这是一篇来自已证抗体库的有关人类 calbindin的综述,是根据150篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合calbindin 抗体。
calbindin 同义词: CALB; D-28K

艾博抗(上海)贸易有限公司
小鼠 单克隆(CB-955)
  • 免疫细胞化学; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 calbindin抗体(abcam, ab82812)被用于被用于免疫细胞化学在小鼠样本上 (图 6c). Int J Mol Sci (2018) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 st2
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 st2). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 大鼠; 1:30; 图 1b, 2b
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:30 (图 1b, 2b). Int J Mol Med (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Glia (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Neuron (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:2000; 图 1d
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1d). Nat Neurosci (2015) ncbi
Synaptic Systems
鸡 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
Synaptic Systems calbindin抗体(Synaptic Systems, 214006)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). PLoS Biol (2019) ncbi
小鼠 单克隆(351C10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3s2b
Synaptic Systems calbindin抗体(Synaptic Systems, 214011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3s2b). elife (2018) ncbi
豚鼠 多克隆(/)
  • 免疫组化-自由浮动切片; 人类; 1:250; 图 1
Synaptic Systems calbindin抗体(SYnaptic SYstems, 214004)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:250 (图 1). Sci Rep (2016) ncbi
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7
Synaptic Systems calbindin抗体(Synaptic Systems, 214 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7). J Comp Neurol (2016) ncbi
小鼠 单克隆(351C10)
  • 免疫组化; 小鼠; 1:5000; 图 2
Synaptic Systems calbindin抗体(Synaptic Systems, 214 011)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2). Hippocampus (2016) ncbi
小鼠 单克隆(351C10)
  • 免疫组化; 小鼠; 1:2000; 图 6
Synaptic Systems calbindin抗体(Synaptic Systems, 214011)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6). Front Cell Neurosci (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3k
圣克鲁斯生物技术 calbindin抗体(Santa, sc-365360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3k). J Comp Neurol (2020) ncbi
小鼠 单克隆(D-4)
  • 免疫组化-石蜡切片; 人类; 图 4f
圣克鲁斯生物技术 calbindin抗体(Santa Cruz, sc-365360)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4f). Int J Mol Med (2016) ncbi
武汉三鹰
小鼠 单克隆(1F8B9)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3c
武汉三鹰 calbindin抗体(Proteintech, 1F8B9)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3c). Life Sci (2018) ncbi
ImmunoStar
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3e
ImmunoStar calbindin抗体(Immunostar, 24427)被用于被用于免疫组化在小鼠样本上 (图 3e). J Neurosci (2018) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s1a
西格玛奥德里奇 calbindin抗体(Sigma, C7354)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s1a). J Clin Invest (2016) ncbi
SWant
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1c
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1c). Nat Commun (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 2a
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 2a). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3e
SWant calbindin抗体(Swant, CB38a)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3e). J Comp Neurol (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:5000; 图 2c
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2c). J Comp Neurol (2019) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 鸡; 1:1000; 图 2d
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在鸡样本上浓度为1:1000 (图 2d). elife (2019) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-石蜡切片; 大鼠; 1:5000; 图 5b, 8b, 11b
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:5000 (图 5b, 8b, 11b). J Comp Neurol (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; slender lungfish; 1:1000; 图 6h
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在slender lungfish样本上浓度为1:1000 (图 6h). J Comp Neurol (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 5c
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 5c). J Comp Neurol (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 5
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 5). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1500; 图 2s1k
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化在小鼠样本上浓度为1:1500 (图 2s1k). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:3000; 图 4g
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 4g). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 1a
SWant calbindin抗体(Swant, CB 38)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 1a). J Comp Neurol (2019) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 8f
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 8f). J Comp Neurol (2019) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; Polypterus senegalus; 图 8c
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在Polypterus senegalus样本上 (图 8c). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). Neuron (2018) ncbi
domestic rabbit 多克隆
SWant calbindin抗体(Swant, CB38a)被用于. Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2d
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 1a
SWant calbindin抗体(Swant, CB 38)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1a). J Comp Neurol (2019) ncbi
单克隆(300)
  • 免疫组化; 小鼠; 1:500; 图 s1a
SWant calbindin抗体(Swant, 07(F))被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1a). elife (2018) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; African green monkey; 1:10,000; 图 3e
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:10,000 (图 3e). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1b
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 3a
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 3a). J Comp Neurol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3a). Development (2017) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; Meriones shawi; 1:500; 表 1
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在Meriones shawi样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(CB300)
