这是一篇来自已证抗体库的有关人类 calbindin的综述,是根据302篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合calbindin 抗体。
calbindin 同义词: CALB; D-28K

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP3478)
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab108404)被用于被用于免疫组化在小鼠样本上 (图 4a). Brain Pathol (2022) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:100; 图 4di
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4di). Front Cell Neurosci (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:100; 图 1a
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1a). Kidney Int (2021) ncbi
domestic rabbit 单克隆(EP3478)
  • 免疫组化; 小鼠; 1:100; 图 12a
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab108404)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 12a). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(EP3478)
  • 免疫组化-冰冻切片; 小鼠; 图 s5c
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab108404)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5c). MBio (2020) ncbi
小鼠 单克隆(CB-955)
  • 免疫细胞化学; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 calbindin抗体(abcam, ab82812)被用于被用于免疫细胞化学在小鼠样本上 (图 6c). Int J Mol Sci (2018) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 st2
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 st2). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 大鼠; 1:30; 图 1b, 2b
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:30 (图 1b, 2b). Int J Mol Med (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Glia (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Neuron (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:2000; 图 1d
艾博抗(上海)贸易有限公司 calbindin抗体(Abcam, ab82812)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1d). Nat Neurosci (2015) ncbi
Synaptic Systems
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4d
Synaptic Systems calbindin抗体(Synaptic Systems, 214.002)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4d). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(351C10)
  • 免疫组化; 小鼠; 1:500; 图 3a
Synaptic Systems calbindin抗体(Synaptic Systems, 214011)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Mol Brain (2021) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1c
Synaptic Systems calbindin抗体(Synaptic Systems, 214006)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). PLoS Biol (2019) ncbi
小鼠 单克隆(351C10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3s2b
Synaptic Systems calbindin抗体(Synaptic Systems, 214011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3s2b). elife (2018) ncbi
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:250; 图 1
Synaptic Systems calbindin抗体(SYnaptic SYstems, 214004)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:250 (图 1). Sci Rep (2016) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7
Synaptic Systems calbindin抗体(Synaptic Systems, 214 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7). J Comp Neurol (2016) ncbi
小鼠 单克隆(351C10)
  • 免疫组化; 小鼠; 1:5000; 图 2
Synaptic Systems calbindin抗体(Synaptic Systems, 214 011)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2). Hippocampus (2016) ncbi
小鼠 单克隆(351C10)
  • 免疫组化; 小鼠; 1:2000; 图 6
Synaptic Systems calbindin抗体(Synaptic Systems, 214011)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6). Front Cell Neurosci (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-4)
  • 免疫组化; 小鼠; 图 5c
圣克鲁斯生物技术 calbindin抗体(Santa Cruz, sc-365360)被用于被用于免疫组化在小鼠样本上 (图 5c). Cell Death Differ (2021) ncbi
小鼠 单克隆(D-4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2
圣克鲁斯生物技术 calbindin抗体(Thermo, sc-365360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2). Physiol Rep (2020) ncbi
小鼠 单克隆(D-4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3k
圣克鲁斯生物技术 calbindin抗体(Santa, sc-365360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3k). J Comp Neurol (2020) ncbi
小鼠 单克隆(D-4)
  • 免疫组化-石蜡切片; 人类; 图 4f
圣克鲁斯生物技术 calbindin抗体(Santa Cruz, sc-365360)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4f). Int J Mol Med (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1a
赛默飞世尔 calbindin抗体(Invitrogen, PA1-931)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1a). Front Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s3f
赛默飞世尔 calbindin抗体(Thermo Fisher, PA5?C85669)被用于被用于免疫组化在小鼠样本上 (图 s3f). Kidney360 (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4a, 4c
赛默飞世尔 calbindin抗体(Thermo Fisher, PA1-931)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4a, 4c). Int J Mol Med (2021) ncbi
domestic rabbit 多克隆
赛默飞世尔 calbindin抗体(Thermo, PA1-931)被用于. PLoS ONE (2015) ncbi
武汉博士德生物工程有限公司
鸡 多克隆
  • 免疫组化; 小鼠; 图 1e
武汉博士德生物工程有限公司 calbindin抗体(Boster, M03047-2)被用于被用于免疫组化在小鼠样本上 (图 1e). Cell Rep (2019) ncbi
ImmunoStar
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3e
ImmunoStar calbindin抗体(Immunostar, 24427)被用于被用于免疫组化在小鼠样本上 (图 3e). J Neurosci (2018) ncbi
Novus Biologicals
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 1s2f
Novus Biologicals calbindin抗体(Novus biologicals, NBP2-50028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 1s2f). elife (2020) ncbi
SWant
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 图 2h
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2h). Neuron (2022) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000; 图 4f
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000 (图 4f). J Neurochem (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; African green monkey; 1:2000; 图 3a
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化-自由浮动切片在African green monkey样本上浓度为1:2000 (图 3a). Front Neural Circuits (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 7a
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7a). Eneuro (2021) ncbi
单克隆(300)
  • 免疫组化; 小鼠; 图 2h
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上 (图 2h). Cell Rep Methods (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 e7g
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 e7g). Nat Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:4000; 图 1e
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 1e). Neural Dev (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1d
SWant calbindin抗体(Swant, CB-38)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1d). Int J Mol Sci (2021) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2i
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2i). Biol Open (2021) ncbi
单克隆(300)
  • 免疫组化; 小鼠; 图 1a
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上 (图 1a). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:3000; 图 1b
SWant calbindin抗体(swant, CB38)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 1b). EMBO J (2021) ncbi
单克隆(300)
  • 免疫组化-自由浮动切片; 小鼠; 1:10,000; 图 4a
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10,000 (图 4a). elife (2021) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:100; 图 4c
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:30,000; 图 10a
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化在小鼠样本上浓度为1:30,000 (图 10a). Eneuro (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 1c
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1c). Front Neural Circuits (2021) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 3g
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 3g). JCI Insight (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s5e
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5e). Cell Rep (2021) ncbi
单克隆(300)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3a
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3a). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1i
SWant calbindin抗体(Swant Inc, cb38)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1i). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 3c
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 3c). J Clin Invest (2021) ncbi
domestic rabbit 多克隆
SWant calbindin抗体(Swant, CB38)被用于. Front Cell Dev Biol (2020) ncbi
单克隆(300)
  • 免疫细胞化学; 小鼠; 1:500; 图 4b
SWant calbindin抗体(Swant, 300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4b). elife (2020) ncbi
单克隆(300)
  • 免疫细胞化学; 小鼠; 1:500; 图 4b
SWant calbindin抗体(Swant, 300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4b). elife (2020) ncbi
单克隆(300)
  • 免疫细胞化学; 小鼠; 1:500; 图 4b
SWant calbindin抗体(Swant, 300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4i
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4i). Nat Commun (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:500; 图 5c
SWant calbindin抗体(SWANT, 300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5c). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 4i
SWant calbindin抗体(Swant, CB-38)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 4i). PLoS Biol (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 猕猴; 1:2000; 图 11
SWant calbindin抗体(Swiss Antibodies, 300)被用于被用于免疫组化在猕猴样本上浓度为1:2000 (图 11). PLoS Biol (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7b
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1c
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1c). Nat Commun (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 2a
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 2a). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 s5
SWant calbindin抗体(Swant, #CB-38a)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 s5). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:2500; 图 1e
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2500 (图 1e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:1000; 图 1d
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1d). PLoS Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3e
SWant calbindin抗体(Swant, CB38a)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3e). J Comp Neurol (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:5000; 图 2c
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2c). J Comp Neurol (2019) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 鸡; 1:1000; 图 2d
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在鸡样本上浓度为1:1000 (图 2d). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s5d
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化在小鼠样本上 (图 s5d). Nat Commun (2019) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-石蜡切片; 大鼠; 1:5000; 图 5b, 8b, 11b
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:5000 (图 5b, 8b, 11b). J Comp Neurol (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; slender lungfish; 1:1000; 图 6h
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在slender lungfish样本上浓度为1:1000 (图 6h). J Comp Neurol (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 5c
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 5c). J Comp Neurol (2020) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 5
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 5). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1500; 图 2s1k
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化在小鼠样本上浓度为1:1500 (图 2s1k). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:3000; 图 4g
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 4g). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 1a
SWant calbindin抗体(Swant, CB 38)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 1a). J Comp Neurol (2019) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 8f
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 8f). J Comp Neurol (2019) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; gray bichir ; 图 8c
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在gray bichir 样本上 (图 8c). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). Neuron (2018) ncbi
domestic rabbit 多克隆
SWant calbindin抗体(Swant, CB38a)被用于. Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2d
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 1a
SWant calbindin抗体(Swant, CB 38)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1a). J Comp Neurol (2019) ncbi
单克隆(300)
  • 免疫组化; 小鼠; 1:500; 图 s1a
SWant calbindin抗体(Swant, 07(F))被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1a). elife (2018) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; African green monkey; 1:10,000; 图 3e
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:10,000 (图 3e). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1b
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 3a
