Sci Rep (2016) ncbi
鸡 多克隆
赛默飞世尔c-Myc抗体(ThermoFisher Scientific, A21281)被用于. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(9E11)
赛默飞世尔c-Myc抗体(生活技术, MA1-16637)被用于. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(Myc.A7)
赛默飞世尔c-Myc抗体(Thermo Fisher, MA1-21316)被用于. J Biol Chem (2016) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Thermo Scientific, MA1-980)被用于. J Cell Biochem (2017) ncbi
小鼠 单克隆(Myc.A7)
赛默飞世尔c-Myc抗体(Thermo Fisher Scientific, A7)被用于. Sci Rep (2016) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(生活技术, R951-25)被用于. mSphere (2016) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(ThermoFisher, 9E10)被用于. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 13-2500)被用于. Cell Signal (2016) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Thermo Fisher Scientific, 9E10.3)被用于. J Virol (2016) ncbi
鸡 多克隆
赛默飞世尔c-Myc抗体(Invitrogen, A-21281)被用于. MAbs (2016) ncbi
小鼠 单克隆(Myc.A7)
赛默飞世尔c-Myc抗体(Thermo Scientific, Myc.A7)被用于. Transcription (2016) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Pierce, MA1-980)被用于. PLoS Genet (2016) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Thermo Fisher, 9E10)被用于. J Biol Chem (2016) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Thermo, MA1-980)被用于. Mol Biol Cell (2016) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Pierce, MA1-980)被用于. BMC Biol (2016) ncbi
domestic rabbit 单克隆(27HCLC)
赛默飞世尔c-Myc抗体(Invitrogen, 710007)被用于. Oncotarget (2016) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Thermo Fisher, R950-25)被用于. Hum Gene Ther (2016) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Thermo Fisher, 9E10)被用于. Ann Allergy Asthma Immunol (2016) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Neomarkers, 9E10.3)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R951-25)被用于. Nat Genet (2016) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 13-2500)被用于. Cell Cycle (2016) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R951-25)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Invitrogen, AHO0062)被用于. MBio (2016) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Invitrogen, AHO0062)被用于. G3 (Bethesda) (2016) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(生活技术, R950-25)被用于. J Biol Chem (2016) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(Molecular Probes-Thermo Fisher Scientific, A-2128)被用于. EMBO Rep (2016) ncbi
鸡 多克隆
赛默飞世尔c-Myc抗体(Invitrogen, A21281)被用于. J Neurosci (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Thermo Fisher, 9E10)被用于. J Gen Virol (2016) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(生活技术, A-21280)被用于. J Biol Chem (2016) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. Development (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Thermo Scientific, MA1-980)被用于. J Physiol Biochem (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(生活技术, 9E10)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen/Life Technologies, R951-25)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 13-2500)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Thermo Scientific, 9E10)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(Myc.A7)
赛默飞世尔c-Myc抗体(Invitrogen, MA1-21316-D680)被用于. Oncol Rep (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 13?C2500)被用于. Mol Endocrinol (2015) ncbi
小鼠 单克隆(9E11)
赛默飞世尔c-Myc抗体(Neomarkers, MS-127-P0)被用于. Oncogene (2016) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(生活技术, A-21280)被用于. Protein Eng Des Sel (2015) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(生活技术, R950-25)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Fisher Scientific, MA1-980)被用于. Nat Immunol (2015) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R951-25)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Thermo Fisher Scientific, MS139)被用于. Mol Clin Oncol (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 13-2500)被用于. Cell Death Differ (2016) ncbi
鸡 多克隆
赛默飞世尔c-Myc抗体(Invitrogen, A-21281)被用于. Methods Mol Biol (2015) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. Cell Cycle (2015) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(生活技术, A21280)被用于. FEBS Lett (2015) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(生活技术, AHO0062)被用于. Oncogene (2016) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(生活技术, R951-25)被用于. Cell Death Dis (2015) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R953-25)被用于. Cell Cycle (2015) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. Cell Cycle (2015) ncbi
小鼠 单克隆(Myc.A7)
赛默飞世尔c-Myc抗体(Thermo, MA1-21316)被用于. FASEB J (2015) ncbi
鸡 多克隆
赛默飞世尔c-Myc抗体(分子探针, A-21281)被用于. Mol Biol Cell (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 132500)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; 人类; 图 1b
  • 免疫印迹; 人类; 图 2a
赛默飞世尔c-Myc抗体(生活技术, 9E10)被用于被用于免疫细胞化学在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 2a). J Cell Sci (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(生活技术, 13-2500)被用于. EMBO J (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Thermo Fisher Scientific, MA1-980)被用于. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(NeoMarkers, 9E10)被用于. MBio (2015) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 13?C2500)被用于. Nat Commun (2015) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(生活技术, R950-25)被用于. Hum Mol Genet (2015) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. Adv Funct Mater (2014) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Invitrogen, AHO0062)被用于. Nat Commun (2014) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. Development (2014) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. EMBO J (2014) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Thermo Scientific, MA1-980)被用于. Cancer Res (2014) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(生活技术, R950-25)被用于. Mol Microbiol (2014) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(生活技术, R950-25)被用于. Autophagy (2014) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Thermo Scientific, 9E10)被用于. Eukaryot Cell (2014) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Neomarkers, 9E10)被用于. PLoS Pathog (2014) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(生活技术, R950-25)被用于. PLoS Genet (2014) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 13-2500)被用于. PLoS ONE (2013) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 13-2500)被用于. PLoS ONE (2013) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(生活技术, R950-25)被用于. PLoS ONE (2013) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. Nat Neurosci (2013) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(生活技术, 289-19510)被用于. Tumour Biol (2013) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. J Biol Chem (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类
赛默飞世尔c-Myc抗体(Invitrogen, 13-2500)被用于被用于免疫印迹在人类样本上. J Cell Sci (2013) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(生活技术, AHO0062)被用于. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. Skelet Muscle (2013) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed Laboratories, 9E10)被用于. Acta Naturae (2013) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(生活技术, clone 289-19510)被用于. PLoS ONE (2013) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 13-2500)被用于. Nat Commun (2013) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. J Mol Signal (2013) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R951)被用于. Retrovirology (2012) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950)被用于. Retrovirology (2012) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 13-2500)被用于. J Biol Chem (2012) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. Am J Physiol Cell Physiol (2013) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10.3)被用于. PLoS ONE (2012) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Zymed, clone 9E10)被用于. Pathol Oncol Res (2012) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(生活技术, R95225)被用于. Neuroscience (2012) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. Mol Cell Biol (2012) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 13-2500)被用于. Mol Cancer Res (2012) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Lab Vision Corporation, MS-139-P0)被用于. PLoS ONE (2011) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Lab Vision Corporation, MS-139-P0)被用于. PLoS ONE (2011) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Lab Vision, MS-139)被用于. Int J Oncol (2012) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. PLoS ONE (2011) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R95025)被用于. Biochem Biophys Res Commun (2011) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Zymed, clone 9E10)被用于. Mol Cell Biol (2011) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. J Physiol (2011) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. J Biol Chem (2011) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. PLoS Genet (2011) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. Clin Cancer Res (2011) ncbi
小鼠 单克隆(9E11)
赛默飞世尔c-Myc抗体(NeoMarkers, 9E11)被用于. BMC Cell Biol (2011) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 13-2500)被用于. Genome Res (2011) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed Laboratories, 13-2500)被用于. Neural Dev (2010) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. PLoS ONE (2010) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. J Biol Chem (2010) ncbi
小鼠 单克隆(121SLE)
赛默飞世尔c-Myc抗体(NeoMarkers, 121SLE)被用于. Am J Kidney Dis (2010) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R95025)被用于. Br J Cancer (2010) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. Am J Pathol (2010) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. Mol Cell Biol (2010) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(分子探针, A21280)被用于. PLoS ONE (2009) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. J Biol Chem (2009) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Biosource, AHO0062)被用于. PLoS Biol (2009) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 13-2500)被用于. J Cell Sci (2009) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(分子探针, A21280)被用于. PLoS Pathog (2009) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. Cell Immunol (2009) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10.3)被用于. J Virol (2009) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. Mol Cell Biol (2009) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(分子探针, A21280)被用于. J Biol Chem (2009) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. Neuropathology (2009) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Neomarker, 9E10.3)被用于. Cancer (2009) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Lab Vision, 9E10.3)被用于. Cancer Cell (2008) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, R950-25)被用于. Hum Mol Genet (2008) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed Laboratories, 9E10)被用于. Liver Int (2007) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Biol Chem (2007) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed Laboratories, 13-2500)被用于. J Biol Chem (2007) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9e10)被用于. J Biol Chem (2007) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. Mol Cell Biol (2007) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. J Biol Chem (2007) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. Mol Genet Metab (2007) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 13-2500)被用于. Biochemistry (2006) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. Mol Cell Biol (2006) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. Endocrinology (2006) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. Mol Cell Biol (2006) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. J Biol Chem (2005) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(分子探针, 9E10)被用于. J Cell Sci (2005) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. Nature (2005) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. Exp Cell Res (2005) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. J Biol Chem (2005) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(分子探针, 9E10)被用于. Proc Natl Acad Sci U S A (2005) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. Infect Immun (2005) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. EMBO J (2005) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. Chem Senses (2005) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. FEBS Lett (2005) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. Circ Res (2005) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. Exp Cell Res (2005) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. J Biol Chem (2005) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. Dev Biol (2004) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. Proc Natl Acad Sci U S A (2004) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. J Cell Biol (2003) ncbi
小鼠 单克隆(9E10)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔c-Myc抗体(Zymed, 132511)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Nature (2003) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Bacteriol (2003) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Virol (2003) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Biol Chem (2003) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Biosource, 9E10??3)被用于. J Mol Endocrinol (2003) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(分子探针, A21280)被用于. J Biol Chem (2003) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. J Exp Med (2002) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. Virchows Arch (2002) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(分子探针, A-21280)被用于. Anal Biochem (2002) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(分子探针, A21280)被用于. J Biol Chem (2002) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(Invitrogen, A21280)被用于. J Biol Chem (2002) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(Neo Markers, A21280)被用于. J Cell Biol (2002) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(Zymed, A21280)被用于. J Cell Biol (2002) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Biol Chem (2002) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. Proc Natl Acad Sci U S A (2002) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. FEBS Lett (2002) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. Proc Natl Acad Sci U S A (2002) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Biol Chem (2002) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Biol Chem (2002) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Biol Chem (2002) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Biol Chem (2002) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. Proc Natl Acad Sci U S A (2001) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Invitrogen, 9E10)被用于. J Immunol Methods (2002) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Biol Chem (2002) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Biol Chem (2002) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. Proc Natl Acad Sci U S A (2001) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. J Virol (2001) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. EMBO J (2001) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Biol Chem (2002) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体((分子探针, 9E10)被用于. J Biol Chem (2001) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. J Cell Biol (2001) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(noco, 9E10)被用于. J Biol Chem (2001) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. J Biol Chem (2001) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(noco, 9E10)被用于. J Biol Chem (2001) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(noco, 9E10)被用于. J Biol Chem (2001) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(分子探针, noca)被用于. J Biol Chem (2001) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Virol (2001) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(noco, 9E10)被用于. J Biol Chem (2001) ncbi
小鼠 单克隆(289-19510)
赛默飞世尔c-Myc抗体(分子探针, A21280)被用于. J Cell Biol (2001) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. Biochem Cell Biol (2001) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. Eur J Cancer (2000) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. Nature (2000) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. J Virol (2000) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. J Biol Chem (2000) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, no)被用于. Proc Natl Acad Sci U S A (1999) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(InVitrogen, no)被用于. Immunity (1998) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(InVitrogen, no)被用于. Mol Cell Biol (1998) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(InVitrogen, no)被用于. Nat Genet (1998) ncbi
小鼠 单克隆(9E10.3)
赛默飞世尔c-Myc抗体(Zymed, 9E10)被用于. Hum Mol Genet (1998) ncbi
小鼠 单克隆
赛默飞世尔c-Myc抗体(Invitrogen, noca)被用于. Nature (1996) ncbi
小鼠 单克隆(9E10)
赛默飞世尔c-Myc抗体(noco, 9E10)被用于. Mol Cell Biol (1985) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6i
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab39688)被用于被用于免疫印迹在人类样本上 (图 6i). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫组化; 人类; 1:100; 图 2c
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, Y69)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2c). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1b). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 9a, 9b
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab39688)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9a, 9b). Cancer Manag Res (2020) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4d
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4d). Nat Commun (2020) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 1:1000; 图 7c
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab320702)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 1:1000; 图 6b, 6d
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b, 6d). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
艾博抗(上海)贸易有限公司c-Myc抗体(abcam, ab39688)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cancer Discov (2020) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, AB32072)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). EBioMedicine (2019) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫细胞化学基因敲除验证; 人类; 图 1c
  • 免疫印迹基因敲除验证; 人类; 图 1b
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫细胞化学基因敲除验证在人类样本上 (图 1c) 和 被用于免疫印迹基因敲除验证在人类样本上 (图 1b). Open Biol (2019) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫组化; 小鼠; 图 s1e
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫组化在小鼠样本上 (图 s1e). Cell (2019) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 5b
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, Y69)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 5b). Nature (2019) ncbi
domestic rabbit 单克隆(EPR17924)
  • 免疫印迹; 人类; 1:2000; 图 3c
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab185656)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Front Endocrinol (Lausanne) (2019) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3f
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3f). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 1:500; 图 s2a
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, Y69)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2a). Nat Commun (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于被用于免疫印迹在人类样本上 (图 4a). iScience (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1b
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司c-Myc抗体(abcam, 9E10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1a). Breast Cancer Res Treat (2019) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司c-Myc抗体(Epitomics, ab32072)被用于被用于免疫印迹在人类样本上 (图 2a). Blood Cancer J (2019) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫组化-石蜡切片; 人类; 图 1j
  • 免疫组化-石蜡切片; 小鼠; 图 1j
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1j) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 1j). Nat Commun (2019) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 1:1000; 图 6g
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 图 3g
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在人类样本上 (图 3g). Cancer Res (2019) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 图 5f
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, Ab32072)被用于被用于免疫印迹在人类样本上 (图 5f). Oncogene (2019) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫组化; 小鼠; 图 2b
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, Y69)被用于被用于免疫组化在小鼠样本上 (图 2b). Development (2018) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 图 2j
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在人类样本上 (图 2j). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 图 3f
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在人类样本上 (图 3f). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 图 7e
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在人类样本上 (图 7e). Cell (2018) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫组化-石蜡切片; 人类; 10 ug/ml; 图 s8a
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10 ug/ml (图 s8a). J Nucl Med (2018) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 1:5000; 图 5f
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5f). Gut (2018) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在人类样本上 (图 1d). Stem Cell Reports (2017) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 小鼠; 1:50; 图 5b
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 5b). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Sci Rep (2017) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Nat Commun (2017) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Am J Transl Res (2016) ncbi
单克隆
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab78318)被用于被用于免疫印迹在人类样本上 (图 5a). Autophagy (2017) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于. Nat Commun (2016) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Clin Sci (Lond) (2017) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 1:2000; 图 4c
  • 免疫组化; 小鼠; 1:200; 图 3b
  • 免疫印迹; 小鼠; 1:2000; 图 3a
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4c), 被用于免疫组化在小鼠样本上浓度为1:200 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3a). Neoplasia (2016) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:1000; 图 4e
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Oncogene (2017) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Oncotarget (2016) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于. PLoS Biol (2016) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, Y69)被用于. Ann Diagn Pathol (2016) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Oncotarget (2016) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 1:5000; 图 6a
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6a). Leukemia (2017) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab9106)被用于. PLoS Genet (2016) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫组化-石蜡切片; 人类; 表 1
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, Y69)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Cancer Sci (2016) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于. Oncotarget (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab9106)被用于. Nat Commun (2016) ncbi
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab51156)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab28842)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在人类样本上 (图 6e). Nat Genet (2016) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Cancer Res (2016) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于. PLoS Genet (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab9106)被用于. Nat Commun (2016) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于. Biochem Biophys Res Commun (2016) ncbi
domestic goat 多克隆
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab9132)被用于. Mol Cell Proteomics (2016) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nat Med (2016) ncbi
单克隆
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab78318)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab9106)被用于. Cell Cycle (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab9106)被用于. Sci Rep (2016) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, Y69)被用于. MBio (2016) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Nat Commun (2016) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Int Braz J Urol (2015) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Neoplasia (2015) ncbi
domestic rabbit 单克隆(EPR17924)
  • 免疫印迹; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab185656)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). EMBO J (2016) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Development (2016) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(abcam, 9E10)被用于. Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Development (2016) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Mol Oncol (2016) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab62928)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab39688,)被用于. Oncogene (2016) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Mar Drugs (2015) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, Y69)被用于. Tumour Biol (2016) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 小鼠; 1:1000
  • 免疫印迹; 人类; 1:4000; 图 6k
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab62928)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:4000 (图 6k). FASEB J (2016) ncbi
单克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab78318)被用于被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
小鼠 单克隆(Myc.A7)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab18185)被用于. Br J Cancer (2015) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9E+11)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, 56)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于. Sci Rep (2015) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 小鼠; 图 s5
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在小鼠样本上 (图 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(Myc.A7)
  • 免疫印迹; fission yeast
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab18185)被用于被用于免疫印迹在fission yeast样本上. Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2015) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:1500
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam plc, ab32)被用于被用于免疫印迹在人类样本上浓度为1:1500. J Proteomics (2015) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, 9E10)被用于. Nat Commun (2015) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Millipore, ab32072)被用于. J Reprod Dev (2015) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. J Cancer Res Clin Oncol (2015) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(abcam, ab32)被用于. Sci Rep (2015) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. J Cell Mol Med (2015) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, clone 9E10)被用于. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, Y69)被用于. Cell Cycle (2014) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. Phytother Res (2015) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, 9E10)被用于被用于免疫印迹在人类样本上浓度为1:500. Int J Exp Pathol (2014) ncbi