SWant calbindin抗体(Swant, 300)被用于. J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s4b
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s4b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3i
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3i). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫细胞化学; 人类; 1:1000; 图 st4
SWant calbindin抗体(Swant, 300)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 st4). Nat Biotechnol (2017) ncbi
小鼠 单克隆(CB300)
SWant calbindin抗体(SWANT, 300)被用于. J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图 8
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 8). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 表 1
SWant calbindin抗体(SWANT, CB38)被用于被用于免疫组化在小鼠样本上浓度为1:400 (表 1). Brain Struct Funct (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s2a
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s2a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1c
SWant calbindin抗体(Swant, CB382)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1c). Brain Struct Funct (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1e
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1e). Dev Biol (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 非洲爪蛙; 1:1000; 表 2
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在非洲爪蛙样本上浓度为1:1000 (表 2). J Comp Neurol (2017) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:4000; 图 2
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4000 (图 2). Mol Neurodegener (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; African green monkey; 图 4c
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在African green monkey样本上 (图 4c). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1e
SWant calbindin抗体(Swant, CB38a)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1e). Sci Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). Mol Vis (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫印迹; 大鼠; 图 7g
SWant calbindin抗体(Swant, 300)被用于被用于免疫印迹在大鼠样本上 (图 7g). ACS Nano (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 7
SWant calbindin抗体(Swant, CB-38)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7). J Mol Psychiatry (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2
SWant calbindin抗体(Swant, CB-38)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 3a
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 3a). Front Neurosci (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:100; 图 2
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s5B-1
SWant calbindin抗体(Swant, CB38)被用于被用于免疫细胞化学在小鼠样本上 (图 s5B-1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 7j
SWant calbindin抗体(Swant, Cb-38a)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 7j). Front Neuroanat (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 猪; 1:500; 图 5
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化在猪样本上浓度为1:500 (图 5). Mol Vis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:5000; 图 s1
SWant calbindin抗体(Swant Swiss antibodies, CB38)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (图 s1). Front Neural Circuits (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图 1
SWant calbindin抗体(Swant, CB38A)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 1). Eneuro (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 2
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2). Front Neuroanat (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:20,000; 图 4
  • 免疫印迹; 大鼠; 1:20,000; 图 6
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:20,000 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:20,000 (图 6). Front Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:10,000; 图 3
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000 (图 3). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:2000; 图 1
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1). Front Mol Neurosci (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-石蜡切片; 小鼠; 1:10,000; 图 1
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10,000 (图 1). J Neurosci Methods (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 表 1
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Neuroscience (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:10000
SWant calbindin抗体(Swant, CB38)被用于被用于免疫细胞化学在人类样本上浓度为1:10000. Methods (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5i
SWant calbindin抗体(Swant, CB-38)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5i). Brain Struct Funct (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Cereb Cortex (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:500
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
SWant calbindin抗体(Swant, CB 38)被用于. J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 猪; 1:3000
SWant calbindin抗体(SWan, CB-38)被用于被用于免疫组化-石蜡切片在猪样本上浓度为1:3000. Anat Histol Embryol (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 人类; 1:500; 图 6
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6). Hum Mol Genet (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:400
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400. J Neurosci (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫细胞化学; 人类; 1:2000
SWant calbindin抗体(Swant, 300)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. Ann Clin Transl Neurol (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫细胞化学; 小鼠
SWant calbindin抗体(Swant, 300)被用于被用于免疫细胞化学在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫细胞化学; 小鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000. Dev Neurobiol (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 大鼠; 1:200
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Nat Neurosci (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:5,000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:5,000. J Comp Neurol (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 人类; 1:1,000
SWant calbindin抗体(SWANT, 300)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1,000. J Comp Neurol (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-石蜡切片; 小鼠
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-石蜡切片在小鼠样本上. Neuroscience (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫印迹; 小鼠; 1:4000