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 3a). J Comp Neurol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3a). Development (2017) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; Shaw's jird; 1:500; 表 1
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在Shaw's jird样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(CB300)
SWant calbindin抗体(Swant, 300)被用于. J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s4b
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s4b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3i
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3i). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫细胞化学; 人类; 1:1000; 图 st4
SWant calbindin抗体(Swant, 300)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 st4). Nat Biotechnol (2017) ncbi
小鼠 单克隆(CB300)
SWant calbindin抗体(SWANT, 300)被用于. J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图 8
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 8). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 表 1
SWant calbindin抗体(SWANT, CB38)被用于被用于免疫组化在小鼠样本上浓度为1:400 (表 1). Brain Struct Funct (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s2a
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s2a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1c
SWant calbindin抗体(Swant, CB382)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1c). Brain Struct Funct (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1e
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1e). Dev Biol (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 非洲爪蛙; 1:1000; 表 2
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在非洲爪蛙样本上浓度为1:1000 (表 2). J Comp Neurol (2017) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:4000; 图 2
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4000 (图 2). Mol Neurodegener (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; African green monkey; 图 4c
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在African green monkey样本上 (图 4c). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1e
SWant calbindin抗体(Swant, CB38a)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1e). Sci Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). Mol Vis (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫印迹; 大鼠; 图 7g
SWant calbindin抗体(Swant, 300)被用于被用于免疫印迹在大鼠样本上 (图 7g). ACS Nano (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 7
SWant calbindin抗体(Swant, CB-38)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7). J Mol Psychiatry (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2
SWant calbindin抗体(Swant, CB-38)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 3a
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 3a). Front Neurosci (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:100; 图 2
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s5B-1
SWant calbindin抗体(Swant, CB38)被用于被用于免疫细胞化学在小鼠样本上 (图 s5B-1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 7j
SWant calbindin抗体(Swant, Cb-38a)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 7j). Front Neuroanat (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; pigs ; 1:500; 图 5
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化在pigs 样本上浓度为1:500 (图 5). Mol Vis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:5000; 图 s1
SWant calbindin抗体(Swant Swiss antibodies, CB38)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (图 s1). Front Neural Circuits (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图 1
SWant calbindin抗体(Swant, CB38A)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 1). Eneuro (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 2
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2). Front Neuroanat (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:20,000; 图 4
  • 免疫印迹; 大鼠; 1:20,000; 图 6
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:20,000 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:20,000 (图 6). Front Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:10,000; 图 3
SWant calbindin抗体(Swant, CB38)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000 (图 3). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:2000; 图 1
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1). Front Mol Neurosci (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-石蜡切片; 小鼠; 1:10,000; 图 1
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10,000 (图 1). J Neurosci Methods (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 表 1
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Neuroscience (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:10,000
SWant calbindin抗体(Swant, CB38)被用于被用于免疫细胞化学在人类样本上浓度为1:10,000. Methods (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5i
SWant calbindin抗体(Swant, CB-38)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5i). Brain Struct Funct (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Cereb Cortex (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:500
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
SWant calbindin抗体(Swant, CB 38)被用于. J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:3000
SWant calbindin抗体(SWan, CB-38)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:3000. Anat Histol Embryol (2016) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 人类; 1:500; 图 6
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6). Hum Mol Genet (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:400
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400. J Neurosci (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫细胞化学; 人类; 1:2000
SWant calbindin抗体(Swant, 300)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. Ann Clin Transl Neurol (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫细胞化学; 小鼠
SWant calbindin抗体(Swant, 300)被用于被用于免疫细胞化学在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫细胞化学; 小鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000. Dev Neurobiol (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 大鼠; 1:200
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Nat Neurosci (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:5,000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:5,000. J Comp Neurol (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 人类; 1:1,000
SWant calbindin抗体(SWANT, 300)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1,000. J Comp Neurol (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-石蜡切片; 小鼠
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-石蜡切片在小鼠样本上. Neuroscience (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫印迹; 小鼠; 1:4000
SWant calbindin抗体(Swant, 300)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. Neuroscience (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:500
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:500. Cereb Cortex (2015) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 猕猴
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在猕猴样本上. J Neurosci (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Front Cell Neurosci (2014) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:5000
SWant calbindin抗体(Swant, CB-38a)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:5000. J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:1000; 图 8
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 8). PLoS ONE (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 大鼠; 1:4,000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4,000. J Comp Neurol (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; reedfish ; 1:1000
  • 免疫组化-自由浮动切片; gray bichir ; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在reedfish 样本上浓度为1:1000 和 被用于免疫组化-自由浮动切片在gray bichir 样本上浓度为1:1000. Brain Behav Evol (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:100; 图 2, 3
SWant calbindin抗体(Swant, CB300)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2, 3). Development (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000. Neuroscience (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; pigs ; 1:1500
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:1500. Acta Histochem (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:10,000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:10,000. Hippocampus (2014) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:3000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000. PLoS ONE (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; Spanish newt; 1:500
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:500. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 人类; 1:500
SWant calbindin抗体(SWANT, 300)被用于被用于免疫组化在人类样本上浓度为1:500. J Cereb Blood Flow Metab (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上. Neuropsychopharmacology (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 大鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在大鼠样本上浓度为1:5000. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; Spanish newt; 1:500
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:500. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:10,000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10,000. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; thirteen-lined ground squirrel; 1:2000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在thirteen-lined ground squirrel样本上浓度为1:2000. J Comp Neurol (2012) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 非洲爪蛙; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:1000. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:5000. Brain Struct Funct (2013) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 大鼠; 1:400
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400. J Comp Neurol (2012) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 大鼠; 1:10000 or 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10000 or 1:5000. J Comp Neurol (2012) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:4000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4000. J Comp Neurol (2012) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 非洲爪蛙; 1:1000
SWant calbindin抗体(SWANT, 300)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上浓度为1:1000. J Comp Neurol (2012) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 大鼠; 1:2000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Eur J Neurosci (2011) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; thirteen-lined ground squirrel; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在thirteen-lined ground squirrel样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 人类; 1:2000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:2000. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
SWant calbindin抗体(SWANT, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 小鼠; 1:4,000
SWant calbindin抗体(Swant Immunochemicals, 300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4,000. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 小鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在小鼠样本上浓度为1:5000. J Comp Neurol (2009) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 猕猴; 1:5,000
SWant calbindin抗体(SWANT, 300)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:5,000. J Comp Neurol (2009) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; 大鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在大鼠样本上浓度为1:5000. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 鸡; 1:400
SWant calbindin抗体(Swant Immunochemicals, 300)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:400. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-冰冻切片; 鸡; 1:800
SWant calbindin抗体(SWant Immunochemicals, 300)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:800. J Comp Neurol (2007) ncbi
小鼠 单克隆(CB300)
  • 免疫组化; pigs ; 1:3000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化在pigs 样本上浓度为1:3000. J Comp Neurol (2006) ncbi
小鼠 单克隆(CB300)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
SWant calbindin抗体(Swant, 300)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2005) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D1I4Q)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 calbindin抗体(CST, 13176)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1a). elife (2021) ncbi
domestic rabbit 单克隆(D1I4Q)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 3f