domestic rabbit 单克隆(Y69)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于. J Neurosurg Pediatr (2014) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于. J Biol Chem (2014) ncbi
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab51156)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, 9E10)被用于被用于免疫细胞化学在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, 9E10)被用于. Mol Cell Biol (2014) ncbi
小鼠 单克隆(9E+11)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, 9E11)被用于. J Cell Biochem (2014) ncbi
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab51156)被用于被用于免疫印迹在人类样本上. Clin Cancer Res (2014) ncbi
domestic rabbit 单克隆(Y69)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32072)被用于被用于免疫印迹在小鼠样本上. Drug Discov Ther (2014) ncbi
小鼠 单克隆(9E10)
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于. Stem Cells Transl Med (2014) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, ab32)被用于被用于免疫印迹在人类样本上. Neuro Oncol (2013) ncbi
小鼠 单克隆(9E10)
  • 免疫组化-石蜡切片; 人类; 1:250
艾博抗(上海)贸易有限公司c-Myc抗体(Abcam, 9E10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250. Brain Pathol (2013) ncbi
西格玛奥德里奇
小鼠 单克隆(9.00E+10)
  • 免疫印迹; 人类; 1:6000; 图 2a
西格玛奥德里奇c-Myc抗体(Sigma Aldrich, 9E10)被用于被用于免疫印迹在人类样本上浓度为1:6000 (图 2a). elife (2020) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:6000; 图 2a
西格玛奥德里奇c-Myc抗体(Sigma Aldrich, 9E10)被用于被用于免疫印迹在人类样本上浓度为1:6000 (图 2a). elife (2020) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 本氏烟草; 图 5d
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于被用于免疫印迹在本氏烟草样本上 (图 5d). Autophagy (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 图 5c
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, MABE282)被用于被用于免疫印迹在人类样本上 (图 5c). Int J Biol Sci (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 1:2000; 图 3d
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Nat Commun (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫沉淀; 人类; 图 6b
  • 免疫印迹; 人类; 图 6b
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于被用于免疫沉淀在人类样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 6b). Mol Cell (2019) ncbi
小鼠 单克隆(9.00E+10)
  • 免疫印迹; 人类; 图 4f
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于被用于免疫印迹在人类样本上 (图 4f). Sci Adv (2018) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 图 4f
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于被用于免疫印迹在人类样本上 (图 4f). Sci Adv (2018) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 4b
  • 免疫细胞化学; 人类; 图 4d
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, C3956)被用于被用于免疫沉淀在人类样本上 (图 4b) 和 被用于免疫细胞化学在人类样本上 (图 4d). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 s3e
  • 免疫印迹; 人类; 图 s3e
西格玛奥德里奇c-Myc抗体(Sigma, A5598)被用于被用于免疫沉淀在人类样本上 (图 s3e) 和 被用于免疫印迹在人类样本上 (图 s3e). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Nat Commun (2017) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Nat Commun (2017) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, C3956)被用于. Sci Rep (2017) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Nat Commun (2016) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Nat Commun (2016) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, M5546)被用于. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, C3956)被用于. Sci Rep (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, C3956)被用于. Nat Commun (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, C3956)被用于. Nat Commun (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, A7470)被用于. Mol Biol Cell (2016) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. G3 (Bethesda) (2016) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. G3 (Bethesda) (2016) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, M5546)被用于. J Biol Chem (2016) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. PLoS Genet (2016) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, M5546)被用于. J Biol Chem (2016) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, M4439)被用于. Nat Commun (2016) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma Aldrich, F2047)被用于. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, C3956)被用于. Ann Clin Transl Neurol (2016) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, M4439)被用于. Nat Commun (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, A5598)被用于. J Mol Endocrinol (2016) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M-4439)被用于. PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(sigma, C3956)被用于. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. MBio (2016) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. Nature (2016) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. Nature (2016) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, M4439)被用于. J Clin Invest (2016) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, SAb4700447)被用于. Nat Med (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, C3956)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma Aldrich, M4439)被用于. PLoS Pathog (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, C3956)被用于. Nat Neurosci (2016) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Development (2016) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Development (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, C3956)被用于. Brain (2016) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, C6594)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, C3956)被用于. Mol Biol Cell (2016) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. J Virol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, C3956)被用于. J Virol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, C3956)被用于. elife (2015) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Cell Death Dis (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Cell Death Dis (2015) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. J Clin Invest (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. J Clin Invest (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, C3956)被用于. EMBO J (2015) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(SigmaAldrich, C3956)被用于. Autophagy (2015) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. FASEB J (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. FASEB J (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, C-3956)被用于. J Cell Sci (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, C3956)被用于. elife (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, M4439)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma Aldrich, C3956)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, M4439)被用于. Carcinogenesis (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, C3956)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. PLoS Genet (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. PLoS Genet (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. Biol Open (2015) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, M5546)被用于. J Clin Invest (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma, C3956)被用于. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, M5546)被用于. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, C3956)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. EMBO J (2015) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. EMBO J (2015) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. PLoS Genet (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. PLoS Genet (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Biochemistry (Mosc) (2014) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Biochemistry (Mosc) (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Nat Neurosci (2014) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Nat Neurosci (2014) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-aldrich, M5546)被用于. PLoS Genet (2014) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Hum Mutat (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Hum Mutat (2014) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. Mol Biol Cell (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. Mol Biol Cell (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. PLoS Genet (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. Nature (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(9.00E+10)
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于被用于免疫细胞化学在人类样本上浓度为1:500. J Biol Chem (2014) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. Mol Biol Cell (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. Mol Biol Cell (2014) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, M5546)被用于. Nature (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, m4439)被用于. J Clin Invest (2014) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(9.00E+10)
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. J Neurochem (2014) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. FASEB J (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. FASEB J (2014) ncbi
小鼠 单克隆(9.00E+10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Arch Biochem Biophys (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, 9E10)被用于. Arch Biochem Biophys (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. Autophagy (2014) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. PLoS ONE (2013) ncbi
小鼠 单克隆(9.00E+10)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma Aldrich, 9E10)被用于. J Biol Chem (2013) ncbi
小鼠 单克隆(9.00E+10)
  • 免疫印迹; 小鼠
西格玛奥德里奇c-Myc抗体(Sigma Aldrich, 9E10)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. J Neurosci (2013) ncbi
小鼠 单克隆(9.00E+10)
  • 免疫印迹; 鸡
  • 免疫印迹; 人类
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于被用于免疫印迹在鸡样本上 和 被用于免疫印迹在人类样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于. PLoS ONE (2012) ncbi
小鼠 单克隆(9.00E+10)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇c-Myc抗体(Sigma-Aldrich, 9E10)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2012) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(9E10)
西格玛奥德里奇c-Myc抗体(Sigma, M4439)被用于. J Comp Neurol (2009) ncbi
BioLegend
小鼠 单克隆(9E10)
BioLegendc-Myc抗体(Biolegend, 626802)被用于. Nat Commun (2019) ncbi
小鼠 单克隆(9E10)
BioLegendc-Myc抗体(BioLegend, 9E10)被用于. Sci Rep (2019) ncbi
小鼠 单克隆(9E10)
BioLegendc-Myc抗体(BioLegend, 9E10)被用于. Sci Adv (2019) ncbi
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 图 5c
BioLegendc-Myc抗体(Biolegend, 9E10)被用于被用于免疫印迹在人类样本上 (图 5c). Nat Commun (2019) ncbi
小鼠 单克隆(9E10)
BioLegendc-Myc抗体(Covance, 9E10)被用于. Nat Commun (2017) ncbi
小鼠 单克隆(9E10)
BioLegendc-Myc抗体(Covance, 9E10)被用于. Genetics (2016) ncbi
小鼠 单克隆(9E11)
BioLegendc-Myc抗体(Covance, 9E11)被用于. Oncogene (2016) ncbi
小鼠 单克隆(9E10)
BioLegendc-Myc抗体(Covance, 9E10)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9E10)
BioLegendc-Myc抗体(Covance, 9E10)被用于. Mol Biol Cell (2015) ncbi
小鼠 单克隆(9E10)
BioLegendc-Myc抗体(Covance, 9E10)被用于. Mol Cell Biol (2015) ncbi
小鼠 单克隆(9E10)
BioLegendc-Myc抗体(Covance, 9E10)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9E10)
BioLegendc-Myc抗体(Covance, AFC-150P-1000)被用于. Mol Cell Proteomics (2014) ncbi
武汉三鹰
domestic rabbit 多克隆
武汉三鹰c-Myc抗体(Proteintech, 10828?\1?\AP)被用于. Cancer Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 4d
  • 免疫沉淀; 人类; 图 5c
  • 免疫印迹; 人类; 图 8b
武汉三鹰c-Myc抗体(Proteintech, 10828-1-AP)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4d), 被用于免疫沉淀在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 8b). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
武汉三鹰c-Myc抗体(Proteintech, 10828-1-AP)被用于. Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3c
武汉三鹰c-Myc抗体(ProteinTech, 10828-1)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Front Endocrinol (Lausanne) (2019) ncbi
domestic rabbit 多克隆
武汉三鹰c-Myc抗体(proteintech, 10828-1-AP)被用于. Oncotarget (2016) ncbi
Synaptic Systems
小鼠 单克隆(9,00E+10)
Synaptic Systemsc-Myc抗体(Synaptic Systems, 343 011)被用于. Nat Commun (2019) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(9E10)
伯乐(Bio-Rad)公司c-Myc抗体(AbD Serotec, 9E10)被用于. J Cell Sci (2014) ncbi
小鼠 单克隆(9E10)
伯乐(Bio-Rad)公司c-Myc抗体(AbD Serotec, MCA2200GA)被用于. Cell Death Dis (2013) ncbi
大鼠 单克隆(JAC6)
伯乐(Bio-Rad)公司c-Myc抗体(AbD Serotec, JAC6)被用于. PLoS ONE (2012) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
Novus Biologicalsc-Myc抗体(Novus Biologicals, NB600-336)被用于被用于免疫印迹在人类样本上 (图 4c). Mol Med Rep (2016) ncbi
domestic goat 多克隆(H3)
Novus Biologicalsc-Myc抗体(Novus Biologicals, NB600-335)被用于. elife (2015) ncbi
Enzo Life Sciences
小鼠 单克隆(9E10)
  • 免疫组化-自由浮动切片; fruit fly ; 1:10
  • 免疫印迹; fruit fly ; 1:100
Enzo Life Sciencesc-Myc抗体(Enzo Life Sciences, 9E10)被用于被用于免疫组化-自由浮动切片在fruit fly 样本上浓度为1:10 和 被用于免疫印迹在fruit fly 样本上浓度为1:100. J Biol Chem (2015) ncbi
亚诺法生技股份有限公司
domestic rabbit 多克隆
亚诺法生技股份有限公司c-Myc抗体(Abnova, PAB0541)被用于. N Biotechnol (2016) ncbi
安迪生物R&D
domestic goat 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 7
安迪生物R&Dc-Myc抗体(R&D, AF3696)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 7). EMBO J (2016) ncbi
LifeSpan Biosciences
小鼠 单克隆(9E10)
LifeSpan Biosciencesc-Myc抗体(LifeSpan Biosciences, LS-C180004)被用于. Virus Res (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D84C12)
  • 免疫细胞化学; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell signalling Technologies, D84C12)被用于被用于免疫细胞化学在小鼠样本上 (图 2b). elife (2020) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). elife (2020) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Adv (2020) ncbi
domestic rabbit 单克隆(E5Q6W)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司c-Myc抗体(CST, E5Q6W)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Onco Targets Ther (2020) ncbi
domestic rabbit 单克隆(D3N8F)
  • 免疫印迹; 人类; 1:1000; 图 1d, 3e
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 13987)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d, 3e). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6i
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 9402)被用于被用于免疫印迹在小鼠样本上 (图 6i). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D3N8F)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 13987)被用于被用于免疫印迹在人类样本上 (图 4g). Mol Oncol (2020) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 8f
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, D84C12)被用于被用于免疫印迹在人类样本上 (图 8f). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司c-Myc抗体(CST, 5605)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 小鼠; 图 4h, s4f
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在小鼠样本上 (图 4h, s4f). Science (2019) ncbi
domestic rabbit 单克隆(D3N8F)
  • 免疫印迹; 人类; 图 1d, s2d, s2e, s2f
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 13987)被用于被用于免疫印迹在人类样本上 (图 1d, s2d, s2e, s2f). Mol Cancer (2019) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:1000; 图 8s1d
赛信通(上海)生物试剂有限公司c-Myc抗体(CST, 5605)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8s1d). elife (2019) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 5605)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2019) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司c-Myc抗体(CST, 5605)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 5605)被用于被用于免疫印迹在人类样本上 (图 5a). Mod Pathol (2020) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司c-Myc抗体(CST, 5605)被用于被用于免疫印迹在人类样本上 (图 4h). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D3N8F)
  • 免疫印迹; 小鼠; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司c-Myc抗体(CST, CSD3N8F)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5f). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(D3N8F)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 13987)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Am J Cancer Res (2019) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 5605)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 2b
  • 染色质免疫沉淀 ; 人类; 图 1d
赛信通(上海)生物试剂有限公司c-Myc抗体(CST, 9402)被用于被用于ChIP-Seq在人类样本上 (图 2b) 和 被用于染色质免疫沉淀 在人类样本上 (图 1d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 5a, 5c
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在人类样本上 (图 5a, 5c). Breast Cancer (2019) ncbi
domestic rabbit 单克隆(D84C12)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technologies, 5605)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 小鼠; 1:1000; 图 s12f
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 5605)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s12f). Science (2019) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司c-Myc抗体(CST, 5605S)被用于被用于免疫印迹在人类样本上 (图 7b). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 9402)被用于被用于免疫印迹在人类样本上 (图 4b). Br J Cancer (2019) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:1000; 图 5a, s5b
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a, s5b). Cell Chem Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s8a
  • 免疫印迹; 小鼠; 图 s8b
  • 免疫印迹; 人类; 图 s8c, s8d
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 9402)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s8a), 被用于免疫印迹在小鼠样本上 (图 s8b) 和 被用于免疫印迹在人类样本上 (图 s8c, s8d). Hepatology (2018) ncbi
domestic rabbit 单克隆(D3N8F)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 13987)被用于被用于免疫印迹在小鼠样本上 (图 3c). Cell Rep (2018) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 小鼠; 图 4h
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605S)被用于被用于免疫印迹在小鼠样本上 (图 4h). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5g
  • 免疫印迹; 小鼠; 图 5h
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 9402)被用于被用于免疫印迹在人类样本上 (图 5g) 和 被用于免疫印迹在小鼠样本上 (图 5h). Genes Dev (2018) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3d
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, D84C1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 e8j
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 9402s)被用于被用于免疫印迹在小鼠样本上 (图 e8j). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signalling Technologies, 9402)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D3N8F)
  • 免疫组化-石蜡切片; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 13987)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 5605s)被用于被用于免疫印迹在人类样本上 (图 4c). Nat Med (2017) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 小鼠; 1:1000; 图 10c
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 10c). Am J Physiol Renal Physiol (2017) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:500; 图 s2c
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, D84C12)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2c). J Nucl Med (2018) ncbi
domestic rabbit 单克隆(E1J4K)
  • 免疫印迹; 人类; 1:1000; 图 6d, 6e
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 13748)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d, 6e). Gut (2018) ncbi
domestic rabbit 单克隆(D3N8F)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell signaling, 13987)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Cancer Res (2017) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹基因敲除验证; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s3b). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司c-Myc抗体(CST, 5605)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司c-Myc抗体(cell signalling, 5605)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:1000; 图 2i
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, D84C12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i). Cell (2017) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在人类样本上 (图 3b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司c-Myc抗体(cell signalling, 5605)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司c-Myc抗体(CST, 9402)被用于. Cancer Cell (2017) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司c-Myc抗体(CST, 5605)被用于被用于免疫印迹在人类样本上 (图 3a). Apoptosis (2017) ncbi
domestic rabbit 单克隆(D3N8F)
  • 免疫印迹; 小鼠; 图 s5e
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 13987)被用于被用于免疫印迹在小鼠样本上 (图 s5e). Nature (2017) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell signaling, D84C12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D3N8F)
  • 其他; 人类; 图 6-s3
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, D3N8F)被用于被用于其他在人类样本上 (图 6-s3). elife (2017) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s1b
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell signaling, 5605)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 s1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell signaling, 5605)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Front Physiol (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 2h
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell signaling, 5605)被用于被用于免疫印迹在人类样本上 (图 2h). Nat Med (2017) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 9402)被用于. Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 9402)被用于. Nat Commun (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在人类样本上 (图 1d). Cell Death Discov (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Biomed Res Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5b
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 9402)被用于被用于免疫印迹在大鼠样本上 (图 5b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D3N8F)
  • 免疫印迹; 人类; 图 5i
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, D3N8F)被用于被用于免疫印迹在人类样本上 (图 5i). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D3N8F)
  • 免疫印迹; 人类; 1:1000; 图 4b,5e,7b
赛信通(上海)生物试剂有限公司c-Myc抗体(CST, 13987)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b,5e,7b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 9402)被用于. Sci Rep (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫细胞化学; 小鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4). Small Gtpases (2017) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在人类样本上 (图 5g). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在小鼠样本上 (图 7). Nature (2016) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 9402)被用于. Nature (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, D84C12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). J Diabetes Res (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 9402)被用于. Cancer Res (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, CSC5605P)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 9402)被用于. Nature (2016) ncbi
domestic rabbit 单克隆(D84C12)
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 5605)被用于. elife (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 小鼠; 1:2000; 图 7a
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, D84C12)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:750; 图 1
赛信通(上海)生物试剂有限公司c-Myc抗体(cell signalling, 5605)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 1). Cancer Lett (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫细胞化学; pigs ; 图 2
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 5605)被用于被用于免疫细胞化学在pigs 样本上 (图 2). Cell Tissue Res (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司c-Myc抗体(CellSignalling Technology, 5605)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Tech, 9402)被用于. Oncogene (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在小鼠样本上. Sci Rep (2015) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, D84C12)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 5605)被用于被用于免疫印迹在人类样本上 (图 7a). Oncogene (2016) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell signaling, 9402)被用于. Leukemia (2016) ncbi
domestic rabbit 单克隆(D84C12)
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于. Nat Commun (2015) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Nat Biotechnol (2015) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; domestic rabbit; 1:500; 图 3
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:500 (图 3). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 f4
赛信通(上海)生物试剂有限公司c-Myc抗体(cell signaling technology, 5605S)被用于被用于免疫印迹在人类样本上 (图 f4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, D84C12)被用于被用于免疫印迹在小鼠样本上 (图 6a). Immunity (2015) ncbi
domestic rabbit 单克隆(D84C12)
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 5605)被用于. Clin Cancer Res (2015) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell signaling, 5605)被用于被用于免疫印迹在人类样本上 (图 3c). FASEB J (2015) ncbi
domestic rabbit 单克隆(D84C12)
赛信通(上海)生物试剂有限公司c-Myc抗体(cell signaling, 5605)被用于. Cell Death Differ (2015) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 5605)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling Technology, 5605)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上. Cancer Lett (2014) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司c-Myc抗体(cell signaling, D84C12)被用于被用于免疫印迹在人类样本上 (图 6c). Oncogene (2015) ncbi
domestic rabbit 单克隆(D84C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司c-Myc抗体(Cell Signaling, 5605)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
Bioworld
  • 免疫印迹; 人类; 图 s1b
Bioworldc-Myc抗体(Bioworld Technology, BS2462)被用于被用于免疫印迹在人类样本上 (图 s1b). PLoS Pathog (2016) ncbi
  • 免疫印迹; 人类; 1:500; 图 4
Bioworldc-Myc抗体(Bioworld Technology, BS2462)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Oncotarget (2016) ncbi
Biocare Medical
  • 免疫组化-石蜡切片; 人类; 1:30; 表 2
Biocare Medicalc-Myc抗体(Biocare Medical, CME415AK)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30 (表 2). Braz J Med Biol Res (2016) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Developmental Studies Hybridoma Bank, 9E10)被用于. elife (2020) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Cell Signaling, 9E10)被用于. Nat Med (2017) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(DSHB, 9E10)被用于. Microbiologyopen (2017) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Santa Cruz, 9E10)被用于. Sci Rep (2016) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Sigma, 9E10)被用于. J Cell Biochem (2017) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(DSHB, 9E10)被用于. Sci Rep (2016) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Developmental Studies Hybridoma Bank, 9E10)被用于. J Cell Sci (2016) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(DSHB, 9E10)被用于. elife (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(SCBT, 9E10)被用于. J Cell Biol (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Developmental Studies Hybridoma Bank, 9E10)被用于. PLoS Genet (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(杂交瘤细胞条件培养液, 9E10)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Sigma, 9E10)被用于. Neuropharmacology (2016) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(DSHB, 9E10)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(DSHB, 9E10)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(DSHB, 9E10)被用于. J Cell Sci (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Developmental Studies Hybridoma Bank, 9E 10)被用于. PLoS Pathog (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(DSHB, 9E10)被用于. J Comp Neurol (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(DSHB, 9E 10)被用于. J Clin Invest (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Developmental Studies Hybridoma Bank, 9E10)被用于. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Santa Cruz, 9E10)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Sigma, 9E10)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Santa Cruz, 9E10)被用于. Cell Death Differ (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Santa Cruz, 9E10)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(DSHB, 9E 10-a)被用于. Nat Struct Mol Biol (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(DSHB, 9E10)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Santa Cruz, 9E10)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Santa Cruz, 9E10)被用于. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Sigma, 9E10)被用于. J Neurosci (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Santa Cruz Biotechnology, 9E10)被用于. J Neurosci (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(DSHB, 9E10)被用于. Cell Cycle (2014) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Sigma, 9E10)被用于. Cell Cycle (2014) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(DSHB, 9E10-s)被用于. Hum Mol Genet (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Millipore, 9E10)被用于. Mol Cell Biol (2015) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Roche, 9E10)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Developmental Studies Hybridoma Bank, 9E10)被用于. FEBS J (2014) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(UCSF hybridoma core, 9E10)被用于. Nat Commun (2014) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Monoclonal Antibody Core Facility, 9E10)被用于. J Biol Chem (2014) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(Developmental Studies Hybridoma Bank, 9E10)被用于. Hum Gene Ther Methods (2014) ncbi