SWant calbindin抗体(Swant, 300)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. Neuroscience (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:500
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:500. Cereb Cortex (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 猕猴
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在猕猴样本上. J Neurosci (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Front Cell Neurosci (2014) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:5000
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:5000. J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:1000; 图 8
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 8). PLoS ONE (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 大鼠; 1:4,000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4,000. J Comp Neurol (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; Erpetoichthys calabaricus; 1:1000
  • 免疫组化-自由浮动切片; Polypterus senegalus; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在Erpetoichthys calabaricus样本上浓度为1:1000 和 被用于免疫组化-自由浮动切片在Polypterus senegalus样本上浓度为1:1000. Brain Behav Evol (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:100; 图 2, 3
SWant calbindin抗体(Swant, CB300)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2, 3). Development (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000. Neuroscience (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 猪; 1:1500
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在猪样本上浓度为1:1500. Acta Histochem (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:10000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:10000. Hippocampus (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:3000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000. PLoS ONE (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; Spanish newt; 1:500
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:500. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 人类; 1:500
SWant calbindin抗体(SWANT, 300)被用于被用于免疫组化在人类样本上浓度为1:500. J Cereb Blood Flow Metab (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上. Neuropsychopharmacology (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 大鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在大鼠样本上浓度为1:5000. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; Spanish newt; 1:500
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:500. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:10000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10000. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; thirteen-lined ground squirrel; 1:2000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在thirteen-lined ground squirrel样本上浓度为1:2000. J Comp Neurol (2012) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 非洲爪蛙; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:1000. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:5000. Brain Struct Funct (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 大鼠; 1:400
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400. J Comp Neurol (2012) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 大鼠; 1:10000 or 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10000 or 1:5000. J Comp Neurol (2012) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:4000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4000. J Comp Neurol (2012) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 非洲爪蛙; 1:1000
SWant calbindin抗体(SWANT, 300)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上浓度为1:1000. J Comp Neurol (2012) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 大鼠; 1:2000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Eur J Neurosci (2011) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; thirteen-lined ground squirrel; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在thirteen-lined ground squirrel样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 人类; 1:2000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:2000. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
SWant calbindin抗体(SWANT, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:4,000
SWant calbindin抗体(Swant Immunochemicals, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4,000. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:5000. J Comp Neurol (2009) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 猕猴; 1:5,000
SWant calbindin抗体(SWANT, 300)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:5,000. J Comp Neurol (2009) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 大鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在大鼠样本上浓度为1:5000. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 鸡; 1:400
SWant calbindin抗体(Swant Immunochemicals, 300)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:400. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 鸡; 1:800
SWant calbindin抗体(SWant Immunochemicals, 300)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:800. J Comp Neurol (2007) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 猪; 1:3000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在猪样本上浓度为1:3000. J Comp Neurol (2006) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2005) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D1I4Q)
  • 免疫印迹; 小鼠; 1:250; 图 1c, 2s1b
赛信通(上海)生物试剂有限公司 calbindin抗体(Cell signalling, 13176S)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 1c, 2s1b). elife (2020) ncbi
domestic rabbit 单克隆(C26D12)
  • 免疫组化-自由浮动切片; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 calbindin抗体(Cell Signaling, 2173)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 5b). Sci Transl Med (2018) ncbi
domestic rabbit 单克隆(D1I4Q)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 calbindin抗体(Cell Signalling, 13176)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D1I4Q)
  • 免疫组化; 小鼠; 1:500; 图 4h
赛信通(上海)生物试剂有限公司 calbindin抗体(Cell Signaling, 13176)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4h). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D1I4Q)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 calbindin抗体(Cell Signaling Technology, 13176)被用于被用于免疫印迹在人类样本上. J Neurosci (2015) ncbi