赛信通(上海)生物试剂有限公司 calbindin抗体(Cell signaling, 13176)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 3f). elife (2020) ncbi
domestic rabbit 单克隆(D1I4Q)
  • 免疫印迹; 小鼠; 1:250; 图 1c, 2s1b
赛信通(上海)生物试剂有限公司 calbindin抗体(Cell signalling, 13176S)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 1c, 2s1b). elife (2020) ncbi
domestic rabbit 单克隆(C26D12)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 s6b
赛信通(上海)生物试剂有限公司 calbindin抗体(CST, 2173)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 s6b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C26D12)
  • 免疫组化-自由浮动切片; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 calbindin抗体(Cell Signaling, 2173)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 5b). Sci Transl Med (2018) ncbi
domestic rabbit 单克隆(D1I4Q)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 calbindin抗体(Cell Signalling, 13176)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D1I4Q)
  • 免疫组化; 小鼠; 1:500; 图 4h
赛信通(上海)生物试剂有限公司 calbindin抗体(Cell Signaling, 13176)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4h). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D1I4Q)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 calbindin抗体(Cell Signaling Technology, 13176)被用于被用于免疫印迹在人类样本上. J Neurosci (2015) ncbi
domestic rabbit 单克隆(C26D12)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 calbindin抗体(Cell Signaling, 2173)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Brain Struct Funct (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7i
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7i). Front Cell Dev Biol (2022) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 人类; 图 2w
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在人类样本上 (图 2w). Am J Hum Genet (2022) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 1i
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 1i). Stem Cell Reports (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:500; 图 3e
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3e). Eneuro (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 图 s2c
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2c). iScience (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 s3f
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上 (图 s3f). Front Mol Neurosci (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 5a
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上 (图 5a). Mol Neurodegener (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:2000; 图 s5
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C 9848)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s5). Cells (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:400; 图 2
西格玛奥德里奇 calbindin抗体(sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2). Front Cell Neurosci (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:2000; 图 6??s1m
西格玛奥德里奇 calbindin抗体(Sigma Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6??s1m). elife (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Sci Adv (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 5a
西格玛奥德里奇 calbindin抗体(Sigma Aldrich, C9848)被用于被用于免疫组化在小鼠样本上 (图 5a). Sci Rep (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:300; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 1d
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). elife (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:200; 图 6j
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6j). BMC Biol (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 大鼠; 图 1e
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-自由浮动切片在大鼠样本上 (图 1e). Neurobiol Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2c
西格玛奥德里奇 calbindin抗体(Sigma, C7354)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2c). Mol Psychiatry (2021) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3j
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3j). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:2000; 图 3a
  • 免疫印迹; 小鼠; 1:5000; 图 4d
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4d). elife (2020) ncbi
小鼠 单克隆(CB-955)
西格玛奥德里奇 calbindin抗体(Sigma, C-9848)被用于. Oncogenesis (2020) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1c
西格玛奥德里奇 calbindin抗体(Sigma Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1c). Nat Commun (2020) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2c
西格玛奥德里奇 calbindin抗体(Millipore Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2c). Dis Model Mech (2020) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 大鼠; 1:4000; 图 1s3
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在大鼠样本上浓度为1:4000 (图 1s3). elife (2019) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 1a
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上 (图 1a). Cell Rep (2019) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:7000; 图 1b
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:7000 (图 1b). elife (2019) ncbi
小鼠 单克隆(CB-955)
  • 免疫印迹; 小鼠; 1:1000; 图 5k
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5k). J Comp Neurol (2020) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:200; 图 1
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). J Neurosci Res (2019) ncbi
小鼠 单克隆(CB-955)
  • 免疫印迹; 小鼠; 1:5000; 图 7b
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7b). Nat Commun (2018) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Neuron (2018) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1e
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1e). Sci Rep (2018) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 大鼠; 1:600; 图 5b
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, c-9848)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:600 (图 5b). Am J Physiol Renal Physiol (2018) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
  • 免疫印迹; 小鼠; 图 4b
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 4b). J Comp Neurol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; zebra finch; 1:2000; 图 4h
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在zebra finch样本上浓度为1:2000 (图 4h). J Comp Neurol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 图 6e
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, CB-955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6e). Histochem Cell Biol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 表 1
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1500; 图 3Ab
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:1500 (图 3Ab). Sci Rep (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 大鼠; 1:500
  • 免疫组化-石蜡切片; 小鼠; 1:3000
  • 免疫组化; 小鼠; 图 26
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500, 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3000 和 被用于免疫组化在小鼠样本上 (图 26). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 4a
西格玛奥德里奇 calbindin抗体(Sigma, C-9848)被用于被用于免疫组化在小鼠样本上 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). J Lipid Res (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 大鼠
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在大鼠样本上. Brain Res (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2c
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2c). Nat Neurosci (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 4
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 4). Cell Rep (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 1a
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上 (图 1a). Endocrinology (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 6
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上 (图 6). Cell (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:500; 图 s1
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1). Transl Psychiatry (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:500; 表 1
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:100; 图 7
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 6f
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 6f). Dis Model Mech (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫印迹; 小鼠; 1:1000; 图 s3
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 图 2h
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2h). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s1a
西格玛奥德里奇 calbindin抗体(Sigma, C7354)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s1a). J Clin Invest (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 6c
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 6c). J Neurosci (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1a
西格玛奥德里奇 calbindin抗体(Sigma Chemical Co., C9848)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1a). J Comp Neurol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫印迹; 小鼠; 1:5000; 图 3
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, CB-955)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:3000; 图 1
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 1). Eneuro (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 大鼠; 1:500; 图 1
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1). Dis Model Mech (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:250; 图 5
  • 免疫组化; African green monkey; 1:250; 图 5
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5) 和 被用于免疫组化在African green monkey样本上浓度为1:250 (图 5). Neural Plast (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1c
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, CB-955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1c). Cell Mol Neurobiol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫细胞化学; 人类; 1:1000; 表 1
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:500; 图 s3
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3). Nature (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:2000; 图 3
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3). Dis Model Mech (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). Autophagy (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 图 3e
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3e). Development (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 4
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 4). Mol Brain (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). PLoS Genet (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:600; 图 6
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, c-9848)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 6). J Clin Invest (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 1
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 1). Nat Neurosci (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Development (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1000; 图 8A
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 8A). J Comp Neurol (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上. Tissue Barriers (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 猕猴; 1:2000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在猕猴样本上浓度为1:2000. Front Neuroanat (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1). EMBO Mol Med (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 calbindin抗体(Sigma- Aldrich, C9848)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 和 被用于免疫组化在小鼠样本上浓度为1:500. F1000Res (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Cell Tissue Res (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫沉淀; 人类
  • 免疫组化; 人类; 1:2500
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫沉淀在人类样本上, 被用于免疫组化在人类样本上浓度为1:2500 和 被用于免疫印迹在人类样本上浓度为1:2000. Acta Neuropathol (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫细胞化学; 大鼠; 1:2500
  • 免疫印迹; 大鼠; 1:3000
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2500 和 被用于免疫印迹在大鼠样本上浓度为1:3000. Acta Histochem Cytochem (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 s3
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上 (图 s3). Biol Open (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫细胞化学; 人类
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫细胞化学在人类样本上. Cereb Cortex (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 猕猴; 1:2000
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, c9848)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:2000. J Comp Neurol (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