小鼠 单克隆(9E 10)
Developmental Studies Hybridoma Bankc-Myc抗体(DSHB, 9E10)被用于. PLoS ONE (2013) ncbi
碧迪BD
小鼠 单克隆(9E10)
  • 免疫印迹; 人类; 图 7a
碧迪BDc-Myc抗体(Santa Cruz, 551101)被用于被用于免疫印迹在人类样本上 (图 7a). Biomolecules (2020) ncbi
小鼠 单克隆(9E10)
  • 免疫细胞化学; domestic goat; 1:500; 图 1
  • 免疫印迹; domestic goat; 1:1000; 图 5C
碧迪BDc-Myc抗体(BD, 551101)被用于被用于免疫细胞化学在domestic goat样本上浓度为1:500 (图 1) 和 被用于免疫印迹在domestic goat样本上浓度为1:1000 (图 5C). BMC Biotechnol (2017) ncbi
小鼠 单克隆(9E10)
碧迪BDc-Myc抗体(BD, 551101)被用于. Cell Death Dis (2015) ncbi
小鼠 单克隆(9E10)
碧迪BDc-Myc抗体(BD Pharmingen, 551102)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(9E10)
碧迪BDc-Myc抗体(BD Biosciences, 551102)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(9E10)
碧迪BDc-Myc抗体(BD Biosciences, 551102)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(9E10)
碧迪BDc-Myc抗体(BD Pharmingen, 551101)被用于. J Natl Cancer Inst (2014) ncbi
小鼠 单克隆(9E10)
碧迪BDc-Myc抗体(Pharmingen, 9E10)被用于. Carcinogenesis (2014) ncbi
小鼠 单克隆(9E10)
碧迪BDc-Myc抗体(BD Biosciences, 551102)被用于. Int J Cancer (2011) ncbi
文章列表
  1. Alladin A, Chaible L, Garcia Del Valle L, Sabine R, Loeschinger M, Wachsmuth M, et al. Tracking cells in epithelial acini by light sheet microscopy reveals proximity effects in breast cancer initiation. elife. 2020;9: pubmed 出版商
  2. Au C, Furness J, Britt K, Oshchepkova S, Ladumor H, Soo K, et al. Three-dimensional growth of breast cancer cells potentiates the anti-tumor effects of unacylated ghrelin and AZP-531. elife. 2020;9: pubmed 出版商
  3. Manage K, Rogers A, Wallis D, Uebel C, Anderson D, Nguyen D, et al. A tudor domain protein, SIMR-1, promotes siRNA production at piRNA-targeted mRNAs in C. elegans. elife. 2020;9: pubmed 出版商
  4. An L, Nie P, Chen M, Tang Y, Zhang H, Guan J, et al. MST4 kinase suppresses gastric tumorigenesis by limiting YAP activation via a non-canonical pathway. J Exp Med. 2020;217: pubmed 出版商
  5. Qian C, Li L, Huang H, Yang H, Wu D. MYC-regulated lncRNA NEAT1 promotes B cell proliferation and lymphomagenesis via the miR-34b-5p-GLI1 pathway in diffuse large B-cell lymphoma. Cancer Cell Int. 2020;20:87 pubmed 出版商
  6. Wang X, Garvanska D, Nasa I, Ueki Y, Zhang G, Kettenbach A, et al. A dynamic charge-charge interaction modulates PP2A:B56 substrate recruitment. elife. 2020;9: pubmed 出版商
  7. Rübben A, Wahl R, Eggermann T, Dahl E, Ortiz Brüchle N, Cacchi C. Mutation analysis of multiple pilomatricomas in a patient with myotonic dystrophy type 1 suggests a DM1-associated hypermutation phenotype. PLoS ONE. 2020;15:e0230003 pubmed 出版商
  8. Montellese C, van den Heuvel J, Ashiono C, Dörner K, Melnik A, Jonas S, et al. USP16 counteracts mono-ubiquitination of RPS27a and promotes maturation of the 40S ribosomal subunit. elife. 2020;9: pubmed 出版商
  9. Reynders M, Matsuura B, Bérouti M, Simoneschi D, Marzio A, Pagano M, et al. PHOTACs enable optical control of protein degradation. Sci Adv. 2020;6:eaay5064 pubmed 出版商
  10. von Känel C, Muñoz Gómez S, Oeljeklaus S, Wenger C, Warscheid B, Wideman J, et al. Homologue replacement in the import motor of the mitochondrial inner membrane of trypanosomes. elife. 2020;9: pubmed 出版商
  11. Zhang J, Yu W, Wang X, Hu B, Wu D, Shi G. KLF16 Affects the MYC Signature and Tumor Growth in Prostate Cancer. Onco Targets Ther. 2020;13:1303-1310 pubmed 出版商
  12. Lin Y, Huang X, Chang K, Liao K, Tsai N. Encapsulated n-Butylidenephthalide Efficiently Crosses the Blood-Brain Barrier and Suppresses Growth of Glioblastoma. Int J Nanomedicine. 2020;15:749-760 pubmed 出版商
  13. Dragan M, Nguyen M, Guzman S, Goertzen C, Brackstone M, Dhillo W, et al. G protein-coupled kisspeptin receptor induces metabolic reprograming and tumorigenesis in estrogen receptor-negative breast cancer. Cell Death Dis. 2020;11:106 pubmed 出版商
  14. Zhen X, Choi H, Kim J, Kim S, Liu R, Yun B, et al. Machilin D, a Lignin Derived from Saururus chinensis, Suppresses Breast Cancer Stem Cells and Inhibits NF-κB Signaling. Biomolecules. 2020;10: pubmed 出版商
  15. You F, Li J, Zhang P, Zhang H, Cao X. miR106a Promotes the Growth of Transplanted Breast Cancer and Decreases the Sensitivity of Transplanted Tumors to Cisplatin. Cancer Manag Res. 2020;12:233-246 pubmed 出版商
  16. Coccia E, Planells Ferrer L, Badillos Rodríguez R, Pascual M, Segura M, Fernández Hernández R, et al. SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death Dis. 2020;11:82 pubmed 出版商
  17. Garshott D, Sundaramoorthy E, Leonard M, Bennett E. Distinct regulatory ribosomal ubiquitylation events are reversible and hierarchically organized. elife. 2020;9: pubmed 出版商
  18. Gulmez Karaca K, Kupke J, Brito D, Zeuch B, Thome C, Weichenhan D, et al. Neuronal ensemble-specific DNA methylation strengthens engram stability. Nat Commun. 2020;11:639 pubmed 出版商
  19. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11:583 pubmed 出版商
  20. Ju L, Shan L, Yin B, Song Y. δ-Catenin regulates proliferation and apoptosis in renal cell carcinoma via promoting β-catenin nuclear localization and activating its downstream target genes. Cancer Med. 2020;9:2201-2212 pubmed 出版商
  21. Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, et al. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY). 2020;12:1591-1609 pubmed 出版商
  22. Yang H, Pérez Hernández M, Sanchez Alonso J, Shevchuk A, Gorelik J, Rothenberg E, et al. Ankyrin-G mediates targeting of both Na+ and KATP channels to the rat cardiac intercalated disc. elife. 2020;9: pubmed 出版商
  23. Liu Q, Borcherding N, Shao P, Maina P, Zhang W, Qi H. Contribution of synergism between PHF8 and HER2 signalling to breast cancer development and drug resistance. EBioMedicine. 2020;51:102612 pubmed 出版商
  24. Elkahlah N, Rogow J, Ahmed M, Clowney E. Presynaptic developmental plasticity allows robust sparse wiring of the Drosophila mushroom body. elife. 2020;9: pubmed 出版商
  25. Liu X, Ma F, Liu C, Zhu K, Li W, Xu Y, et al. UBE2O promotes the proliferation, EMT and stemness properties of breast cancer cells through the UBE2O/AMPKα2/mTORC1-MYC positive feedback loop. Cell Death Dis. 2020;11:10 pubmed 出版商
  26. Tang L, Li J, Fu W, Wu W, Xu J. Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo. Aging (Albany NY). 2019;11:11829-11843 pubmed 出版商
  27. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  28. Quach C, Song Y, Guo H, Li S, Maazi H, Fung M, et al. A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Nat Commun. 2019;10:5681 pubmed 出版商
  29. Young R, Ewan K, Ferrer V, Allende M, Godovac Zimmermann J, Dale T, et al. Developmentally regulated Tcf7l2 splice variants mediate transcriptional repressor functions during eye formation. elife. 2019;8: pubmed 出版商
  30. Lee Y, Ho S, Graves J, Xiao Y, Huang S, Lin W. CGRRF1, a growth suppressor, regulates EGFR ubiquitination in breast cancer. Breast Cancer Res. 2019;21:134 pubmed 出版商
  31. Manjunath H, Zhang H, Rehfeld F, Han J, Chang T, Mendell J. Suppression of Ribosomal Pausing by eIF5A Is Necessary to Maintain the Fidelity of Start Codon Selection. Cell Rep. 2019;29:3134-3146.e6 pubmed 出版商
  32. Jiang K, Zhi X, Ma Y, Zhou L. Long non-coding RNA TOB1-AS1 modulates cell proliferation, apoptosis, migration and invasion through miR-23a/NEU1 axis via Wnt/b-catenin pathway in gastric cancer. Eur Rev Med Pharmacol Sci. 2019;23:9890-9899 pubmed 出版商
  33. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  34. Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, et al. ASPH-notch Axis guided Exosomal delivery of Prometastatic Secretome renders breast Cancer multi-organ metastasis. Mol Cancer. 2019;18:156 pubmed 出版商
  35. Klotz R, Thomas A, Teng T, Han S, Iriondo O, Li L, et al. Circulating Tumor Cells Exhibit Metastatic Tropism and Reveal Brain Metastasis Drivers. Cancer Discov. 2020;10:86-103 pubmed 出版商
  36. Liu Y, Jiang Q, Liu X, Lin X, Tang Z, Liu C, et al. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine. 2019;48:386-404 pubmed 出版商
  37. Götzke H, Kilisch M, Martínez Carranza M, Sograte Idrissi S, Rajavel A, Schlichthaerle T, et al. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nat Commun. 2019;10:4403 pubmed 出版商
  38. Diaz Osterman C, Ozmadenci D, Kleinschmidt E, Taylor K, Barrie A, Jiang S, et al. FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy. elife. 2019;8: pubmed 出版商
  39. Matsumoto S, Yamamichi T, Shinzawa K, Kasahara Y, Nojima S, Kodama T, et al. GREB1 induced by Wnt signaling promotes development of hepatoblastoma by suppressing TGFβ signaling. Nat Commun. 2019;10:3882 pubmed 出版商
  40. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  41. Littler S, Sloss O, Geary B, Pierce A, Whetton A, Taylor S. Oncogenic MYC amplifies mitotic perturbations. Open Biol. 2019;9:190136 pubmed 出版商
  42. Sanghvi V, Leibold J, Mina M, Mohan P, Berishaj M, Li Z, et al. The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase. Cell. 2019;178:807-819.e21 pubmed 出版商
  43. Basturk O, Weigelt B, Adsay V, Benhamida J, Askan G, Wang L, et al. Sclerosing epithelioid mesenchymal neoplasm of the pancreas - a proposed new entity. Mod Pathol. 2020;33:456-467 pubmed 出版商
  44. Horova V, Lyoo H, Różycki B, Chalupska D, Smola M, Humpolickova J, et al. Convergent evolution in the mechanisms of ACBD3 recruitment to picornavirus replication sites. PLoS Pathog. 2019;15:e1007962 pubmed 出版商
  45. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed 出版商
  46. Li X, Liu Q, Feng H, Deng J, Zhang R, Wen J, et al. Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Autophagy. 2019;:1-16 pubmed 出版商
  47. Hovestadt V, Smith K, Bihannic L, Filbin M, Shaw M, Baumgartner A, et al. Resolving medulloblastoma cellular architecture by single-cell genomics. Nature. 2019;572:74-79 pubmed 出版商
  48. Zhang X, Du K, Lou Z, Ding K, Zhang F, Zhu J, et al. The CtBP1-HDAC1/2-IRF1 transcriptional complex represses the expression of the long noncoding RNA GAS5 in human osteosarcoma cells. Int J Biol Sci. 2019;15:1460-1471 pubmed 出版商
  49. Morabito M, Larcher M, Cavalli F, Foray C, Forget A, Mirabal Ortega L, et al. An autocrine ActivinB mechanism drives TGFβ/Activin signaling in Group 3 medulloblastoma. EMBO Mol Med. 2019;11:e9830 pubmed 出版商
  50. Wang S, Yao F, Lu X, Li Q, Su Z, Lee J, et al. Temozolomide promotes immune escape of GBM cells via upregulating PD-L1. Am J Cancer Res. 2019;9:1161-1171 pubmed
  51. Suo L, Chang X, Xu N, Ji H. The Anti-proliferative Activity of GnRH Through Downregulation of the Akt/ERK Pathways in Pancreatic Cancer. Front Endocrinol (Lausanne). 2019;10:370 pubmed 出版商
  52. Farmer G, Amune A, Bachelor M, Duong P, Yuan J, Cunningham J. Sniffer cells for the detection of neural Angiotensin II in vitro. Sci Rep. 2019;9:8820 pubmed 出版商
  53. Minuesa G, Albanese S, Xie W, Kazansky Y, Worroll D, Chow A, et al. Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia. Nat Commun. 2019;10:2691 pubmed 出版商
  54. Merve A, Zhang X, Pomella N, Acquati S, Hoeck J, Dumas A, et al. c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun. 2019;7:2 pubmed 出版商
  55. Bentz G, Lowrey A, Horne D, Nguyen V, Satterfield A, Ross T, et al. Using glycyrrhizic acid to target sumoylation processes during Epstein-Barr virus latency. PLoS ONE. 2019;14:e0217578 pubmed 出版商
  56. Umlauf B, Clark P, Lajoie J, Georgieva J, Bremner S, Herrin B, et al. Identification of variable lymphocyte receptors that can target therapeutics to pathologically exposed brain extracellular matrix. Sci Adv. 2019;5:eaau4245 pubmed 出版商
  57. Weissmiller A, Wang J, Lorey S, Howard G, Martinez E, Liu Q, et al. Inhibition of MYC by the SMARCB1 tumor suppressor. Nat Commun. 2019;10:2014 pubmed 出版商
  58. Gao X, Liu X, Lu Y, Wang Y, Cao W, Liu X, et al. PIM1 is responsible for IL-6-induced breast cancer cell EMT and stemness via c-myc activation. Breast Cancer. 2019;: pubmed 出版商
  59. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  60. Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun. 2019;10:1665 pubmed 出版商
  61. Lee S, Mayr C. Gain of Additional BIRC3 Protein Functions through 3'-UTR-Mediated Protein Complex Formation. Mol Cell. 2019;: pubmed 出版商
  62. Hu D, Sun X, Liao X, Zhang X, Zarabi S, Schimmer A, et al. Alpha-synuclein suppresses mitochondrial protease ClpP to trigger mitochondrial oxidative damage and neurotoxicity. Acta Neuropathol. 2019;137:939-960 pubmed 出版商
  63. Chakraborty A, Laukka T, Myllykoski M, Ringel A, Booker M, Tolstorukov M, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217-1222 pubmed 出版商
  64. Patel N, Wang J, Shiozawa K, Jones K, Zhang Y, Prokop J, et al. HDAC2 Regulates Site-Specific Acetylation of MDM2 and Its Ubiquitination Signaling in Tumor Suppression. iScience. 2019;13:43-54 pubmed 出版商
  65. Guillon J, Petit C, Moreau M, Toutain B, Henry C, Roche H, et al. Regulation of senescence escape by TSP1 and CD47 following chemotherapy treatment. Cell Death Dis. 2019;10:199 pubmed 出版商
  66. Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, et al. RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics. 2019;9:811-828 pubmed 出版商
  67. Dufour F, Silina L, Neyret Kahn H, Moreno Vega A, Krucker C, Karboul N, et al. TYRO3 as a molecular target for growth inhibition and apoptosis induction in bladder cancer. Br J Cancer. 2019;120:555-564 pubmed 出版商
  68. Carugo A, Minelli R, Sapio L, Soeung M, Carbone F, Robinson F, et al. p53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors. Cancer Cell. 2019;35:204-220.e9 pubmed 出版商
  69. Savva C, De Souza K, Ali R, Rakha E, Green A, Madhusudan S. Clinicopathological significance of ataxia telangiectasia-mutated (ATM) kinase and ataxia telangiectasia-mutated and Rad3-related (ATR) kinase in MYC overexpressed breast cancers. Breast Cancer Res Treat. 2019;175:105-115 pubmed 出版商
  70. Zhu Y, Shi C, Bruins L, Wang X, Riggs D, Porter B, et al. Identification of lenalidomide resistance pathways in myeloma and targeted resensitization using cereblon replacement, inhibition of STAT3 or targeting of IRF4. Blood Cancer J. 2019;9:19 pubmed 出版商
  71. Haikala H, Anttila J, Marques E, Raatikainen T, Ilander M, Hakanen H, et al. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun. 2019;10:620 pubmed 出版商
  72. Ji Q, Xu X, Kang L, Xu Y, Xiao J, Goodman S, et al. Hematopoietic PBX-interacting protein mediates cartilage degeneration during the pathogenesis of osteoarthritis. Nat Commun. 2019;10:313 pubmed 出版商
  73. Ge Y, Schuster M, Pundhir S, Rapin N, Bagger F, Sidiropoulos N, et al. The splicing factor RBM25 controls MYC activity in acute myeloid leukemia. Nat Commun. 2019;10:172 pubmed 出版商
  74. LI Y, Du L, Wang J, Vega R, Lee T, Miao Y, et al. Allosteric Inhibition of Ubiquitin-like Modifications by a Class of Inhibitor of SUMO-Activating Enzyme. Cell Chem Biol. 2019;26:278-288.e6 pubmed 出版商
  75. Yang F, Fang E, Mei H, Chen Y, Li H, Li D, et al. Cis-Acting circ-CTNNB1 Promotes β-Catenin Signaling and Cancer Progression via DDX3-Mediated Transactivation of YY1. Cancer Res. 2019;79:557-571 pubmed 出版商
  76. Wang Y, Du L, Liang X, Meng P, Bi L, Wang Y, et al. Sirtuin 4 Depletion Promotes Hepatocellular Carcinoma Tumorigenesis Through Regulating Adenosine-Monophosphate-Activated Protein Kinase Alpha/Mammalian Target of Rapamycin Axis in Mice. Hepatology. 2018;: pubmed 出版商
  77. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  78. Urtishak K, Wang L, Culjkovic Kraljacic B, Davenport J, Porazzi P, Vincent T, et al. Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene. 2019;38:2241-2262 pubmed 出版商
  79. Song X, Chen H, Zhang C, Yu Y, Chen Z, Liang H, et al. SRC-3 inhibition blocks tumor growth of pancreatic ductal adenocarcinoma. Cancer Lett. 2019;442:310-319 pubmed 出版商
  80. Zhu H, Zhang L, Wu Y, Dong B, Guo W, Wang M, et al. T-ALL leukemia stem cell 'stemness' is epigenetically controlled by the master regulator SPI1. elife. 2018;7: pubmed 出版商
  81. Chuang H, Tsai C, Hsueh C, Tan T. GLK-IKKβ signaling induces dimerization and translocation of the AhR-RORγt complex in IL-17A induction and autoimmune disease. Sci Adv. 2018;4:eaat5401 pubmed 出版商
  82. Gut G, Herrmann M, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science. 2018;361: pubmed 出版商
  83. Mastromina I, Verrier L, Silva J, Storey K, Dale J. Myc activity is required for maintenance of the neuromesodermal progenitor signalling network and for segmentation clock gene oscillations in mouse. Development. 2018;145: pubmed 出版商
  84. Nakagawa M, Shaffer A, Ceribelli M, Zhang M, Wright G, Huang D, et al. Targeting the HTLV-I-Regulated BATF3/IRF4 Transcriptional Network in Adult T Cell Leukemia/Lymphoma. Cancer Cell. 2018;34:286-297.e10 pubmed 出版商
  85. Kim S, Knight D, Jones L, Vervoort S, Ng A, Seymour J, et al. JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute lymphoblastic leukemias. Genes Dev. 2018;32:849-864 pubmed 出版商
  86. LI Y, Du L, Aldana Masangkay G, Wang X, Urak R, Forman S, et al. Regulation of miR-34b/c-targeted gene expression program by SUMOylation. Nucleic Acids Res. 2018;: pubmed 出版商
  87. Weniger M, Tiacci E, Schneider S, Arnolds J, Rüschenbaum S, Duppach J, et al. Human CD30+ B cells represent a unique subset related to Hodgkin lymphoma cells. J Clin Invest. 2018;128:2996-3007 pubmed 出版商
  88. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  89. Sevin M, Kubovcakova L, Pernet N, Causse S, Vitte F, Villeval J, et al. HSP27 is a partner of JAK2-STAT5 and a potential therapeutic target in myelofibrosis. Nat Commun. 2018;9:1431 pubmed 出版商
  90. Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A. Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors. Cancer Cell. 2018;33:512-526.e8 pubmed 出版商
  91. Rossetti S, Wierzbicki A, Sacchi N. Undermining ribosomal RNA transcription in both the nucleolus and mitochondrion: an offbeat approach to target MYC-driven cancer. Oncotarget. 2018;9:5016-5031 pubmed 出版商
  92. Blunsom N, Gomez Espinosa E, Ashlin T, Cockcroft S. Mitochondrial CDP-diacylglycerol synthase activity is due to the peripheral protein, TAMM41 and not due to the integral membrane protein, CDP-diacylglycerol synthase 1. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:284-298 pubmed 出版商
  93. Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, et al. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling. Cell. 2018;172:90-105.e23 pubmed 出版商
  94. Vu L, Pickering B, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23:1369-1376 pubmed 出版商
  95. Hama T, Nakanishi K, Sato M, Mukaiyama H, Togawa H, Shima Y, et al. Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease. Am J Physiol Renal Physiol. 2017;:ajprenal.00697.2016 pubmed 出版商
  96. Henry K, Dilling T, Abdel Atti D, Edwards K, Evans M, Lewis J. Noninvasive 89Zr-Transferrin PET Shows Improved Tumor Targeting Compared with 18F-FDG PET in MYC-Overexpressing Human Triple-Negative Breast Cancer. J Nucl Med. 2018;59:51-57 pubmed 出版商
  97. Chong I, Aronson L, Bryant H, Gulati A, Campbell J, Elliott R, et al. Mapping genetic vulnerabilities reveals BTK as a novel therapeutic target in oesophageal cancer. Gut. 2018;67:1780-1792 pubmed 出版商
  98. Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, et al. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports. 2017;9:464-477 pubmed 出版商
  99. Wang W, Xia Z, Farré J, Subramani S. TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J Cell Biol. 2017;216:2843-2858 pubmed 出版商
  100. Takano T, Wu M, Nakamuta S, Naoki H, Ishizawa N, Namba T, et al. Discovery of long-range inhibitory signaling to ensure single axon formation. Nat Commun. 2017;8:33 pubmed 出版商
  101. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  102. Biesemann A, Gorontzi A, Barr F, Gerke V. Rab35 protein regulates evoked exocytosis of endothelial Weibel-Palade bodies. J Biol Chem. 2017;292:11631-11640 pubmed 出版商
  103. Bae S, Lee M, Mun S, Giannopoulou E, Yong Gonzalez V, Cross J, et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERR?. J Clin Invest. 2017;127:2555-2568 pubmed 出版商
  104. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  105. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  106. Kitazawa S, Ebara S, Ando A, Baba Y, Satomi Y, Soga T, et al. Succinate dehydrogenase B-deficient cancer cells are highly sensitive to bromodomain and extra-terminal inhibitors. Oncotarget. 2017;8:28922-28938 pubmed 出版商
  107. Sandén E, Dyberg C, Krona C, Gallo Oller G, Olsen T, Enríquez Pérez J, et al. Establishment and characterization of an orthotopic patient-derived Group 3 medulloblastoma model for preclinical drug evaluation. Sci Rep. 2017;7:46366 pubmed 出版商
  108. Geng C, Kaochar S, Li M, Rajapakshe K, Fiskus W, Dong J, et al. SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of c-MYC oncoprotein. Oncogene. 2017;36:4767-4777 pubmed 出版商
  109. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  110. Slobodin B, Han R, Calderone V, Vrielink J, Loayza Puch F, Elkon R, et al. Transcription Impacts the Efficiency of mRNA Translation via Co-transcriptional N6-adenosine Methylation. Cell. 2017;169:326-337.e12 pubmed 出版商
  111. Mauriac S, Hien Y, Bird J, Carvalho S, Peyroutou R, Lee S, et al. Defective Gpsm2/Gαi3 signalling disrupts stereocilia development and growth cone actin dynamics in Chudley-McCullough syndrome. Nat Commun. 2017;8:14907 pubmed 出版商
  112. Newman L, Schiavon C, Zhou C, Kahn R. The abundance of the ARL2 GTPase and its GAP, ELMOD2, at mitochondria are modulated by the fusogenic activity of mitofusins and stressors. PLoS ONE. 2017;12:e0175164 pubmed 出版商
  113. Yuan H, Krawczyk E, Blancato J, Albanese C, Zhou D, Wang N, et al. HPV positive neuroendocrine cervical cancer cells are dependent on Myc but not E6/E7 viral oncogenes. Sci Rep. 2017;7:45617 pubmed 出版商
  114. Altman B, Hsieh A, Gouw A, Dang C. Correspondence: Oncogenic MYC persistently upregulates the molecular clock component REV-ERB?. Nat Commun. 2017;8:14862 pubmed 出版商
  115. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  116. Nguyen T, Li J, Lu C, Mamrosh J, Lu G, Cathers B, et al. p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates. Proc Natl Acad Sci U S A. 2017;114:3565-3571 pubmed 出版商
  117. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  118. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  119. Taoka R, Jinesh G, Xue W, Safe S, Kamat A. CF3DODA-Me induces apoptosis, degrades Sp1, and blocks the transformation phase of the blebbishield emergency program. Apoptosis. 2017;22:719-729 pubmed 出版商
  120. Hong Y, Hong Y, Choi Y, Yeo S, Jin S, Lee S, et al. The Short Isoform of DNAJB6 Protects against 1-Methyl-4-phenylpridinium Ion-Induced Apoptosis in LN18 Cells via Inhibiting Both ROS Formation and Mitochondrial Membrane Potential Loss. Oxid Med Cell Longev. 2017;2017:7982389 pubmed 出版商
  121. Liu Y, Liu R, Yang F, Cheng R, Chen X, Cui S, et al. miR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer. 2017;16:53 pubmed 出版商
  122. Anilkumar T, Devi A, Pillai S, Jayakrishnan K, Oommen O, Kumar P. Expression of protocadherin 11Yb (PCDH11Yb) in seminal germ cells is correlated with fertility status in men. Reprod Fertil Dev. 2017;29:2100-2111 pubmed 出版商
  123. Singh V, Katta S, Kumar S. WD-repeat protein WDR13 is a novel transcriptional regulator of c-Jun and modulates intestinal homeostasis in mice. BMC Cancer. 2017;17:148 pubmed 出版商
  124. Teng Y, Ren Y, Hu X, Mu J, Samykutty A, Zhuang X, et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun. 2017;8:14448 pubmed 出版商
  125. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun. 2017;8:14228 pubmed 出版商
  126. Chen H, Zuo Q, Wang Y, Song J, Yang H, Zhang Y, et al. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnol. 2017;17:11 pubmed 出版商
  127. Genovese G, Carugo A, TEPPER J, Robinson F, Li L, Svelto M, et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature. 2017;542:362-366 pubmed 出版商
  128. Hubmacher D, Schneider M, Berardinelli S, Takeuchi H, Willard B, Reinhardt D, et al. Unusual life cycle and impact on microfibril assembly of ADAMTS17, a secreted metalloprotease mutated in genetic eye disease. Sci Rep. 2017;7:41871 pubmed 出版商
  129. Hu T, Zhu X, Pi W, Yu M, Shi H, Tuan D. Hypermethylated LTR retrotransposon exhibits enhancer activity. Epigenetics. 2017;12:226-237 pubmed 出版商
  130. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  131. Liu G, Xiang T, Wu Q, Wang W. Curcumin suppresses the proliferation of gastric cancer cells by downregulating H19. Oncol Lett. 2016;12:5156-5162 pubmed 出版商
  132. Tagal V, Wei S, Zhang W, Brekken R, Posner B, Peyton M, et al. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat Commun. 2017;8:14098 pubmed 出版商
  133. Mani J, Rout S, Desy S, Schneider A. Mitochondrial protein import - Functional analysis of the highly diverged Tom22 orthologue of Trypanosoma brucei. Sci Rep. 2017;7:40738 pubmed 出版商
  134. Xu X, Fan Z, Liang C, Li L, Wang L, Liang Y, et al. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity. Nat Commun. 2017;8:14059 pubmed 出版商
  135. Pereira C, Leal M, Abdelhay E, Demachki S, Assumpcao P, de Souza M, et al. MYC Amplification as a Predictive Factor of Complete Pathologic Response to Docetaxel-based Neoadjuvant Chemotherapy for Breast Cancer. Clin Breast Cancer. 2017;17:188-194 pubmed 出版商
  136. Macia M, Halbritter J, Delous M, Bredrup C, Gutter A, Filhol E, et al. Mutations in MAPKBP1 Cause Juvenile or Late-Onset Cilia-Independent Nephronophthisis. Am J Hum Genet. 2017;100:323-333 pubmed 出版商
  137. Kozlovskaja GumbrienÄ— A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, et al. Proliferation-independent regulation of organ size by Fgf/Notch signaling. elife. 2017;6: pubmed 出版商
  138. Skene P, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. elife. 2017;6: pubmed 出版商
  139. Zhu J, Wang P, Yu Z, Lai W, Cao Y, Huang P, et al. Advanced glycosylation end product promotes forkhead box O1 and inhibits Wnt pathway to suppress capacities of epidermal stem cells. Am J Transl Res. 2016;8:5569-5579 pubmed