domestic rabbit 单克隆(C26D12)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 calbindin抗体(Cell Signaling, 2173)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Brain Struct Funct (2015) ncbi
默克密理博中国
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
默克密理博中国 calbindin抗体(Chemicon, AB1778)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5a
默克密理博中国 calbindin抗体(Millipore, AB1778)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). J Neurosci Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
默克密理博中国 calbindin抗体(Millipore, AB1778)被用于被用于免疫组化在小鼠样本上 (图 2a). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 4g
默克密理博中国 calbindin抗体(Millipore, MAB1778)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4g). Nat Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1b
默克密理博中国 calbindin抗体(Millipore, Ab1778)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s8j
默克密理博中国 calbindin抗体(Chemicon, AB1778)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s8j). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3B
默克密理博中国 calbindin抗体(EMD Millipore, AB1778)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3B). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1f
默克密理博中国 calbindin抗体(EMD Millipore, AB1778)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1f). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 8d
默克密理博中国 calbindin抗体(Millipore, AB1778)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 8d). EMBO Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 6
默克密理博中国 calbindin抗体(Milipore, ab1778)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 6). BMC Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:750; 图 9b
默克密理博中国 calbindin抗体(Millipore, AB1778)被用于被用于免疫组化在小鼠样本上浓度为1:750 (图 9b). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 6
默克密理博中国 calbindin抗体(Millipore, AB1778)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 6). Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3e
默克密理博中国 calbindin抗体(Millipore, AB1778)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3e). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 4c
默克密理博中国 calbindin抗体(Millipore, AB1778)被用于被用于免疫组化在人类样本上浓度为1:500 (图 4c). Stem Cells (2016) ncbi
文章列表
  1. Alvarez Quilón A, Terron Bautista J, Delgado Sainz I, Serrano Benítez A, Romero Granados R, Martínez García P, et al. Endogenous topoisomerase II-mediated DNA breaks drive thymic cancer predisposition linked to ATM deficiency. Nat Commun. 2020;11:910 pubmed 出版商
  2. Agoglia A, Zhu M, Ying R, Sidhu H, Natividad L, Wolfe S, et al. Corticotropin-Releasing Factor Receptor-1 Neurons in the Lateral Amygdala Display Selective Sensitivity to Acute and Chronic Ethanol Exposure. Eneuro. 2020;7: pubmed 出版商
  3. Bowie E, Goetz S. TTBK2 and primary cilia are essential for the connectivity and survival of cerebellar Purkinje neurons. elife. 2020;9: pubmed 出版商
  4. Stefanov A, Novelli E, Strettoi E. Inner retinal preservation in the photoinducible I307N rhodopsin mutant mouse, a model of autosomal dominant retinitis pigmentosa. J Comp Neurol. 2020;528:1502-1522 pubmed 出版商
  5. Schoof M, Launspach M, Holdhof D, Nguyen L, Engel V, Filser S, et al. The transcriptional coactivator and histone acetyltransferase CBP regulates neural precursor cell development and migration. Acta Neuropathol Commun. 2019;7:199 pubmed 出版商
  6. Carceller H, Guirado R, Nacher J. Dark exposure affects plasticity-related molecules and interneurons throughout the visual system during adulthood. J Comp Neurol. 2019;: pubmed 出版商
  7. Haraguchi S, Kamata M, Tokita T, Tashiro K, Sato M, Nozaki M, et al. Light-at-night exposure affects brain development through pineal allopregnanolone-dependent mechanisms. elife. 2019;8: pubmed 出版商
  8. Lu W, Chen S, Chen X, Hu J, Xuan A, Ding S. Localization of area prostriata and its connections with primary visual cortex in rodent. J Comp Neurol. 2020;528:389-406 pubmed 出版商
  9. Carron S, Sun M, Shultz S, Rajan R. Inhibitory neuronal changes following a mixed diffuse-focal model of traumatic brain injury. J Comp Neurol. 2020;528:175-198 pubmed 出版商
  10. L pez J, Morona R, Moreno N, Lozano D, Jim nez S, Gonz lez A. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J Comp Neurol. 2020;528:135-159 pubmed 出版商
  11. Insolia V, Priori E, Gasperini C, Coppa F, Cocchia M, Iervasi E, et al. Prolidase enzyme is required for extracellular matrix integrity and impacts on postnatal cerebellar cortex development. J Comp Neurol. 2020;528:61-80 pubmed 出版商
  12. Wen Y, Zhang Z, Li Z, Liu G, Tao G, Song X, et al. The PROK2/PROKR2 signaling pathway is required for the migration of most olfactory bulb interneurons. J Comp Neurol. 2019;527:2931-2947 pubmed 出版商
  13. Roy A, Murphy R, Deng M, MacDonald J, Bammler T, Aldinger K, et al. PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. elife. 2019;8: pubmed 出版商
  14. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  15. Wizeman J, Guo Q, Wilion E, LI J. Specification of diverse cell types during early neurogenesis of the mouse cerebellum. elife. 2019;8: pubmed 出版商
  16. Boon J, Clarke E, Kessaris N, Goffinet A, Moln r Z, Hoerder Suabedissen A. Long-range projections from sparse populations of GABAergic neurons in murine subplate. J Comp Neurol. 2019;527:1610-1620 pubmed 出版商
  17. Saifetiarova J, Bhat M. Ablation of cytoskeletal scaffolding proteins, Band 4.1B and Whirlin, leads to cerebellar purkinje axon pathology and motor dysfunction. J Neurosci Res. 2019;97:313-331 pubmed 出版商
  18. Chen X, Chanda A, Ikeuchi Y, Zhang X, Goodman J, Reddy N, et al. The Transcriptional Regulator SnoN Promotes the Proliferation of Cerebellar Granule Neuron Precursors in the Postnatal Mouse Brain. J Neurosci. 2019;39:44-62 pubmed 出版商
  19. Rahman A, Weber J, Labin E, Lai C, Prieto A. Developmental expression of Neuregulin-3 in the rat central nervous system. J Comp Neurol. 2019;527:797-817 pubmed 出版商