西格玛奥德里奇 calbindin抗体(Sigma, CB-955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Transl Psychiatry (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上. Brain Struct Funct (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇 calbindin抗体(Sigma, CB-955)被用于被用于免疫组化在大鼠样本上浓度为1:500. Exp Eye Res (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:10,000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:10,000. Dev Cell (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000. Cell Tissue Res (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 6d
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 6d). Nat Neurosci (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Brain Struct Funct (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:100
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Anat Rec (Hoboken) (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 大鼠; 1:500
西格玛奥德里奇 calbindin抗体(Sigma Chemical, CB955)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500. Toxicol Lett (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Cancer Res (2013) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇 calbindin抗体(Sigma Aldrich, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Gene Expr Patterns (2013) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; pigs ; 1:500
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, CB955)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:500. Toxicon (2013) ncbi
小鼠 单克隆(CB-955)
  • 酶联免疫吸附测定; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Exp Neurol (2013) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 猕猴; 1:10,000
西格玛奥德里奇 calbindin抗体(Sigma, C-9848)被用于被用于免疫组化在猕猴样本上浓度为1:10,000. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:2000. Exp Neurol (2013) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:4000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:4000. Neurotox Res (2013) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Neurosci (2011) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 猕猴; 1:3000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:3000. J Comp Neurol (2011) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Comp Neurol (2012) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 大鼠; 1:2500-1:5000
  • 免疫组化-冰冻切片; domestic rabbit; 1:2500-1:5000
  • 免疫组化-冰冻切片; 小鼠; 1:2500-1:5000
  • 免疫组化-冰冻切片; African green monkey; 1:2500-1:5000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2500-1:5000, 被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:2500-1:5000, 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2500-1:5000 和 被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:2500-1:5000. J Comp Neurol (2011) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:40,000
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:40,000. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; pigs
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-自由浮动切片在pigs 样本上. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 大鼠; 1:3000
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:3000. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
西格玛奥德里奇 calbindin抗体(Sigma Chemical, C9848)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:2,500
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:2,500. J Comp Neurol (2009) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; African green monkey; 1:500
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 大鼠; 1:400
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 大鼠; 1:8000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:8000. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:3,000
  • 免疫细胞化学; 小鼠; 1:1,000
西格玛奥德里奇 calbindin抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3,000 和 被用于免疫细胞化学在小鼠样本上浓度为1:1,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:3,000
西格玛奥德里奇 calbindin抗体(Sigma, C 9848)被用于被用于免疫组化在小鼠样本上浓度为1:3,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Comp Neurol (2007) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 猕猴; 1:1000
西格玛奥德里奇 calbindin抗体(Sigma, CB955)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:1000. J Comp Neurol (2006) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 大鼠; 1:25,000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:25,000. J Comp Neurol (2006) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:6000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:6000. J Comp Neurol (2006) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; pigs ; 1:3000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在pigs 样本上浓度为1:3000. J Comp Neurol (2006) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 calbindin抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Comp Neurol (2005) ncbi
文章列表
  1. Fallatah W, Cui W, Di Pietro E, Carter G, Pounder B, Dorninger F, et al. A Pex7 Deficient Mouse Series Correlates Biochemical and Neurobehavioral Markers to Genotype Severity-Implications for the Disease Spectrum of Rhizomelic Chondrodysplasia Punctata Type 1. Front Cell Dev Biol. 2022;10:886316 pubmed 出版商
  2. Hauser D, Behr K, Konno K, Schreiner D, Schmidt A, Watanabe M, et al. Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition. Neuron. 2022;: pubmed 出版商
  3. Coolen M, Altin N, Rajamani K, Pereira E, Siquier Pernet K, Puig Lombardi E, et al. Recessive PRDM13 mutations cause fatal perinatal brainstem dysfunction with cerebellar hypoplasia and disrupt Purkinje cell differentiation. Am J Hum Genet. 2022;109:909-927 pubmed 出版商
  4. Lakkaraju A, Sorce S, Senatore A, Nuvolone M, Guo J, Schwarz P, et al. Glial activation in prion diseases is selectively triggered by neuronal PrPSc. Brain Pathol. 2022;32:e13056 pubmed 出版商
  5. Lo P, Rymar V, Kennedy T, Sadikot A. The netrin-1 receptor DCC promotes the survival of a subpopulation of midbrain dopaminergic neurons: Relevance for ageing and Parkinson's disease. J Neurochem. 2022;161:254-265 pubmed 出版商
  6. Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits. 2021;15:795325 pubmed 出版商
  7. Aldrin Kirk P, Akerblom M, Cardoso T, Nolbrant S, Adler A, Liu X, et al. A novel two-factor monosynaptic TRIO tracing method for assessment of circuit integration of hESC-derived dopamine transplants. Stem Cell Reports. 2021;: pubmed 出版商
  8. Peng W, Liao M, Huang W, Liu P, Levi S, Tseng Y, et al. Conditional Deletion of Activating Rearranged During Transfection Receptor Tyrosine Kinase Leads to Impairment of Photoreceptor Ribbon Synapses and Disrupted Visual Function in Mice. Front Neurosci. 2021;15:728905 pubmed 出版商
  9. Ranea Robles P, Portman K, Bender A, Lee K, He J, Mulholland D, et al. Peroxisomal L-bifunctional protein (EHHADH) deficiency causes male-specific kidney hypertrophy and proximal tubular injury in mice. Kidney360. 2021;2:1441-1454 pubmed 出版商
  10. Lindquist K, Belugin S, Hovhannisyan A, Corey T, Salmon A, Akopian A. Identification of Trigeminal Sensory Neuronal Types Innervating Masseter Muscle. Eneuro. 2021;8: pubmed 出版商
  11. Mangold K, Masek J, He J, Lendahl U, Fuchs E, Andersson E. Highly efficient manipulation of nervous system gene expression with NEPTUNE. Cell Rep Methods. 2021;1: pubmed 出版商
  12. Pensieri P, Mantilleri A, Plassard D, Furukawa T, Moya K, Prochiantz A, et al. Photoreceptor cKO of OTX2 Enhances OTX2 Intercellular Transfer in the Retina and Causes Photophobia. Eneuro. 2021;8: pubmed 出版商
  13. Vacher C, Lacaille H, O Reilly J, Salzbank J, Bakalar D, Sebaoui S, et al. Placental endocrine function shapes cerebellar development and social behavior. Nat Neurosci. 2021;24:1392-1401 pubmed 出版商
  14. Vila A, Shihabeddin E, Zhang Z, Santhanam A, Ribelayga C, O BRIEN J. Synaptic Scaffolds, Ion Channels and Polyamines in Mouse Photoreceptor Synapses: Anatomy of a Signaling Complex. Front Cell Neurosci. 2021;15:667046 pubmed 出版商
  15. Miller D, Wright K. Neuronal Dystroglycan regulates postnatal development of CCK/cannabinoid receptor-1 interneurons. Neural Dev. 2021;16:4 pubmed 出版商
  16. Lux U, Ehrenberg J, Joachimsthaler A, Atorf J, Pircher B, Reim K, et al. Cell Types and Synapses Expressing the SNARE Complex Regulating Proteins Complexin 1 and Complexin 2 in Mammalian Retina. Int J Mol Sci. 2021;22: pubmed 出版商
  17. Sugiyama T, Murao N, Kadowaki H, Takao K, Miyakawa T, Matsushita Y, et al. ERAD components Derlin-1 and Derlin-2 are essential for postnatal brain development and motor function. iScience. 2021;24:102758 pubmed 出版商
  18. Beecher K, Wang J, Jacques A, Chaaya N, Chehrehasa F, Belmer A, et al. Sucrose Consumption Alters Serotonin/Glutamate Co-localisation Within the Prefrontal Cortex and Hippocampus of Mice. Front Mol Neurosci. 2021;14:678267 pubmed 出版商
  19. Lee B, Hong S, Kim M, Kim E, Park H, Jung H, et al. Lycii radicis cortex inhibits glucocorticoid‑induced bone loss by downregulating Runx2 and BMP‑2 expression. Int J Mol Med. 2021;48: pubmed 出版商
  20. Frei J, Brandenburg C, Nestor J, Hodzic D, Plachez C, McNeill H, et al. Postnatal expression profiles of atypical cadherin FAT1 suggest its role in autism. Biol Open. 2021;10: pubmed 出版商
  21. Van Battum E, Heitz Marchaland C, Zagar Y, Fouquet S, Kuner R, Chedotal A. Plexin-B2 controls the timing of differentiation and the motility of cerebellar granule neurons. elife. 2021;10: pubmed 出版商
  22. Steubler V, Erdinger S, Back M, Ludewig S, Fässler D, Richter M, et al. Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning, and causes an autism-like phenotype. EMBO J. 2021;40:e107471 pubmed 出版商
  23. Galán Ganga M, Rodríguez Cueto C, Merchán Rubira J, Hernandez F, Avila J, Posada Ayala M, et al. Cannabinoid receptor CB2 ablation protects against TAU induced neurodegeneration. Acta Neuropathol Commun. 2021;9:90 pubmed 出版商
  24. Mohammad G, Matakidou A, Robbins P, Lakhal Littleton S. The kidney hepcidin/ferroportin axis controls iron reabsorption and determines the magnitude of kidney and systemic iron overload. Kidney Int. 2021;100:559-569 pubmed 出版商
  25. Beekhof G, Osório C, White J, van Zoomeren S, van der Stok H, Xiong B, et al. Differential spatiotemporal development of Purkinje cell populations and cerebellum-dependent sensorimotor behaviors. elife. 2021;10: pubmed 出版商
  26. Liu S, Zhou M, Ruan Z, Wang Y, Chang C, Sasaki M, et al. AIF3 splicing switch triggers neurodegeneration. Mol Neurodegener. 2021;16:25 pubmed 出版商
  27. Aoto K, Kato M, Akita T, Nakashima M, Mutoh H, Akasaka N, et al. ATP6V0A1 encoding the a1-subunit of the V0 domain of vacuolar H+-ATPases is essential for brain development in humans and mice. Nat Commun. 2021;12:2107 pubmed 出版商
  28. Gulbranson D, Ho K, Yu G, Yu X, Das M, Shao E, et al. Phenotypic Differences between the Alzheimer's Disease-Related hAPP-J20 Model and Heterozygous Zbtb20 Knock-Out Mice. Eneuro. 2021;8: pubmed 出版商
  29. Bassal M, Liu J, Jankowiak W, Saftig P, Bartsch U. Rapid and Progressive Loss of Multiple Retinal Cell Types in Cathepsin D-Deficient Mice-An Animal Model of CLN10 Disease. Cells. 2021;10: pubmed 出版商
  30. Chang L, Soomro S, Zhang H, Fu H. Ankfy1 Is Involved in the Maintenance of Cerebellar Purkinje Cells. Front Cell Neurosci. 2021;15:648801 pubmed 出版商
  31. Tamargo Gómez I, Martínez García G, Suarez M, Rey V, Fueyo A, Codina Martínez H, et al. ATG4D is the main ATG8 delipidating enzyme in mammalian cells and protects against cerebellar neurodegeneration. Cell Death Differ. 2021;: pubmed 出版商
  32. Courtland J, Bradshaw T, Waitt G, Soderblom E, Ho T, Rajab A, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. elife. 2021;10: pubmed 出版商
  33. Brodie Kommit J, Clark B, Shi Q, Shiau F, Kim D, Langel J, et al. Atoh7-independent specification of retinal ganglion cell identity. Sci Adv. 2021;7: pubmed 出版商
  34. Sugimoto H, Horii T, Hirota J, Sano Y, Shinoda Y, Konno A, et al. The Ser19Stop single nucleotide polymorphism (SNP) of human PHYHIPL affects the cerebellum in mice. Mol Brain. 2021;14:52 pubmed 出版商
  35. Hieda M, Matsumoto T, Isobe M, Kurono S, Yuka K, Kametaka S, et al. The SUN2-nesprin-2 LINC complex and KIF20A function in the Golgi dispersal. Sci Rep. 2021;11:5358 pubmed 出版商
  36. Pourhoseini S, Goswami Sewell D, ZUNIGA SANCHEZ E. Neurofascin Is a Novel Component of Rod Photoreceptor Synapses in the Outer Retina. Front Neural Circuits. 2021;15:635849 pubmed 出版商
  37. Tapias A, Lazaro D, Yin B, Rasa S, Krepelova A, Kelmer Sacramento E, et al. HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration. elife. 2021;10: pubmed 出版商