  140. Capizzi M, Strappazzon F, Cianfanelli V, Papaleo E, Cecconi F. MIR7-3HG, a MYC-dependent modulator of cell proliferation, inhibits autophagy by a regulatory loop involving AMBRA1. Autophagy. 2017;13:554-566 pubmed 出版商
  141. Xi X, Lu L, Zhuge C, Chen X, Zhai Y, Cheng J, et al. The hypoparathyroidism-associated mutation in Drosophila Gcm compromises protein stability and glial cell formation. Sci Rep. 2017;7:39856 pubmed 出版商
  142. Shi D, Shi H, Sun D, Chen J, Zhang X, Wang X, et al. Nucleocapsid Interacts with NPM1 and Protects it from Proteolytic Cleavage, Enhancing Cell Survival, and is Involved in PEDV Growth. Sci Rep. 2017;7:39700 pubmed 出版商
  143. Rued B, Zheng J, Mura A, Tsui H, Boersma M, Mazny J, et al. Suppression and synthetic-lethal genetic relationships of ΔgpsB mutations indicate that GpsB mediates protein phosphorylation and penicillin-binding protein interactions in Streptococcus pneumoniae D39. Mol Microbiol. 2017;103:931-957 pubmed 出版商
  144. Takahashi M, Li Y, Dillon T, Stork P. Phosphorylation of Rap1 by cAMP-dependent Protein Kinase (PKA) Creates a Binding Site for KSR to Sustain ERK Activation by cAMP. J Biol Chem. 2017;292:1449-1461 pubmed 出版商
  145. Harsman A, Oeljeklaus S, Wenger C, Huot J, Warscheid B, Schneider A. The non-canonical mitochondrial inner membrane presequence translocase of trypanosomatids contains two essential rhomboid-like proteins. Nat Commun. 2016;7:13707 pubmed 出版商
  146. Katsushima K, Natsume A, Ohka F, Shinjo K, Hatanaka A, Ichimura N, et al. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun. 2016;7:13616 pubmed 出版商
  147. Hu H, Liu Y, Bampoe K, He Y, Yu M. Postnatal Gene Therapy Improves Spatial Learning Despite the Presence of Neuronal Ectopia in a Model of Neuronal Migration Disorder. Genes (Basel). 2016;7: pubmed
  148. Dhar J, Barik S. Unique nonstructural proteins of Pneumonia Virus of Mice (PVM) promote degradation of interferon (IFN) pathway components and IFN-stimulated gene proteins. Sci Rep. 2016;6:38139 pubmed 出版商
  149. Shahani N, Swarnkar S, Giovinazzo V, Morgenweck J, Bohn L, Scharager Tapia C, et al. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network ("Rhesactome") in the striatum. Sci Signal. 2016;9:ra111 pubmed
  150. Xiao Y, Yang X, Miao Y, He X, Wang M, Sha W. Inhibition of cell proliferation and tumor growth of colorectal cancer by inhibitors of Wnt and Notch signaling pathways. Oncol Lett. 2016;12:3695-3700 pubmed
  151. Prieto P, Fernandez Velasco M, Fernández Santos M, Sanchez P, Terrón V, Martín Sanz P, et al. Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells. Front Physiol. 2016;7:548 pubmed
  152. Chen Z, Tang C, Zhu Y, Xie M, He D, Pan Q, et al. TrpC5 regulates differentiation through the Ca2+/Wnt5a signalling pathway in colorectal cancer. Clin Sci (Lond). 2017;131:227-237 pubmed 出版商
  153. Cramer S, Saha A, Liu J, Tadi S, Tiziani S, Yan W, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 2017;23:120-127 pubmed 出版商
  154. Casamayor Genescà A, Pla A, Oliver Vila I, Pujals Fonts N, Marín Gallén S, Caminal M, et al. Clinical-scale expansion of CD34+ cord blood cells amplifies committed progenitors and rapid scid repopulation cells. N Biotechnol. 2017;35:19-29 pubmed 出版商
  155. Turner J, Kashyap T, Dawson J, Gomez J, Bauer A, Grant S, et al. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget. 2016;7:78896-78909 pubmed 出版商
  156. Ölmezer G, Levikova M, Klein D, Falquet B, Fontana G, Cejka P, et al. Replication intermediates that escape Dna2 activity are processed by Holliday junction resolvase Yen1. Nat Commun. 2016;7:13157 pubmed 出版商
  157. Dey K, Bharti R, Dey G, Pal I, Rajesh Y, Chavan S, et al. S100A7 has an oncogenic role in oral squamous cell carcinoma by activating p38/MAPK and RAB2A signaling pathway. Cancer Gene Ther. 2016;23:382-391 pubmed 出版商
  158. Zhang Q, Zhang Y, Parsels J, Lohse I, Lawrence T, Pasca di Magliano M, et al. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation. Neoplasia. 2016;18:666-673 pubmed 出版商
  159. Ren K, Zhang W, Chen X, Ma Y, Dai Y, Fan Y, et al. An Epigenetic Compound Library Screen Identifies BET Inhibitors That Promote HSV-1 and -2 Replication by Bridging P-TEFb to Viral Gene Promoters through BRD4. PLoS Pathog. 2016;12:e1005950 pubmed 出版商
  160. Rofe A, Davis L, Whittingham J, Latimer Bowman E, Wilkinson A, Pryor P. The Rhodococcus equi virulence protein VapA disrupts endolysosome function and stimulates lysosome biogenesis. Microbiologyopen. 2017;6: pubmed 出版商
  161. Yang L, Liu Y, Wang M, Qian Y, Dong X, Gu H, et al. Quercetin-induced apoptosis of HT-29 colon cancer cells via inhibition of the Akt-CSN6-Myc signaling axis. Mol Med Rep. 2016;14:4559-4566 pubmed 出版商
  162. Harrod A, Fulton J, Nguyen V, Periyasamy M, Ramos Garcia L, Lai C, et al. Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene. 2017;36:2286-2296 pubmed 出版商
  163. Nowacka J, Baumgartner C, Pelorosso C, Roth M, Zuber J, Baccarini M. MEK1 is required for the development of NRAS-driven leukemia. Oncotarget. 2016;7:80113-80130 pubmed 出版商
  164. Cao Z, Casabona M, Kneuper H, Chalmers J, Palmer T. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol. 2016;2:16183 pubmed 出版商
  165. Rabbani M, Ribaudo M, Guo J, Barik S. Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3. J Virol. 2016;90:11145-11156 pubmed
  166. Zhang L, Bai Y, Yang Y. Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-?B. Oncol Lett. 2016;12:2840-2845 pubmed
  167. Maina P, Shao P, Liu Q, Fazli L, Tyler S, Nasir M, et al. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget. 2016;7:75585-75602 pubmed 出版商
  168. Yamaguchi T, Yamauchi Y, Furukawa K, Ohmi Y, Ohkawa Y, Zhang Q, et al. Expression of B4GALNT1, an essential glycosyltransferase for the synthesis of complex gangliosides, suppresses BACE1 degradation and modulates APP processing. Sci Rep. 2016;6:34505 pubmed 出版商
  169. Dubail J, Vasudevan D, Wang L, Earp S, Jenkins M, Haltiwanger R, et al. Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome. Sci Rep. 2016;6:33974 pubmed 出版商
  170. Shlevkov E, Kramer T, Schapansky J, LaVoie M, Schwarz T. Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility. Proc Natl Acad Sci U S A. 2016;113:E6097-E6106 pubmed
  171. Zhao G, Zhu P, Renvoisé B, Maldonado Baez L, Park S, Blackstone C. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp Cell Res. 2016;349:32-44 pubmed 出版商
  172. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  173. Alavi M, Song M, King G, Gillis T, Propst R, Lamanuzzi M, et al. Dscam1 Forms a Complex with Robo1 and the N-Terminal Fragment of Slit to Promote the Growth of Longitudinal Axons. PLoS Biol. 2016;14:e1002560 pubmed 出版商
  174. Kim M, Jeong J, Seo J, Kim H, Kim S, Jin W. Dysregulated JAK2 expression by TrkC promotes metastasis potential, and EMT program of metastatic breast cancer. Sci Rep. 2016;6:33899 pubmed 出版商
  175. Soon G, Ow G, Chan H, Ng S, Wang S. Primary cardiac diffuse large B-cell lymphoma in immunocompetent patients: clinical, histologic, immunophenotypic, and genotypic features of 3 cases. Ann Diagn Pathol. 2016;24:40-6 pubmed 出版商
  176. Johnson R, Finger E, Olcina M, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18:1078-1089 pubmed 出版商
  177. Madugula V, Lu L. A ternary complex comprising transportin1, Rab8 and the ciliary targeting signal directs proteins to ciliary membranes. J Cell Sci. 2016;129:3922-3934 pubmed
  178. Park S, Han S, Choi I, Kim B, Park S, Joe E, et al. Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy. PLoS ONE. 2016;11:e0163029 pubmed 出版商
  179. Xu L, Yu D, Fan Y, Peng L, Wu Y, Yao Y. Loss of RIG-I leads to a functional replacement with MDA5 in the Chinese tree shrew. Proc Natl Acad Sci U S A. 2016;113:10950-5 pubmed 出版商
  180. Handhle A, Ormonde C, Thomas N, Bralesford C, Williams A, Lai F, et al. Calsequestrin interacts directly with the cardiac ryanodine receptor luminal domain. J Cell Sci. 2016;129:3983-3988 pubmed
  181. Wang Q, Zhang X, Han Y, Wang X, Gao G. M2BP inhibits HIV-1 virion production in a vimentin filaments-dependent manner. Sci Rep. 2016;6:32736 pubmed 出版商
  182. Hsu Y, Shi G, Wang K, Ma C, Cheng T, Wu H. Thrombomodulin promotes focal adhesion kinase activation and contributes to angiogenesis by binding to fibronectin. Oncotarget. 2016;7:68122-68139 pubmed 出版商
  183. Cunningham C, Li S, Vizeacoumar F, Bhanumathy K, Lee J, Parameswaran S, et al. Therapeutic relevance of the protein phosphatase 2A in cancer. Oncotarget. 2016;7:61544-61561 pubmed 出版商
  184. Jinesh G, Molina J, Huang L, Laing N, Mills G, Bar Eli M, et al. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis. Cell Death Discov. 2016;2:16003 pubmed 出版商
  185. Hong J, Kwak Y, Woo Y, Park C, Lee S, Lee H, et al. Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration. Sci Rep. 2016;6:31827 pubmed 出版商
  186. Getz A, Visser F, Bell E, Xu F, Flynn N, Zaidi W, et al. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons. Sci Rep. 2016;6:31779 pubmed 出版商
  187. Li Y, Dillon T, Takahashi M, Earley K, Stork P. Protein Kinase A-independent Ras Protein Activation Cooperates with Rap1 Protein to Mediate Activation of the Extracellular Signal-regulated Kinases (ERK) by cAMP. J Biol Chem. 2016;291:21584-21595 pubmed
  188. Li L, Liu H, Wang C, Liu X, Hu F, Xie N, et al. Overexpression of ?-Catenin Induces Cisplatin Resistance in Oral Squamous Cell Carcinoma. Biomed Res Int. 2016;2016:5378567 pubmed 出版商
  189. Durand S, Franks T, Lykke Andersen J. Hyperphosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated mRNA decay. Nat Commun. 2016;7:12434 pubmed 出版商
  190. Gao S, Yang X, Wang M. Inhibitory effects of B?cell translocation gene 2 on skin cancer cells via the Wnt/??catenin signaling pathway. Mol Med Rep. 2016;14:3464-8 pubmed 出版商
  191. Ogasawara R, Fujita S, Hornberger T, Kitaoka Y, Makanae Y, Nakazato K, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep. 2016;6:31142 pubmed 出版商
  192. Shen H, Zhao L, Feng X, Xu C, Li C, Niu Y. Lin28A activates androgen receptor via regulation of c-myc and promotes malignancy of ER-/Her2+ breast cancer. Oncotarget. 2016;7:60407-60418 pubmed 出版商
  193. Liang J, Cao R, Zhang Y, Xia Y, Zheng Y, Li X, et al. PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis. Nat Commun. 2016;7:12431 pubmed 出版商
  194. Wawro M, Kochan J, Krzanik S, Jura J, Kasza A. Intact NYN/PIN-Like Domain is Crucial for the Degradation of Inflammation-Related Transcripts by ZC3H12D. J Cell Biochem. 2017;118:487-498 pubmed 出版商
  195. Ho J, Hsu R, Wu C, Liao G, Gao H, Wang T, et al. Reduced miR-550a-3p leads to breast cancer initiation, growth, and metastasis by increasing levels of ERK1 and 2. Oncotarget. 2016;7:53853-53868 pubmed 出版商
  196. Nelson D, Jaber Hijazi F, Cole J, Robertson N, Pawlikowski J, Norris K, et al. Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability. Genome Biol. 2016;17:158 pubmed 出版商
  197. Grinshtein N, Rioseco C, Marcellus R, UEHLING D, Aman A, Lun X, et al. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget. 2016;7:59360-59376 pubmed 出版商
  198. Weng S, Matsuura S, Mowery C, Stoner S, Lam K, Ran D, et al. Restoration of MYC-repressed targets mediates the negative effects of GM-CSF on RUNX1-ETO leukemogenicity. Leukemia. 2017;31:159-169 pubmed 出版商
  199. Harwardt T, Lukas S, Zenger M, Reitberger T, Danzer D, Übner T, et al. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response. PLoS Pathog. 2016;12:e1005748 pubmed 出版商
  200. Smirnov A, Panatta E, Lena A, Castiglia D, Di Daniele N, Melino G, et al. FOXM1 regulates proliferation, senescence and oxidative stress in keratinocytes and cancer cells. Aging (Albany NY). 2016;8:1384-97 pubmed 出版商
  201. Hayashi S, Akiyama R, Wong J, Tahara N, Kawakami H, Kawakami Y. Gata6-Dependent GLI3 Repressor Function is Essential in Anterior Limb Progenitor Cells for Proper Limb Development. PLoS Genet. 2016;12:e1006138 pubmed 出版商
  202. Takagi Y, Shimada K, Shimada S, Sakamoto A, Naoe T, Nakamura S, et al. SPIB is a novel prognostic factor in diffuse large B-cell lymphoma that mediates apoptosis via the PI3K-AKT pathway. Cancer Sci. 2016;107:1270-80 pubmed 出版商
  203. Itahana Y, Zhang J, Göke J, Vardy L, Han R, Iwamoto K, et al. Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells. Sci Rep. 2016;6:28112 pubmed 出版商
  204. Li H, Mai R, Huang H, Chou C, Chang Y, Chang Y, et al. DDX3 Represses Stemness by Epigenetically Modulating Tumor-suppressive miRNAs in Hepatocellular Carcinoma. Sci Rep. 2016;6:28637 pubmed 出版商
  205. Chiba T, Ishihara E, Miyamura N, Narumi R, Kajita M, Fujita Y, et al. MDCK cells expressing constitutively active Yes-associated protein (YAP) undergo apical extrusion depending on neighboring cell status. Sci Rep. 2016;6:28383 pubmed 出版商
  206. Aguilera O, Muñoz Sagastibelza M, Torrejón B, Borrero Palacios A, del Puerto Nevado L, Martínez Useros J, et al. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget. 2016;7:47954-47965 pubmed 出版商
  207. Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H, et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-?t ubiquitination. Nat Immunol. 2016;17:997-1004 pubmed 出版商
  208. Belyy A, Levanova N, Tabakova I, Rospert S, Belyi Y. Ribosomal Protein Rps26 Influences 80S Ribosome Assembly in Saccharomyces cerevisiae. mSphere. 2016;1: pubmed 出版商
  209. Kanemori Y, Koga Y, Sudo M, Kang W, Kashiwabara S, Ikawa M, et al. Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proc Natl Acad Sci U S A. 2016;113:E3696-705 pubmed 出版商
  210. Wang Y, Li Y, Hu G, Huang X, Rao H, Xiong X, et al. Nek2A phosphorylates and stabilizes SuFu: A new strategy of Gli2/Hedgehog signaling regulatory mechanism. Cell Signal. 2016;28:1304-13 pubmed 出版商
  211. Eichner R, Heider M, Fernández Sáiz V, van Bebber F, Garz A, Lemeer S, et al. Immunomodulatory drugs disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and teratogenicity. Nat Med. 2016;22:735-43 pubmed 出版商
  212. Qi Y, Yu J, Han W, Fan X, Qian H, Wei H, et al. A splicing isoform of TEAD4 attenuates the Hippo-YAP signalling to inhibit tumour proliferation. Nat Commun. 2016;7:ncomms11840 pubmed 出版商
  213. Zhang J, Jiang Z, Liu X, Meng A. Eph/ephrin signaling maintains the boundary of dorsal forerunner cell cluster during morphogenesis of the zebrafish embryonic left-right organizer. Development. 2016;143:2603-15 pubmed 出版商
  214. Li K, Yu R, Fan L, Wei N, Chen H, Deng X. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat Commun. 2016;7:11868 pubmed 出版商
  215. Xi Z, Yao M, Li Y, Xie C, Holst J, Liu T, et al. Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation. Cell Death Dis. 2016;7:e2252 pubmed 出版商
  216. Farrugia A, Calvo F. Cdc42 regulates Cdc42EP3 function in cancer-associated fibroblasts. Small Gtpases. 2017;8:49-57 pubmed 出版商
  217. Nishito Y, Tsuji N, Fujishiro H, Takeda T, Yamazaki T, Teranishi F, et al. Direct Comparison of Manganese Detoxification/Efflux Proteins and Molecular Characterization of ZnT10 Protein as a Manganese Transporter. J Biol Chem. 2016;291:14773-87 pubmed 出版商
  218. Choi S, Park S, Yoo H, Pi J, Kang C. Charged Amino Acid-rich Leucine Zipper-1 (Crlz-1) as a Target of Wnt Signaling Pathway Controls Pre-B Cell Proliferation by Affecting Runx/CBF?-targeted VpreB and ?5 Genes. J Biol Chem. 2016;291:15008-19 pubmed 出版商
  219. Mishra P, Ciftci Yilmaz S, Reynolds D, Au W, Boeckmann L, Dittman L, et al. Polo kinase Cdc5 associates with centromeres to facilitate the removal of centromeric cohesin during mitosis. Mol Biol Cell. 2016;27:2286-300 pubmed 出版商
  220. Derussy B, Boland M, Tandon R. Human Cytomegalovirus pUL93 Links Nucleocapsid Maturation and Nuclear Egress. J Virol. 2016;90:7109-7117 pubmed 出版商
  221. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  222. Wang B, Lee C, Johnson E, Kluwe C, Cunningham J, Tanno H, et al. Discovery of high affinity anti-ricin antibodies by B cell receptor sequencing and by yeast display of combinatorial VH:VL libraries from immunized animals. MAbs. 2016;8:1035-44 pubmed 出版商
  223. Knutson B, Smith M, Walker Kopp N, Xu X. Super elongation complex contains a TFIIF-related subcomplex. Transcription. 2016;7:133-40 pubmed 出版商
  224. Zheng J, Huang X, Tan W, Yu D, Du Z, Chang J, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet. 2016;48:747-57 pubmed 出版商
  225. Cichon M, Moruzzi M, Shqau T, Miller E, Mehner C, Ethier S, et al. MYC Is a Crucial Mediator of TGF?-Induced Invasion in Basal Breast Cancer. Cancer Res. 2016;76:3520-30 pubmed 出版商
  226. Kress T, Pellanda P, Pellegrinet L, Bianchi V, Nicoli P, Doni M, et al. Identification of MYC-Dependent Transcriptional Programs in Oncogene-Addicted Liver Tumors. Cancer Res. 2016;76:3463-72 pubmed 出版商
  227. Paulissen S, Slubowski C, Roesner J, Huang L. Timely Closure of the Prospore Membrane Requires SPS1 and SPO77 in Saccharomyces cerevisiae. Genetics. 2016;203:1203-16 pubmed 出版商
  228. Chen Y, Bharill S, O HAGAN R, Isacoff E, Chalfie M. MEC-10 and MEC-19 Reduce the Neurotoxicity of the MEC-4(d) DEG/ENaC Channel in Caenorhabditis elegans. G3 (Bethesda). 2016;6:1121-30 pubmed 出版商
  229. Harris C, Husmann D, Liu W, Kasmi F, Wang H, Papikian A, et al. Arabidopsis AtMORC4 and AtMORC7 Form Nuclear Bodies and Repress a Large Number of Protein-Coding Genes. PLoS Genet. 2016;12:e1005998 pubmed 出版商
  230. Le T, Vuong L, Kim A, Hsu Y, Choi K. 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila. Nat Commun. 2016;7:11501 pubmed 出版商
  231. Wang L, Lee K, Malonis R, SANCHEZ I, Dynlacht B. Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis. elife. 2016;5: pubmed 出版商
  232. Xiang J, Guo S, Jiang S, Xu Y, Li J, Li L, et al. Silencing of Long Non-Coding RNA MALAT1 Promotes Apoptosis of Glioma Cells. J Korean Med Sci. 2016;31:688-94 pubmed 出版商
  233. Paudel S, Easwaran M, Jang H, Jung H, Kim J, Shin H. Immunization with avian metapneumovirus harboring chicken Fc induces higher immune responses. Virus Res. 2016;220:129-35 pubmed 出版商
  234. Boateng L, Bennin D, de Oliveira S, Huttenlocher A. Mammalian Actin-binding Protein-1/Hip-55 Interacts with FHL2 and Negatively Regulates Cell Invasion. J Biol Chem. 2016;291:13987-98 pubmed 出版商
  235. Di Lascio S, Belperio D, Benfante R, Fornasari D. Alanine Expansions Associated with Congenital Central Hypoventilation Syndrome Impair PHOX2B Homeodomain-mediated Dimerization and Nuclear Import. J Biol Chem. 2016;291:13375-93 pubmed 出版商
  236. Lin X, Niu D, Hu Z, Kim D, Jin Y, Cai B, et al. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity. PLoS Genet. 2016;12:e1006016 pubmed 出版商
  237. Zhao Z, Lee R, Pusapati G, Iyu A, Rohatgi R, Ingham P. An essential role for Grk2 in Hedgehog signalling downstream of Smoothened. EMBO Rep. 2016;17:739-52 pubmed 出版商
  238. Verbist K, Guy C, Milasta S, Liedmann S, Kaminski M, Wang R, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature. 2016;532:389-93 pubmed 出版商
  239. Xiong W, Li J, Zhang E, Huang H. BMAL1 regulates transcription initiation and activates circadian clock gene expression in mammals. Biochem Biophys Res Commun. 2016;473:1019-1025 pubmed 出版商
  240. Fees C, Aiken J, O TOOLE E, Giddings T, Moore J. The negatively charged carboxy-terminal tail of ?-tubulin promotes proper chromosome segregation. Mol Biol Cell. 2016;27:1786-96 pubmed 出版商
  241. Pfeiffer A, Stephanowitz H, Krause E, Volkwein C, Hirsch C, Jarosch E, et al. A Complex of Htm1 and the Oxidoreductase Pdi1 Accelerates Degradation of Misfolded Glycoproteins. J Biol Chem. 2016;291:12195-207 pubmed 出版商
  242. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  243. Kuzuya A, Zoltowska K, Post K, Arimon M, Li X, Svirsky S, et al. Identification of the novel activity-driven interaction between synaptotagmin 1 and presenilin 1 links calcium, synapse, and amyloid beta. BMC Biol. 2016;14:25 pubmed 出版商
  244. An X, Zhao Z, Luo Y, Zhang R, Tang X, Hao D, et al. Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget. 2016;7:24719-33 pubmed 出版商
  245. Lee N, Fok K, White A, Wilson N, O Leary C, Cox H, et al. Neogenin recruitment of the WAVE regulatory complex maintains adherens junction stability and tension. Nat Commun. 2016;7:11082 pubmed 出版商
  246. Ren S, Wang J, Chen T, Li H, Wan Y, Peng N, et al. Hepatitis B Virus Stimulated Fibronectin Facilitates Viral Maintenance and Replication through Two Distinct Mechanisms. PLoS ONE. 2016;11:e0152721 pubmed 出版商
  247. Moreira C, Naissant B, Coppi A, Bennett B, Aime E, Franke Fayard B, et al. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites. PLoS ONE. 2016;11:e0152510 pubmed 出版商
  248. Chou C, Fan C, Lin P, Liao P, Tung J, Hsieh C, et al. Sciellin mediates mesenchymal-to-epithelial transition in colorectal cancer hepatic metastasis. Oncotarget. 2016;7:25742-54 pubmed 出版商
  249. Chen Y, Zhou C, Ji W, Mei Z, Hu B, Zhang W, et al. ELL targets c-Myc for proteasomal degradation and suppresses tumour growth. Nat Commun. 2016;7:11057 pubmed 出版商
  250. Ongaratti B, Silva C, Trott G, Haag T, Leães C, Ferreira N, et al. Expression of merlin, NDRG2, ERBB2, and c-MYC in meningiomas: relationship with tumor grade and recurrence. Braz J Med Biol Res. 2016;49:e5125 pubmed 出版商
  251. Federspiel J, Codreanu S, Palubinsky A, Winland A, Betanzos C, McLaughlin B, et al. Assembly Dynamics and Stoichiometry of the Apoptosis Signal-regulating Kinase (ASK) Signalosome in Response to Electrophile Stress. Mol Cell Proteomics. 2016;15:1947-61 pubmed 出版商
  252. Hornick A, Li N, Oakland M, McCray P, Sinn P. Human, Pig, and Mouse Interferon-Induced Transmembrane Proteins Partially Restrict Pseudotyped Lentiviral Vectors. Hum Gene Ther. 2016;27:354-62 pubmed 出版商
  253. Park S, Kim J, Kim N, Yang K, Shim J, Heo K. Estradiol, TGF-?1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 2016;11:1895-1902 pubmed
  254. Khurana T, Newman Lindsay S, Young P, Slater J. The NPC2 protein: A novel dog allergen. Ann Allergy Asthma Immunol. 2016;116:440-446.e2 pubmed 出版商
  255. Prause M, Mayer C, Brorsson C, Frederiksen K, Billestrup N, Størling J, et al. JNK1 Deficient Insulin-Producing Cells Are Protected against Interleukin-1β-Induced Apoptosis Associated with Abrogated Myc Expression. J Diabetes Res. 2016;2016:1312705 pubmed 出版商
  256. Mitxelena J, Apraiz A, Vallejo Rodríguez J, Malumbres M, Zubiaga A. E2F7 regulates transcription and maturation of multiple microRNAs to restrain cell proliferation. Nucleic Acids Res. 2016;: pubmed
  257. Pandiri I, Chen Y, Joe Y, Kim H, Park J, Chung H, et al. Tristetraprolin mediates the anti-proliferative effects of metformin in breast cancer cells. Breast Cancer Res Treat. 2016;156:57-64 pubmed 出版商
  258. Camarda R, Zhou A, Kohnz R, Balakrishnan S, Mahieu C, Anderton B, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016;22:427-32 pubmed 出版商
  259. Hu W, Xiao L, Cao C, Hua S, Wu D. UBE2T promotes nasopharyngeal carcinoma cell proliferation, invasion, and metastasis by activating the AKT/GSK3β/β-catenin pathway. Oncotarget. 2016;7:15161-72 pubmed 出版商
  260. Huang L, Mokkapati S, Hu Q, Ruteshouser E, Hicks M, Huff V. Nephron Progenitor But Not Stromal Progenitor Cells Give Rise to Wilms Tumors in Mouse Models with β-Catenin Activation or Wt1 Ablation and Igf2 Upregulation. Neoplasia. 2016;18:71-81 pubmed 出版商
  261. Ramena G, Yin Y, Yu Y, Walia V, Elble R. CLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation. PLoS ONE. 2016;11:e0147489 pubmed 出版商
  262. Shin M, He Y, Marrogi E, Piperdi S, Ren L, Khanna C, et al. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells. PLoS Genet. 2016;12:e1005884 pubmed 出版商
  263. Zhang M, Linghu E, Zhan Q, He T, Cao B, Brock M, et al. Methylation of DACT2 accelerates esophageal cancer development by activating Wnt signaling. Oncotarget. 2016;7:17957-69 pubmed 出版商
  264. Han H, Chen Y, Cheng L, Prochownik E, Li Y. microRNA-206 impairs c-Myc-driven cancer in a synthetic lethal manner by directly inhibiting MAP3K13. Oncotarget. 2016;7:16409-19 pubmed 出版商
  265. McLaughlin D, Coey C, Yang W, Drohat A, Matunis M. Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo. J Biol Chem. 2016;291:9014-24 pubmed 出版商
  266. Xu M, Bian S, Li J, He J, Chen H, Ge L, et al. MeCP2 suppresses LIN28A expression via binding to its methylated-CpG islands in pancreatic cancer cells. Oncotarget. 2016;7:14476-85 pubmed 出版商
  267. Wagnon J, Barker B, Hounshell J, Haaxma C, Shealy A, Moss T, et al. Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy. Ann Clin Transl Neurol. 2016;3:114-23 pubmed 出版商
  268. Katoh I, Fukunishi N, Fujimuro M, Kasai H, Moriishi K, Hata R, et al. Repression of Wnt/β-catenin response elements by p63 (TP63). Cell Cycle. 2016;15:699-710 pubmed 出版商
  269. Prabhu A, Luu W, Sharpe L, Brown A. Cholesterol-mediated Degradation of 7-Dehydrocholesterol Reductase Switches the Balance from Cholesterol to Vitamin D Synthesis. J Biol Chem. 2016;291:8363-73 pubmed 出版商
  270. Weyemi U, Redon C, Choudhuri R, Aziz T, Maeda D, Boufraqech M, et al. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun. 2016;7:10711 pubmed 出版商
  271. Perumal D, Kuo P, Leshchenko V, Jiang Z, Divakar S, Cho H, et al. Dual Targeting of CDK4 and ARK5 Using a Novel Kinase Inhibitor ON123300 Exerts Potent Anticancer Activity against Multiple Myeloma. Cancer Res. 2016;76:1225-36 pubmed 出版商
  272. Carrero Z, Kollareddy M, Chauhan K, Ramakrishnan G, Martinez L. Mutant p53 protects ETS2 from non-canonical COP1/DET1 dependent degradation. Oncotarget. 2016;7:12554-67 pubmed 出版商
  273. Wu T, Li Y, Liu B, Zhang S, Wu L, Zhu X, et al. Expression of Ferritin Light Chain (FTL) Is Elevated in Glioblastoma, and FTL Silencing Inhibits Glioblastoma Cell Proliferation via the GADD45/JNK Pathway. PLoS ONE. 2016;11:e0149361 pubmed 出版商
  274. Xu J, Wang N, Luo J, Xia J. Syntabulin regulates the trafficking of PICK1-containing vesicles in neurons. Sci Rep. 2016;6:20924 pubmed 出版商
  275. Estruch S, Graham S, Deriziotis P, Fisher S. The language-related transcription factor FOXP2 is post-translationally modified with small ubiquitin-like modifiers. Sci Rep. 2016;6:20911 pubmed 出版商
  276. Wadosky K, Berthiaume J, Tang W, Zungu M, Portman M, Gerdes A, et al. MuRF1 mono-ubiquitinates TRα to inhibit T3-induced cardiac hypertrophy in vivo. J Mol Endocrinol. 2016;56:273-90 pubmed 出版商
  277. Zhang Y, Liu J, Lin J, Zhou L, Song Y, Wei B, et al. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer. Oncotarget. 2016;7:9859-75 pubmed 出版商
  278. Harding C, Egarter S, Gow M, Jiménez Ruiz E, Ferguson D, Meissner M. Gliding Associated Proteins Play Essential Roles during the Formation of the Inner Membrane Complex of Toxoplasma gondii. PLoS Pathog. 2016;12:e1005403 pubmed 出版商
  279. González C, Cánovas J, Fresno J, Couve E, Court F, Couve A. Axons provide the secretory machinery for trafficking of voltage-gated sodium channels in peripheral nerve. Proc Natl Acad Sci U S A. 2016;113:1823-8 pubmed 出版商
  280. Franco M, Panas M, Marino N, Lee M, Buchholz K, Kelly F, et al. A Novel Secreted Protein, MYR1, Is Central to Toxoplasma's Manipulation of Host Cells. MBio. 2016;7:e02231-15 pubmed 出版商