  20. L pez J, Lozano D, Morona R, Gonz lez A. Organization of the catecholaminergic systems in two basal actinopterygian fishes, Polypterus senegalus and Erpetoichthys calabaricus (Actinopterygii: Cladistia). J Comp Neurol. 2019;527:437-461 pubmed 出版商
  21. Ou Yang M, Kurz J, Nomura T, Popovic J, Rajapaksha T, Dong H, et al. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci Transl Med. 2018;10: pubmed 出版商
  22. Betlazar C, Harrison Brown M, Middleton R, Banati R, Liu G. Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. Int J Mol Sci. 2018;19: pubmed 出版商
  23. Zhu F, Cizeron M, Qiu Z, Benavides Piccione R, Kopanitsa M, Skene N, et al. Architecture of the Mouse Brain Synaptome. Neuron. 2018;99:781-799.e10 pubmed 出版商
  24. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  25. Tosches M, Yamawaki T, Naumann R, Jacobi A, Tushev G, Laurent G. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science. 2018;360:881-888 pubmed 出版商
  26. Rousseaux M, Tschumperlin T, Lu H, Lackey E, Bondar V, Wan Y, et al. ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. Neuron. 2018;97:1235-1243.e5 pubmed 出版商
  27. Zhang C, Yu W, Hoshino A, Huang J, Rieke F, Reh T, et al. Development of ON and OFF cholinergic amacrine cells in the human fetal retina. J Comp Neurol. 2019;527:174-186 pubmed 出版商
  28. Jean P, Lopez de la Morena D, Michanski S, Jaime Tobón L, Chakrabarti R, Picher M, et al. The synaptic ribbon is critical for sound encoding at high rates and with temporal precision. elife. 2018;7: pubmed 出版商
  29. He L, Yu K, Lu F, Wang J, Wu L, Zhao C, et al. Transcriptional Regulator ZEB2 Is Essential for Bergmann Glia Development. J Neurosci. 2018;38:1575-1587 pubmed 出版商
  30. Gstrein T, Edwards A, Přistoupilová A, Leca I, Breuss M, Pilat Carotta S, et al. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat Neurosci. 2018;21:207-217 pubmed 出版商
  31. Kwan W, Mundiñano I, de Souza M, Lee S, Martin P, Gr nert U, et al. Unravelling the subcortical and retinal circuitry of the primate inferior pulvinar. J Comp Neurol. 2019;527:558-576 pubmed 出版商
  32. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018;172:409-422.e21 pubmed 出版商
  33. Parmhans N, Sajgo S, Niu J, Luo W, Badea T. Characterization of retinal ganglion cell, horizontal cell, and amacrine cell types expressing the neurotrophic receptor tyrosine kinase Ret. J Comp Neurol. 2018;526:742-766 pubmed 出版商
  34. Ma Q, Wang Y, Zhang T, Zuo W. Notch-mediated Sox9+ cell activation contributes to kidney repair after partial nephrectomy. Life Sci. 2018;193:104-109 pubmed 出版商
  35. Turecek J, Jackman S, Regehr W. Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses. Nature. 2017;551:503-506 pubmed 出版商
  36. Casoni F, Croci L, Bosone C, D Ambrosio R, Badaloni A, Gaudesi D, et al. Zfp423/ZNF423 regulates cell cycle progression, the mode of cell division and the DNA-damage response in Purkinje neuron progenitors. Development. 2017;144:3686-3697 pubmed 出版商
  37. Paul A, Chaker Z, Doetsch F. Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science. 2017;356:1383-1386 pubmed 出版商
  38. Hammoum I, Benlarbi M, Dellaa A, Szabó K, Dékány B, Csaba D, et al. Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula. J Comp Neurol. 2017;525:2890-2914 pubmed 出版商
  39. Faunes M, Wild J. The sensory trigeminal complex and the organization of its primary afferents in the zebra finch (Taeniopygia guttata). J Comp Neurol. 2017;525:2820-2831 pubmed 出版商
  40. Feng W, Kawauchi D, Körkel Qu H, Deng H, Serger E, Sieber L, et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun. 2017;8:14758 pubmed 出版商
  41. Bucks S, Cox B, Vlosich B, Manning J, Nguyen T, Stone J. Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice. elife. 2017;6: pubmed 出版商
  42. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  43. Ha S, Tripathi P, Mihalas A, Hevner R, Beier D. C-Terminal Region Truncation of RELN Disrupts an Interaction with VLDLR, Causing Abnormal Development of the Cerebral Cortex and Hippocampus. J Neurosci. 2017;37:960-971 pubmed 出版商
  44. Biever A, Boubaker Vitre J, Cutando L, Gracia Rubio I, Costa Mattioli M, Puighermanal E, et al. Repeated Exposure to D-Amphetamine Decreases Global Protein Synthesis and Regulates the Translation of a Subset of mRNAs in the Striatum. Front Mol Neurosci. 2016;9:165 pubmed 出版商
  45. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  46. Wild J. Dorsal pallidal neurons directly link the nidopallium and midbrain in the zebra finch (Taeniopygia guttata). J Comp Neurol. 2017;525:1731-1742 pubmed 出版商
  47. Zhou W, Zhou L, Shi H, Leng Y, Liu B, Zhang S, et al. Expression of glycine receptors and gephyrin in rat medial vestibular nuclei and flocculi following unilateral labyrinthectomy. Int J Mol Med. 2016;38:1481-1489 pubmed 出版商
  48. Wang J, O Sullivan M, Mukherjee D, Punal V, Farsiu S, Kay J. Anatomy and spatial organization of Müller glia in mouse retina. J Comp Neurol. 2017;525:1759-1777 pubmed 出版商
  49. Sambri I, D Alessio R, Ezhova Y, Giuliano T, Sorrentino N, Cacace V, et al. Lysosomal dysfunction disrupts presynaptic maintenance and restoration of presynaptic function prevents neurodegeneration in lysosomal storage diseases. EMBO Mol Med. 2017;9:112-132 pubmed 出版商
  50. Fraser J, Essebier A, Gronostajski R, Boden M, Wainwright B, Harvey T, et al. Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct. 2017;222:2251-2270 pubmed 出版商
  51. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  52. Roche S, Wyse Jackson A, Gomez Vicente V, Lax P, Ruiz Lopez A, Byrne A, et al. Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling. PLoS ONE. 2016;11:e0165197 pubmed 出版商
  53. Puighermanal E, Cutando L, Boubaker Vitre J, Honoré E, Longueville S, Hervé D, et al. Anatomical and molecular characterization of dopamine D1 receptor-expressing neurons of the mouse CA1 dorsal hippocampus. Brain Struct Funct. 2017;222:1897-1911 pubmed 出版商
  54. Cubillos S, Norgauer J. Low vitamin D-modulated calcium-regulating proteins in psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement. Int J Mol Med. 2016;38:1083-92 pubmed 出版商