  38. Nitschke L, Coffin S, Xhako E, El Najjar D, Orengo J, Alcala E, et al. Modulation of ATXN1 S776 phosphorylation reveals the importance of allele-specific targeting in SCA1. JCI Insight. 2021;6: pubmed 出版商
  39. Burger C, Albrecht N, Jiang D, Liang J, Poch xe9 R, Samuel M. LKB1 and AMPK instruct cone nuclear position to modify visual function. Cell Rep. 2021;34:108698 pubmed 出版商
  40. Affortit C, Casas F, Ladrech S, Ceccato J, Bourien J, Coyat C, et al. Exacerbated age-related hearing loss in mice lacking the p43 mitochondrial T3 receptor. BMC Biol. 2021;19:18 pubmed 出版商
  41. Striebel J, Race B, Leung J, Schwartz C, Chesebro B. Prion-induced photoreceptor degeneration begins with misfolded prion protein accumulation in cones at two distinct sites: cilia and ribbon synapses. Acta Neuropathol Commun. 2021;9:17 pubmed 出版商
  42. Li Y, Ritchie E, Steinke C, Qi C, Chen L, Zheng B, et al. Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. elife. 2021;10: pubmed 出版商
  43. Patkar O, Caruso M, Teakle N, Keshvari S, Bush S, Pridans C, et al. Analysis of homozygous and heterozygous Csf1r knockout in the rat as a model for understanding microglial function in brain development and the impacts of human CSF1R mutations. Neurobiol Dis. 2021;151:105268 pubmed 出版商
  44. Nilsson F, Storm P, Sozzi E, Hidalgo Gil D, Birtele M, Sharma Y, et al. Single-Cell Profiling of Coding and Noncoding Genes in Human Dopamine Neuron Differentiation. Cells. 2021;10: pubmed 出版商
  45. Karayol R, Medrihan L, Warner Schmidt J, Fait B, Rao M, Holzner E, et al. Serotonin receptor 4 in the hippocampus modulates mood and anxiety. Mol Psychiatry. 2021;26:2334-2349 pubmed 出版商
  46. Borie A, Dromard Y, Guillon G, Olma A, Manning M, Muscatelli F, et al. Correction of vasopressin deficit in the lateral septum ameliorates social deficits of mouse autism model. J Clin Invest. 2021;131: pubmed 出版商
  47. Beard H, Chidlow G, Neumann D, Nazri N, Douglass M, Trim P, et al. Is the eye a window to the brain in Sanfilippo syndrome?. Acta Neuropathol Commun. 2020;8:194 pubmed 出版商
  48. Macri S, Di Poï N. Heterochronic Developmental Shifts Underlying Squamate Cerebellar Diversity Unveil the Key Features of Amniote Cerebellogenesis. Front Cell Dev Biol. 2020;8:593377 pubmed 出版商
  49. Markus S, Marzo M, McKenney R. New insights into the mechanism of dynein motor regulation by lissencephaly-1. elife. 2020;9: pubmed 出版商
  50. Gordon K, Zussman J, Li X, Miller C, Sherwood D. Stem cell niche exit in C. elegans via orientation and segregation of daughter cells by a cryptic cell outside the niche. elife. 2020;9: pubmed 出版商
  51. Manzano Nieves G, Bravo M, Baskoylu S, Bath K. Early life adversity decreases pre-adolescent fear expression by accelerating amygdala PV cell development. elife. 2020;9: pubmed 出版商
  52. Kazuki Y, Gao F, Li Y, Moyer A, Devenney B, Hiramatsu K, et al. A non-mosaic transchromosomic mouse model of down syndrome carrying the long arm of human chromosome 21. elife. 2020;9: pubmed 出版商
  53. Soleilhavoup C, Travaglio M, Patrick K, Garção P, Boobalan E, Adolfs Y, et al. Nolz1 expression is required in dopaminergic axon guidance and striatal innervation. Nat Commun. 2020;11:3111 pubmed 出版商
  54. Burger C, Alevy J, Casasent A, Jiang D, Albrecht N, Liang J, et al. LKB1 coordinates neurite remodeling to drive synapse layer emergence in the outer retina. elife. 2020;9: pubmed 出版商
  55. Hreha T, Collins C, Daugherty A, Twentyman J, Paluri N, Hunstad D. TGFβ1 orchestrates renal fibrosis following Escherichia coli pyelonephritis. Physiol Rep. 2020;8:e14401 pubmed 出版商
  56. Zhang R, Liakath Ali K, Sudhof T. Latrophilin-2 and latrophilin-3 are redundantly essential for parallel-fiber synapse function in cerebellum. elife. 2020;9: pubmed 出版商
  57. Martinez L, Black K, Webb B, Bell A, Baygani S, Mier T, et al. Components of Endocannabinoid Signaling System Are Expressed in the Perinatal Mouse Cerebellum and Required for Its Normal Development. Eneuro. 2020;7: pubmed 出版商
  58. Kur I, Prouvot P, Fu T, Fan W, Müller Braun F, Das A, et al. Neuronal activity triggers uptake of hematopoietic extracellular vesicles in vivo. PLoS Biol. 2020;18:e3000643 pubmed 出版商
  59. TIMBIE C, García Cabezas M, Zikopoulos B, Barbas H. Organization of primate amygdalar-thalamic pathways for emotions. PLoS Biol. 2020;18:e3000639 pubmed 出版商
  60. Vigouroux R, Cesar Q, Chedotal A, Nguyen Ba Charvet K. Revisiting the role of Dcc in visual system development with a novel eye clearing method. elife. 2020;9: pubmed 出版商
  61. Zocchi L, Mehta A, Wu S, Wu J, Gu Y, Wang J, et al. Chromatin remodeling protein HELLS is critical for retinoblastoma tumor initiation and progression. Oncogenesis. 2020;9:25 pubmed 出版商
  62. Alvarez Quilón A, Terron Bautista J, Delgado Sainz I, Serrano Benítez A, Romero Granados R, Martínez García P, et al. Endogenous topoisomerase II-mediated DNA breaks drive thymic cancer predisposition linked to ATM deficiency. Nat Commun. 2020;11:910 pubmed 出版商
  63. Salimi H, Cain M, Jiang X, Roth R, Beatty W, Sun C, et al. Encephalitic Alphaviruses Exploit Caveola-Mediated Transcytosis at the Blood-Brain Barrier for Central Nervous System Entry. MBio. 2020;11: pubmed 出版商
  64. Agoglia A, Zhu M, Ying R, Sidhu H, Natividad L, Wolfe S, et al. Corticotropin-Releasing Factor Receptor-1 Neurons in the Lateral Amygdala Display Selective Sensitivity to Acute and Chronic Ethanol Exposure. Eneuro. 2020;7: pubmed 出版商
  65. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11:583 pubmed 出版商
  66. Rodriguez Gil J, Watkins Chow D, Baxter L, Elliot G, Harper U, Wincovitch S, et al. Genetic background modifies phenotypic severity and longevity in a mouse model of Niemann-Pick disease type C1. Dis Model Mech. 2020;13: pubmed 出版商
  67. Su J, Charalambakis N, Sabbagh U, Somaiya R, Monavarfeshani A, Guido W, et al. Retinal inputs signal astrocytes to recruit interneurons into visual thalamus. Proc Natl Acad Sci U S A. 2020;117:2671-2682 pubmed 出版商
  68. Bowie E, Goetz S. TTBK2 and primary cilia are essential for the connectivity and survival of cerebellar Purkinje neurons. elife. 2020;9: pubmed 出版商
  69. Rice H, Marcassa G, Chrysidou I, Horré K, Young Pearse T, Müller U, et al. Contribution of GABAergic interneurons to amyloid-β plaque pathology in an APP knock-in mouse model. Mol Neurodegener. 2020;15:3 pubmed 出版商
  70. Grasselli G, Boele H, Titley H, Bradford N, van Beers L, Jay L, et al. SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning-specific memory traces. PLoS Biol. 2020;18:e3000596 pubmed 出版商
  71. Ocasio J, Babcock B, Malawsky D, Weir S, Loo L, Simon J, et al. scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy. Nat Commun. 2019;10:5829 pubmed 出版商
  72. Stefanov A, Novelli E, Strettoi E. Inner retinal preservation in the photoinducible I307N rhodopsin mutant mouse, a model of autosomal dominant retinitis pigmentosa. J Comp Neurol. 2020;528:1502-1522 pubmed 出版商
  73. Carceller H, Guirado R, Nacher J. Dark exposure affects plasticity-related molecules and interneurons throughout the visual system during adulthood. J Comp Neurol. 2019;: pubmed 出版商
  74. Karube F, Takahashi S, Kobayashi K, Fujiyama F. Motor cortex can directly drive the globus pallidus neurons in a projection neuron type-dependent manner in the rat. elife. 2019;8: pubmed 出版商
  75. Joshi D, Zhang C, Babujee L, Vevea J, August B, Sheng Z, et al. Inappropriate Intrusion of an Axonal Mitochondrial Anchor into Dendrites Causes Neurodegeneration. Cell Rep. 2019;29:685-696.e5 pubmed 出版商
  76. Haraguchi S, Kamata M, Tokita T, Tashiro K, Sato M, Nozaki M, et al. Light-at-night exposure affects brain development through pineal allopregnanolone-dependent mechanisms. elife. 2019;8: pubmed 出版商
  77. Park H, Kim T, Kim J, Yamamoto Y, Tanaka Yamamoto K. Inputs from Sequentially Developed Parallel Fibers Are Required for Cerebellar Organization. Cell Rep. 2019;28:2939-2954.e5 pubmed 出版商
  78. Wu B, Blot F, Wong A, Os rio C, Adolfs Y, Pasterkamp R, et al. TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. elife. 2019;8: pubmed 出版商
  79. Lu W, Chen S, Chen X, Hu J, Xuan A, Ding S. Localization of area prostriata and its connections with primary visual cortex in rodent. J Comp Neurol. 2020;528:389-406 pubmed 出版商
  80. Zhu Y, Huang M, Bushong E, Phan S, Uytiepo M, Beutter E, et al. Class IIa HDACs regulate learning and memory through dynamic experience-dependent repression of transcription. Nat Commun. 2019;10:3469 pubmed 出版商
  81. Carron S, Sun M, Shultz S, Rajan R. Inhibitory neuronal changes following a mixed diffuse-focal model of traumatic brain injury. J Comp Neurol. 2020;528:175-198 pubmed 出版商
  82. L pez J, Morona R, Moreno N, Lozano D, Jim nez S, Gonz lez A. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J Comp Neurol. 2020;528:135-159 pubmed 出版商
  83. Insolia V, Priori E, Gasperini C, Coppa F, Cocchia M, Iervasi E, et al. Prolidase enzyme is required for extracellular matrix integrity and impacts on postnatal cerebellar cortex development. J Comp Neurol. 2020;528:61-80 pubmed 出版商
  84. Wen Y, Zhang Z, Li Z, Liu G, Tao G, Song X, et al. The PROK2/PROKR2 signaling pathway is required for the migration of most olfactory bulb interneurons. J Comp Neurol. 2019;527:2931-2947 pubmed 出版商
  85. Roy A, Murphy R, Deng M, MacDonald J, Bammler T, Aldinger K, et al. PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. elife. 2019;8: pubmed 出版商
  86. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  87. Wizeman J, Guo Q, Wilion E, LI J. Specification of diverse cell types during early neurogenesis of the mouse cerebellum. elife. 2019;8: pubmed 出版商
  88. Boon J, Clarke E, Kessaris N, Goffinet A, Moln r Z, Hoerder Suabedissen A. Long-range projections from sparse populations of GABAergic neurons in murine subplate. J Comp Neurol. 2019;527:1610-1620 pubmed 出版商
  89. Saifetiarova J, Bhat M. Ablation of cytoskeletal scaffolding proteins, Band 4.1B and Whirlin, leads to cerebellar purkinje axon pathology and motor dysfunction. J Neurosci Res. 2019;97:313-331 pubmed 出版商
  90. Rahman A, Weber J, Labin E, Lai C, Prieto A. Developmental expression of Neuregulin-3 in the rat central nervous system. J Comp Neurol. 2019;527:797-817 pubmed 出版商
  91. L pez J, Lozano D, Morona R, Gonz lez A. Organization of the catecholaminergic systems in two basal actinopterygian fishes, Polypterus senegalus and Erpetoichthys calabaricus (Actinopterygii: Cladistia). J Comp Neurol. 2019;527:437-461 pubmed 出版商
  92. Ou Yang M, Kurz J, Nomura T, Popovic J, Rajapaksha T, Dong H, et al. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci Transl Med. 2018;10: pubmed 出版商
  93. Betlazar C, Harrison Brown M, Middleton R, Banati R, Liu G. Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. Int J Mol Sci. 2018;19: pubmed 出版商
  94. Paul S, Dansithong W, Figueroa K, Scoles D, Pulst S. Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat Commun. 2018;9:3648 pubmed 出版商
  95. Zhu F, Cizeron M, Qiu Z, Benavides Piccione R, Kopanitsa M, Skene N, et al. Architecture of the Mouse Brain Synaptome. Neuron. 2018;99:781-799.e10 pubmed 出版商
  96. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  97. Tosches M, Yamawaki T, Naumann R, Jacobi A, Tushev G, Laurent G. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science. 2018;360:881-888 pubmed 出版商
  98. Rousseaux M, Tschumperlin T, Lu H, Lackey E, Bondar V, Wan Y, et al. ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. Neuron. 2018;97:1235-1243.e5 pubmed 出版商
  99. Ogawa Y, Kakumoto K, Yoshida T, Kuwako K, Miyazaki T, Yamaguchi J, et al. Elavl3 is essential for the maintenance of Purkinje neuron axons. Sci Rep. 2018;8:2722 pubmed 出版商
  100. Zhang C, Yu W, Hoshino A, Huang J, Rieke F, Reh T, et al. Development of ON and OFF cholinergic amacrine cells in the human fetal retina. J Comp Neurol. 2019;527:174-186 pubmed 出版商
  101. Jean P, Lopez de la Morena D, Michanski S, Jaime Tobón L, Chakrabarti R, Picher M, et al. The synaptic ribbon is critical for sound encoding at high rates and with temporal precision. elife. 2018;7: pubmed 出版商