  281. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  282. Xia P, Ye B, Wang S, Zhu X, Du Y, Xiong Z, et al. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat Immunol. 2016;17:369-78 pubmed 出版商
  283. Bandopadhayay P, Ramkissoon L, Jain P, Bergthold G, Wala J, Zeid R, et al. MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet. 2016;48:273-82 pubmed 出版商
  284. Kourtidis A, Anastasiadis P. PLEKHA7 defines an apical junctional complex with cytoskeletal associations and miRNA-mediated growth implications. Cell Cycle. 2016;15:498-505 pubmed 出版商
  285. Ansseau E, Eidahl J, Lancelot C, Tassin A, Mattéotti C, Yip C, et al. Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation. PLoS ONE. 2016;11:e0146893 pubmed 出版商
  286. Zhang J, Weng Z, Tsang K, Tsang L, Chan H, Jiang X. MycN Is Critical for the Maintenance of Human Embryonic Stem Cell-Derived Neural Crest Stem Cells. PLoS ONE. 2016;11:e0148062 pubmed 出版商
  287. Ogawa F, Murphy L, Malavasi E, O Sullivan S, Torrance H, Porteous D, et al. NDE1 and GSK3? Associate with TRAK1 and Regulate Axonal Mitochondrial Motility: Identification of Cyclic AMP as a Novel Modulator of Axonal Mitochondrial Trafficking. ACS Chem Neurosci. 2016;7:553-64 pubmed 出版商
  288. Hernday A, Lohse M, Nobile C, Noiman L, Laksana C, Johnson A. Ssn6 Defines a New Level of Regulation of White-Opaque Switching in Candida albicans and Is Required For the Stochasticity of the Switch. MBio. 2016;7:e01565-15 pubmed 出版商
  289. Lechtenberg B, Rajput A, Sanishvili R, Dobaczewska M, Ware C, Mace P, et al. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature. 2016;529:546-50 pubmed 出版商
  290. Xu Z, Chikka M, Xia H, Ready D. Ire1 supports normal ER differentiation in developing Drosophila photoreceptors. J Cell Sci. 2016;129:921-9 pubmed 出版商
  291. Larisch N, Kirsch S, Schambony A, Studtrucker T, Böckmann R, Dietrich P. The function of the two-pore channel TPC1 depends on dimerization of its carboxy-terminal helix. Cell Mol Life Sci. 2016;73:2565-81 pubmed 出版商
  292. Lohse M, Johnson A. Identification and Characterization of Wor4, a New Transcriptional Regulator of White-Opaque Switching. G3 (Bethesda). 2016;6:721-9 pubmed 出版商
  293. Venegas L, Pershad K, Bankole O, Shah N, Kay B. A comparison of phosphospecific affinity reagents reveals the utility of recombinant Forkhead-associated domains in recognizing phosphothreonine-containing peptides. N Biotechnol. 2016;33:537-43 pubmed 出版商
  294. Kuo C, Li X, Stark J, Shih H, Ann D. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner. Cell Cycle. 2016;15:787-98 pubmed 出版商
  295. Crowder R, Dicker D, El Deiry W. The Deubiquitinase Inhibitor PR-619 Sensitizes Normal Human Fibroblasts to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Cell Death. J Biol Chem. 2016;291:5960-70 pubmed 出版商
  296. Hori A, Barnouin K, Snijders A, Toda T. A non-canonical function of Plk4 in centriolar satellite integrity and ciliogenesis through PCM1 phosphorylation. EMBO Rep. 2016;17:326-37 pubmed 出版商
  297. Rao Y, Perna M, Hofmann B, Beier V, Wollert T. The Atg1-kinase complex tethers Atg9-vesicles to initiate autophagy. Nat Commun. 2016;7:10338 pubmed 出版商
  298. Arimoto Matsuzaki K, Saito H, Takekawa M. TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis. Nat Commun. 2016;7:10252 pubmed 出版商
  299. Lee S, Frattini V, Bansal M, Castano A, Sherman D, Hutchinson K, et al. An ID2-dependent mechanism for VHL inactivation in cancer. Nature. 2016;529:172-7 pubmed 出版商
  300. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich M, Lim R, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 2016;529:216-20 pubmed 出版商
  301. Conery A, Centore R, Neiss A, Keller P, Joshi S, Spillane K, et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife. 2016;5: pubmed 出版商
  302. Kim T, Jin F, Shin S, Oh S, Lightfoot S, Grande J, et al. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin Invest. 2016;126:706-20 pubmed 出版商
  303. Guo Z, Kong Q, Liu C, Zhang S, Zou L, Yan F, et al. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nat Commun. 2016;7:10307 pubmed 出版商
  304. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 2016;22:175-82 pubmed 出版商
  305. Skieterska K, Rondou P, Lintermans B, Van Craenenbroeck K. KLHL12 Promotes Non-Lysine Ubiquitination of the Dopamine Receptors D4.2 and D4.4, but Not of the ADHD-Associated D4.7 Variant. PLoS ONE. 2015;10:e0145654 pubmed 出版商
  306. Hoopfer E, Jung Y, Inagaki H, Rubin G, Anderson D. P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila. elife. 2015;4: pubmed 出版商
  307. Li R, Liao G, Nirujogi R, Pinto S, Shaw P, Huang T, et al. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling. PLoS Pathog. 2015;11:e1005346 pubmed 出版商
  308. Chen A, Kim S, Shepardson N, Patel S, Hong S, Selkoe D. Physical and functional interaction between the α- and γ-secretases: A new model of regulated intramembrane proteolysis. J Cell Biol. 2015;211:1157-76 pubmed 出版商
  309. Schwenk J, Pérez Garci E, Schneider A, Kollewe A, Gauthier Kemper A, Fritzius T, et al. Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nat Neurosci. 2016;19:233-42 pubmed 出版商
  310. Silva M, Matheus W, Garcia P, Stopiglia R, Billis A, Ferreira U, et al. Characterization of reactive stroma in prostate cancer: involvement of growth factors, metalloproteinase matrix, sexual hormones receptors and prostatic stem cells. Int Braz J Urol. 2015;41:849-58 pubmed 出版商
  311. Kaur G, Reinhart R, Monks A, Evans D, Morris J, Polley E, et al. Bromodomain and hedgehog pathway targets in small cell lung cancer. Cancer Lett. 2016;371:225-39 pubmed 出版商
  312. Borriello A, Naviglio S, Bencivenga D, Caldarelli I, Tramontano A, Speranza M, et al. Histone Deacetylase Inhibitors Increase p27(Kip1) by Affecting Its Ubiquitin-Dependent Degradation through Skp2 Downregulation. Oxid Med Cell Longev. 2016;2016:2481865 pubmed 出版商
  313. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  314. Siegfried J, Lin Y, Diergaarde B, Lin H, Dacic S, Pennathur A, et al. Expression of PAM50 Genes in Lung Cancer: Evidence that Interactions between Hormone Receptors and HER2/HER3 Contribute to Poor Outcome. Neoplasia. 2015;17:817-25 pubmed 出版商
  315. Morrison G, Scognamiglio R, Trumpp A, Smith A. Convergence of cMyc and β-catenin on Tcf7l1 enables endoderm specification. EMBO J. 2016;35:356-68 pubmed 出版商
  316. Monaghan M, Linneweh M, Liebscher S, Van Handel B, Layland S, Schenke Layland K. Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development. Development. 2016;143:473-82 pubmed 出版商
  317. Brunati M, Perucca S, Han L, Cattaneo A, Consolato F, Andolfo A, et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. elife. 2015;4:e08887 pubmed 出版商
  318. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  319. Bean L, Kumar A, Rani A, Guidi M, Rosario A, Cruz P, et al. Re-Opening the Critical Window for Estrogen Therapy. J Neurosci. 2015;35:16077-93 pubmed 出版商
  320. Heuser S, Hufbauer M, Marx B, Tok A, Majewski S, Pfister H, et al. The levels of epithelial anchor proteins β-catenin and zona occludens-1 are altered by E7 of human papillomaviruses 5 and 8. J Gen Virol. 2016;97:463-72 pubmed 出版商
  321. Shamay Ramot A, Khermesh K, Porath H, Barak M, Pinto Y, Wachtel C, et al. Fmrp Interacts with Adar and Regulates RNA Editing, Synaptic Density and Locomotor Activity in Zebrafish. PLoS Genet. 2015;11:e1005702 pubmed 出版商
  322. Verdone L, La Fortezza M, Ciccarone F, Caiafa P, Zampieri M, Caserta M. Poly(ADP-Ribosyl)ation Affects Histone Acetylation and Transcription. PLoS ONE. 2015;10:e0144287 pubmed 出版商
  323. Choi J, Park J, Park S, Lee H, Han S, Park K, et al. Regulation of mGluR7 trafficking by SUMOylation in neurons. Neuropharmacology. 2016;102:229-35 pubmed 出版商
  324. Song H, Tao L, Chen C, Pan L, Hao J, Ni Y, et al. USP17-mediated deubiquitination and stabilization of HDAC2 in cigarette smoke extract-induced inflammation. Int J Clin Exp Pathol. 2015;8:10707-15 pubmed
  325. Zhang Y, Ma J, Li H, Lv J, Wei R, Cong Y, et al. bFGF signaling-mediated reprogramming of porcine primordial germ cells. Cell Tissue Res. 2016;364:429-41 pubmed 出版商
  326. Kim H, An S, Ro S, Teixeira F, Park G, Kim C, et al. Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nat Commun. 2015;6:10025 pubmed 出版商
  327. Ni Y, Tao L, Chen C, Song H, Li Z, Gao Y, et al. The Deubiquitinase USP17 Regulates the Stability and Nuclear Function of IL-33. Int J Mol Sci. 2015;16:27956-66 pubmed 出版商
  328. Khmelinskii A, Meurer M, Ho C, Besenbeck B, Füller J, Lemberg M, et al. Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers. Mol Biol Cell. 2016;27:360-70 pubmed 出版商
  329. Lee C, Julian M, Tiller K, Meng F, DuConge S, Akter R, et al. Design and Optimization of Anti-amyloid Domain Antibodies Specific for β-Amyloid and Islet Amyloid Polypeptide. J Biol Chem. 2016;291:2858-73 pubmed 出版商
  330. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed 出版商
  331. Kim M, Kim M, Park S, Lee C, Lim D. Role of Angiomotin-like 2 mono-ubiquitination on YAP inhibition. EMBO Rep. 2016;17:64-78 pubmed 出版商
  332. Tardito S, Oudin A, Ahmed S, Fack F, Keunen O, Zheng L, et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol. 2015;17:1556-68 pubmed 出版商
  333. Diersch S, Wirth M, Schneeweis C, Jörs S, Geisler F, Siveke J, et al. Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene. 2016;35:3880-6 pubmed 出版商
  334. Wang C, Wang Y, Hu M, Chai Z, Wu Q, Huang R, et al. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis. EMBO Rep. 2016;17:47-63 pubmed 出版商
  335. Hirota S, Clements T, Tang L, Morales J, Lee H, Oh S, et al. Neuropilin 1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain. Development. 2015;142:4363-73 pubmed 出版商
  336. Alexandrova S, Kalkan T, Humphreys P, Riddell A, Scognamiglio R, Trumpp A, et al. Selection and dynamics of embryonic stem cell integration into early mouse embryos. Development. 2016;143:24-34 pubmed 出版商
  337. Camats N, Fernández Cancio M, Audí L, Mullis P, Moreno F, González Casado I, et al. Human MAMLD1 Gene Variations Seem Not Sufficient to Explain a 46,XY DSD Phenotype. PLoS ONE. 2015;10:e0142831 pubmed 出版商
  338. Matsunuma R, Niida H, Ohhata T, Kitagawa K, Sakai S, Uchida C, et al. UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4DDB2-Mediated Degradation To Regulate Cell Proliferation. Mol Cell Biol. 2016;36:394-406 pubmed 出版商
  339. Maxfield K, Taus P, Corcoran K, Wooten J, Macion J, Zhou Y, et al. Comprehensive functional characterization of cancer-testis antigens defines obligate participation in multiple hallmarks of cancer. Nat Commun. 2015;6:8840 pubmed 出版商
  340. Hu X, Garcia C, Fazli L, Gleave M, Vitek M, Jansen M, et al. Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis. Sci Rep. 2015;5:15182 pubmed 出版商
  341. Sun Y, Fu A, Xu W, Chao J, Moshiach S, Morris S. Myeloid leukemia factor 1 interfered with Bcl-XL to promote apoptosis and its function was regulated by 14-3-3. J Physiol Biochem. 2015;71:807-21 pubmed 出版商
  342. He Q, Liu K, Tian Z, Du S. The Effects of Hsp90α1 Mutations on Myosin Thick Filament Organization. PLoS ONE. 2015;10:e0142573 pubmed 出版商
  343. Carpentieri A, Cozzoli E, Scimeca M, Bonanno E, Sardanelli A, Gambacurta A. Differentiation of human neuroblastoma cells toward the osteogenic lineage by mTOR inhibitor. Cell Death Dis. 2015;6:e1974 pubmed 出版商
  344. Vijayalingam S, Subramanian T, Zhao L, Chinnadurai G. The Cellular Protein Complex Associated with a Transforming Region of E1A Contains c-MYC. J Virol. 2016;90:1070-9 pubmed 出版商
  345. Yu Z, Huang Y, Shieh S. Requirement for human Mps1/TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation. Nucleic Acids Res. 2016;44:1133-50 pubmed 出版商
  346. Xiao D, Ren P, Su H, Yue M, Xiu R, Hu Y, et al. Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2. Oncotarget. 2015;6:40655-66 pubmed 出版商
  347. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  348. Alayev A, Salamon R, Berger S, Schwartz N, Cuesta R, Snyder R, et al. mTORC1 directly phosphorylates and activates ERα upon estrogen stimulation. Oncogene. 2016;35:3535-43 pubmed 出版商
  349. Hunter J, Butterworth J, Zhao B, Sellier H, Campbell K, Thomas H, et al. The NF-κB subunit c-Rel regulates Bach2 tumour suppressor expression in B-cell lymphoma. Oncogene. 2016;35:3476-84 pubmed 出版商
  350. Yue J, Ben Messaoud N, López J. Hyperosmotic Shock Engages Two Positive Feedback Loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid. J Biol Chem. 2015;290:30375-89 pubmed 出版商
  351. Zhou W, Cheng L, Shi Y, Ke S, Huang Z, Fang X, et al. Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth. Oncotarget. 2015;6:37300-15 pubmed 出版商
  352. Billcliff P, Noakes C, Mehta Z, Yan G, Mak L, Woscholski R, et al. OCRL1 engages with the F-BAR protein pacsin 2 to promote biogenesis of membrane-trafficking intermediates. Mol Biol Cell. 2016;27:90-107 pubmed 出版商
  353. Hadzic E, Catillon M, Halavatyi A, Medves S, Van Troys M, Moes M, et al. Delineating the Tes Interaction Site in Zyxin and Studying Cellular Effects of Its Disruption. PLoS ONE. 2015;10:e0140511 pubmed 出版商
  354. Jia D, Tan Y, Liu H, Ooi S, Li L, Wright K, et al. Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo. Oncotarget. 2016;7:771-85 pubmed 出版商
  355. Thorslund T, Ripplinger A, Hoffmann S, Wild T, Uckelmann M, Villumsen B, et al. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature. 2015;527:389-93 pubmed 出版商
  356. Albertos P, Romero Puertas M, Tatematsu K, Mateos I, Sánchez Vicente I, Nambara E, et al. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun. 2015;6:8669 pubmed 出版商
  357. Liu C, Zheng L, Wang H, Ran X, Liu H, Sun X. The RCAN1 inhibits NF-κB and suppresses lymphoma growth in mice. Cell Death Dis. 2015;6:e1929 pubmed 出版商
  358. Du J, Ge X, Liu Y, Jiang P, Wang Z, Zhang R, et al. Targeting Swine Leukocyte Antigen Class I Molecules for Proteasomal Degradation by the nsp1α Replicase Protein of the Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Strain JXwn06. J Virol. 2016;90:682-93 pubmed 出版商
  359. Manda K, Tripathi P, Hsi A, Ning J, Ruzinova M, Liapis H, et al. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Oncogene. 2016;35:3282-92 pubmed 出版商
  360. Spiesberger K, Paulfranz F, Egger A, Reiser J, Vogl C, Rudolf Scholik J, et al. Large-Scale Purification of r28M: A Bispecific scFv Antibody Targeting Human Melanoma Produced in Transgenic Cattle. PLoS ONE. 2015;10:e0140471 pubmed 出版商
  361. Magron A, Elowe S, Carreau M. The Fanconi Anemia C Protein Binds to and Regulates Stathmin-1 Phosphorylation. PLoS ONE. 2015;10:e0140612 pubmed 出版商
  362. Lv X, Wu W, Tang X, Wu Y, Zhu Y, Liu Y, et al. Regulation of SOX10 stability via ubiquitination-mediated degradation by Fbxw7α modulates melanoma cell migration. Oncotarget. 2015;6:36370-82 pubmed 出版商
  363. Wu M, Yamaguchi N, Xiao J, Bargmann B, Estelle M, Sang Y, et al. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. elife. 2015;4:e09269 pubmed 出版商
  364. Chen J, Wang C, Lan W, Huang C, Lin M, Wang Z, et al. Gliotoxin Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells. Mar Drugs. 2015;13:6259-73 pubmed 出版商
  365. Hwang J, Sung W, Tu H, Hsieh K, Yeh C, Chen C, et al. The Overexpression of FEN1 and RAD54B May Act as Independent Prognostic Factors of Lung Adenocarcinoma. PLoS ONE. 2015;10:e0139435 pubmed 出版商
  366. Yun J, Song S, Kang J, Park J, Kim H, Han S, et al. Reduced cohesin destabilizes high-level gene amplification by disrupting pre-replication complex bindings in human cancers with chromosomal instability. Nucleic Acids Res. 2016;44:558-72 pubmed 出版商
  367. Guo Y, Feng W, Sy S, Huen M. ATM-dependent Phosphorylation of the Fanconi Anemia Protein PALB2 Promotes the DNA Damage Response. J Biol Chem. 2015;290:27545-56 pubmed 出版商
  368. Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, et al. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun. 2015;6:8471 pubmed 出版商
  369. Daou S, Hammond Martel I, Mashtalir N, Barbour H, Gagnon J, Iannantuono N, et al. The BAP1/ASXL2 Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. J Biol Chem. 2015;290:28643-63 pubmed 出版商
  370. Shi C, Huang X, Zhang B, Zhu D, Luo H, Lu Q, et al. The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A) Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein. PLoS ONE. 2015;10:e0138936 pubmed 出版商
  371. Li Z, Hao Q, Luo J, Xiong J, Zhang S, Wang T, et al. USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene. 2016;35:2902-12 pubmed 出版商
  372. Gou M, Zhang Z, Zhang N, Huang Q, Monaghan J, Yang H, et al. Opposing Effects on Two Phases of Defense Responses from Concerted Actions of HEAT SHOCK COGNATE70 and BONZAI1 in Arabidopsis. Plant Physiol. 2015;169:2304-23 pubmed 出版商
  373. Liu L, Zhang J, Yang X, Fang C, Xu H, Xi X. SALL4 as an Epithelial-Mesenchymal Transition and Drug Resistance Inducer through the Regulation of c-Myc in Endometrial Cancer. PLoS ONE. 2015;10:e0138515 pubmed 出版商
  374. Bi H, Li S, Qu X, Wang M, Bai X, Xu Z, et al. DEC1 regulates breast cancer cell proliferation by stabilizing cyclin E protein and delays the progression of cell cycle S phase. Cell Death Dis. 2015;6:e1891 pubmed 出版商
  375. Asghar A, Lajeunesse A, Dulla K, Combes G, Thebault P, Nigg E, et al. Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation. Nat Commun. 2015;6:8364 pubmed 出版商
  376. Wu L, Guo L, Liang Y, Liu X, Jiang L, Wang L. Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncol Rep. 2015;34:3311-7 pubmed 出版商
  377. Fan H, Dong W, Li Q, Zou X, Zhang Y, Wang J, et al. Ajuba Preferentially Binds LXRα/RXRγ Heterodimer to Enhance LXR Target Gene Expression in Liver Cells. Mol Endocrinol. 2015;29:1608-18 pubmed 出版商
  378. Bézie S, Picarda E, Ossart J, Tesson L, Usal C, Renaudin K, et al. IL-34 is a Treg-specific cytokine and mediates transplant tolerance. J Clin Invest. 2015;125:3952-64 pubmed 出版商
  379. Raman M, Sergeev M, Garnaas M, Lydeard J, Huttlin E, Goessling W, et al. Systematic proteomics of the VCP-UBXD adaptor network identifies a role for UBXN10 in regulating ciliogenesis. Nat Cell Biol. 2015;17:1356-69 pubmed 出版商
  380. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  381. Perotti V, Baldassari P, Molla A, Vegetti C, Bersani I, Maurichi A, et al. NFATc2 is an intrinsic regulator of melanoma dedifferentiation. Oncogene. 2016;35:2862-72 pubmed 出版商
  382. Julian M, Lee C, Tiller K, Rabia L, Day E, Schick A, et al. Co-evolution of affinity and stability of grafted amyloid-motif domain antibodies. Protein Eng Des Sel. 2015;28:339-50 pubmed 出版商
  383. Qiao Y, Lin S, Chen Y, Voon D, Zhu F, Chuang L, et al. RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer. Oncogene. 2016;35:2664-74 pubmed 出版商
  384. Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed 出版商
  385. Yoo M, Kim B, Lee S, Jeong H, Park J, Seo D, et al. Syntaxin 4 regulates the surface localization of a promyogenic receptor Cdo thereby promoting myogenic differentiation. Skelet Muscle. 2015;5:28 pubmed 出版商
  386. Zhang J, Tripathi D, Jing J, Alexander A, Kim J, Powell R, et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol. 2015;17:1259-1269 pubmed 出版商
  387. Lee Y, Min C, Kim T, Song H, Lim Y, Kim D, et al. Structure and function of the N-terminal domain of the human mitochondrial calcium uniporter. EMBO Rep. 2015;16:1318-33 pubmed 出版商
  388. Kim S, Yang W, Min Y, Ko Y, Yoon S. The role of the polycomb repressive complex pathway in T and NK cell lymphoma: biological and prognostic implications. Tumour Biol. 2016;37:2037-47 pubmed 出版商
  389. Sharma B, Kolhe R, Black S, Keller J, Mivechi N, Satyanarayana A. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB J. 2016;30:262-75 pubmed 出版商
  390. Yao X, Tang Z, Fu X, Yin J, Liang Y, Li C, et al. The Mediator subunit MED23 couples H2B mono-ubiquitination to transcriptional control and cell fate determination. EMBO J. 2015;34:2885-902 pubmed 出版商
  391. Chen Y, Bharill S, Isacoff E, Chalfie M. Subunit composition of a DEG/ENaC mechanosensory channel of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2015;112:11690-5 pubmed 出版商
  392. Okoro E, Zhang H, Guo Z, Yang F, Smith C, Yang H. A Subregion of Reelin Suppresses Lipoprotein-Induced Cholesterol Accumulation in Macrophages. PLoS ONE. 2015;10:e0136895 pubmed 出版商
  393. Chojnowski A, Ong P, Wong E, Lim J, Mutalif R, Navasankari R, et al. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria. elife. 2015;4: pubmed 出版商
  394. Xu D, Wang Z, Zhang Y, Jiang W, Pan Y, Song B, et al. PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus. Nat Commun. 2015;6:8100 pubmed 出版商
  395. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed 出版商
  396. He J, Xia M, Tsang W, Chow K, Xia J. ICA1L forms BAR-domain complexes with PICK1 and is crucial for acrosome formation in spermiogenesis. J Cell Sci. 2015;128:3822-36 pubmed 出版商
  397. Rouka E, Simister P, Janning M, Kumbrink J, Konstantinou T, Muniz J, et al. Differential Recognition Preferences of the Three Src Homology 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3). J Biol Chem. 2015;290:25275-92 pubmed 出版商
  398. Kauko O, Laajala T, Jumppanen M, Hintsanen P, Suni V, Haapaniemi P, et al. Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling. Sci Rep. 2015;5:13099 pubmed 出版商
  399. Vitorino M, Silva A, Inácio J, Ramalho J, Gur M, Fainsod A, et al. Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway. PLoS ONE. 2015;10:e0135504 pubmed 出版商
  400. Sakabe I, Hu R, Jin L, Clarke R, Kasid U. TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. 2015;153:285-97 pubmed 出版商
  401. Zhou Z, Xu C, Chen P, Liu C, Pang S, Yao X, et al. Stability of HIB-Cul3 E3 ligase adaptor HIB Is Regulated by Self-degradation and Availability of Its Substrates. Sci Rep. 2015;5:12709 pubmed 出版商
  402. Chesarino N, McMichael T, Yount J. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3. PLoS Pathog. 2015;11:e1005095 pubmed 出版商
  403. Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation. Autophagy. 2015;11:1608-22 pubmed 出版商
  404. Lee H, Park Y, Cho M, Chae S, Yoo Y, Kwon M, et al. The chromatin remodeller RSF1 is essential for PLK1 deposition and function at mitotic kinetochores. Nat Commun. 2015;6:7904 pubmed 出版商
  405. Hermanova I, Arruabarrena Aristorena A, Valis K, Nůsková H, Alberich Jorda M, Fiser K, et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia. 2016;30:209-18 pubmed 出版商
  406. Klammt C, Novotná L, Li D, Wolf M, Blount A, Zhang K, et al. T cell receptor dwell times control the kinase activity of Zap70. Nat Immunol. 2015;16:961-9 pubmed 出版商
  407. Subbaiah V, Zhang Y, Rajagopalan D, Abdullah L, Yeo Teh N, Tomaić V, et al. E3 ligase EDD1/UBR5 is utilized by the HPV E6 oncogene to destabilize tumor suppressor TIP60. Oncogene. 2016;35:2062-74 pubmed 出版商
  408. Rohwedder A, Selcho M, Chassot B, Thum A. Neuropeptide F neurons modulate sugar reward during associative olfactory learning of Drosophila larvae. J Comp Neurol. 2015;523:2637-64 pubmed 出版商
  409. Jiang L, Tam B, Ying G, Wu S, Hauswirth W, Frederick J, et al. Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function. FASEB J. 2015;29:4866-80 pubmed 出版商
  410. Chen C, Tian F, Lu L, Wang Y, Xiao Z, Yu C, et al. Characterization of Cep85 - a new antagonist of Nek2A that is involved in the regulation of centrosome disjunction. J Cell Sci. 2015;128:3290-303 pubmed 出版商
  411. Woo Park J, Kim K, Kim J, Chae Y, Jeong O, Seo S. RE-IIBP Methylates H3K79 and Induces MEIS1-mediated Apoptosis via H2BK120 Ubiquitination by RNF20. Sci Rep. 2015;5:12485 pubmed 出版商
  412. Chung D, Chan J, Strecker J, Zhang W, Ebrahimi Ardebili S, Lu T, et al. Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat Commun. 2015;6:7742 pubmed 出版商
  413. Cho M, Park J, Choi H, Park M, Won H, Park Y, et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 2015;6:7821 pubmed 出版商
  414. Pan Y, Cao F, Guo A, Chang W, Chen X, Ma W, et al. Endoplasmic reticulum ribosome-binding protein 1, RRBP1, promotes progression of colorectal cancer and predicts an unfavourable prognosis. Br J Cancer. 2015;113:763-72 pubmed 出版商
  415. Kramann R, Fleig S, Schneider R, Fabian S, DiRocco D, Maarouf O, et al. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest. 2015;125:2935-51 pubmed 出版商
  416. Birket M, Ribeiro M, Verkerk A, Ward D, Leitoguinho A, Den Hartogh S, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970-9 pubmed 出版商
  417. Evans T, Santiago C, Arbeille E, Bashaw G. Robo2 acts in trans to inhibit Slit-Robo1 repulsion in pre-crossing commissural axons. elife. 2015;4:e08407 pubmed 出版商
  418. Phan L, Chou P, Velazquez Torres G, Samudio I, Parreno K, Huang Y, et al. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming. Nat Commun. 2015;6:7530 pubmed 出版商
  419. Xu L, Long J, Wang P, Liu K, Mai L, Guo Y. Association between the ornithine decarboxylase G316A polymorphism and breast cancer survival. Oncol Lett. 2015;10:485-491 pubmed
  420. Bonnemaison M, Bäck N, Duffy M, Ralle M, Mains R, Eipper B. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme. J Biol Chem. 2015;290:21264-79 pubmed 出版商
  421. Wu Y, Chen H, Lu J, Zhang M, Zhang R, Duan T, et al. Acetylation-dependent function of human single-stranded DNA binding protein 1. Nucleic Acids Res. 2015;43:7878-87 pubmed 出版商
  422. Lee S, Kim W, Ko C, Ryu W. Hepatitis B virus X protein enhances Myc stability by inhibiting SCF(Skp2) ubiquitin E3 ligase-mediated Myc ubiquitination and contributes to oncogenesis. Oncogene. 2016;35:1857-67 pubmed 出版商
  423. Han Y, Choi Y, Lee S, Jin Y, Cheong H, Lee K. Yin Yang 1 is a multi-functional regulator of adipocyte differentiation in 3T3-L1 cells. Mol Cell Endocrinol. 2015;413:217-27 pubmed 出版商
  424. Xu Q, Zhang Y, Wei Q, Huang Y, Li Y, Ling K, et al. BBS4 and BBS5 show functional redundancy in the BBSome to regulate the degradative sorting of ciliary sensory receptors. Sci Rep. 2015;5:11855 pubmed 出版商
  425. Jung E, Sim Y, Jeong H, Kim S, Yun Y, Song J, et al. Jmjd2C increases MyoD transcriptional activity through inhibiting G9a-dependent MyoD degradation. Biochim Biophys Acta. 2015;1849:1081-94 pubmed 出版商
  426. Mundim F, Pasini F, Brentani M, Soares F, Nonogaki S, Waitzberg A. MYC is expressed in the stromal and epithelial cells of primary breast carcinoma and paired nodal metastases. Mol Clin Oncol. 2015;3:506-514 pubmed
  427. Shan C, Lin J, Hou J, Liu H, Chen S, Chen A, et al. Chemical intervention of the NM23-H2 transcriptional programme on c-MYC via a novel small molecule. Nucleic Acids Res. 2015;43:6677-91 pubmed 出版商
  428. Li Q, Peng H, Fan H, Zou X, Liu Q, Zhang Y, et al. The LIM protein Ajuba promotes adipogenesis by enhancing PPARγ and p300/CBP interaction. Cell Death Differ. 2016;23:158-68 pubmed 出版商
  429. Sáez J, Gómez A, Barrios Ã, Parada G, Galdames L, González M, et al. Decreased Expression of CoREST1 and CoREST2 Together with LSD1 and HDAC1/2 during Neuronal Differentiation. PLoS ONE. 2015;10:e0131760 pubmed 出版商