  55. Yang Z, Zimmerman S, Tsunezumi J, Braitsch C, Trent C, Bryant D, et al. Role of CD34 family members in lumen formation in the developing kidney. Dev Biol. 2016;418:66-74 pubmed 出版商
  56. Morona R, Ferran J, Puelles L, González A. Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis. J Comp Neurol. 2017;525:715-752 pubmed 出版商
  57. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  58. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  59. Sanges D, Simonte G, Di Vicino U, Romo N, Pinilla I, Nicolas M, et al. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest. 2016;126:3104-16 pubmed 出版商
  60. Kordower J, Vinuela A, Chu Y, Isacson O, Redmond D. Parkinsonian monkeys with prior levodopa-induced dyskinesias followed by fetal dopamine precursor grafts do not display graft-induced dyskinesias. J Comp Neurol. 2017;525:498-512 pubmed 出版商
  61. Miyazaki Y, Du X, Muramatsu S, Gomez C. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci Transl Med. 2016;8:347ra94 pubmed 出版商
  62. Simmons A, Bloomsburg S, Billingslea S, Merrill M, Li S, Thomas M, et al. Pou4f2 knock-in Cre mouse: A multifaceted genetic tool for vision researchers. Mol Vis. 2016;22:705-17 pubmed
  63. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vazquez E, León Castellanos V, et al. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano. 2016;10:7154-71 pubmed 出版商
  64. Folmsbee S, Wilcox D, Tyberghein K, De Bleser P, Tourtellotte W, van Hengel J, et al. ?T-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry. 2016;4:2 pubmed 出版商
  65. Wang Y, Hersheson J, López D, Hammer M, Liu Y, Lee K, et al. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. Cell Rep. 2016;16:79-91 pubmed 出版商
  66. Meyer A, Tetenborg S, Greb H, Segelken J, Dorgau B, Weiler R, et al. Connexin30.2: In Vitro Interaction with Connexin36 in HeLa Cells and Expression in AII Amacrine Cells and Intrinsically Photosensitive Ganglion Cells in the Mouse Retina. Front Mol Neurosci. 2016;9:36 pubmed 出版商
  67. de la Rosa Prieto C, Saiz Sanchez D, Ubeda Bañon I, Flores Cuadrado A, Martinez Marcos A. Neurogenesis, Neurodegeneration, Interneuron Vulnerability, and Amyloid-? in the Olfactory Bulb of APP/PS1 Mouse Model of Alzheimer's Disease. Front Neurosci. 2016;10:227 pubmed 出版商
  68. Phillips J, Laude A, Lightowlers R, Morris C, Turnbull D, Lax N. Development of passive CLARITY and immunofluorescent labelling of multiple proteins in human cerebellum: understanding mechanisms of neurodegeneration in mitochondrial disease. Sci Rep. 2016;6:26013 pubmed 出版商
  69. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  70. Ruiz R, Pérez Villegas E, Bachiller S, Rosa J, Armengol J. HERC 1 Ubiquitin Ligase Mutation Affects Neocortical, CA3 Hippocampal and Spinal Cord Projection Neurons: An Ultrastructural Study. Front Neuroanat. 2016;10:42 pubmed 出版商
  71. Bouvier D, Jones E, Quesseveur G, Davoli M, A Ferreira T, Quirion R, et al. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep. 2016;6:24544 pubmed 出版商
  72. Di Lauro S, Rodriguez Crespo D, Gayoso M, Garcia Gutierrez M, Pastor J, Srivastava G, et al. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Mol Vis. 2016;22:243-53 pubmed
  73. Zhang L, Hernandez V, Vázquez Juárez E, Chay F, Barrio R. Thirst Is Associated with Suppression of Habenula Output and Active Stress Coping: Is there a Role for a Non-canonical Vasopressin-Glutamate Pathway?. Front Neural Circuits. 2016;10:13 pubmed 出版商
  74. Hirano A, Liu X, Boulter J, Grove J, Pérez de Sevilla Müller L, Barnes S, et al. Targeted Deletion of Vesicular GABA Transporter from Retinal Horizontal Cells Eliminates Feedback Modulation of Photoreceptor Calcium Channels. Eneuro. 2016;3: pubmed 出版商
  75. Vereczki V, Veres J, Müller K, Nagy G, Rácz B, Barsy B, et al. Synaptic Organization of Perisomatic GABAergic Inputs onto the Principal Cells of the Mouse Basolateral Amygdala. Front Neuroanat. 2016;10:20 pubmed 出版商
  76. Li J, Su Y, Wang H, Zhao Y, Liao X, Wang X, et al. Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex. Front Mol Neurosci. 2016;9:17 pubmed 出版商
  77. Boggild S, Molgaard S, Glerup S, Nyengaard J. Spatiotemporal patterns of sortilin and SorCS2 localization during organ development. BMC Cell Biol. 2016;17:8 pubmed 出版商
  78. Alshammari M, Alshammari T, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci. 2016;10:5 pubmed 出版商
  79. Boye S, Bennett A, Scalabrino M, McCullough K, Van Vliet K, Choudhury S, et al. Impact of Heparan Sulfate Binding on Transduction of Retina by Recombinant Adeno-Associated Virus Vectors. J Virol. 2016;90:4215-4231 pubmed 出版商
  80. Watanabe Y, Müller M, von Engelhardt J, Sprengel R, Seeburg P, Monyer H. Age-Dependent Degeneration of Mature Dentate Gyrus Granule Cells Following NMDA Receptor Ablation. Front Mol Neurosci. 2015;8:87 pubmed 出版商
  81. Villette V, Guigue P, Picardo M, Sousa V, Leprince E, Lachamp P, et al. Development of early-born ?-Aminobutyric acid hub neurons in mouse hippocampus from embryogenesis to adulthood. J Comp Neurol. 2016;524:2440-61 pubmed 出版商
  82. White J, Lin T, Brown A, Arancillo M, Lackey E, Stay T, et al. An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods. 2016;262:21-31 pubmed 出版商
  83. Ruegsegger C, Stucki D, Steiner S, Angliker N, Radecke J, Keller E, et al. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron. 2016;89:129-46 pubmed 出版商
  84. Jara J, Stanford M, Zhu Y, Tu M, Hauswirth W, Bohn M, et al. Healthy and diseased corticospinal motor neurons are selectively transduced upon direct AAV2-2 injection into the motor cortex. Gene Ther. 2016;23:272-82 pubmed 出版商
  85. Grishchuk Y, Stember K, Matsunaga A, Olivares A, CRUZ N, King V, et al. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. Am J Pathol. 2016;186:199-209 pubmed 出版商
  86. Farshi P, Fyk Kolodziej B, Krolewski D, Walker P, Ichinose T. Dopamine D1 receptor expression is bipolar cell type-specific in the mouse retina. J Comp Neurol. 2016;524:2059-79 pubmed 出版商