  102. He L, Yu K, Lu F, Wang J, Wu L, Zhao C, et al. Transcriptional Regulator ZEB2 Is Essential for Bergmann Glia Development. J Neurosci. 2018;38:1575-1587 pubmed 出版商
  103. Kwan W, Mundiñano I, de Souza M, Lee S, Martin P, Gr nert U, et al. Unravelling the subcortical and retinal circuitry of the primate inferior pulvinar. J Comp Neurol. 2019;527:558-576 pubmed 出版商
  104. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018;172:409-422.e21 pubmed 出版商
  105. Parmhans N, Sajgo S, Niu J, Luo W, Badea T. Characterization of retinal ganglion cell, horizontal cell, and amacrine cell types expressing the neurotrophic receptor tyrosine kinase Ret. J Comp Neurol. 2018;526:742-766 pubmed 出版商
  106. West C, Welling P, West D, Coleman R, Cheng K, Chen C, et al. Renal and colonic potassium transporters in the pregnant rat. Am J Physiol Renal Physiol. 2018;314:F251-F259 pubmed 出版商
  107. Hunter D, Manglapus M, Bachay G, Claudepierre T, Dolan M, Gesuelli K, et al. CNS synapses are stabilized trans-synaptically by laminins and laminin-interacting proteins. J Comp Neurol. 2017;: pubmed 出版商
  108. Casoni F, Croci L, Bosone C, D Ambrosio R, Badaloni A, Gaudesi D, et al. Zfp423/ZNF423 regulates cell cycle progression, the mode of cell division and the DNA-damage response in Purkinje neuron progenitors. Development. 2017;144:3686-3697 pubmed 出版商
  109. Ikeda M, Krentzel A, Oliver T, Scarpa G, Remage Healey L. Clustered organization and region-specific identities of estrogen-producing neurons in the forebrain of Zebra Finches (Taeniopygia guttata). J Comp Neurol. 2017;525:3636-3652 pubmed 出版商
  110. Katsumata O, Mori M, Sawane Y, Niimura T, Ito A, Okamoto H, et al. Cellular and subcellular localization of ADP-ribosylation factor 6 in mouse peripheral tissues. Histochem Cell Biol. 2017;148:577-596 pubmed 出版商
  111. Seigneur E, Südhof T. Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. J Comp Neurol. 2017;525:3286-3311 pubmed 出版商
  112. Hammoum I, Benlarbi M, Dellaa A, Szabó K, Dékány B, Csaba D, et al. Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula. J Comp Neurol. 2017;525:2890-2914 pubmed 出版商
  113. Faunes M, Wild J. The sensory trigeminal complex and the organization of its primary afferents in the zebra finch (Taeniopygia guttata). J Comp Neurol. 2017;525:2820-2831 pubmed 出版商
  114. Feng W, Kawauchi D, Körkel Qu H, Deng H, Serger E, Sieber L, et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun. 2017;8:14758 pubmed 出版商
  115. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  116. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  117. Biever A, Boubaker Vitre J, Cutando L, Gracia Rubio I, Costa Mattioli M, Puighermanal E, et al. Repeated Exposure to D-Amphetamine Decreases Global Protein Synthesis and Regulates the Translation of a Subset of mRNAs in the Striatum. Front Mol Neurosci. 2016;9:165 pubmed 出版商
  118. Valkova C, Liebmann L, Kramer A, Hübner C, Kaether C. The sorting receptor Rer1 controls Purkinje cell function via voltage gated sodium channels. Sci Rep. 2017;7:41248 pubmed 出版商
  119. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  120. Wild J. Dorsal pallidal neurons directly link the nidopallium and midbrain in the zebra finch (Taeniopygia guttata). J Comp Neurol. 2017;525:1731-1742 pubmed 出版商
  121. Xie C, Gong X, Luo J, Li B, Song B. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. J Lipid Res. 2017;58:512-518 pubmed 出版商
  122. Erekat N. Cerebellar Purkinje cells die by apoptosis in the shaker mutant rat. Brain Res. 2017;1657:323-332 pubmed 出版商
  123. Zhou W, Zhou L, Shi H, Leng Y, Liu B, Zhang S, et al. Expression of glycine receptors and gephyrin in rat medial vestibular nuclei and flocculi following unilateral labyrinthectomy. Int J Mol Med. 2016;38:1481-1489 pubmed 出版商
  124. Wang J, O Sullivan M, Mukherjee D, Punal V, Farsiu S, Kay J. Anatomy and spatial organization of Müller glia in mouse retina. J Comp Neurol. 2017;525:1759-1777 pubmed 出版商
  125. Fraser J, Essebier A, Gronostajski R, Boden M, Wainwright B, Harvey T, et al. Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct. 2017;222:2251-2270 pubmed 出版商
  126. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  127. Roche S, Wyse Jackson A, Gomez Vicente V, Lax P, Ruiz Lopez A, Byrne A, et al. Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling. PLoS ONE. 2016;11:e0165197 pubmed 出版商
  128. Goebbels S, Wieser G, Pieper A, Spitzer S, Weege B, Yan K, et al. A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat Neurosci. 2017;20:10-15 pubmed 出版商
  129. Alvarez Saavedra M, De Repentigny Y, Yang D, O Meara R, Yan K, Hashem L, et al. Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Rep. 2016;17:862-875 pubmed 出版商
  130. Moe Y, Kyi Tha Thu C, Tanaka T, Ito H, Yahashi S, Matsuda K, et al. A Sexually Dimorphic Area of the Dorsal Hypothalamus in Mice and Common Marmosets. Endocrinology. 2016;157:4817-4828 pubmed
  131. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, et al. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. Cell. 2016;167:566-580.e19 pubmed 出版商
  132. Puighermanal E, Cutando L, Boubaker Vitre J, Honoré E, Longueville S, Hervé D, et al. Anatomical and molecular characterization of dopamine D1 receptor-expressing neurons of the mouse CA1 dorsal hippocampus. Brain Struct Funct. 2017;222:1897-1911 pubmed 出版商
  133. Alexander M, Gasperini M, Tsai P, Gibbs D, Spinazzola J, Marshall J, et al. Reversal of neurobehavioral social deficits in dystrophic mice using inhibitors of phosphodiesterases PDE5A and PDE9A. Transl Psychiatry. 2016;6:e901 pubmed 出版商
  134. Cubillos S, Norgauer J. Low vitamin D-modulated calcium-regulating proteins in psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement. Int J Mol Med. 2016;38:1083-92 pubmed 出版商
  135. Patel M, Sons S, Yudintsev G, Lesicko A, Yang L, Taha G, et al. Anatomical characterization of subcortical descending projections to the inferior colliculus in mouse. J Comp Neurol. 2017;525:885-900 pubmed 出版商
  136. Hickmott J, Chen C, Arenillas D, Korecki A, Lam S, Molday L, et al. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina. Mol Ther Methods Clin Dev. 2016;3:16051 pubmed 出版商
  137. Yang Z, Zimmerman S, Tsunezumi J, Braitsch C, Trent C, Bryant D, et al. Role of CD34 family members in lumen formation in the developing kidney. Dev Biol. 2016;418:66-74 pubmed 出版商
  138. Morona R, Ferran J, Puelles L, González A. Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis. J Comp Neurol. 2017;525:715-752 pubmed 出版商
  139. Wolf H, Damme M, Stroobants S, D Hooge R, Beck H, Hermans Borgmeyer I, et al. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease. Dis Model Mech. 2016;9:1015-28 pubmed 出版商
  140. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  141. Liu J, Liu J, Holmström K, Menazza S, Parks R, Fergusson M, et al. MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium Overload. Cell Rep. 2016;16:1561-1573 pubmed 出版商
  142. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  143. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  144. Sanges D, Simonte G, Di Vicino U, Romo N, Pinilla I, Nicolas M, et al. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest. 2016;126:3104-16 pubmed 出版商
  145. Kordower J, Vinuela A, Chu Y, Isacson O, Redmond D. Parkinsonian monkeys with prior levodopa-induced dyskinesias followed by fetal dopamine precursor grafts do not display graft-induced dyskinesias. J Comp Neurol. 2017;525:498-512 pubmed 出版商
  146. Miyazaki Y, Du X, Muramatsu S, Gomez C. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci Transl Med. 2016;8:347ra94 pubmed 出版商
  147. Simmons A, Bloomsburg S, Billingslea S, Merrill M, Li S, Thomas M, et al. Pou4f2 knock-in Cre mouse: A multifaceted genetic tool for vision researchers. Mol Vis. 2016;22:705-17 pubmed
  148. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vazquez E, León Castellanos V, et al. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano. 2016;10:7154-71 pubmed 出版商
  149. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  150. Folmsbee S, Wilcox D, Tyberghein K, De Bleser P, Tourtellotte W, van Hengel J, et al. ?T-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry. 2016;4:2 pubmed 出版商
  151. Wang Y, Hersheson J, López D, Hammer M, Liu Y, Lee K, et al. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. Cell Rep. 2016;16:79-91 pubmed 出版商
  152. Meyer A, Tetenborg S, Greb H, Segelken J, Dorgau B, Weiler R, et al. Connexin30.2: In Vitro Interaction with Connexin36 in HeLa Cells and Expression in AII Amacrine Cells and Intrinsically Photosensitive Ganglion Cells in the Mouse Retina. Front Mol Neurosci. 2016;9:36 pubmed 出版商
  153. de la Rosa Prieto C, Saiz Sanchez D, Ubeda Bañon I, Flores Cuadrado A, Martinez Marcos A. Neurogenesis, Neurodegeneration, Interneuron Vulnerability, and Amyloid-? in the Olfactory Bulb of APP/PS1 Mouse Model of Alzheimer's Disease. Front Neurosci. 2016;10:227 pubmed 出版商
  154. Kruger L, O Malley H, Hull J, Kleeman A, Patino G, Isom L. ?1-C121W Is Down But Not Out: Epilepsy-Associated Scn1b-C121W Results in a Deleterious Gain-of-Function. J Neurosci. 2016;36:6213-24 pubmed 出版商
  155. Kuramoto E, Pan S, Furuta T, Tanaka Y, Iwai H, Yamanaka A, et al. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors. J Comp Neurol. 2017;525:166-185 pubmed 出版商
  156. Phillips J, Laude A, Lightowlers R, Morris C, Turnbull D, Lax N. Development of passive CLARITY and immunofluorescent labelling of multiple proteins in human cerebellum: understanding mechanisms of neurodegeneration in mitochondrial disease. Sci Rep. 2016;6:26013 pubmed 出版商
  157. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  158. Ruiz R, Pérez Villegas E, Bachiller S, Rosa J, Armengol J. HERC 1 Ubiquitin Ligase Mutation Affects Neocortical, CA3 Hippocampal and Spinal Cord Projection Neurons: An Ultrastructural Study. Front Neuroanat. 2016;10:42 pubmed 出版商
  159. van Loon E, Little R, Prehar S, Bindels R, Cartwright E, Hoenderop J. Calcium Extrusion Pump PMCA4: A New Player in Renal Calcium Handling?. PLoS ONE. 2016;11:e0153483 pubmed 出版商
  160. Bouvier D, Jones E, Quesseveur G, Davoli M, A Ferreira T, Quirion R, et al. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep. 2016;6:24544 pubmed 出版商
  161. Di Lauro S, Rodriguez Crespo D, Gayoso M, Garcia Gutierrez M, Pastor J, Srivastava G, et al. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Mol Vis. 2016;22:243-53 pubmed
  162. Zhang L, Hernandez V, Vázquez Juárez E, Chay F, Barrio R. Thirst Is Associated with Suppression of Habenula Output and Active Stress Coping: Is there a Role for a Non-canonical Vasopressin-Glutamate Pathway?. Front Neural Circuits. 2016;10:13 pubmed 出版商
  163. Hirano A, Liu X, Boulter J, Grove J, Pérez de Sevilla Müller L, Barnes S, et al. Targeted Deletion of Vesicular GABA Transporter from Retinal Horizontal Cells Eliminates Feedback Modulation of Photoreceptor Calcium Channels. Eneuro. 2016;3: pubmed 出版商
  164. Vereczki V, Veres J, Müller K, Nagy G, Rácz B, Barsy B, et al. Synaptic Organization of Perisomatic GABAergic Inputs onto the Principal Cells of the Mouse Basolateral Amygdala. Front Neuroanat. 2016;10:20 pubmed 出版商
  165. Figueroa K, Paul S, Calì T, Lopreiato R, Karan S, Frizzarin M, et al. Spontaneous shaker rat mutant - a new model for X-linked tremor/ataxia. Dis Model Mech. 2016;9:553-62 pubmed 出版商
  166. Bouskila J, Javadi P, Elkrief L, Casanova C, Bouchard J, Ptito M. A Comparative Analysis of the Endocannabinoid System in the Retina of Mice, Tree Shrews, and Monkeys. Neural Plast. 2016;2016:3127658 pubmed 出版商
  167. Li J, Su Y, Wang H, Zhao Y, Liao X, Wang X, et al. Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex. Front Mol Neurosci. 2016;9:17 pubmed 出版商
  168. Di Pietro C, Marazziti D, La Sala G, Abbaszadeh Z, Golini E, Matteoni R, et al. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma. Cell Mol Neurobiol. 2017;37:145-154 pubmed 出版商
  169. Alshammari M, Alshammari T, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci. 2016;10:5 pubmed 出版商
  170. Li M, Lu G, Hu J, Shen X, Ju J, Gao Y, et al. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy. Stem Cell Reports. 2016;6:396-410 pubmed 出版商