  430. Galoian K, Qureshi A, D Ippolito G, Schiller P, Molinari M, Johnstone A, et al. Epigenetic regulation of embryonic stem cell marker miR302C in human chondrosarcoma as determinant of antiproliferative activity of proline-rich polypeptide 1. Int J Oncol. 2015;47:465-72 pubmed 出版商
  431. Holien T, Misund K, Olsen O, Baranowska K, Buene G, Børset M, et al. MYC amplifications in myeloma cell lines: correlation with MYC-inhibitor efficacy. Oncotarget. 2015;6:22698-705 pubmed
  432. Khan M, Wang B, Wei J, Zhang Y, Li Q, Luan X, et al. CXCR1/2 antagonism with CXCL8/Interleukin-8 analogue CXCL8(3-72)K11R/G31P restricts lung cancer growth by inhibiting tumor cell proliferation and suppressing angiogenesis. Oncotarget. 2015;6:21315-27 pubmed
  433. MILLER D, Hall H, Chaparian R, Mara M, Mueller A, Hall M, et al. Dephosphorylation of Iqg1 by Cdc14 regulates cytokinesis in budding yeast. Mol Biol Cell. 2015;26:2913-26 pubmed 出版商
  434. Condelli V, Maddalena F, Sisinni L, Lettini G, Matassa D, Piscazzi A, et al. Targeting TRAP1 as a downstream effector of BRAF cytoprotective pathway: a novel strategy for human BRAF-driven colorectal carcinoma. Oncotarget. 2015;6:22298-309 pubmed
  435. Ge F, Chen W, Qin J, Zhou Z, Liu R, Liu L, et al. Ataxin-3 like (ATXN3L), a member of the Josephin family of deubiquitinating enzymes, promotes breast cancer proliferation by deubiquitinating Krüppel-like factor 5 (KLF5). Oncotarget. 2015;6:21369-78 pubmed
  436. Hwang B, McCool K, Wan J, Wuerzberger Davis S, Young E, Choi E, et al. IPO3-mediated Nonclassical Nuclear Import of NF-κB Essential Modulator (NEMO) Drives DNA Damage-dependent NF-κB Activation. J Biol Chem. 2015;290:17967-84 pubmed 出版商
  437. Zhang K, Bhuripanyo K, Wang Y, Yin J. Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities. Methods Mol Biol. 2015;1319:245-60 pubmed 出版商
  438. Neo S, Itahana Y, Alagu J, Kitagawa M, Guo A, Lee S, et al. TRIM28 Is an E3 Ligase for ARF-Mediated NPM1/B23 SUMOylation That Represses Centrosome Amplification. Mol Cell Biol. 2015;35:2851-63 pubmed 出版商
  439. Zhang T, Zhou Y, Qi S, Wang Z, Qian W, Ouyang Y, et al. Nuf2 is required for chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle. 2015;14:2701-10 pubmed 出版商
  440. von Einem B, Wahler A, Schips T, Serrano Pozo A, Proepper C, Boeckers T, et al. The Golgi-Localized γ-Ear-Containing ARF-Binding (GGA) Proteins Alter Amyloid-β Precursor Protein (APP) Processing through Interaction of Their GAE Domain with the Beta-Site APP Cleaving Enzyme 1 (BACE1). PLoS ONE. 2015;10:e0129047 pubmed 出版商
  441. Pfoh R, Lacdao I, Georges A, Capar A, Zheng H, Frappier L, et al. Crystal Structure of USP7 Ubiquitin-like Domains with an ICP0 Peptide Reveals a Novel Mechanism Used by Viral and Cellular Proteins to Target USP7. PLoS Pathog. 2015;11:e1004950 pubmed 出版商
  442. Knorr K, Schneider P, Meng X, Dai H, Smith B, Hess A, et al. MLN4924 induces Noxa upregulation in acute myelogenous leukemia and synergizes with Bcl-2 inhibitors. Cell Death Differ. 2015;22:2133-42 pubmed 出版商
  443. Wang H, Sharma L, Lu J, Finch P, Fletcher S, Prochownik E. Structurally diverse c-Myc inhibitors share a common mechanism of action involving ATP depletion. Oncotarget. 2015;6:15857-70 pubmed
  444. Nicolai S, Filippi S, Caputo M, Cipak L, Gregan J, Ammerer G, et al. Identification of Novel Proteins Co-Purifying with Cockayne Syndrome Group B (CSB) Reveals Potential Roles for CSB in RNA Metabolism and Chromatin Dynamics. PLoS ONE. 2015;10:e0128558 pubmed 出版商
  445. Jha B, Gazestani V, Yip C, Salavati R. The DRBD13 RNA binding protein is involved in the insect-stage differentiation process of Trypanosoma brucei. FEBS Lett. 2015;589:1966-74 pubmed 出版商
  446. Park S, Shim J, Park H, Eum D, Park M, Mi Yi J, et al. MacroH2A1 downregulation enhances the stem-like properties of bladder cancer cells by transactivation of Lin28B. Oncogene. 2016;35:1292-301 pubmed 出版商
  447. Chou W, Hu L, Hsiung C, Shen C. Initiation of the ATM-Chk2 DNA damage response through the base excision repair pathway. Carcinogenesis. 2015;36:832-40 pubmed 出版商
  448. Jackson B, Ivanova I, Dagnino L. An ELMO2-RhoG-ILK network modulates microtubule dynamics. Mol Biol Cell. 2015;26:2712-25 pubmed 出版商
  449. Wang Z, Ma B, Ji X, Deng Y, Zhang T, Zhang X, et al. MicroRNA-378-5p suppresses cell proliferation and induces apoptosis in colorectal cancer cells by targeting BRAF. Cancer Cell Int. 2015;15:40 pubmed 出版商
  450. Li P, Zhang L. Exogenous Nkx2.5- or GATA-4-transfected rabbit bone marrow mesenchymal stem cells and myocardial cell co-culture on the treatment of myocardial infarction in rabbits. Mol Med Rep. 2015;12:2607-21 pubmed 出版商
  451. Levy Cohen G, Blank M. Functional analysis of protein ubiquitination. Anal Biochem. 2015;484:37-9 pubmed 出版商
  452. Garcia P, Miller A, Kreitzburg K, Council L, Gamblin T, Christein J, et al. The BET bromodomain inhibitor JQ1 suppresses growth of pancreatic ductal adenocarcinoma in patient-derived xenograft models. Oncogene. 2016;35:833-45 pubmed 出版商
  453. Xu H, Gustafson C, Sammons P, Khan S, Parsley N, Ramanathan C, et al. Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus. Nat Struct Mol Biol. 2015;22:476-484 pubmed 出版商
  454. Kumar S, Ingle H, Mishra S, Mahla R, Kumar A, Kawai T, et al. IPS-1 differentially induces TRAIL, BCL2, BIRC3 and PRKCE in type I interferons-dependent and -independent anticancer activity. Cell Death Dis. 2015;6:e1758 pubmed 出版商
  455. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  456. Baker E, Taylor S, Gupte A, Sharp P, Walia M, Walsh N, et al. BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells. Sci Rep. 2015;5:10120 pubmed 出版商
  457. Yan Y, Wladyka C, Fujii J, Sockanathan S. Prdx4 is a compartment-specific H2O2 sensor that regulates neurogenesis by controlling surface expression of GDE2. Nat Commun. 2015;6:7006 pubmed 出版商
  458. Bozzi M, Cassetta A, Covaceuszach S, Bigotti M, Bannister S, Hübner W, et al. The Structure of the T190M Mutant of Murine α-Dystroglycan at High Resolution: Insight into the Molecular Basis of a Primary Dystroglycanopathy. PLoS ONE. 2015;10:e0124277 pubmed 出版商
  459. Qi S, Wang Z, Huang L, Liang L, Xian Y, Ouyang Y, et al. Casein kinase 1 (α, δ and ε) localize at the spindle poles, but may not be essential for mammalian oocyte meiotic progression. Cell Cycle. 2015;14:1675-85 pubmed 出版商
  460. Chen X, Song X, Yue W, Chen D, Yu J, Yao Z, et al. Fibulin-5 inhibits Wnt/β-catenin signaling in lung cancer. Oncotarget. 2015;6:15022-34 pubmed
  461. Cattoglio C, Zhang E, Grubisic I, Chiba K, Fong Y, Tjian R. Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells. Proc Natl Acad Sci U S A. 2015;112:E2317-26 pubmed 出版商
  462. Meas R, Smerdon M, Wyrick J. The amino-terminal tails of histones H2A and H3 coordinate efficient base excision repair, DNA damage signaling and postreplication repair in Saccharomyces cerevisiae. Nucleic Acids Res. 2015;43:4990-5001 pubmed 出版商
  463. Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, et al. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Res. 2015;43:5081-98 pubmed 出版商
  464. González Prieto R, Cuijpers S, Kumar R, Hendriks I, Vertegaal A. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle. 2015;14:1859-72 pubmed 出版商
  465. Rebucci M, Sermeus A, Leonard E, Delaive E, Dieu M, Fransolet M, et al. miRNA-196b inhibits cell proliferation and induces apoptosis in HepG2 cells by targeting IGF2BP1. Mol Cancer. 2015;14:79 pubmed 出版商
  466. Yang L, Zhang S, George S, Teng R, You X, Xu M, et al. Targeting Notch1 and proteasome as an effective strategy to suppress T-cell lymphoproliferative neoplasms. Oncotarget. 2015;6:14953-69 pubmed
  467. Stemig M, Astelford K, Emery A, Cho J, Allen B, Huang T, et al. Deletion of histone deacetylase 7 in osteoclasts decreases bone mass in mice by interactions with MITF. PLoS ONE. 2015;10:e0123843 pubmed 出版商
  468. Barfeld S, Fazli L, Persson M, Marjavaara L, Urbanucci A, Kaukoniemi K, et al. Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer. Oncotarget. 2015;6:12587-602 pubmed
  469. Chen M, Gan X, Deng L, Hotta H. The NS5A protein of hepatitis C virus transcriptionally upregulates the AGR3 gene expression. Kobe J Med Sci. 2015;61:E27-35 pubmed
  470. Ben Messaoud N, Yue J, Valent D, Katzarova I, López J. Osmostress-induced apoptosis in Xenopus oocytes: role of stress protein kinases, calpains and Smac/DIABLO. PLoS ONE. 2015;10:e0124482 pubmed 出版商
  471. Scifo E, Szwajda A, Soliymani R, Pezzini F, Bianchi M, Dapkunas A, et al. Proteomic analysis of the palmitoyl protein thioesterase 1 interactome in SH-SY5Y human neuroblastoma cells. J Proteomics. 2015;123:42-53 pubmed 出版商
  472. Wang W, Huang X, Xin H, Fu M, Xue A, Wu Z. TRAF Family Member-associated NF-κB Activator (TANK) Inhibits Genotoxic Nuclear Factor κB Activation by Facilitating Deubiquitinase USP10-dependent Deubiquitination of TRAF6 Ligase. J Biol Chem. 2015;290:13372-85 pubmed 出版商
  473. Figueiro Silva J, Gruart A, Clayton K, Podlesniy P, Abad M, Gasull X, et al. Neuronal pentraxin 1 negatively regulates excitatory synapse density and synaptic plasticity. J Neurosci. 2015;35:5504-21 pubmed 出版商
  474. Ecker J, Oehme I, Mazitschek R, Korshunov A, Kool M, Hielscher T, et al. Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma. Acta Neuropathol Commun. 2015;3:22 pubmed 出版商
  475. Fu Q, Chen Z, Gong X, Cai Y, Chen Y, Ma X, et al. β-Catenin expression is regulated by an IRES-dependent mechanism and stimulated by paclitaxel in human ovarian cancer cells. Biochem Biophys Res Commun. 2015;461:21-7 pubmed 出版商
  476. Carvajal Gonzalez J, Balmer S, Mendoza M, Dussert A, Collu G, Roman A, et al. The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo. Nat Commun. 2015;6:6751 pubmed 出版商
  477. Radhakrishnan J, Bazarek S, Chandran B, Gazmuri R. Cyclophilin-D: a resident regulator of mitochondrial gene expression. FASEB J. 2015;29:2734-48 pubmed 出版商
  478. Rutkowska Wlodarczyk I, Aller M, Valbuena S, Bologna J, Prézeau L, Lerma J. A proteomic analysis reveals the interaction of GluK1 ionotropic kainate receptor subunits with Go proteins. J Neurosci. 2015;35:5171-9 pubmed 出版商
  479. Trakhtenberg E, Morkin M, Patel K, Fernandez S, Sang A, Shaw P, et al. The N-terminal Set-β Protein Isoform Induces Neuronal Death. J Biol Chem. 2015;290:13417-26 pubmed 出版商
  480. Hori A, Peddie C, Collinson L, Toda T. Centriolar satellite- and hMsd1/SSX2IP-dependent microtubule anchoring is critical for centriole assembly. Mol Biol Cell. 2015;26:2005-19 pubmed 出版商
  481. Tsukiyama T, Fukui A, Terai S, Fujioka Y, Shinada K, Takahashi H, et al. Molecular Role of RNF43 in Canonical and Noncanonical Wnt Signaling. Mol Cell Biol. 2015;35:2007-23 pubmed 出版商
  482. Mani J, Desy S, Niemann M, Chanfon A, Oeljeklaus S, Pusnik M, et al. Mitochondrial protein import receptors in Kinetoplastids reveal convergent evolution over large phylogenetic distances. Nat Commun. 2015;6:6646 pubmed 出版商
  483. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Müller K, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci. 2015;18:631-6 pubmed 出版商
  484. Steglich B, Strålfors A, Khorosjutina O, Persson J, Smialowska A, Javerzat J, et al. The Fun30 chromatin remodeler Fft3 controls nuclear organization and chromatin structure of insulators and subtelomeres in fission yeast. PLoS Genet. 2015;11:e1005101 pubmed 出版商
  485. Rosa Ferreira C, Christis C, Torres I, Munro S. The small G protein Arl5 contributes to endosome-to-Golgi traffic by aiding the recruitment of the GARP complex to the Golgi. Biol Open. 2015;4:474-81 pubmed 出版商
  486. ÄŒajánek L, Glatter T, Nigg E. The E3 ubiquitin ligase Mib1 regulates Plk4 and centriole biogenesis. J Cell Sci. 2015;128:1674-82 pubmed 出版商
  487. Fernández Busnadiego R, Saheki Y, De Camilli P. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites. Proc Natl Acad Sci U S A. 2015;112:E2004-13 pubmed 出版商
  488. Chen Q, Zhang F, Wang Y, Liu Z, Sun A, Zen K, et al. The transcription factor c-Myc suppresses MiR-23b and MiR-27b transcription during fetal distress and increases the sensitivity of neurons to hypoxia-induced apoptosis. PLoS ONE. 2015;10:e0120217 pubmed 出版商
  489. Ambrosio S, Amente S, Napolitano G, Di Palo G, Lania L, Majello B. MYC impairs resolution of site-specific DNA double-strand breaks repair. Mutat Res. 2015;774:6-13 pubmed 出版商
  490. Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J. 2015;34:1214-30 pubmed 出版商
  491. Albers J, Danzer C, Rechsteiner M, Lehmann H, Brandt L, Hejhal T, et al. A versatile modular vector system for rapid combinatorial mammalian genetics. J Clin Invest. 2015;125:1603-19 pubmed 出版商
  492. Iemura K, Tanaka K. Chromokinesin Kid and kinetochore kinesin CENP-E differentially support chromosome congression without end-on attachment to microtubules. Nat Commun. 2015;6:6447 pubmed 出版商
  493. Fujikawa A, Matsumoto M, Kuboyama K, Suzuki R, Noda M. Specific dephosphorylation at tyr-554 of git1 by ptprz promotes its association with paxillin and hic-5. PLoS ONE. 2015;10:e0119361 pubmed 出版商
  494. Chang B, Choi Y, Kim J. Collagen complexes increase the efficiency of iPS cells generated using fibroblasts from adult mice. J Reprod Dev. 2015;61:145-53 pubmed 出版商
  495. Rogler A, Kendziorra E, Giedl J, Stoehr C, Taubert H, Goebell P, et al. Functional analyses and prognostic significance of SFRP1 expression in bladder cancer. J Cancer Res Clin Oncol. 2015;141:1779-90 pubmed 出版商
  496. Yu X, Chen S, Hou P, Wang M, Chen Y, Guo D. VHL negatively regulates SARS coronavirus replication by modulating nsp16 ubiquitination and stability. Biochem Biophys Res Commun. 2015;459:270-276 pubmed 出版商
  497. Masuda K, Chiyoda T, Sugiyama N, Segura Cabrera A, Kabe Y, Ueki A, et al. LATS1 and LATS2 phosphorylate CDC26 to modulate assembly of the tetratricopeptide repeat subcomplex of APC/C. PLoS ONE. 2015;10:e0118662 pubmed 出版商
  498. Arbeille E, Reynaud F, Sanyas I, Bozon M, Kindbeiter K, Causeret F, et al. Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat Commun. 2015;6:6366 pubmed 出版商
  499. Gee H, Kim J, Lee M. Analysis of conventional and unconventional trafficking of CFTR and other membrane proteins. Methods Mol Biol. 2015;1270:137-54 pubmed 出版商
  500. Zhang L, Hsu F, Mojsilovic Petrovic J, Jablonski A, Zhai J, Coulter D, et al. Structure-function analysis of SAP97, a modular scaffolding protein that drives dendrite growth. Mol Cell Neurosci. 2015;65:31-44 pubmed 出版商
  501. Kratz A, Bärenz F, Richter K, Hoffmann I. Plk4-dependent phosphorylation of STIL is required for centriole duplication. Biol Open. 2015;4:370-7 pubmed 出版商
  502. Shi X, Zirbes K, Rasmussen T, Ferdous A, Garry M, Koyano Nakagawa N, et al. The transcription factor Mesp1 interacts with cAMP-responsive element binding protein 1 (Creb1) and coactivates Ets variant 2 (Etv2) gene expression. J Biol Chem. 2015;290:9614-25 pubmed 出版商
  503. Chen A, Kim E, Toh J, Vashisht A, Rashoff A, Van C, et al. Novel components of the Toxoplasma inner membrane complex revealed by BioID. MBio. 2015;6:e02357-14 pubmed 出版商
  504. Papadopoulos T, Schemm R, Grubmüller H, Brose N. Lipid binding defects and perturbed synaptogenic activity of a Collybistin R290H mutant that causes epilepsy and intellectual disability. J Biol Chem. 2015;290:8256-70 pubmed 出版商
  505. Fischer N, Elson G, Magistrelli G, Dheilly E, Fouque N, Laurendon A, et al. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat Commun. 2015;6:6113 pubmed 出版商
  506. Sato M, Rodríguez Barrueco R, Yu J, Do C, Silva J, Gautier J. MYC is a critical target of FBXW7. Oncotarget. 2015;6:3292-305 pubmed
  507. Zhang N, Zhong P, Shin S, Metallo J, Danielson E, Olsen C, et al. S-SCAM, a rare copy number variation gene, induces schizophrenia-related endophenotypes in transgenic mouse model. J Neurosci. 2015;35:1892-904 pubmed 出版商
  508. Hartmann M, Parra L, Ruschel A, Böhme S, Li Y, Morrison H, et al. Tumor Suppressor NF2 Blocks Cellular Migration by Inhibiting Ectodomain Cleavage of CD44. Mol Cancer Res. 2015;13:879-90 pubmed 出版商
  509. Li Y, Wu Y, Abbatiello T, Wu W, Kim J, Sarkissyan M, et al. Slug contributes to cancer progression by direct regulation of ERα signaling pathway. Int J Oncol. 2015;46:1461-72 pubmed 出版商
  510. Jeong H, Gil N, Lee H, Cho S, Kim K, Chun K, et al. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression. J Cell Biochem. 2015;116:1602-12 pubmed 出版商
  511. Rao R, Dhele N, Cheemadan S, Ketkar A, Jayandharan G, Palakodeti D, et al. Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming. Sci Rep. 2015;5:8229 pubmed 出版商
  512. Kathania M, Zeng M, Yadav V, Moghaddam S, Yang B, Venuprasad K. Ndfip1 regulates itch ligase activity and airway inflammation via UbcH7. J Immunol. 2015;194:2160-7 pubmed 出版商
  513. Marsolier J, Perichon M, Debarry J, Villoutreix B, Chluba J, Lopez T, et al. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation. Nature. 2015;520:378-82 pubmed 出版商
  514. Li Z, Xiao J, Hu K, Wang G, Li M, Zhang J, et al. FBXW7 acts as an independent prognostic marker and inhibits tumor growth in human osteosarcoma. Int J Mol Sci. 2015;16:2294-306 pubmed 出版商
  515. Zhang H, Cui F, Wu Y, Lou L, Liu L, Tian M, et al. The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. Plant Cell. 2015;27:214-27 pubmed 出版商
  516. Petrosyan A, Ali M, Cheng P. Keratin 1 plays a critical role in golgi localization of core 2 N-acetylglucosaminyltransferase M via interaction with its cytoplasmic tail. J Biol Chem. 2015;290:6256-69 pubmed 出版商
  517. Iwano S, Satou A, Matsumura S, Sugiyama N, Ishihama Y, Toyoshima F. PCTK1 regulates integrin-dependent spindle orientation via protein kinase A regulatory subunit KAP0 and myosin X. Mol Cell Biol. 2015;35:1197-208 pubmed 出版商
  518. Lee S, Uchida Y, Wang J, Matsudaira T, Nakagawa T, Kishimoto T, et al. Transport through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase. EMBO J. 2015;34:669-88 pubmed 出版商
  519. Huang S, Zou X, Zhu J, Fu Y, Lin Q, Liang Y, et al. Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy. J Cell Mol Med. 2015;19:608-19 pubmed 出版商
  520. Gu A, Zhang S, Wang Y, Xiong H, Curtis T, Wan Y. A critical role for transcription factor Smad4 in T cell function that is independent of transforming growth factor β receptor signaling. Immunity. 2015;42:68-79 pubmed 出版商
  521. Erdos B, Backes I, McCowan M, Hayward L, Scheuer D. Brain-derived neurotrophic factor modulates angiotensin signaling in the hypothalamus to increase blood pressure in rats. Am J Physiol Heart Circ Physiol. 2015;308:H612-22 pubmed 出版商
  522. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  523. Belman J, Bian R, Habtemichael E, Li D, Jurczak M, Alcazar Roman A, et al. Acetylation of TUG protein promotes the accumulation of GLUT4 glucose transporters in an insulin-responsive intracellular compartment. J Biol Chem. 2015;290:4447-63 pubmed 出版商
  524. Thomas Y, Peter M, Mechali F, Blanchard J, Coux O, Baldin V. Kizuna is a novel mitotic substrate for CDC25B phosphatase. Cell Cycle. 2014;13:3867-77 pubmed 出版商
  525. Satelli A, Mitra A, Brownlee Z, Xia X, Bellister S, Overman M, et al. Epithelial-mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clin Cancer Res. 2015;21:899-906 pubmed 出版商
  526. Krzeminski P, Sarasquete M, Misiewicz Krzeminska I, Corral R, Corchete L, Martín A, et al. Insights into epigenetic regulation of microRNA-155 expression in multiple myeloma. Biochim Biophys Acta. 2015;1849:353-66 pubmed 出版商
  527. Myklebust L, Van Damme P, Støve S, Dörfel M, Abboud A, Kalvik T, et al. Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects. Hum Mol Genet. 2015;24:1956-76 pubmed 出版商
  528. Gershony O, Pe er T, Noach Hirsh M, Elia N, Tzur A. Cytokinetic abscission is an acute G1 event. Cell Cycle. 2014;13:3436-41 pubmed 出版商
  529. Garbe J, Vrba L, Sputova K, Fuchs L, Novak P, Brothman A, et al. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations. Cell Cycle. 2014;13:3423-35 pubmed 出版商
  530. Saint Léger A, Koelblen M, Civitelli L, Bah A, Djerbi N, Giraud Panis M, et al. The basic N-terminal domain of TRF2 limits recombination endonuclease action at human telomeres. Cell Cycle. 2014;13:2469-74 pubmed 出版商
  531. Dong X, Lin Q, Aihara A, Li Y, Huang C, Chung W, et al. Aspartate β-Hydroxylase expression promotes a malignant pancreatic cellular phenotype. Oncotarget. 2015;6:1231-48 pubmed
  532. Cao M, Milosevic I, Giovedi S, De Camilli P. Upregulation of Parkin in endophilin mutant mice. J Neurosci. 2014;34:16544-9 pubmed 出版商
  533. Kuo P, Huang C, Lee C, Chang H, Hsieh S, Chung Y, et al. BCAS2 promotes prostate cancer cells proliferation by enhancing AR mRNA transcription and protein stability. Br J Cancer. 2015;112:391-402 pubmed 出版商
  534. Kitai Y, Takeuchi O, Kawasaki T, Ori D, Sueyoshi T, Murase M, et al. Negative regulation of melanoma differentiation-associated gene 5 (MDA5)-dependent antiviral innate immune responses by Arf-like protein 5B. J Biol Chem. 2015;290:1269-80 pubmed 出版商
  535. Kim H, Jung G. Reactive oxygen species increase HEPN1 expression via activation of the XBP1 transcription factor. FEBS Lett. 2014;588:4413-21 pubmed 出版商
  536. Ma B, Chen Y, Chen L, Cheng H, Mu C, Li J, et al. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol. 2015;17:95-103 pubmed 出版商
  537. Zhao H, Xie C, Lin X, Zhao Y, Han Y, Fan C, et al. Coexpression of IQ-domain GTPase-activating protein 1 (IQGAP1) and Dishevelled (Dvl) is correlated with poor prognosis in non-small cell lung cancer. PLoS ONE. 2014;9:e113713 pubmed 出版商
  538. Pastuszka M, Okamoto C, Hamm Alvarez S, MacKay J. Flipping the Switch on Clathrin-Mediated Endocytosis using Thermally Responsive Protein Microdomains. Adv Funct Mater. 2014;24:5340-5347 pubmed
  539. Guo L, Shen Y, Zhao X, Guo L, Yu Z, Wang D, et al. Curcumin combined with oxaliplatin effectively suppress colorectal carcinoma in vivo through inducing apoptosis. Phytother Res. 2015;29:357-65 pubmed 出版商
  540. Allepuz Fuster P, Martínez Fernández V, Garrido Godino A, Alonso Aguado S, Hanes S, Navarro F, et al. Rpb4/7 facilitates RNA polymerase II CTD dephosphorylation. Nucleic Acids Res. 2014;42:13674-88 pubmed
  541. Chen D, Wu C, Zhao S, Geng Q, Gao Y, Li X, et al. Three RNA binding proteins form a complex to promote differentiation of germline stem cell lineage in Drosophila. PLoS Genet. 2014;10:e1004797 pubmed 出版商
  542. Johnson Kerner B, Ahmad F, Diaz A, Greene J, Gray S, Samulski R, et al. Intermediate filament protein accumulation in motor neurons derived from giant axonal neuropathy iPSCs rescued by restoration of gigaxonin. Hum Mol Genet. 2015;24:1420-31 pubmed 出版商
  543. Chen J, Shin J, Zhao R, Phan L, Wang H, Xue Y, et al. CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 2014;5:5384 pubmed 出版商
  544. Legros P, Malapert A, Niinuma S, Bernard P, Vanoosthuyse V. RNA processing factors Swd2.2 and Sen1 antagonize RNA Pol III-dependent transcription and the localization of condensin at Pol III genes. PLoS Genet. 2014;10:e1004794 pubmed 出版商
  545. Korobko E, Kiselev S, Korobko I. Characterization of Rabaptin-5 γ isoform. Biochemistry (Mosc). 2014;79:856-64 pubmed 出版商
  546. Makowski S, Wang Z, Pomerantz J. A protease-independent function for SPPL3 in NFAT activation. Mol Cell Biol. 2015;35:451-67 pubmed 出版商
  547. Izawa D, Pines J. The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature. 2015;517:631-4 pubmed 出版商
  548. Khanna M, Mattie F, Browder K, Radyk M, Crilly S, Bakerink K, et al. Spectrin tetramer formation is not required for viable development in Drosophila. J Biol Chem. 2015;290:706-15 pubmed 出版商
  549. Kim M, Kim M, Lee M, Kim C, Lim D. The MST1/2-SAV1 complex of the Hippo pathway promotes ciliogenesis. Nat Commun. 2014;5:5370 pubmed 出版商
  550. Ho T, Zollinger D, Chang K, Xu M, Cooper E, Stankewich M, et al. A hierarchy of ankyrin-spectrin complexes clusters sodium channels at nodes of Ranvier. Nat Neurosci. 2014;17:1664-72 pubmed 出版商
  551. Kong S, Thiruppathi M, Qiu Q, Lin Z, Dong H, Chini E, et al. DBC1 is a suppressor of B cell activation by negatively regulating alternative NF-κB transcriptional activity. J Immunol. 2014;193:5515-24 pubmed 出版商
  552. Ambavaram M, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, et al. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun. 2014;5:5302 pubmed 出版商
  553. Kim H, Park J, Won H, Lee J, Kong G. CBX7 inhibits breast tumorigenicity through DKK-1-mediated suppression of the Wnt/β-catenin pathway. FASEB J. 2015;29:300-13 pubmed 出版商
  554. Ibrahem S, Al Ghamdi S, Baloch K, Muhammad B, Fadhil W, Jackson D, et al. STAT3 paradoxically stimulates β-catenin expression but inhibits β-catenin function. Int J Exp Pathol. 2014;95:392-400 pubmed 出版商
  555. Vanhoutteghem A, Messiaen S, Hervé F, Delhomme B, Moison D, Petit J, et al. The zinc-finger protein basonuclin 2 is required for proper mitotic arrest, prevention of premature meiotic initiation and meiotic progression in mouse male germ cells. Development. 2014;141:4298-310 pubmed 出版商
  556. Srinivasan S, Romagnoli M, Bohm A, Sonenshein G. N-glycosylation regulates ADAM8 processing and activation. J Biol Chem. 2014;289:33676-88 pubmed 出版商
  557. Zaru R, Edgar A, Hanauer A, Watts C. Structural and functional basis for p38-MK2-activated Rsk signaling in toll-like receptor-stimulated dendritic cells. Mol Cell Biol. 2015;35:132-40 pubmed 出版商
  558. Kachaner D, Pinson X, El Kadhi K, Normandin K, Talje L, Lavoie H, et al. Interdomain allosteric regulation of Polo kinase by Aurora B and Map205 is required for cytokinesis. J Cell Biol. 2014;207:201-11 pubmed 出版商
  559. Uehara Y, Inoue M, Fukuda K, Yamakoshi H, Hosoi Y, Kanda H, et al. Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer. 2015;18:774-83 pubmed 出版商
  560. Zhang T, Baldie G, Periz G, Wang J. RNA-processing protein TDP-43 regulates FOXO-dependent protein quality control in stress response. PLoS Genet. 2014;10:e1004693 pubmed 出版商
  561. Wang D, Zhang P, Gao K, Tang Y, Jin X, Zhang Y, et al. PLK1 and β-TrCP-dependent ubiquitination and degradation of Rap1GAP controls cell proliferation. PLoS ONE. 2014;9:e110296 pubmed 出版商
  562. Shinojima N, Nakamura H, Tasaki M, Kameno K, Anai S, Iyama K, et al. A patient with medulloblastoma in its early developmental stage. J Neurosurg Pediatr. 2014;14:615-20 pubmed 出版商
  563. Ding Y, Dellisanti C, Ko M, Czajkowski C, Puglielli L. The endoplasmic reticulum-based acetyltransferases, ATase1 and ATase2, associate with the oligosaccharyltransferase to acetylate correctly folded polypeptides. J Biol Chem. 2014;289:32044-55 pubmed 出版商
  564. Zhou X, Hao Q, Zhang Q, Liao J, Ke J, Liao P, et al. Ribosomal proteins L11 and L5 activate TAp73 by overcoming MDM2 inhibition. Cell Death Differ. 2015;22:755-66 pubmed 出版商
  565. Pereira L, Pinto R, Silva D, Moreira A, Beitzinger C, Oliveira P, et al. Intracellular trafficking of AIP56, an NF-κB-cleaving toxin from Photobacterium damselae subsp. piscicida. Infect Immun. 2014;82:5270-85 pubmed 出版商
  566. Mukai R, Ohshima T. HTLV-1 bZIP factor suppresses the centromere protein B (CENP-B)-mediated trimethylation of histone H3K9 through the abrogation of DNA-binding ability of CENP-B. J Gen Virol. 2015;96:159-64 pubmed 出版商