  87. Erbs E, Faget L, Ceredig R, Matifas A, Vonesch J, Kieffer B, et al. Impact of chronic morphine on delta opioid receptor-expressing neurons in the mouse hippocampus. Neuroscience. 2016;313:46-56 pubmed 出版商
  88. Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, et al. Transplantation of Unique Subpopulation of Fibroblasts, Muse Cells, Ameliorates Experimental Stroke Possibly via Robust Neuronal Differentiation. Stem Cells. 2016;34:160-73 pubmed 出版商
  89. Ahn S, Kim T, Kim K, Chung S. Differentiation of human pluripotent stem cells into Medial Ganglionic Eminence vs. Caudal Ganglionic Eminence cells. Methods. 2016;101:103-12 pubmed 出版商
  90. Garcia Calero E, Botella Lopez A, Bahamonde O, Perez Balaguer A, Martinez S. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon. Brain Struct Funct. 2016;221:2905-17 pubmed 出版商
  91. Hooper A, Maguire J. Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone. Hippocampus. 2016;26:41-53 pubmed 出版商
  92. Shigematsu N, Ueta Y, Mohamed A, Hatada S, Fukuda T, Kubota Y, et al. Selective Thalamic Innervation of Rat Frontal Cortical Neurons. Cereb Cortex. 2016;26:2689-2704 pubmed 出版商
  93. Wende C, Zoubaa S, Blak A, Echevarria D, Martinez S, Guillemot F, et al. Hairy/Enhancer-of-Split MEGANE and Proneural MASH1 Factors Cooperate Synergistically in Midbrain GABAergic Neurogenesis. PLoS ONE. 2015;10:e0127681 pubmed 出版商
  94. Andrews W, Davidson K, Tamamaki N, Ruhrberg C, Parnavelas J. Altered proliferative ability of neuronal progenitors in PlexinA1 mutant mice. J Comp Neurol. 2016;524:518-34 pubmed 出版商
  95. Czujkowska A, Arciszewski M. Galanin is Co-Expressed with Substance P, Calbindin and Corticotropin-Releasing Factor (CRF) in The Enteric Nervous System of the Wild Boar (Sus scrofa) Small Intestine. Anat Histol Embryol. 2016;45:115-23 pubmed 出版商
  96. Guyenet S, Mookerjee S, Lin A, Custer S, Chen S, Sopher B, et al. Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction. Hum Mol Genet. 2015;24:3908-17 pubmed 出版商
  97. Sun J, Liu Y, Moreno S, Baudry M, Bi X. Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of Angelman syndrome mice impairs motor function. J Neurosci. 2015;35:4706-18 pubmed 出版商
  98. Kumar M, Csaba Z, Peineau S, Srivastava R, Rasika S, Mani S, et al. Endogenous cerebellar neurogenesis in adult mice with progressive ataxia. Ann Clin Transl Neurol. 2014;1:968-81 pubmed 出版商
  99. Filézac de L Etang A, Maharjan N, Cordeiro Braña M, Ruegsegger C, Rehmann R, Goswami A, et al. Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS. Nat Neurosci. 2015;18:227-38 pubmed 出版商
  100. Maltecca F, Baseggio E, Consolato F, Mazza D, Podini P, Young S, et al. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. J Clin Invest. 2015;125:263-74 pubmed 出版商
  101. Vergaño Vera E, Diaz Guerra E, Rodríguez Traver E, Méndez Gómez H, Solis O, Pignatelli J, et al. Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes. Dev Neurobiol. 2015;75:823-41 pubmed 出版商
  102. Wang W, Cheng C, Tsaur M. Immunohistochemical localization of DPP10 in rat brain supports the existence of a Kv4/KChIP/DPPL ternary complex in neurons. J Comp Neurol. 2015;523:608-28 pubmed 出版商
  103. Szikra T, Trenholm S, Drinnenberg A, Jüttner J, Raics Z, Farrow K, et al. Rods in daylight act as relay cells for cone-driven horizontal cell-mediated surround inhibition. Nat Neurosci. 2014;17:1728-35 pubmed 出版商
  104. Sánchez Pérez A, Arnal Vicente I, Santos F, Pereira C, ElMlili N, Sanjuan J, et al. Septal projections to nucleus incertus in the rat: bidirectional pathways for modulation of hippocampal function. J Comp Neurol. 2015;523:565-88 pubmed 出版商
  105. Suzuki Y, Kiyokage E, Sohn J, Hioki H, Toida K. Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 2015;523:262-80 pubmed 出版商
  106. Lowe M, Faull R, Christie D, Waldvogel H. Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J Comp Neurol. 2015;523:699-725 pubmed 出版商
  107. Karetko Sysa M, Skangiel Kramska J, Nowicka D. Aging somatosensory cortex displays increased density of WFA-binding perineuronal nets associated with GAD-negative neurons. Neuroscience. 2014;277:734-46 pubmed 出版商
  108. Ho T, Vessey K, Fletcher E. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience. 2014;277:55-71 pubmed 出版商
  109. Vasistha N, García Moreno F, Arora S, Cheung A, Arnold S, Robertson E, et al. Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain. Cereb Cortex. 2015;25:3290-302 pubmed 出版商
  110. TIMBIE C, Barbas H. Specialized pathways from the primate amygdala to posterior orbitofrontal cortex. J Neurosci. 2014;34:8106-18 pubmed 出版商
  111. Kay R, Brunjes P. Diversity among principal and GABAergic neurons of the anterior olfactory nucleus. Front Cell Neurosci. 2014;8:111 pubmed 出版商
  112. König N, Trolle C, Kapuralin K, Adameyko I, Mitrecic D, Aldskogius H, et al. Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion. J Tissue Eng Regen Med. 2017;11:129-137 pubmed 出版商
  113. Stanic D, Dubois S, Chua H, Tonge B, Rinehart N, Horne M, et al. Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors ? and ?, and androgen receptors. PLoS ONE. 2014;9:e90451 pubmed 出版商
  114. Vessey K, Greferath U, Aplin F, Jobling A, Phipps J, Ho T, et al. Adenosine triphosphate-induced photoreceptor death and retinal remodeling in rats. J Comp Neurol. 2014;522:2928-50 pubmed 出版商
  115. Fuchs M, Brandst tter J, Regus Leidig H. Evidence for a Clathrin-independent mode of endocytosis at a continuously active sensory synapse. Front Cell Neurosci. 2014;8:60 pubmed 出版商
  116. Lopez J, González A. Organization of the serotonergic system in the central nervous system of two basal actinopterygian fishes: the Cladistians Polypterus senegalus and Erpetoichthys calabaricus. Brain Behav Evol. 2014;83:54-76 pubmed 出版商
  117. Di Giovannantonio L, Di Salvio M, Omodei D, Prakash N, Wurst W, Pierani A, et al. Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development. 2014;141:377-88 pubmed 出版商
  118. Kao F, Su S, Carlson G, Liao W. MeCP2-mediated alterations of striatal features accompany psychomotor deficits in a mouse model of Rett syndrome. Brain Struct Funct. 2015;220:419-34 pubmed 出版商
