这是一篇来自已证抗体库的有关人类 钙调蛋白 (calmodulin) 的综述,是根据20篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合钙调蛋白 抗体。
钙调蛋白 同义词: CALML2; CAM2; CAM3; CAMB; CAMC; CAMI; CAMIII; CPVT4; DD132; LQT14; PHKD; caM

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP799Y)
  • 免疫印迹; pigs ; 1:1000; 图 8b
艾博抗(上海)贸易有限公司钙调蛋白抗体(Abcam, ab45689)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 8b). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(EP799Y)
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司钙调蛋白抗体(Abcam, EP799Y)被用于被用于免疫印迹在小鼠样本上 (图 3c). Mol Cell Proteomics (2016) ncbi
domestic rabbit 单克隆(EP799Y)
  • 免疫细胞化学; 大鼠; 1:200
艾博抗(上海)贸易有限公司钙调蛋白抗体(Abcam, ab45689)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. J Cell Biochem (2015) ncbi
domestic rabbit 单克隆(EP799Y)
  • 免疫细胞化学; 小鼠; 图 4d
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司钙调蛋白抗体(abcam, ab45689)被用于被用于免疫细胞化学在小鼠样本上 (图 4d) 和 被用于免疫印迹在小鼠样本上 (图 3a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EP799Y)
  • 免疫组化-冰冻切片; 小鼠; 1:500
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司钙调蛋白抗体(Abcam, ab45689)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 和 被用于免疫印迹在小鼠样本上. J Proteomics (2014) ncbi
domestic rabbit 单克隆(EP799Y)
  • 免疫印迹; 非洲爪蛙; 1:5000
艾博抗(上海)贸易有限公司钙调蛋白抗体(Abcam, ab45689)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:5000. J Gen Physiol (2013) ncbi
domestic rabbit 单克隆(EP799Y)
  • 免疫印迹; 人类; 1:3000
  • 免疫印迹; 大鼠; 1:3000
艾博抗(上海)贸易有限公司钙调蛋白抗体(Abcam, ab45689)被用于被用于免疫印迹在人类样本上浓度为1:3000 和 被用于免疫印迹在大鼠样本上浓度为1:3000. Neurochem Int (2013) ncbi
domestic rabbit 单克隆(EP799Y)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司钙调蛋白抗体(Abcam, ab45689)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-3)
  • 免疫印迹; 大鼠; 图 10b
  • 免疫印迹; 小鼠; 图 11b
圣克鲁斯生物技术钙调蛋白抗体(Santa Cruz, sc-137079)被用于被用于免疫印迹在大鼠样本上 (图 10b) 和 被用于免疫印迹在小鼠样本上 (图 11b). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(G-3)
  • 免疫印迹; 大鼠; 1:1000; 图 3
圣克鲁斯生物技术钙调蛋白抗体(Santa Cruz, sc-137079)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(G-3)
  • 免疫印迹; 大鼠; 1:1000; 图 s4
圣克鲁斯生物技术钙调蛋白抗体(Santa Cruz Biotechnology, sc-137079)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(G-3)
  • 免疫印迹; 大鼠; 1:800; 图 2
圣克鲁斯生物技术钙调蛋白抗体(santa Cruz, sc-137079)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(G-3)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术钙调蛋白抗体(Santa Cruz Biotechnology, sc-137079)被用于被用于免疫印迹在小鼠样本上 (图 3). J Biol Chem (2015) ncbi
小鼠 单克隆(G-3)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术钙调蛋白抗体(Santa Cruz, SC137079)被用于被用于免疫印迹在大鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
赛默飞世尔
小鼠 单克隆(2D1)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛默飞世尔钙调蛋白抗体(Thermo Scientific, MA3-917)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Exp Mol Med (2016) ncbi
小鼠 单克隆(6D4)
  • 免疫印迹; 大鼠
赛默飞世尔钙调蛋白抗体(Affinity Bioreagents, MA3-918)被用于被用于免疫印迹在大鼠样本上. Physiol Rep (2015) ncbi
小鼠 单克隆(2D1)
  • 抑制或激活实验; 大鼠; 5 ug/ml
赛默飞世尔钙调蛋白抗体(Pierce Antibodies, MA3-917)被用于被用于抑制或激活实验在大鼠样本上浓度为5 ug/ml. PLoS ONE (2015) ncbi
小鼠 单克隆(2D1)
  • 免疫组化-自由浮动切片; 鼩鼱科; 1:100
赛默飞世尔钙调蛋白抗体(Thermo, MA3-917)被用于被用于免疫组化-自由浮动切片在鼩鼱科样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(2D1)
  • 免疫印迹; fruit fly ; 1:500; 图 s4
赛默飞世尔钙调蛋白抗体(Thermo Scientific, MA3-917)被用于被用于免疫印迹在fruit fly 样本上浓度为1:500 (图 s4). Mol Biol Cell (2014) ncbi
Synaptic Systems
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2a1