  567. McGough I, Steinberg F, Gallon M, Yatsu A, Ohbayashi N, Heesom K, et al. Identification of molecular heterogeneity in SNX27-retromer-mediated endosome-to-plasma-membrane recycling. J Cell Sci. 2014;127:4940-53 pubmed 出版商
  568. Kosaka T, Fukui R, Matsui M, Kurosaka Y, Nishimura H, Tanabe M, et al. RAGE, receptor of advanced glycation endoproducts, negatively regulates chondrocytes differentiation. PLoS ONE. 2014;9:e108819 pubmed 出版商
  569. Charlaftis N, Suddason T, Wu X, Anwar S, Karin M, Gallagher E. The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J. 2014;33:2581-96 pubmed 出版商
  570. Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S, et al. β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ. 2015;22:298-310 pubmed 出版商
  571. Chang Y, Huang Y. Arsenite-activated JNK signaling enhances CPEB4-Vinexin interaction to facilitate stress granule assembly and cell survival. PLoS ONE. 2014;9:e107961 pubmed 出版商
  572. Shi Z, Shi F, Wang Y, Sheftel A, Nie G, Zhao Y, et al. Mitochondrial ferritin, a new target for inhibiting neuronal tumor cell proliferation. Cell Mol Life Sci. 2015;72:983-97 pubmed 出版商
  573. Tao L, Chen C, Song H, Piccioni M, Shi G, Li B. Deubiquitination and stabilization of IL-33 by USP21. Int J Clin Exp Pathol. 2014;7:4930-7 pubmed
  574. Kang Y, Ge Y, Cassidy R, Lam V, Luo L, Moon K, et al. A combined transgenic proteomic analysis and regulated trafficking of neuroligin-2. J Biol Chem. 2014;289:29350-64 pubmed 出版商
  575. Blin S, Chatelain F, Feliciangeli S, Kang D, Lesage F, Bichet D. Tandem pore domain halothane-inhibited K+ channel subunits THIK1 and THIK2 assemble and form active channels. J Biol Chem. 2014;289:28202-12 pubmed 出版商
  576. Liao Y, Lin T, Chen C, Lin S, Au L. The antileukemia activity of natural product HQ17(3) is possibly associated with downregulation of miR-17-92 cluster. Biomed Res Int. 2014;2014:306718 pubmed 出版商
  577. Wang W, Wu T, Kirschner M. The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. elife. 2014;3:e03083 pubmed 出版商
  578. Chai G, Zhou L, Manto M, Helmbacher F, Clotman F, Goffinet A, et al. Celsr3 is required in motor neurons to steer their axons in the hindlimb. Nat Neurosci. 2014;17:1171-9 pubmed 出版商
  579. Izumi H, Kaneko Y. Trim32 facilitates degradation of MYCN on spindle poles and induces asymmetric cell division in human neuroblastoma cells. Cancer Res. 2014;74:5620-30 pubmed 出版商
  580. Tsui H, Boersma M, Vella S, Kocaoglu O, Kuru E, Peceny J, et al. Pbp2x localizes separately from Pbp2b and other peptidoglycan synthesis proteins during later stages of cell division of Streptococcus pneumoniae?D39. Mol Microbiol. 2014;94:21-40 pubmed 出版商
  581. Vassilopoulos A, Tominaga Y, Kim H, Lahusen T, Li B, Yu H, et al. WEE1 murine deficiency induces hyper-activation of APC/C and results in genomic instability and carcinogenesis. Oncogene. 2015;34:3023-35 pubmed 出版商
  582. Wang M, Collins R. A lysine deacetylase Hos3 is targeted to the bud neck and involved in the spindle position checkpoint. Mol Biol Cell. 2014;25:2720-34 pubmed 出版商
  583. Safronova O, Nakahama K, Morita I. Acute hypoxia affects P-TEFb through HDAC3 and HEXIM1-dependent mechanism to promote gene-specific transcriptional repression. Nucleic Acids Res. 2014;42:8954-69 pubmed 出版商
  584. Simeone P, Trerotola M, Urbanella A, Lattanzio R, Ciavardelli D, Di Giuseppe F, et al. A unique four-hub protein cluster associates to glioblastoma progression. PLoS ONE. 2014;9:e103030 pubmed 出版商
  585. Ro S, Semple I, Park H, Park H, Park H, Kim M, et al. Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1. FEBS J. 2014;281:3816-27 pubmed 出版商
  586. Zhang P, Gao K, Tang Y, Jin X, An J, Yu H, et al. Destruction of DDIT3/CHOP protein by wild-type SPOP but not prostate cancer-associated mutants. Hum Mutat. 2014;35:1142-51 pubmed 出版商
  587. Costales M, Lopez F, García Inclán C, Fernandez S, Marcos C, Llorente J, et al. Establishment and characterization of an orthotopic sinonasal squamous cell carcinoma mouse model. Head Neck. 2015;37:1769-75 pubmed 出版商
  588. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the ?-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157-70 pubmed 出版商
  589. McEwen A, Maher M, Mo R, Gottardi C. E-cadherin phosphorylation occurs during its biosynthesis to promote its cell surface stability and adhesion. Mol Biol Cell. 2014;25:2365-74 pubmed 出版商
  590. Jefferson M, Donaszi Ivanov A, Pollen S, Dalmay T, Saalbach G, Powell P. Host factors that interact with the pestivirus N-terminal protease, Npro, are components of the ribonucleoprotein complex. J Virol. 2014;88:10340-53 pubmed 出版商
  591. Choi Y, Kim Y, Jeong H, Jin Y, Yeo C, Lee K. Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation. FEBS J. 2014;281:3656-66 pubmed 出版商
  592. Lim Y, Lee D, Kalichamy K, Hong S, Michalak M, Ahnn J, et al. Sumoylation regulates ER stress response by modulating calreticulin gene expression in XBP-1-dependent mode in Caenorhabditis elegans. Int J Biochem Cell Biol. 2014;53:399-408 pubmed 出版商
  593. Liu Q, Boudot A, Ni J, Hennessey T, Beauparlant S, Rajabi H, et al. Cyclin D1 and C/EBP? LAP1 operate in a common pathway to promote mammary epithelial cell differentiation. Mol Cell Biol. 2014;34:3168-79 pubmed 出版商
  594. Jia Z, Gao S, M Rabet N, De Geyter C, Zhang H. Sp1 is necessary for gene activation of Adamts17 by estrogen. J Cell Biochem. 2014;115:1829-39 pubmed 出版商
  595. Wu X, Wang Y, Wu Q, Cheng W, Liu W, Zhao Y, et al. HFE interacts with the BMP type I receptor ALK3 to regulate hepcidin expression. Blood. 2014;124:1335-43 pubmed 出版商
  596. Choubey V, Cagalinec M, Liiv J, Safiulina D, Hickey M, Kuum M, et al. BECN1 is involved in the initiation of mitophagy: it facilitates PARK2 translocation to mitochondria. Autophagy. 2014;10:1105-19 pubmed 出版商
  597. Thomas R, Andrews L, Burman J, Lin W, Pallanck L. PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet. 2014;10:e1004279 pubmed 出版商
  598. Popow J, Jurkin J, Schleiffer A, Martinez J. Analysis of orthologous groups reveals archease and DDX1 as tRNA splicing factors. Nature. 2014;511:104-7 pubmed 出版商
  599. Kosicek M, Wunderlich P, Walter J, Hecimovic S. GGA1 overexpression attenuates amyloidogenic processing of the amyloid precursor protein in Niemann-Pick type C cells. Biochem Biophys Res Commun. 2014;450:160-5 pubmed 出版商
  600. Warring S, Dou Z, Carruthers V, McFadden G, van Dooren G. Characterization of the chloroquine resistance transporter homologue in Toxoplasma gondii. Eukaryot Cell. 2014;13:1360-70 pubmed 出版商
  601. Pante N, Fahrenkrog B. Exploring nuclear pore complex molecular architecture by immuno-electron microscopy using Xenopus oocytes. Methods Cell Biol. 2014;122:81-98 pubmed 出版商
  602. Trakhtenberg E, Wang Y, Morkin M, Fernandez S, Mlacker G, Shechter J, et al. Regulating Set-?'s Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration. J Neurosci. 2014;34:7361-74 pubmed 出版商
  603. Zhang Q, Yang Z, Wang W, Guo T, Jia Z, Ma K, et al. A positive feedback regulation of ISL-1 in DLBCL but not in pancreatic ?-cells. Biochem Biophys Res Commun. 2014;449:295-300 pubmed 出版商
  604. Aydin I, Melamed R, Adams S, Castillo Martin M, Demir A, Bryk D, et al. FBXW7 mutations in melanoma and a new therapeutic paradigm. J Natl Cancer Inst. 2014;106:dju107 pubmed 出版商
  605. Warren C, Griffin L, Little A, Huang I, Farzan M, Pyeon D. The antiviral restriction factors IFITM1, 2 and 3 do not inhibit infection of human papillomavirus, cytomegalovirus and adenovirus. PLoS ONE. 2014;9:e96579 pubmed 出版商
  606. Hans F, Fiesel F, Strong J, J ckel S, Rasse T, Geisler S, et al. UBE2E ubiquitin-conjugating enzymes and ubiquitin isopeptidase Y regulate TDP-43 protein ubiquitination. J Biol Chem. 2014;289:19164-79 pubmed 出版商
  607. Barrios A, Gómez A, Sáez J, Ciossani G, Toffolo E, Battaglioli E, et al. Differential properties of transcriptional complexes formed by the CoREST family. Mol Cell Biol. 2014;34:2760-70 pubmed
  608. Vargas A, Zhou S, Ethier Chiasson M, Flipo D, Lafond J, Gilbert C, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;28:3703-19 pubmed 出版商
  609. van de Weijer M, Bassik M, Luteijn R, Voorburg C, Lohuis M, Kremmer E, et al. A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation. Nat Commun. 2014;5:3832 pubmed 出版商
  610. Jeong H, Lee S, Yum J, Yeo C, Lee K. Smurf2 regulates the degradation of YY1. Biochim Biophys Acta. 2014;1843:2005-11 pubmed 出版商
  611. Rios Esteves J, Haugen B, Resh M. Identification of key residues and regions important for porcupine-mediated Wnt acylation. J Biol Chem. 2014;289:17009-19 pubmed 出版商
  612. Jacob A, Singh R, Mohammad F, Bebee T, Chandler D. The splicing factor FUBP1 is required for the efficient splicing of oncogene MDM2 pre-mRNA. J Biol Chem. 2014;289:17350-64 pubmed 出版商
  613. Okada N, Toda T, Yamamoto M, Sato M. CDK-dependent phosphorylation of Alp7-Alp14 (TACC-TOG) promotes its nuclear accumulation and spindle microtubule assembly. Mol Biol Cell. 2014;25:1969-82 pubmed 出版商
  614. Van Der Meer R, Song H, Park S, Abdulkadir S, Roh M. RNAi screen identifies a synthetic lethal interaction between PIM1 overexpression and PLK1 inhibition. Clin Cancer Res. 2014;20:3211-21 pubmed 出版商
  615. Lin Q, Aihara A, Chung W, Li Y, Chen X, Huang Z, et al. LRH1 promotes pancreatic cancer metastasis. Cancer Lett. 2014;350:15-24 pubmed 出版商
  616. Asangani I, Dommeti V, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510:278-82 pubmed 出版商
  617. Guilgur L, Prudêncio P, Sobral D, Liszeková D, Rosa A, Martinho R. Requirement for highly efficient pre-mRNA splicing during Drosophila early embryonic development. elife. 2014;3:e02181 pubmed 出版商
  618. Kumar V, Palermo R, Talora C, Campese A, Checquolo S, Bellavia D, et al. Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia. 2014;28:2324-35 pubmed 出版商
  619. Gad H, Koolmeister T, Jemth A, Eshtad S, Jacques S, Ström C, et al. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature. 2014;508:215-21 pubmed 出版商
  620. Liu Y, Tsai I, Morleo M, Oh E, Leitch C, Massa F, et al. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators. J Clin Invest. 2014;124:2059-70 pubmed
  621. Hashimoto Y, Shirane M, Matsuzaki F, Saita S, Ohnishi T, Nakayama K. Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia. J Biol Chem. 2014;289:12946-61 pubmed 出版商
  622. Lee J, Hong W, Majeti R, Stearns T. Centrosome-kinase fusions promote oncogenic signaling and disrupt centrosome function in myeloproliferative neoplasms. PLoS ONE. 2014;9:e92641 pubmed 出版商
  623. Kitagawa M, Fung S, Hameed U, Goto H, Inagaki M, Lee S. Cdk1 coordinates timely activation of MKlp2 kinesin with relocation of the chromosome passenger complex for cytokinesis. Cell Rep. 2014;7:166-79 pubmed 出版商
  624. Li J, Bai X, Zou Y, Hao Y, Xu X. Aberration of the Wnt signaling pathway in pulmonary fatal adenocarcinoma: a case report. Chin J Cancer Res. 2014;26:E13-6 pubmed 出版商
  625. Beck J, Chen A, Kim E, Bradley P. RON5 is critical for organization and function of the Toxoplasma moving junction complex. PLoS Pathog. 2014;10:e1004025 pubmed 出版商
  626. Wang R, Wang Y, Gao Z, Qu X. The comparative study of acetyl-11-keto-beta-boswellic acid (AKBA) and aspirin in the prevention of intestinal adenomatous polyposis in APC(Min/+) mice. Drug Discov Ther. 2014;8:25-32 pubmed
  627. Fayyadkazan M, Tate J, Vierendeels F, Cooper T, Dubois E, Georis I. Components of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive regulation of the yeast GATA factors. Microbiologyopen. 2014;3:271-87 pubmed 出版商
  628. Vannoy C, Xu L, Keramaris E, Lu P, Xiao X, Lu Q. Adeno-associated virus-mediated overexpression of LARGE rescues ?-dystroglycan function in dystrophic mice with mutations in the fukutin-related protein. Hum Gene Ther Methods. 2014;25:187-96 pubmed 出版商
  629. Hoss A, Kartha V, Dong X, Latourelle J, Dumitriu A, Hadzi T, et al. MicroRNAs located in the Hox gene clusters are implicated in huntington's disease pathogenesis. PLoS Genet. 2014;10:e1004188 pubmed 出版商
  630. Namadurai S, Balasuriya D, Rajappa R, Wiemhöfer M, Stott K, Klingauf J, et al. Crystal structure and molecular imaging of the Nav channel ?3 subunit indicates a trimeric assembly. J Biol Chem. 2014;289:10797-811 pubmed 出版商
  631. Liman J, Deeg S, Voigt A, Vo feldt H, Dohm C, Karch A, et al. CDK5 protects from caspase-induced Ataxin-3 cleavage and neurodegeneration. J Neurochem. 2014;129:1013-23 pubmed 出版商
  632. Nakajima W, Hicks M, Tanaka N, Krystal G, Harada H. Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Cell Death Dis. 2014;5:e1052 pubmed 出版商
  633. Lee K, Seo J, Shin J, Ji E, Roh J, Kim J, et al. Positive feedback loop between Sox2 and Sox6 inhibits neuronal differentiation in the developing central nervous system. Proc Natl Acad Sci U S A. 2014;111:2794-9 pubmed 出版商
  634. Guegan J, Ezan F, Gailhouste L, Langouet S, Baffet G. MEK1/2 overactivation can promote growth arrest by mediating ERK1/2-dependent phosphorylation of p70S6K. J Cell Physiol. 2014;229:903-15 pubmed 出版商
  635. Kilander M, Petersen J, Andressen K, Ganji R, Levy F, Schuster J, et al. Disheveled regulates precoupling of heterotrimeric G proteins to Frizzled 6. FASEB J. 2014;28:2293-305 pubmed 出版商
  636. Miyazawa N, Yoshikawa H, Magae S, Ishikawa H, Izumikawa K, Terukina G, et al. Human cell growth regulator Ly-1 antibody reactive homologue accelerates processing of preribosomal RNA. Genes Cells. 2014;19:273-86 pubmed 出版商
  637. Wu D, Asiedu M, Matsumura F, Wei Q. Phosphorylation of myosin II-interacting guanine nucleotide exchange factor (MyoGEF) at threonine 544 by aurora B kinase promotes the binding of polo-like kinase 1 to MyoGEF. J Biol Chem. 2014;289:7142-50 pubmed 出版商
  638. Facciuto F, Bugnon Valdano M, Marziali F, Massimi P, Banks L, Cavatorta A, et al. Human papillomavirus (HPV)-18 E6 oncoprotein interferes with the epithelial cell polarity Par3 protein. Mol Oncol. 2014;8:533-43 pubmed 出版商
  639. Wilkars W, Wollberg J, Mohr E, Han M, Chetkovich D, Bähring R, et al. Nedd4-2 regulates surface expression and may affect N-glycosylation of hyperpolarization-activated cyclic nucleotide-gated (HCN)-1 channels. FASEB J. 2014;28:2177-90 pubmed 出版商
  640. Chiang Y, Wang K, Fazli L, Qi R, Gleave M, Collins C, et al. GATA2 as a potential metastasis-driving gene in prostate cancer. Oncotarget. 2014;5:451-61 pubmed
  641. Wang C, Wang J, Liu Z, Ma X, Wang X, Jin H, et al. Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis. 2014;35:1500-9 pubmed 出版商
  642. Gericota B, Anderson J, Mitchell G, Borjesson D, Sturges B, Nolta J, et al. Canine epidermal neural crest stem cells: characterization and potential as therapy candidate for a large animal model of spinal cord injury. Stem Cells Transl Med. 2014;3:334-45 pubmed 出版商
  643. Salvi M, Raiborg C, Hanson P, Campsteijn C, Stenmark H, Pinna L. CK2 involvement in ESCRT-III complex phosphorylation. Arch Biochem Biophys. 2014;545:83-91 pubmed 出版商
  644. Laget S, Miotto B, Chin H, Esteve P, Roberts R, Pradhan S, et al. MBD4 cooperates with DNMT1 to mediate methyl-DNA repression and protects mammalian cells from oxidative stress. Epigenetics. 2014;9:546-56 pubmed 出版商
  645. Cheng Y, Holloway M, Nguyen K, McCauley D, Landesman Y, Kauffman M, et al. XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple-negative breast cancer. Mol Cancer Ther. 2014;13:675-86 pubmed 出版商
  646. Nagy P, Kárpáti M, Varga A, Pircs K, Venkei Z, Takáts S, et al. Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila. Autophagy. 2014;10:453-67 pubmed 出版商
  647. Honarpour N, Rose C, Brumbaugh J, Anderson J, Graham R, Sweredoski M, et al. F-box protein FBXL16 binds PP2A-B55? and regulates differentiation of embryonic stem cells along the FLK1+ lineage. Mol Cell Proteomics. 2014;13:780-91 pubmed 出版商
  648. D Anselmi F, Masiello M, Cucina A, Proietti S, Dinicola S, Pasqualato A, et al. Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines. PLoS ONE. 2013;8:e83770 pubmed 出版商
  649. Amable L, Gavin E, Kudo K, Meng E, Rocconi R, Shevde L, et al. GLI1 upregulates C-JUN through a specific 130-kDa isoform. Int J Oncol. 2014;44:655-61 pubmed 出版商
  650. Qi M, Zhang J, Zeng W, Chen X. DNAJB1 stabilizes MDM2 and contributes to cancer cell proliferation in a p53-dependent manner. Biochim Biophys Acta. 2014;1839:62-9 pubmed 出版商
  651. Zhang W, Ji W, Liu X, Ouyang G, Xiao W. ELL inhibits E2F1 transcriptional activity by enhancing E2F1 deacetylation via recruitment of histone deacetylase 1. Mol Cell Biol. 2014;34:765-75 pubmed 出版商
  652. Liu F, Wang X, Hu G, Wang Y, Zhou J. The transcription factor TEAD1 represses smooth muscle-specific gene expression by abolishing myocardin function. J Biol Chem. 2014;289:3308-16 pubmed 出版商
  653. Andresen C, Smedegaard S, Sylvestersen K, Svensson C, Iglesias Gato D, Cazzamali G, et al. Protein interaction screening for the ankyrin repeats and suppressor of cytokine signaling (SOCS) box (ASB) family identify Asb11 as a novel endoplasmic reticulum resident ubiquitin ligase. J Biol Chem. 2014;289:2043-54 pubmed 出版商
  654. Li A, Jiao Y, Yong K, Wang F, Gao C, Yan B, et al. SALL4 is a new target in endometrial cancer. Oncogene. 2015;34:63-72 pubmed 出版商
  655. Wu K, Chen K, Wang C, Jiao X, Wang L, Zhou J, et al. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation. Cancer Res. 2014;74:829-39 pubmed 出版商
  656. Fujikawa M, Ohsakaya S, Sugawara K, Yoshida M. Population of ATP synthase molecules in mitochondria is limited by available 6.8-kDa proteolipid protein (MLQ). Genes Cells. 2014;19:153-60 pubmed 出版商
  657. Brookheart R, Lee C, Espenshade P. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis. J Biol Chem. 2014;289:2725-35 pubmed 出版商
  658. Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, et al. Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-? signaling. J Biol Chem. 2014;289:2072-83 pubmed 出版商
  659. Kusunoki S, Ishimi Y. Interaction of human minichromosome maintenance protein-binding protein with minichromosome maintenance 2-7. FEBS J. 2014;281:1057-67 pubmed 出版商
  660. Sisinni L, Maddalena F, Lettini G, Condelli V, Matassa D, Esposito F, et al. TRAP1 role in endoplasmic reticulum stress protection favors resistance to anthracyclins in breast carcinoma cells. Int J Oncol. 2014;44:573-82 pubmed 出版商
  661. Kriz V, Pospichalova V, Masek J, Kilander M, Slavík J, Tanneberger K, et al. ?-arrestin promotes Wnt-induced low density lipoprotein receptor-related protein 6 (Lrp6) phosphorylation via increased membrane recruitment of Amer1 protein. J Biol Chem. 2014;289:1128-41 pubmed 出版商
  662. Han J, Rho S, Lee J, Bae J, Park S, Lee S, et al. Human cytomegalovirus (HCMV) US2 protein interacts with human CD1d (hCD1d) and down-regulates invariant NKT (iNKT) cell activity. Mol Cells. 2013;36:455-64 pubmed 出版商
  663. Cridge A, Visweswaraiah J, Ramesh R, Sattlegger E. Semi-quantitative colony immunoassay for determining and optimizing protein expression in Saccharomyces cerevisiae and Escherichia coli. Anal Biochem. 2014;447:82-9 pubmed 出版商
  664. Pang C, Toh S, He P, Teissier S, Ben Khalifa Y, Xue Y, et al. A functional interaction of E7 with B-Myb-MuvB complex promotes acute cooperative transcriptional activation of both S- and M-phase genes. (129 c). Oncogene. 2014;33:4039-49 pubmed 出版商
  665. Liu H, Zhang W, Jia Y, Yu Q, Grau G, Peng L, et al. Single-cell clones of liver cancer stem cells have the potential of differentiating into different types of tumor cells. Cell Death Dis. 2013;4:e857 pubmed 出版商
  666. DeGennaro C, Alver B, Marguerat S, Stepanova E, Davis C, Bähler J, et al. Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast. Mol Cell Biol. 2013;33:4779-92 pubmed 出版商
  667. Li T, Lu H, Shen C, Lahiri S, Wason M, Mukherjee D, et al. Identification of epithelial stromal interaction 1 as a novel effector downstream of Krüppel-like factor 8 in breast cancer invasion and metastasis. Oncogene. 2014;33:4746-55 pubmed 出版商
  668. de Kreuk B, Schaefer A, Anthony E, Tol S, Fernandez Borja M, Geerts D, et al. The human minor histocompatibility antigen 1 is a RhoGAP. PLoS ONE. 2013;8:e73962 pubmed 出版商
  669. Shain A, Salari K, Giacomini C, Pollack J. Integrative genomic and functional profiling of the pancreatic cancer genome. BMC Genomics. 2013;14:624 pubmed 出版商
  670. Verma S, Cai Q, Kreider E, Lu J, Robertson E. Comprehensive analysis of LANA interacting proteins essential for viral genome tethering and persistence. PLoS ONE. 2013;8:e74662 pubmed 出版商
  671. Simone L, Caplan S, Naslavsky N. Role of phosphatidylinositol 4,5-bisphosphate in regulating EHD2 plasma membrane localization. PLoS ONE. 2013;8:e74519 pubmed 出版商
  672. Florea V, Bhagavatula N, Simovic G, Macedo F, Fock R, Rodrigues C. c-Myc is essential to prevent endothelial pro-inflammatory senescent phenotype. PLoS ONE. 2013;8:e73146 pubmed 出版商
  673. Yin F, Li G, Bai C, Liu Y, Wei Z, Liang C, et al. SGO1 maintains bovine meiotic and mitotic centromeric cohesions of sister chromatids and directly affects embryo development. PLoS ONE. 2013;8:e73636 pubmed 出版商
  674. Lee I, Yun J, Finkel T. The emerging links between sirtuins and autophagy. Methods Mol Biol. 2013;1077:259-71 pubmed 出版商
  675. Zhang Y, Raghuwanshi R, Shen W, Montell C. Food experience-induced taste desensitization modulated by the Drosophila TRPL channel. Nat Neurosci. 2013;16:1468-76 pubmed 出版商
  676. Okuda J, Niizuma S, Shioi T, Kato T, Inuzuka Y, Kawashima T, et al. Persistent overexpression of phosphoglycerate mutase, a glycolytic enzyme, modifies energy metabolism and reduces stress resistance of heart in mice. PLoS ONE. 2013;8:e72173 pubmed 出版商
  677. Man Y, DiCara D, Chan N, Vessillier S, Mather S, Rowe M, et al. Structural guided scaffold phage display libraries as a source of bio-therapeutics. PLoS ONE. 2013;8:e70452 pubmed 出版商
  678. Li Y, Takahashi M, Stork P. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation. J Biol Chem. 2013;288:27646-57 pubmed 出版商
  679. Ren J, Jin F, Yu Z, Zhao L, Wang L, Bai X, et al. MYC overexpression and poor prognosis in sporadic breast cancer with BRCA1 deficiency. Tumour Biol. 2013;34:3945-58 pubmed 出版商
  680. Balasuriya D, Goetze T, Barrera N, Stewart A, Suzuki Y, Edwardson J. ?-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors adopt different subunit arrangements. J Biol Chem. 2013;288:21987-98 pubmed 出版商
  681. Kitagawa M, Fung S, Onishi N, Saya H, Lee S. Targeting Aurora B to the equatorial cortex by MKlp2 is required for cytokinesis. PLoS ONE. 2013;8:e64826 pubmed 出版商
  682. Chandra S, Priyadarshini R, Madhavan V, Tikoo S, Hussain M, Mudgal R, et al. Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation. J Cell Sci. 2013;126:3782-95 pubmed 出版商
  683. Chen Y, Lee L, Chao Y, Chang J, Lu Y, Li H, et al. DSG3 facilitates cancer cell growth and invasion through the DSG3-plakoglobin-TCF/LEF-Myc/cyclin D1/MMP signaling pathway. PLoS ONE. 2013;8:e64088 pubmed 出版商
  684. Schofield A, Gamell C, Bernard O. Tubulin polymerization promoting protein 1 (TPPP1) increases ?-catenin expression through inhibition of HDAC6 activity in U2OS osteosarcoma cells. Biochem Biophys Res Commun. 2013;436:571-7 pubmed 出版商
  685. Wei Q, Li J, Liu T, Tong X, Ye X. Phosphorylation of minichromosome maintenance protein 7 (MCM7) by cyclin/cyclin-dependent kinase affects its function in cell cycle regulation. J Biol Chem. 2013;288:19715-25 pubmed 出版商
  686. Hong F, Liu B, Chiosis G, Gewirth D, Li Z. ?7 helix region of ?I domain is crucial for integrin binding to endoplasmic reticulum chaperone gp96: a potential therapeutic target for cancer metastasis. J Biol Chem. 2013;288:18243-8 pubmed 出版商
  687. An C, Ganio E, Hagiwara N. Trip12, a HECT domain E3 ubiquitin ligase, targets Sox6 for proteasomal degradation and affects fiber type-specific gene expression in muscle cells. Skelet Muscle. 2013;3:11 pubmed 出版商
  688. Gal J, Chen J, Barnett K, Yang L, Brumley E, Zhu H. HDAC6 regulates mutant SOD1 aggregation through two SMIR motifs and tubulin acetylation. J Biol Chem. 2013;288:15035-45 pubmed 出版商
  689. Shevchuk Z, Yurchenko M, Darekar S, Holodnuka Kholodnyuk I, Kashuba V, Kashuba E. Overexpression of MRPS18-2 in Cancer Cell Lines Results in Appearance of Multinucleated Cells. Acta Naturae. 2013;5:85-9 pubmed
  690. Pereira C, Leal M, de Souza C, Montenegro R, Rey J, Carvalho A, et al. Prognostic and predictive significance of MYC and KRAS alterations in breast cancer from women treated with neoadjuvant chemotherapy. PLoS ONE. 2013;8:e60576 pubmed 出版商
  691. Wu S, Zhu W, Nhan T, Toth J, Petroski M, Wolf D. CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire. Nat Commun. 2013;4:1642 pubmed 出版商
  692. Ritchie B, Smolski W, Montgomery E, Fisher E, Choi T, Olson C, et al. Determinants at the N- and C-termini of G?12 required for activation of Rho-mediated signaling. J Mol Signal. 2013;8:3 pubmed 出版商
  693. Pe er T, Lahmi R, Sharaby Y, Chorni E, Noach M, Vecsler M, et al. Gas2l3, a novel constriction site-associated protein whose regulation is mediated by the APC/C Cdh1 complex. PLoS ONE. 2013;8:e57532 pubmed 出版商
  694. Yamada H, Abe T, Satoh A, Okazaki N, Tago S, Kobayashi K, et al. Stabilization of actin bundles by a dynamin 1/cortactin ring complex is necessary for growth cone filopodia. J Neurosci. 2013;33:4514-26 pubmed 出版商
  695. Schael S, Nüchel J, Muller S, Petermann P, Kormann J, Pérez Otaño I, et al. Casein kinase 2 phosphorylation of protein kinase C and casein kinase 2 substrate in neurons (PACSIN) 1 protein regulates neuronal spine formation. J Biol Chem. 2013;288:9303-12 pubmed 出版商
  696. Mao R, Rubio V, Chen H, Bai L, Mansour O, Shi Z. OLA1 protects cells in heat shock by stabilizing HSP70. Cell Death Dis. 2013;4:e491 pubmed 出版商
  697. Taylor D, Moser R, Regulier E, Breuillaud L, Dixon M, Beesen A, et al. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci. 2013;33:2313-25 pubmed 出版商
  698. Li L, Yang G, Ren C, Tanimoto R, Hirayama T, Wang J, et al. Glioma pathogenesis-related protein 1 induces prostate cancer cell death through Hsc70-mediated suppression of AURKA and TPX2. Mol Oncol. 2013;7:484-96 pubmed 出版商
  699. Moreno Garcia M, Sommer K, Rincón Arano H, Brault M, Ninomiya Tsuji J, Matesic L, et al. Kinase-independent feedback of the TAK1/TAB1 complex on BCL10 turnover and NF-?B activation. Mol Cell Biol. 2013;33:1149-63 pubmed 出版商
  700. Newman A, Scholefield C, Kemp A, Newman M, McIver E, Kamal A, et al. TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signalling. PLoS ONE. 2012;7:e50672 pubmed 出版商
  701. Marban C, McCabe A, Bukong T, Hall W, Sheehy N. Interplay between the HTLV-2 Tax and APH-2 proteins in the regulation of the AP-1 pathway. Retrovirology. 2012;9:98 pubmed 出版商
  702. Alimova I, Birks D, Harris P, Knipstein J, Venkataraman S, Marquez V, et al. Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro Oncol. 2013;15:149-60 pubmed 出版商