  119. Liu Y, Liang X, Ren W, Li B. Expression of ?1- and ?2-adrenoceptors in different subtypes of interneurons in the medial prefrontal cortex of mice. Neuroscience. 2014;257:149-57 pubmed 出版商
  120. Zacharko Siembida A, Kulik P, Szalak R, Lalak R, Arciszewski M. Co-expression patterns of cocaine- and amphetamine-regulated transcript (CART) with neuropeptides in dorsal root ganglia of the pig. Acta Histochem. 2014;116:390-8 pubmed 出版商
  121. Yamada J, Jinno S. S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. Hippocampus. 2014;24:89-101 pubmed 出版商
  122. Puglisi F, Vanni V, Ponterio G, Tassone A, Sciamanna G, Bonsi P, et al. Torsin A Localization in the Mouse Cerebellar Synaptic Circuitry. PLoS ONE. 2013;8:e68063 pubmed 出版商
  123. Joven A, Morona R, González A, Moreno N. Spatiotemporal patterns of Pax3, Pax6, and Pax7 expression in the developing brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:3913-53 pubmed 出版商
  124. Lowe M, Kim E, Faull R, Christie D, Waldvogel H. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. J Cereb Blood Flow Metab. 2013;33:1295-306 pubmed 出版商
  125. Takao K, Kobayashi K, Hagihara H, Ohira K, Shoji H, Hattori S, et al. Deficiency of schnurri-2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia. Neuropsychopharmacology. 2013;38:1409-25 pubmed 出版商
  126. Cox D, Racca C. Differential dendritic targeting of AMPA receptor subunit mRNAs in adult rat hippocampal principal neurons and interneurons. J Comp Neurol. 2013;521:1954-2007 pubmed 出版商
  127. Joven A, Morona R, González A, Moreno N. Expression patterns of Pax6 and Pax7 in the adult brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:2088-124 pubmed 出版商
  128. Tsuneoka Y, Maruyama T, Yoshida S, Nishimori K, Kato T, Numan M, et al. Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol. 2013;521:1633-63 pubmed 出版商
  129. Kranz K, Dorgau B, Pottek M, Herrling R, Schultz K, Bolte P, et al. Expression of Pannexin1 in the outer plexiform layer of the mouse retina and physiological impact of its knockout. J Comp Neurol. 2013;521:1119-35 pubmed 出版商
  130. Light A, Zhu Y, Shi J, Saszik S, Lindstrom S, Davidson L, et al. Organizational motifs for ground squirrel cone bipolar cells. J Comp Neurol. 2012;520:2864-87 pubmed 出版商
  131. Morona R, González A. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development. J Comp Neurol. 2013;521:79-108 pubmed 出版商
  132. Chapman R, Lall V, Maxeiner S, Willecke K, Deuchars J, King A. Localization of neurones expressing the gap junction protein Connexin45 within the adult spinal dorsal horn: a study using Cx45-eGFP reporter mice. Brain Struct Funct. 2013;218:751-65 pubmed 出版商
  133. Wouterlood F, Hartig W, Groenewegen H, Voorn P. Density gradients of vesicular glutamate- and GABA transporter-immunoreactive boutons in calbindinand ?-opioid receptor-defined compartments in the rat striatum. J Comp Neurol. 2012;520:2123-42 pubmed 出版商
  134. Olucha Bordonau F, Otero García M, Sánchez Pérez A, Nunez A, Ma S, Gundlach A. Distribution and targets of the relaxin-3 innervation of the septal area in the rat. J Comp Neurol. 2012;520:1903-39 pubmed 出版商
  135. Arellano J, Guadiana S, Breunig J, Rakic P, Sarkisian M. Development and distribution of neuronal cilia in mouse neocortex. J Comp Neurol. 2012;520:848-73 pubmed 出版商
  136. Wiechmann A, Sherry D. Melatonin receptors are anatomically organized to modulate transmission specifically to cone pathways in the retina of Xenopus laevis. J Comp Neurol. 2012;520:1115-27 pubmed 出版商
  137. Corteen N, Cole T, Sarna A, Sieghart W, Swinny J. Localization of GABA-A receptor alpha subunits on neurochemically distinct cell types in the rat locus coeruleus. Eur J Neurosci. 2011;34:250-62 pubmed 出版商
  138. Brunjes P, Kay R, Arrivillaga J. The mouse olfactory peduncle. J Comp Neurol. 2011;519:2870-86 pubmed 出版商
  139. Puller C, Ondreka K, Haverkamp S. Bipolar cells of the ground squirrel retina. J Comp Neurol. 2011;519:759-74 pubmed 出版商
  140. Garcia Marin V, Blazquez Llorca L, Rodriguez J, Gonzalez Soriano J, Defelipe J. Differential distribution of neurons in the gyral white matter of the human cerebral cortex. J Comp Neurol. 2010;518:4740-59 pubmed 出版商
  141. Phillips M, Otteson D, Sherry D. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa. J Comp Neurol. 2010;518:2071-89 pubmed 出版商
  142. Lepousez G, Csaba Z, Bernard V, Loudes C, Videau C, Lacombe J, et al. Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb. J Comp Neurol. 2010;518:1976-94 pubmed 出版商
  143. Clarke J, Emson P, Irvine R. Distribution and neuronal expression of phosphatidylinositol phosphate kinase IIgamma in the mouse brain. J Comp Neurol. 2009;517:296-312 pubmed 出版商
  144. Janmaat S, Frederic F, Sjollema K, Luiten P, Mariani J, van der Want J. Formation and maturation of parallel fiber-Purkinje cell synapses in the Staggerer cerebellum ex vivo. J Comp Neurol. 2009;512:467-77 pubmed 出版商
  145. Lavenex P, Lavenex P, Bennett J, Amaral D. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation. J Comp Neurol. 2009;512:27-51 pubmed 出版商
  146. Cox D, Racca C, LeBeau F. Beta-adrenergic receptors are differentially expressed in distinct interneuron subtypes in the rat hippocampus. J Comp Neurol. 2008;509:551-65 pubmed 出版商
  147. Fischer A, Foster S, Scott M, Sherwood P. Transient expression of LIM-domain transcription factors is coincident with delayed maturation of photoreceptors in the chicken retina. J Comp Neurol. 2008;506:584-603 pubmed
  148. Fischer A, Stanke J, Aloisio G, Hoy H, Stell W. Heterogeneity of horizontal cells in the chicken retina. J Comp Neurol. 2007;500:1154-71 pubmed
  149. Liu S, Gao N, Hu H, Wang X, Wang G, Fang X, et al. Distribution and chemical coding of corticotropin-releasing factor-immunoreactive neurons in the guinea pig enteric nervous system. J Comp Neurol. 2006;494:63-74 pubmed
  150. Kiyokage E, Toida K, Suzuki Yamamoto T, Ishimura K. Localization of 5alpha-reductase in the rat main olfactory bulb. J Comp Neurol. 2005;493:381-95 pubmed