  171. Watanabe Y, Müller M, von Engelhardt J, Sprengel R, Seeburg P, Monyer H. Age-Dependent Degeneration of Mature Dentate Gyrus Granule Cells Following NMDA Receptor Ablation. Front Mol Neurosci. 2015;8:87 pubmed 出版商
  172. Villette V, Guigue P, Picardo M, Sousa V, Leprince E, Lachamp P, et al. Development of early-born ?-Aminobutyric acid hub neurons in mouse hippocampus from embryogenesis to adulthood. J Comp Neurol. 2016;524:2440-61 pubmed 出版商
  173. White J, Lin T, Brown A, Arancillo M, Lackey E, Stay T, et al. An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods. 2016;262:21-31 pubmed 出版商
  174. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  175. Ruegsegger C, Stucki D, Steiner S, Angliker N, Radecke J, Keller E, et al. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron. 2016;89:129-46 pubmed 出版商
  176. Jackman S, Turecek J, Belinsky J, Regehr W. The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature. 2016;529:88-91 pubmed 出版商
  177. Farshi P, Fyk Kolodziej B, Krolewski D, Walker P, Ichinose T. Dopamine D1 receptor expression is bipolar cell type-specific in the mouse retina. J Comp Neurol. 2016;524:2059-79 pubmed 出版商
  178. Sikora J, Leddy J, Gulinello M, Walkley S. X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities. Dis Model Mech. 2016;9:13-23 pubmed 出版商
  179. Erbs E, Faget L, Ceredig R, Matifas A, Vonesch J, Kieffer B, et al. Impact of chronic morphine on delta opioid receptor-expressing neurons in the mouse hippocampus. Neuroscience. 2016;313:46-56 pubmed 出版商
  180. Ahn S, Kim T, Kim K, Chung S. Differentiation of human pluripotent stem cells into Medial Ganglionic Eminence vs. Caudal Ganglionic Eminence cells. Methods. 2016;101:103-12 pubmed 出版商
  181. Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation. Autophagy. 2015;11:1608-22 pubmed 出版商
  182. Garcia Calero E, Botella Lopez A, Bahamonde O, Perez Balaguer A, Martinez S. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon. Brain Struct Funct. 2016;221:2905-17 pubmed 出版商
  183. Hurtado R, Zewdu R, Mtui J, Liang C, Aho R, Kurylo C, et al. Pbx1-dependent control of VMC differentiation kinetics underlies gross renal vascular patterning. Development. 2015;142:2653-64 pubmed 出版商
  184. Hooper A, Maguire J. Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone. Hippocampus. 2016;26:41-53 pubmed 出版商
  185. Shigematsu N, Ueta Y, Mohamed A, Hatada S, Fukuda T, Kubota Y, et al. Selective Thalamic Innervation of Rat Frontal Cortical Neurons. Cereb Cortex. 2016;26:2689-2704 pubmed 出版商
  186. Wende C, Zoubaa S, Blak A, Echevarria D, Martinez S, Guillemot F, et al. Hairy/Enhancer-of-Split MEGANE and Proneural MASH1 Factors Cooperate Synergistically in Midbrain GABAergic Neurogenesis. PLoS ONE. 2015;10:e0127681 pubmed 出版商
  187. Imoto Y, Kira T, Sukeno M, Nishitani N, Nagayasu K, Nakagawa T, et al. Role of the 5-HT4 receptor in chronic fluoxetine treatment-induced neurogenic activity and granule cell dematuration in the dentate gyrus. Mol Brain. 2015;8:29 pubmed 出版商
  188. Andrews W, Davidson K, Tamamaki N, Ruhrberg C, Parnavelas J. Altered proliferative ability of neuronal progenitors in PlexinA1 mutant mice. J Comp Neurol. 2016;524:518-34 pubmed 出版商
  189. Czujkowska A, Arciszewski M. Galanin is Co-Expressed with Substance P, Calbindin and Corticotropin-Releasing Factor (CRF) in The Enteric Nervous System of the Wild Boar (Sus scrofa) Small Intestine. Anat Histol Embryol. 2016;45:115-23 pubmed 出版商
  190. Dansithong W, Paul S, Figueroa K, Rinehart M, Wiest S, Pflieger L, et al. Ataxin-2 regulates RGS8 translation in a new BAC-SCA2 transgenic mouse model. PLoS Genet. 2015;11:e1005182 pubmed 出版商
  191. Grimm P, Lazo Fernández Y, Delpire E, Wall S, Dorsey S, Weinman E, et al. Integrated compensatory network is activated in the absence of NCC phosphorylation. J Clin Invest. 2015;125:2136-50 pubmed 出版商
  192. Greenlee J, Clawson S, Hill K, Wood B, Clardy S, Tsunoda I, et al. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers. PLoS ONE. 2015;10:e0123446 pubmed 出版商
  193. Guyenet S, Mookerjee S, Lin A, Custer S, Chen S, Sopher B, et al. Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction. Hum Mol Genet. 2015;24:3908-17 pubmed 出版商
  194. Szabo N, Da Silva R, Sotocinal S, Zeilhofer H, Mogil J, Kania A. Hoxb8 intersection defines a role for Lmx1b in excitatory dorsal horn neuron development, spinofugal connectivity, and nociception. J Neurosci. 2015;35:5233-46 pubmed 出版商
  195. Zonouzi M, Scafidi J, Li P, McEllin B, Edwards J, Dupree J, et al. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat Neurosci. 2015;18:674-82 pubmed 出版商
  196. Sun J, Liu Y, Moreno S, Baudry M, Bi X. Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of Angelman syndrome mice impairs motor function. J Neurosci. 2015;35:4706-18 pubmed 出版商
  197. Liu Z, Brunskill E, Boyle S, Chen S, Turkoz M, Guo Y, et al. Second-generation Notch1 activity-trap mouse line (N1IP::CreHI) provides a more comprehensive map of cells experiencing Notch1 activity. Development. 2015;142:1193-202 pubmed 出版商
  198. Pérez de Sevilla Müller L, Sargoy A, Fernández Sánchez L, Rodriguez A, Liu J, Cuenca N, et al. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina. J Comp Neurol. 2015;523:1443-60 pubmed 出版商
  199. Khairallah H, El Andalousi J, Simard A, Haddad N, Chen Y, Hou J, et al. Claudin-7, -16, and -19 during mouse kidney development. Tissue Barriers. 2014;2:e964547 pubmed 出版商
  200. Kumar M, Csaba Z, Peineau S, Srivastava R, Rasika S, Mani S, et al. Endogenous cerebellar neurogenesis in adult mice with progressive ataxia. Ann Clin Transl Neurol. 2014;1:968-81 pubmed 出版商
  201. Filézac de L Etang A, Maharjan N, Cordeiro Braña M, Ruegsegger C, Rehmann R, Goswami A, et al. Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS. Nat Neurosci. 2015;18:227-38 pubmed 出版商
  202. Dopeso Reyes I, Rico A, Roda E, Sierra S, Pignataro D, Lanz M, et al. Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Front Neuroanat. 2014;8:146 pubmed 出版商
  203. Ito H, Fujita K, Tagawa K, Chen X, Homma H, Sasabe T, et al. HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice. EMBO Mol Med. 2015;7:78-101 pubmed 出版商
  204. Maltecca F, Baseggio E, Consolato F, Mazza D, Podini P, Young S, et al. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. J Clin Invest. 2015;125:263-74 pubmed 出版商
  205. Molgaard S, Ulrichsen M, Boggild S, Holm M, Vaegter C, Nyengaard J, et al. Immunohistochemical visualization of mouse interneuron subtypes. F1000Res. 2014;3:242 pubmed 出版商
  206. Vergaño Vera E, Diaz Guerra E, Rodríguez Traver E, Méndez Gómez H, Solis O, Pignatelli J, et al. Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes. Dev Neurobiol. 2015;75:823-41 pubmed 出版商
  207. Sharaf A, Rahhal B, Spittau B, Roussa E. Localization of reelin signaling pathway components in murine midbrain and striatum. Cell Tissue Res. 2015;359:393-407 pubmed 出版商
  208. Wang W, Cheng C, Tsaur M. Immunohistochemical localization of DPP10 in rat brain supports the existence of a Kv4/KChIP/DPPL ternary complex in neurons. J Comp Neurol. 2015;523:608-28 pubmed 出版商
  209. Szikra T, Trenholm S, Drinnenberg A, Jüttner J, Raics Z, Farrow K, et al. Rods in daylight act as relay cells for cone-driven horizontal cell-mediated surround inhibition. Nat Neurosci. 2014;17:1728-35 pubmed 出版商
  210. Schubert M, Panja D, Haugen M, Bramham C, Vedeler C. Paraneoplastic CDR2 and CDR2L antibodies affect Purkinje cell calcium homeostasis. Acta Neuropathol. 2014;128:835-52 pubmed 出版商
  211. Sánchez Pérez A, Arnal Vicente I, Santos F, Pereira C, ElMlili N, Sanjuan J, et al. Septal projections to nucleus incertus in the rat: bidirectional pathways for modulation of hippocampal function. J Comp Neurol. 2015;523:565-88 pubmed 出版商
  212. Suzuki Y, Kiyokage E, Sohn J, Hioki H, Toida K. Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 2015;523:262-80 pubmed 出版商
  213. Masuda C, Takeuchi S, J Bisem N, R Vincent S, Tooyama I. Immunohistochemical Localization of an Isoform of TRK-Fused Gene-Like Protein in the Rat Retina. Acta Histochem Cytochem. 2014;47:75-83 pubmed 出版商
  214. Liu C, Lin C, Gao C, May Simera H, Swaroop A, Li T. Null and hypomorph Prickle1 alleles in mice phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a. Biol Open. 2014;3:861-70 pubmed 出版商
  215. Lowe M, Faull R, Christie D, Waldvogel H. Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J Comp Neurol. 2015;523:699-725 pubmed 出版商
  216. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  217. Gray D, Engle J, Rudolph M, Recanzone G. Regional and age-related differences in GAD67 expression of parvalbumin- and calbindin-expressing neurons in the rhesus macaque auditory midbrain and brainstem. J Comp Neurol. 2014;522:4074-84 pubmed 出版商
  218. Karetko Sysa M, Skangiel Kramska J, Nowicka D. Aging somatosensory cortex displays increased density of WFA-binding perineuronal nets associated with GAD-negative neurons. Neuroscience. 2014;277:734-46 pubmed 出版商
  219. Lotta L, Conrad K, Cory Slechta D, Schor N. Cerebellar Purkinje cell p75 neurotrophin receptor and autistic behavior. Transl Psychiatry. 2014;4:e416 pubmed 出版商
  220. Sengul G, Fu Y, Yu Y, Paxinos G. Spinal cord projections to the cerebellum in the mouse. Brain Struct Funct. 2015;220:2997-3009 pubmed 出版商
  221. Ho T, Vessey K, Fletcher E. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience. 2014;277:55-71 pubmed 出版商
  222. Gaillard F, Kuny S, Sauve Y. Retinal distribution of Disabled-1 in a diurnal murine rodent, the Nile grass rat Arvicanthis niloticus. Exp Eye Res. 2014;125:236-43 pubmed 出版商
  223. Keeley P, Whitney I, Madsen N, St John A, Borhanian S, Leong S, et al. Independent genomic control of neuronal number across retinal cell types. Dev Cell. 2014;30:103-9 pubmed 出版商
  224. Vasistha N, García Moreno F, Arora S, Cheung A, Arnold S, Robertson E, et al. Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain. Cereb Cortex. 2015;25:3290-302 pubmed 出版商
  225. TIMBIE C, Barbas H. Specialized pathways from the primate amygdala to posterior orbitofrontal cortex. J Neurosci. 2014;34:8106-18 pubmed 出版商
  226. Cho S, Jeon J, Chun D, Yeo S, Kim I. Anoctamin 1 expression in the mouse auditory brainstem. Cell Tissue Res. 2014;357:563-9 pubmed 出版商
  227. Kay R, Brunjes P. Diversity among principal and GABAergic neurons of the anterior olfactory nucleus. Front Cell Neurosci. 2014;8:111 pubmed 出版商
  228. Katyal S, Lee Y, Nitiss K, Downing S, Li Y, Shimada M, et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat Neurosci. 2014;17:813-21 pubmed 出版商
  229. König N, Trolle C, Kapuralin K, Adameyko I, Mitrecic D, Aldskogius H, et al. Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion. J Tissue Eng Regen Med. 2017;11:129-137 pubmed 出版商
  230. Verslegers M, Van Hove I, Dekeyster E, Gantois I, Hu T, D Hooge R, et al. MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum. Brain Struct Funct. 2015;220:1601-17 pubmed 出版商
  231. Stanic D, Dubois S, Chua H, Tonge B, Rinehart N, Horne M, et al. Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors ? and ?, and androgen receptors. PLoS ONE. 2014;9:e90451 pubmed 出版商
  232. Vessey K, Greferath U, Aplin F, Jobling A, Phipps J, Ho T, et al. Adenosine triphosphate-induced photoreceptor death and retinal remodeling in rats. J Comp Neurol. 2014;522:2928-50 pubmed 出版商
  233. Fuchs M, Brandst tter J, Regus Leidig H. Evidence for a Clathrin-independent mode of endocytosis at a continuously active sensory synapse. Front Cell Neurosci. 2014;8:60 pubmed 出版商
  234. Lopez J, González A. Organization of the serotonergic system in the central nervous system of two basal actinopterygian fishes: the Cladistians Polypterus senegalus and Erpetoichthys calabaricus. Brain Behav Evol. 2014;83:54-76 pubmed 出版商
  235. Hum S, Rymer C, Schaefer C, Bushnell D, Sims Lucas S. Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS ONE. 2014;9:e88400 pubmed 出版商
  236. Yu Y, Fu Y, Watson C. The inferior olive of the C57BL/6J mouse: a chemoarchitectonic study. Anat Rec (Hoboken). 2014;297:289-300 pubmed 出版商
  237. Di Giovannantonio L, Di Salvio M, Omodei D, Prakash N, Wurst W, Pierani A, et al. Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development. 2014;141:377-88 pubmed 出版商