  703. de Kreuk B, Anthony E, Geerts D, Hordijk P. The F-BAR protein PACSIN2 regulates epidermal growth factor receptor internalization. J Biol Chem. 2012;287:43438-53 pubmed 出版商
  704. Aivar P, Fernandez Orth J, Gomis Pèrez C, Alberdi A, Alaimo A, Rodriguez M, et al. Surface expression and subunit specific control of steady protein levels by the Kv7.2 helix A-B linker. PLoS ONE. 2012;7:e47263 pubmed 出版商
  705. Nixon A, Jia Y, White C, Bradbury N. Determination of the membrane topology of lemur tyrosine kinase 2 (LMTK2) by fluorescence protease protection. Am J Physiol Cell Physiol. 2013;304:C164-9 pubmed 出版商
  706. Lee J, Fischer J. Drosophila Tel2 is expressed as a translational fusion with EpsinR and is a regulator of wingless signaling. PLoS ONE. 2012;7:e46357 pubmed 出版商
  707. Konsavage W, Jin G, Yochum G. The Myc 3' Wnt-responsive element regulates homeostasis and regeneration in the mouse intestinal tract. Mol Cell Biol. 2012;32:3891-902 pubmed 出版商
  708. Prabowo A, Anink J, Lammens M, Nellist M, van den Ouweland A, Adle Biassette H, et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol. 2013;23:45-59 pubmed 出版商
  709. Samel A, Cuomo A, Bonaldi T, Ehrenhofer Murray A. Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation. Proc Natl Acad Sci U S A. 2012;109:9029-34 pubmed 出版商
  710. Nagata T, Shimada Y, Sekine S, Hori R, Matsui K, Okumura T, et al. Prognostic significance of NANOG and KLF4 for breast cancer. Breast Cancer. 2014;21:96-101 pubmed 出版商
  711. Novellino L, Rossi R, Bonino F, Cavallone D, Abrignani S, Pagani M, et al. Circulating hepatitis B surface antigen particles carry hepatocellular microRNAs. PLoS ONE. 2012;7:e31952 pubmed 出版商
  712. Xu S, Cheng F, Liang J, Wu W, Zhang J. Maternal xNorrin, a canonical Wnt signaling agonist and TGF-β antagonist, controls early neuroectoderm specification in Xenopus. PLoS Biol. 2012;10:e1001286 pubmed 出版商
  713. Giaginis C, Politi E, Alexandrou P, Sfiniadakis J, Kouraklis G, Theocharis S. Expression of peroxisome proliferator activated receptor-gamma (PPAR-?) in human non-small cell lung carcinoma: correlation with clinicopathological parameters, proliferation and apoptosis related molecules and patients' survival. Pathol Oncol Res. 2012;18:875-83 pubmed
  714. Wong J, Higgins M, Halliday G, Garner B. Amyloid beta selectively modulates neuronal TrkB alternative transcript expression with implications for Alzheimer's disease. Neuroscience. 2012;210:363-74 pubmed 出版商
  715. Huang Y, Chiang N, Hu C, Hsiao C, Cheng K, Tsai W, et al. Activation of myeloid cell-specific adhesion class G protein-coupled receptor EMR2 via ligation-induced translocation and interaction of receptor subunits in lipid raft microdomains. Mol Cell Biol. 2012;32:1408-20 pubmed 出版商
  716. White D, Rafalska Metcalf I, Ivanov A, Corsinotti A, Peng H, Lee S, et al. The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation. Mol Cancer Res. 2012;10:401-14 pubmed 出版商
  717. Lanham K, Prasch A, Weina K, Peterson R, Heideman W. A dominant negative zebrafish Ahr2 partially protects developing zebrafish from dioxin toxicity. PLoS ONE. 2011;6:e28020 pubmed 出版商
  718. Jung Y, Joo K, Seong D, Choi Y, Kong D, Kim Y, et al. Identification of prognostic biomarkers for glioblastomas using protein expression profiling. Int J Oncol. 2012;40:1122-32 pubmed 出版商
  719. Zhang H, Anderson A, Trowell S, Luo A, Xiang Z, Xia Q. Topological and functional characterization of an insect gustatory receptor. PLoS ONE. 2011;6:e24111 pubmed 出版商
  720. Haffner M, Chaux A, Meeker A, Esopi D, Gerber J, Pellakuru L, et al. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget. 2011;2:627-37 pubmed
  721. Ochiai K, Watanabe M, Ueki H, Huang P, Fujii Y, Nasu Y, et al. Tumor suppressor REIC/Dkk-3 interacts with the dynein light chain, Tctex-1. Biochem Biophys Res Commun. 2011;412:391-5 pubmed 出版商
  722. Challagundla K, Sun X, Zhang X, Devine T, Zhang Q, Sears R, et al. Ribosomal protein L11 recruits miR-24/miRISC to repress c-Myc expression in response to ribosomal stress. Mol Cell Biol. 2011;31:4007-21 pubmed 出版商
  723. Franco H, Casasnovas J, León R, Friesel R, Ge Y, Desnick R, et al. Nonsense mutations of the bHLH transcription factor TWIST2 found in Setleis Syndrome patients cause dysregulation of periostin. Int J Biochem Cell Biol. 2011;43:1523-31 pubmed 出版商
  724. Colombari D, Colombari E, Freiria Oliveira A, Antunes V, Yao S, Hindmarch C, et al. Switching control of sympathetic activity from forebrain to hindbrain in chronic dehydration. J Physiol. 2011;589:4457-71 pubmed 出版商
  725. Liu Z, Lin X, Cai Z, Zhang Z, Han C, Jia S, et al. Global identification of SMAD2 target genes reveals a role for multiple co-regulatory factors in zebrafish early gastrulas. J Biol Chem. 2011;286:28520-32 pubmed 出版商
  726. Liu D, Kadota K, Ueno M, Nakashima N, Yokomise H, Huang C. Adenoviral vector expressing short hairpin RNA targeting Wnt2B has an effective antitumour activity against Wnt2B2-overexpressing tumours. Eur J Cancer. 2012;48:1208-18 pubmed 出版商
  727. Schramm S, Fraune J, Naumann R, Hernández Hernández A, Hoog C, Cooke H, et al. A novel mouse synaptonemal complex protein is essential for loading of central element proteins, recombination, and fertility. PLoS Genet. 2011;7:e1002088 pubmed 出版商
  728. Yu J, Deshmukh H, Payton J, Dunham C, Scheithauer B, Tihan T, et al. Array-based comparative genomic hybridization identifies CDK4 and FOXM1 alterations as independent predictors of survival in malignant peripheral nerve sheath tumor. Clin Cancer Res. 2011;17:1924-34 pubmed 出版商
  729. Kanke M, Nishimura K, Kanemaki M, Kakimoto T, Takahashi T, Nakagawa T, et al. Auxin-inducible protein depletion system in fission yeast. BMC Cell Biol. 2011;12:8 pubmed 出版商
  730. Soler Lopez M, Zanzoni A, Lluís R, Stelzl U, Aloy P. Interactome mapping suggests new mechanistic details underlying Alzheimer's disease. Genome Res. 2011;21:364-76 pubmed 出版商
  731. Zanazzi G, Matthews G. Enrichment and differential targeting of complexins 3 and 4 in ribbon-containing sensory neurons during zebrafish development. Neural Dev. 2010;5:24 pubmed 出版商
  732. Göb E, Schmitt J, Benavente R, Alsheimer M. Mammalian sperm head formation involves different polarization of two novel LINC complexes. PLoS ONE. 2010;5:e12072 pubmed 出版商
  733. Hirata H, Hinoda Y, Nakajima K, Kawamoto K, Kikuno N, Ueno K, et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int J Cancer. 2011;128:1793-803 pubmed 出版商
  734. Dai M, Sun X, Lu H. Ribosomal protein L11 associates with c-Myc at 5 S rRNA and tRNA genes and regulates their expression. J Biol Chem. 2010;285:12587-94 pubmed 出版商
  735. Kanaan N, Goffin E, Pirson Y, Devuyst O, Hassoun Z. Carbohydrate antigen 19-9 as a diagnostic marker for hepatic cyst infection in autosomal dominant polycystic kidney disease. Am J Kidney Dis. 2010;55:916-22 pubmed 出版商
  736. Hiraike H, Wada Hiraike O, Nakagawa S, Koyama S, Miyamoto Y, Sone K, et al. Identification of DBC1 as a transcriptional repressor for BRCA1. Br J Cancer. 2010;102:1061-7 pubmed 出版商
  737. Koo B, Coe D, Dixon L, Somerville R, Nelson C, Wang L, et al. ADAMTS9 is a cell-autonomously acting, anti-angiogenic metalloprotease expressed by microvascular endothelial cells. Am J Pathol. 2010;176:1494-504 pubmed 出版商
  738. Lim K, Brady D, Kashatus D, Ancrile B, Der C, Cox A, et al. Aurora-A phosphorylates, activates, and relocalizes the small GTPase RalA. Mol Cell Biol. 2010;30:508-23 pubmed 出版商
  739. Rastegar M, Hotta A, Pasceri P, Makarem M, Cheung A, Elliott S, et al. MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy. PLoS ONE. 2009;4:e6810 pubmed 出版商
  740. Nakamura F, Ugajin K, Yamashita N, Okada T, Uchida Y, Taniguchi M, et al. Increased proximal bifurcation of CA1 pyramidal apical dendrites in sema3A mutant mice. J Comp Neurol. 2009;516:360-75 pubmed 出版商
  741. Koo B, Park M, Jeon O, Kim D. Regulatory mechanism of matrix metalloprotease-2 enzymatic activity by factor Xa and thrombin. J Biol Chem. 2009;284:23375-85 pubmed 出版商
  742. Nobile C, Nett J, Hernday A, Homann O, Deneault J, Nantel A, et al. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol. 2009;7:e1000133 pubmed 出版商
  743. Hood F, Royle S. Functional equivalence of the clathrin heavy chains CHC17 and CHC22 in endocytosis and mitosis. J Cell Sci. 2009;122:2185-90 pubmed 出版商
  744. Qian M, Cai D, Verhey K, Tsai B. A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog. 2009;5:e1000465 pubmed 出版商
  745. Yang L, Shen L, Shao Y, Zhao Q, Zhang W. Cytoplasmic domain of human Fcalpha/mu receptor is required for ligand internalization. Cell Immunol. 2009;258:78-82 pubmed 出版商
  746. Katzenellenbogen R, Vliet Gregg P, Xu M, Galloway D. NFX1-123 increases hTERT expression and telomerase activity posttranscriptionally in human papillomavirus type 16 E6 keratinocytes. J Virol. 2009;83:6446-56 pubmed 出版商
  747. Nayak A, Glöckner Pagel J, Vaeth M, Schumann J, Buttmann M, Bopp T, et al. Sumoylation of the transcription factor NFATc1 leads to its subnuclear relocalization and interleukin-2 repression by histone deacetylase. J Biol Chem. 2009;284:10935-46 pubmed 出版商
  748. Huot M, Brown C, Lamarche Vane N, Richard S. An adaptor role for cytoplasmic Sam68 in modulating Src activity during cell polarization. Mol Cell Biol. 2009;29:1933-43 pubmed 出版商
  749. Hasadsri L, Kreuter J, Hattori H, Iwasaki T, George J. Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. 2009;284:6972-81 pubmed 出版商
  750. Holthouse D, Dallas P, Ford J, Fabian V, Murch A, Watson M, et al. Classic and desmoplastic medulloblastoma: complete case reports and characterizations of two new cell lines. Neuropathology. 2009;29:398-409 pubmed 出版商
  751. Kong D, Song S, Kim D, Joo K, Yoo J, Koh J, et al. Prognostic significance of c-Met expression in glioblastomas. Cancer. 2009;115:140-8 pubmed 出版商
  752. Itahana K, Zhang Y. Mitochondrial p32 is a critical mediator of ARF-induced apoptosis. Cancer Cell. 2008;13:542-53 pubmed 出版商
  753. Chevalier Larsen E, Wallace K, Pennise C, Holzbaur E. Lysosomal proliferation and distal degeneration in motor neurons expressing the G59S mutation in the p150Glued subunit of dynactin. Hum Mol Genet. 2008;17:1946-55 pubmed 出版商
  754. Sakasai R, Tibbetts R. RNF8-dependent and RNF8-independent regulation of 53BP1 in response to DNA damage. J Biol Chem. 2008;283:13549-55 pubmed 出版商
  755. Itatsu K, Zen Y, Ohira S, Ishikawa A, Sato Y, Harada K, et al. Immunohistochemical analysis of the progression of flat and papillary preneoplastic lesions in intrahepatic cholangiocarcinogenesis in hepatolithiasis. Liver Int. 2007;27:1174-84 pubmed
  756. Sato T, Diehl T, Narayanan S, Funamoto S, Ihara Y, De Strooper B, et al. Active gamma-secretase complexes contain only one of each component. J Biol Chem. 2007;282:33985-93 pubmed
  757. Ito K, Ikebe M, Kashiyama T, Mogami T, Kon T, Yamamoto K. Kinetic mechanism of the fastest motor protein, Chara myosin. J Biol Chem. 2007;282:19534-45 pubmed
  758. De Nicola F, Bruno T, Iezzi S, Di Padova M, Floridi A, Passananti C, et al. The prolyl isomerase Pin1 affects Che-1 stability in response to apoptotic DNA damage. J Biol Chem. 2007;282:19685-91 pubmed
  759. Jones N, Hardy W, Friese M, Jorgensen C, Smith M, Woody N, et al. Analysis of a Shc family adaptor protein, ShcD/Shc4, that associates with muscle-specific kinase. Mol Cell Biol. 2007;27:4759-73 pubmed
  760. Koo B, Longpre J, Somerville R, Alexander J, Leduc R, Apte S. Regulation of ADAMTS9 secretion and enzymatic activity by its propeptide. J Biol Chem. 2007;282:16146-54 pubmed
  761. Arola A, Sanchez X, Murphy R, Hasle E, Li H, Elliott P, et al. Mutations in PDLIM3 and MYOZ1 encoding myocyte Z line proteins are infrequently found in idiopathic dilated cardiomyopathy. Mol Genet Metab. 2007;90:435-40 pubmed
  762. Wagner W, Fodor E, Ginsburg A, Hammer J. The binding of DYNLL2 to myosin Va requires alternatively spliced exon B and stabilizes a portion of the myosin's coiled-coil domain. Biochemistry. 2006;45:11564-77 pubmed
  763. Ratcliffe E, Setru S, Chen J, Li Z, D Autréaux F, Gershon M. Netrin/DCC-mediated attraction of vagal sensory axons to the fetal mouse gut. J Comp Neurol. 2006;498:567-80 pubmed
  764. Isono K, Nemoto K, Li Y, Takada Y, Suzuki R, Katsuki M, et al. Overlapping roles for homeodomain-interacting protein kinases hipk1 and hipk2 in the mediation of cell growth in response to morphogenetic and genotoxic signals. Mol Cell Biol. 2006;26:2758-71 pubmed
  765. O Donnell K, Yu D, Zeller K, Kim J, Racke F, Thomas Tikhonenko A, et al. Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol Cell Biol. 2006;26:2373-86 pubmed
  766. Kilianova Z, Basora N, Kilian P, Payet M, Gallo Payet N. Human melanocortin receptor 2 expression and functionality: effects of protein kinase A and protein kinase C on desensitization and internalization. Endocrinology. 2006;147:2325-37 pubmed
  767. Spence H, McGarry L, Chew C, Carragher N, Scott Carragher L, Yuan Z, et al. AP-1 differentially expressed proteins Krp1 and fibronectin cooperatively enhance Rho-ROCK-independent mesenchymal invasion by altering the function, localization, and activity of nondifferentially expressed proteins. Mol Cell Biol. 2006;26:1480-95 pubmed
  768. Iwata A, Riley B, Johnston J, Kopito R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem. 2005;280:40282-92 pubmed
  769. Beier C, Wischhusen J, Gleichmann M, Gerhardt E, Pekanovic A, Krueger A, et al. FasL (CD95L/APO-1L) resistance of neurons mediated by phosphatidylinositol 3-kinase-Akt/protein kinase B-dependent expression of lifeguard/neuronal membrane protein 35. J Neurosci. 2005;25:6765-74 pubmed
  770. Jansen S, Stefan C, Creemers J, Waelkens E, Van Eynde A, Stalmans W, et al. Proteolytic maturation and activation of autotaxin (NPP2), a secreted metastasis-enhancing lysophospholipase D. J Cell Sci. 2005;118:3081-9 pubmed
  771. O Donnell K, Wentzel E, Zeller K, Dang C, Mendell J. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839-43 pubmed
  772. Liewen H, Meinhold Heerlein I, Oliveira V, Schwarzenbacher R, Luo G, Wadle A, et al. Characterization of the human GARP (Golgi associated retrograde protein) complex. Exp Cell Res. 2005;306:24-34 pubmed
  773. Torres V, Ivie S, McClain M, Cover T. Functional properties of the p33 and p55 domains of the Helicobacter pylori vacuolating cytotoxin. J Biol Chem. 2005;280:21107-14 pubmed
  774. Goldstein A, Jan Y, Luo L. Function and regulation of Tumbleweed (RacGAP50C) in neuroblast proliferation and neuronal morphogenesis. Proc Natl Acad Sci U S A. 2005;102:3834-9 pubmed
  775. Ho T, Starnbach M. The Salmonella enterica serovar typhimurium-encoded type III secretion systems can translocate Chlamydia trachomatis proteins into the cytosol of host cells. Infect Immun. 2005;73:905-11 pubmed
  776. Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, et al. Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J. 2005;24:473-86 pubmed
  777. Silvotti L, Giannini G, Tirindelli R. The vomeronasal receptor V2R2 does not require escort molecules for expression in heterologous systems. Chem Senses. 2005;30:1-8 pubmed
  778. Zhang J, Wang Y, Zhou Y, Cao Z, Huang P, Lu B. Yeast two-hybrid screens imply that GGNBP1, GGNBP2 and OAZ3 are potential interaction partners of testicular germ cell-specific protein GGN1. FEBS Lett. 2005;579:559-66 pubmed
  779. Pyagay P, Heroult M, Wang Q, Lehnert W, Belden J, Liaw L, et al. Collagen triple helix repeat containing 1, a novel secreted protein in injured and diseased arteries, inhibits collagen expression and promotes cell migration. Circ Res. 2005;96:261-8 pubmed
  780. Sakamoto K, Chao W, Katsube K, Yamaguchi A. Distinct roles of EGF repeats for the Notch signaling system. Exp Cell Res. 2005;302:281-91 pubmed
  781. Cardinale A, Filesi I, Vetrugno V, Pocchiari M, Sy M, Biocca S. Trapping prion protein in the endoplasmic reticulum impairs PrPC maturation and prevents PrPSc accumulation. J Biol Chem. 2005;280:685-94 pubmed
  782. Lin H, Khosla M, Huang H, Hsu D, Michaelis C, Weeks G, et al. A homologue of Cdk8 is required for spore cell differentiation in Dictyostelium. Dev Biol. 2004;271:49-58 pubmed
  783. Chookajorn T, Kachroo A, Ripoll D, Clark A, Nasrallah J. Specificity determinants and diversification of the Brassica self-incompatibility pollen ligand. Proc Natl Acad Sci U S A. 2004;101:911-7 pubmed
  784. Davis M, Ireton R, Reynolds A. A core function for p120-catenin in cadherin turnover. J Cell Biol. 2003;163:525-34 pubmed
  785. Ludwig M, Vanek M, Guerini D, Gasser J, Jones C, Junker U, et al. Proton-sensing G-protein-coupled receptors. Nature. 2003;425:93-8 pubmed
  786. Ellermeier C, Slauch J. RtsA and RtsB coordinately regulate expression of the invasion and flagellar genes in Salmonella enterica serovar Typhimurium. J Bacteriol. 2003;185:5096-108 pubmed
  787. Liao W, Tang Y, Kuo Y, Liu B, Xu C, Giam C. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 transcriptional activator Rta is an oligomeric DNA-binding protein that interacts with tandem arrays of phased A/T-trinucleotide motifs. J Virol. 2003;77:9399-411 pubmed
  788. Javanbakht H, Halwani R, Cen S, Saadatmand J, Musier Forsyth K, Gottlinger H, et al. The interaction between HIV-1 Gag and human lysyl-tRNA synthetase during viral assembly. J Biol Chem. 2003;278:27644-51 pubmed
  789. Kefas B, Cai Y, Ling Z, Heimberg H, Hue L, Pipeleers D, et al. AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J Mol Endocrinol. 2003;30:151-61 pubmed
  790. Baumeister M, Martinu L, Rossman K, Sondek J, Lemmon M, Chou M. Loss of phosphatidylinositol 3-phosphate binding by the C-terminal Tiam-1 pleckstrin homology domain prevents in vivo Rac1 activation without affecting membrane targeting. J Biol Chem. 2003;278:11457-64 pubmed
  791. Baker Lepain J, Sarzotti M, Fields T, Li C, Nicchitta C. GRP94 (gp96) and GRP94 N-terminal geldanamycin binding domain elicit tissue nonrestricted tumor suppression. J Exp Med. 2002;196:1447-59 pubmed
  792. Selim A, El Ayat G, Wells C. Expression of c-erbB2, p53, Bcl-2, Bax, c-myc and Ki-67 in apocrine metaplasia and apocrine change within sclerosing adenosis of the breast. Virchows Arch. 2002;441:449-55 pubmed
  793. Hirsch J, Eslamizar L, Filanoski B, Malekzadeh N, Haugland R, Beechem J, et al. Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Anal Biochem. 2002;308:343-57 pubmed
  794. Spoerl Z, Stumpf M, Noegel A, Hasse A. Oligomerization, F-actin interaction, and membrane association of the ubiquitous mammalian coronin 3 are mediated by its carboxyl terminus. J Biol Chem. 2002;277:48858-67 pubmed
  795. Xu X, Shi Y, Gao W, Mao G, Zhao G, Agrawal S, et al. The novel presenilin-1-associated protein is a proapoptotic mitochondrial protein. J Biol Chem. 2002;277:48913-22 pubmed
  796. Hayes S, Chawla A, Corvera S. TGF beta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol. 2002;158:1239-49 pubmed
  797. Le Stunff H, Galve Roperh I, Peterson C, Milstien S, Spiegel S. Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. J Cell Biol. 2002;158:1039-49 pubmed
  798. Keleman K, Rajagopalan S, Cleppien D, Teis D, Paiha K, Huber L, et al. Comm sorts robo to control axon guidance at the Drosophila midline. Cell. 2002;110:415-27 pubmed
  799. Planey S, Derfoul A, Steplewski A, Robertson N, Litwack G. Inhibition of glucocorticoid-induced apoptosis in 697 pre-B lymphocytes by the mineralocorticoid receptor N-terminal domain. J Biol Chem. 2002;277:42188-96 pubmed
  800. Hernando N, Déliot N, Gisler S, Lederer E, Weinman E, Biber J, et al. PDZ-domain interactions and apical expression of type IIa Na/P(i) cotransporters. Proc Natl Acad Sci U S A. 2002;99:11957-62 pubmed
  801. Hitzl M, Striessnig J, Neuhuber B, Flucher B. A mutation in the beta interaction domain of the Ca(2+) channel alpha(1C) subunit reduces the affinity of the (+)-[(3)H]isradipine binding site. FEBS Lett. 2002;524:188-92 pubmed
  802. Kizaki T, Suzuki K, Hitomi Y, Taniguchi N, Saitoh D, Watanabe K, et al. Uncoupling protein 2 plays an important role in nitric oxide production of lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci U S A. 2002;99:9392-7 pubmed
  803. Shiokawa D, Kobayashi T, Tanuma S. Involvement of DNase gamma in apoptosis associated with myogenic differentiation of C2C12 cells. J Biol Chem. 2002;277:31031-7 pubmed
  804. Hyun D, Lee M, Hattori N, Kubo S, Mizuno Y, Halliwell B, et al. Effect of wild-type or mutant Parkin on oxidative damage, nitric oxide, antioxidant defenses, and the proteasome. J Biol Chem. 2002;277:28572-7 pubmed
  805. Cragg R, Christie G, Phillips S, Russi R, Kury S, Mathers J, et al. A novel zinc-regulated human zinc transporter, hZTL1, is localized to the enterocyte apical membrane. J Biol Chem. 2002;277:22789-97 pubmed
  806. Li B, Yen T. Characterization of the nuclear export signal of polypyrimidine tract-binding protein. J Biol Chem. 2002;277:10306-14 pubmed
  807. McCampbell A, Taye A, Whitty L, Penney E, Steffan J, Fischbeck K. Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc Natl Acad Sci U S A. 2001;98:15179-84 pubmed
  808. Piechocki M, Pilon S, Wei W. Quantitative measurement of anti-ErbB-2 antibody by flow cytometry and ELISA. J Immunol Methods. 2002;259:33-42 pubmed
  809. Lee H, Shin S, Choi C, Lee Y, Lee S. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem. 2002;277:5411-7 pubmed
  810. Murillas R, Simms K, Hatakeyama S, Weissman A, Kuehn M. Identification of developmentally expressed proteins that functionally interact with Nedd4 ubiquitin ligase. J Biol Chem. 2002;277:2897-907 pubmed
  811. Kitazume S, Tachida Y, Oka R, Shirotani K, Saido T, Hashimoto Y. Alzheimer's beta-secretase, beta-site amyloid precursor protein-cleaving enzyme, is responsible for cleavage secretion of a Golgi-resident sialyltransferase. Proc Natl Acad Sci U S A. 2001;98:13554-9 pubmed
  812. Thiebot H, Louache F, Vaslin B, de Revel T, Neildez O, Larghero J, et al. Early and persistent bone marrow hematopoiesis defect in simian/human immunodeficiency virus-infected macaques despite efficient reduction of viremia by highly active antiretroviral therapy during primary infection. J Virol. 2001;75:11594-602 pubmed
  813. Castoria G, Migliaccio A, Bilancio A, Di Domenico M, de Falco A, Lombardi M, et al. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J. 2001;20:6050-9 pubmed
  814. Fazi B, Cope M, Douangamath A, Ferracuti S, Schirwitz K, Zucconi A, et al. Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1: structural and functional analysis. J Biol Chem. 2002;277:5290-8 pubmed
  815. Park J, Bose A, Leszyk J, Czech M. PYK2 as a mediator of endothelin-1/G alpha 11 signaling to GLUT4 glucose transporters. J Biol Chem. 2001;276:47751-4 pubmed
  816. Brown F, Rozelle A, Yin H, Balla T, Donaldson J. Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol. 2001;154:1007-17 pubmed
  817. Hilairet S, Belanger C, Bertrand J, Laperriere A, Foord S, Bouvier M. Agonist-promoted internalization of a ternary complex between calcitonin receptor-like receptor, receptor activity-modifying protein 1 (RAMP1), and beta-arrestin. J Biol Chem. 2001;276:42182-90 pubmed
  818. Fukumoto T, Watanabe Fukunaga R, Fujisawa K, Nagata S, Fukunaga R. The fused protein kinase regulates Hedgehog-stimulated transcriptional activation in Drosophila Schneider 2 cells. J Biol Chem. 2001;276:38441-8 pubmed
  819. Banno Y, Takuwa Y, Akao Y, Okamoto H, Osawa Y, Naganawa T, et al. Involvement of phospholipase D in sphingosine 1-phosphate-induced activation of phosphatidylinositol 3-kinase and Akt in Chinese hamster ovary cells overexpressing EDG3. J Biol Chem. 2001;276:35622-8 pubmed
  820. Laferriere J, Houle F, Taher M, Valerie K, Huot J. Transendothelial migration of colon carcinoma cells requires expression of E-selectin by endothelial cells and activation of stress-activated protein kinase-2 (SAPK2/p38) in the tumor cells. J Biol Chem. 2001;276:33762-72 pubmed
  821. Klarlund J, Holik J, Chawla A, Park J, Buxton J, Czech M. Signaling complexes of the FERM domain-containing protein GRSP1 bound to ARF exchange factor GRP1. J Biol Chem. 2001;276:40065-70 pubmed
  822. Takahashi Y, Tanaka Y, Yamashita A, Koyanagi Y, Nakamura M, Yamamoto N. OX40 stimulation by gp34/OX40 ligand enhances productive human immunodeficiency virus type 1 infection. J Virol. 2001;75:6748-57 pubmed
  823. Kim S, Lee S, Park D. Leucine zipper-mediated homodimerization of the p21-activated kinase-interacting factor, beta Pix. Implication for a role in cytoskeletal reorganization. J Biol Chem. 2001;276:10581-4 pubmed
  824. Sato K, Sato M, Nakano A. Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the Golgi apparatus by coatomer. J Cell Biol. 2001;152:935-44 pubmed
  825. Chavand O, Spilsbury K, Rakoczy P. Addition of a c-myc epitope tag within the VEGF protein does not affect in vitro biological activity. Biochem Cell Biol. 2001;79:107-12 pubmed
  826. Bourgarel Rey V, El Khyari S, Rimet O, Bordas B, Guigal N, Braguer D, et al. Opposite effects of antimicrotubule agents on c-myc oncogene expression depending on the cell lines used. Eur J Cancer. 2000;36:1043-9 pubmed
  827. Lee J, Collins K, Brown A, Lee C, Chung J. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature. 2000;404:201-4 pubmed
  828. Cathomen T, Collete D, Weitzman M. A chimeric protein containing the N terminus of the adeno-associated virus Rep protein recognizes its target site in an in vivo assay. J Virol. 2000;74:2372-82 pubmed
  829. Huang E, Zhang J, Miska E, Guenther M, Kouzarides T, Lazar M. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev. 2000;14:45-54 pubmed
  830. de Caestecker M, Yahata T, Wang D, Parks W, Huang S, Hill C, et al. The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J Biol Chem. 2000;275:2115-22 pubmed
  831. Snow B, Betts L, Mangion J, Sondek J, Siderovski D. Fidelity of G protein beta-subunit association by the G protein gamma-subunit-like domains of RGS6, RGS7, and RGS11. Proc Natl Acad Sci U S A. 1999;96:6489-94 pubmed
  832. Utku N, Heinemann T, Tullius S, Bulwin G, Beinke S, Blumberg R, et al. Prevention of acute allograft rejection by antibody targeting of TIRC7, a novel T cell membrane protein. Immunity. 1998;9:509-18 pubmed
  833. Saginario C, Sterling H, Beckers C, Kobayashi R, Solimena M, Ullu E, et al. MFR, a putative receptor mediating the fusion of macrophages. Mol Cell Biol. 1998;18:6213-23 pubmed
  834. McCormick C, Leduc Y, Martindale D, Mattison K, Esford L, Dyer A, et al. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet. 1998;19:158-61 pubmed
  835. Cooper J, Schilling G, Peters M, Herring W, Sharp A, Kaminsky Z, et al. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum Mol Genet. 1998;7:783-90 pubmed
  836. Stone D, Hynes M, Armanini M, Swanson T, Gu Q, Johnson R, et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature. 1996;384:129-34 pubmed
  837. Evan G, Lewis G, Ramsay G, Bishop J. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985;5:3610-6 pubmed