  238. Kao F, Su S, Carlson G, Liao W. MeCP2-mediated alterations of striatal features accompany psychomotor deficits in a mouse model of Rett syndrome. Brain Struct Funct. 2015;220:419-34 pubmed 出版商
  239. Liu Y, Liang X, Ren W, Li B. Expression of ?1- and ?2-adrenoceptors in different subtypes of interneurons in the medial prefrontal cortex of mice. Neuroscience. 2014;257:149-57 pubmed 出版商
  240. Akane H, Shiraki A, Imatanaka N, Akahori Y, Itahashi M, Abe H, et al. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study. Toxicol Lett. 2014;224:424-32 pubmed 出版商
  241. Zacharko Siembida A, Kulik P, Szalak R, Lalak R, Arciszewski M. Co-expression patterns of cocaine- and amphetamine-regulated transcript (CART) with neuropeptides in dorsal root ganglia of the pig. Acta Histochem. 2014;116:390-8 pubmed 出版商
  242. Huang Y, Dai L, Gaines D, Droz Rosario R, Lu H, Liu J, et al. BCCIP suppresses tumor initiation but is required for tumor progression. Cancer Res. 2013;73:7122-33 pubmed 出版商
  243. Vestin A, Mills A. The tumor suppressor Chd5 is induced during neuronal differentiation in the developing mouse brain. Gene Expr Patterns. 2013;13:482-9 pubmed 出版商
  244. Yamada J, Jinno S. S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. Hippocampus. 2014;24:89-101 pubmed 出版商
  245. Cholich L, Marquez M, Pumarola I Batlle M, Gimeno E, Teibler G, Rios E, et al. Experimental intoxication of guinea pigs with Ipomoea carnea: behavioural and neuropathological alterations. Toxicon. 2013;76:28-36 pubmed 出版商
  246. Cops E, Sashindranath M, Daglas M, Short K, da Fonseca Pereira C, Pang T, et al. Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait. Exp Neurol. 2013;249:8-19 pubmed 出版商
  247. Cagle M, Honig M. Parcellation of cerebellins 1, 2, and 4 among different subpopulations of dorsal horn neurons in mouse spinal cord. J Comp Neurol. 2014;522:479-97 pubmed 出版商
  248. Puglisi F, Vanni V, Ponterio G, Tassone A, Sciamanna G, Bonsi P, et al. Torsin A Localization in the Mouse Cerebellar Synaptic Circuitry. PLoS ONE. 2013;8:e68063 pubmed 出版商
  249. Joven A, Morona R, González A, Moreno N. Spatiotemporal patterns of Pax3, Pax6, and Pax7 expression in the developing brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:3913-53 pubmed 出版商
  250. Lowe M, Kim E, Faull R, Christie D, Waldvogel H. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. J Cereb Blood Flow Metab. 2013;33:1295-306 pubmed 出版商
  251. Decampo D, Fudge J. Amygdala projections to the lateral bed nucleus of the stria terminalis in the macaque: comparison with ventral striatal afferents. J Comp Neurol. 2013;521:3191-216 pubmed 出版商
  252. Takao K, Kobayashi K, Hagihara H, Ohira K, Shoji H, Hattori S, et al. Deficiency of schnurri-2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia. Neuropsychopharmacology. 2013;38:1409-25 pubmed 出版商
  253. Cox D, Racca C. Differential dendritic targeting of AMPA receptor subunit mRNAs in adult rat hippocampal principal neurons and interneurons. J Comp Neurol. 2013;521:1954-2007 pubmed 出版商
  254. Joven A, Morona R, González A, Moreno N. Expression patterns of Pax6 and Pax7 in the adult brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:2088-124 pubmed 出版商
  255. Dougherty S, Reeves J, Lesort M, Detloff P, Cowell R. Purkinje cell dysfunction and loss in a knock-in mouse model of Huntington disease. Exp Neurol. 2013;240:96-102 pubmed 出版商
  256. Tsuneoka Y, Maruyama T, Yoshida S, Nishimori K, Kato T, Numan M, et al. Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol. 2013;521:1633-63 pubmed 出版商
  257. Li J, Xue Z, Deng S, Luo X, Patrylo P, Rose G, et al. Amyloid plaque pathogenesis in 5XFAD mouse spinal cord: retrograde transneuronal modulation after peripheral nerve injury. Neurotox Res. 2013;24:1-14 pubmed 出版商
  258. Kranz K, Dorgau B, Pottek M, Herrling R, Schultz K, Bolte P, et al. Expression of Pannexin1 in the outer plexiform layer of the mouse retina and physiological impact of its knockout. J Comp Neurol. 2013;521:1119-35 pubmed 出版商
  259. Light A, Zhu Y, Shi J, Saszik S, Lindstrom S, Davidson L, et al. Organizational motifs for ground squirrel cone bipolar cells. J Comp Neurol. 2012;520:2864-87 pubmed 出版商
  260. Morona R, González A. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development. J Comp Neurol. 2013;521:79-108 pubmed 出版商
  261. Chapman R, Lall V, Maxeiner S, Willecke K, Deuchars J, King A. Localization of neurones expressing the gap junction protein Connexin45 within the adult spinal dorsal horn: a study using Cx45-eGFP reporter mice. Brain Struct Funct. 2013;218:751-65 pubmed 出版商
  262. Wouterlood F, Hartig W, Groenewegen H, Voorn P. Density gradients of vesicular glutamate- and GABA transporter-immunoreactive boutons in calbindinand ?-opioid receptor-defined compartments in the rat striatum. J Comp Neurol. 2012;520:2123-42 pubmed 出版商
  263. Olucha Bordonau F, Otero García M, Sánchez Pérez A, Nunez A, Ma S, Gundlach A. Distribution and targets of the relaxin-3 innervation of the septal area in the rat. J Comp Neurol. 2012;520:1903-39 pubmed 出版商
  264. Szulwach K, Li X, Li Y, Song C, Wu H, Dai Q, et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci. 2011;14:1607-16 pubmed 出版商
  265. Arellano J, Guadiana S, Breunig J, Rakic P, Sarkisian M. Development and distribution of neuronal cilia in mouse neocortex. J Comp Neurol. 2012;520:848-73 pubmed 出版商
  266. Wiechmann A, Sherry D. Melatonin receptors are anatomically organized to modulate transmission specifically to cone pathways in the retina of Xenopus laevis. J Comp Neurol. 2012;520:1115-27 pubmed 出版商
  267. Puthussery T, Gayet Primo J, Taylor W, Haverkamp S. Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina. J Comp Neurol. 2011;519:3640-56 pubmed 出版商
  268. Wu F, Sapkota D, Li R, Mu X. Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J Comp Neurol. 2012;520:952-69 pubmed 出版商
  269. Corteen N, Cole T, Sarna A, Sieghart W, Swinny J. Localization of GABA-A receptor alpha subunits on neurochemically distinct cell types in the rat locus coeruleus. Eur J Neurosci. 2011;34:250-62 pubmed 出版商
  270. Brunjes P, Kay R, Arrivillaga J. The mouse olfactory peduncle. J Comp Neurol. 2011;519:2870-86 pubmed 出版商
  271. Hirano A, Brandstätter J, Morgans C, Brecha N. SNAP25 expression in mammalian retinal horizontal cells. J Comp Neurol. 2011;519:972-88 pubmed 出版商
  272. Puller C, Ondreka K, Haverkamp S. Bipolar cells of the ground squirrel retina. J Comp Neurol. 2011;519:759-74 pubmed 出版商
  273. Garcia Marin V, Blazquez Llorca L, Rodriguez J, Gonzalez Soriano J, Defelipe J. Differential distribution of neurons in the gyral white matter of the human cerebral cortex. J Comp Neurol. 2010;518:4740-59 pubmed 出版商
  274. McClellan K, Stratton M, Tobet S. Roles for gamma-aminobutyric acid in the development of the paraventricular nucleus of the hypothalamus. J Comp Neurol. 2010;518:2710-28 pubmed 出版商
  275. Phillips M, Otteson D, Sherry D. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa. J Comp Neurol. 2010;518:2071-89 pubmed 出版商
  276. Lepousez G, Csaba Z, Bernard V, Loudes C, Videau C, Lacombe J, et al. Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb. J Comp Neurol. 2010;518:1976-94 pubmed 出版商
  277. Guo C, Hirano A, Stella S, Bitzer M, Brecha N. Guinea pig horizontal cells express GABA, the GABA-synthesizing enzyme GAD 65, and the GABA vesicular transporter. J Comp Neurol. 2010;518:1647-69 pubmed 出版商
  278. Hundahl C, Hannibal J, Fahrenkrug J, DeWilde S, Hay Schmidt A. Neuroglobin expression in the rat suprachiasmatic nucleus: colocalization, innervation, and response to light. J Comp Neurol. 2010;518:1556-69 pubmed 出版商
  279. Martín Ibáñez R, Crespo E, Urbán N, Sergent Tanguy S, Herranz C, Jaumot M, et al. Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons. J Comp Neurol. 2010;518:329-51 pubmed 出版商
  280. Clarke J, Emson P, Irvine R. Distribution and neuronal expression of phosphatidylinositol phosphate kinase IIgamma in the mouse brain. J Comp Neurol. 2009;517:296-312 pubmed 出版商
  281. Jakovcevski I, Siering J, Hargus G, Karl N, Hoelters L, Djogo N, et al. Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development. J Comp Neurol. 2009;513:496-510 pubmed 出版商
  282. Janmaat S, Frederic F, Sjollema K, Luiten P, Mariani J, van der Want J. Formation and maturation of parallel fiber-Purkinje cell synapses in the Staggerer cerebellum ex vivo. J Comp Neurol. 2009;512:467-77 pubmed 出版商
  283. Guo C, Stella S, Hirano A, Brecha N. Plasmalemmal and vesicular gamma-aminobutyric acid transporter expression in the developing mouse retina. J Comp Neurol. 2009;512:6-26 pubmed 出版商
  284. Lavenex P, Lavenex P, Bennett J, Amaral D. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation. J Comp Neurol. 2009;512:27-51 pubmed 出版商
  285. Martínez Navarrete G, Angulo A, Martín Nieto J, Cuenca N. Gradual morphogenesis of retinal neurons in the peripheral retinal margin of adult monkeys and humans. J Comp Neurol. 2008;511:557-80 pubmed 出版商
  286. Yang Z, You Y, Levison S. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J Comp Neurol. 2008;511:19-33 pubmed 出版商
  287. Poche R, Furuta Y, Chaboissier M, Schedl A, Behringer R. Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller glial cell development. J Comp Neurol. 2008;510:237-50 pubmed 出版商
  288. Kawano J, Tanizawa Y, Shinoda K. Wolfram syndrome 1 (Wfs1) gene expression in the normal mouse visual system. J Comp Neurol. 2008;510:1-23 pubmed 出版商
  289. Cox D, Racca C, LeBeau F. Beta-adrenergic receptors are differentially expressed in distinct interneuron subtypes in the rat hippocampus. J Comp Neurol. 2008;509:551-65 pubmed 出版商
  290. O Brien B, Caldwell J, Ehring G, Bumsted O Brien K, Luo S, Levinson S. Tetrodotoxin-resistant voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 are expressed in the retina. J Comp Neurol. 2008;508:940-51 pubmed 出版商
  291. Reznikov L, Reagan L, Fadel J. Activation of phenotypically distinct neuronal subpopulations in the anterior subdivision of the rat basolateral amygdala following acute and repeated stress. J Comp Neurol. 2008;508:458-72 pubmed 出版商
  292. Fischer A, Foster S, Scott M, Sherwood P. Transient expression of LIM-domain transcription factors is coincident with delayed maturation of photoreceptors in the chicken retina. J Comp Neurol. 2008;506:584-603 pubmed
  293. Ahlemeyer B, Neubert I, Kovacs W, Baumgart Vogt E. Differential expression of peroxisomal matrix and membrane proteins during postnatal development of mouse brain. J Comp Neurol. 2007;505:1-17 pubmed
  294. Elshatory Y, Deng M, Xie X, Gan L. Expression of the LIM-homeodomain protein Isl1 in the developing and mature mouse retina. J Comp Neurol. 2007;503:182-97 pubmed
  295. Fischer A, Stanke J, Aloisio G, Hoy H, Stell W. Heterogeneity of horizontal cells in the chicken retina. J Comp Neurol. 2007;500:1154-71 pubmed
  296. Gargini C, Terzibasi E, Mazzoni F, Strettoi E. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol. 2007;500:222-38 pubmed
  297. Higo N, Oishi T, Yamashita A, Murata Y, Matsuda K, Hayashi M. Expression of protein kinase C-substrate mRNAs in the basal ganglia of adult and infant macaque monkeys. J Comp Neurol. 2006;499:662-76 pubmed
  298. Meyer E, Illig K, Brunjes P. Differences in chemo- and cytoarchitectural features within pars principalis of the rat anterior olfactory nucleus suggest functional specialization. J Comp Neurol. 2006;498:786-95 pubmed
  299. Lee E, Mann L, Rickman D, Lim E, Chun M, Grzywacz N. AII amacrine cells in the distal inner nuclear layer of the mouse retina. J Comp Neurol. 2006;494:651-62 pubmed
  300. Liu S, Gao N, Hu H, Wang X, Wang G, Fang X, et al. Distribution and chemical coding of corticotropin-releasing factor-immunoreactive neurons in the guinea pig enteric nervous system. J Comp Neurol. 2006;494:63-74 pubmed
  301. Kiyokage E, Toida K, Suzuki Yamamoto T, Ishimura K. Localization of 5alpha-reductase in the rat main olfactory bulb. J Comp Neurol. 2005;493:381-95 pubmed
  302. Treloar H, Uboha U, Jeromin A, Greer C. Expression of the neuronal calcium sensor protein NCS-1 in the developing mouse olfactory pathway. J Comp Neurol. 2005;482:201-16 pubmed