Synaptic Systems钙调蛋白抗体(Synaptic Systems, 301003)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a1). Eneuro (2021) ncbi
文章列表
  1. Liang C, Zhang G, Zhang L, Chen S, Wang J, Zhang T, et al. Calmodulin Bidirectionally Regulates Evoked and Spontaneous Neurotransmitter Release at Retinal Ribbon Synapses. Eneuro. 2021;8: pubmed 出版商
  2. Wang X, Deng Y, Gao Y, Dong Y, Wang F, Guan Z, et al. Activation of α7 nAChR by PNU-282987 improves synaptic and cognitive functions through restoring the expression of synaptic-associated proteins and the CaM-CaMKII-CREB signaling pathway. Aging (Albany NY). 2020;12:543-570 pubmed 出版商
  3. Burkard C, Lillico S, Reid E, Jackson B, Mileham A, Ait Ali T, et al. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog. 2017;13:e1006206 pubmed 出版商
  4. Huang M, Lee K, Kim K, Ahn M, Cho C, Kim D, et al. The maintenance ability and Ca2+ availability of skeletal muscle are enhanced by sildenafil. Exp Mol Med. 2016;48:e278 pubmed 出版商
  5. Zhang Y, Lin R, Tao J, Wu Y, Chen B, Yu K, et al. Electroacupuncture improves cognitive ability following cerebral ischemia reperfusion injury via CaM-CaMKIV-CREB signaling in the rat hippocampus. Exp Ther Med. 2016;12:777-782 pubmed
  6. Cannavo A, Liccardo D, Eguchi A, Elliott K, Traynham C, Ibetti J, et al. Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases. Nat Commun. 2016;7:10877 pubmed 出版商
  7. Pehar M, Ball L, Sharma D, Harlan B, Comte Walters S, Neely B, et al. Changes in Protein Expression and Lysine Acetylation Induced by Decreased Glutathione Levels in Astrocytes. Mol Cell Proteomics. 2016;15:493-505 pubmed 出版商
  8. Lv X, Guo F, Xu X, Chen Z, Sun X, Min D, et al. Abnormal alterations in the Ca²⁺/CaV1.2/calmodulin/caMKII signaling pathway in a tremor rat model and in cultured hippocampal neurons exposed to Mg²⁺-free solution. Mol Med Rep. 2015;12:6663-71 pubmed 出版商
  9. Ferretti R, Marques M, Khurana T, Santo Neto H. Expression of calcium-buffering proteins in rat intrinsic laryngeal muscles. Physiol Rep. 2015;3: pubmed 出版商
  10. Ulke Lemée A, Turner S, MacDonald J. In situ analysis of smoothelin-like 1 and calmodulin interactions in smooth muscle cells by proximity ligation. J Cell Biochem. 2015;116:2667-75 pubmed 出版商
  11. Greenlee J, Clawson S, Hill K, Wood B, Clardy S, Tsunoda I, et al. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers. PLoS ONE. 2015;10:e0123446 pubmed 出版商
  12. Chung S, Gillies M, Sugiyama Y, Zhu L, Lee S, Shen W. Profiling of microRNAs involved in retinal degeneration caused by selective Müller cell ablation. PLoS ONE. 2015;10:e0118949 pubmed 出版商
  13. Haering C, Kanageswaran N, Bouvain P, Scholz P, Altmüller J, Becker C, et al. Ion transporter NKCC1, modulator of neurogenesis in murine olfactory neurons. J Biol Chem. 2015;290:9767-79 pubmed 出版商
  14. Zhong W, Hutchinson T, Chebolu S, Darmani N. Serotonin 5-HT3 receptor-mediated vomiting occurs via the activation of Ca2+/CaMKII-dependent ERK1/2 signaling in the least shrew (Cryptotis parva). PLoS ONE. 2014;9:e104718 pubmed 出版商
  15. Cavaretta J, Sherer K, Lee K, Kim E, Issema R, Chung H. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit. PLoS ONE. 2014;9:e103655 pubmed 出版商
  16. Galletta B, Guillen R, Fagerstrom C, Brownlee C, Lerit D, Megraw T, et al. Drosophila pericentrin requires interaction with calmodulin for its function at centrosomes and neuronal basal bodies but not at sperm basal bodies. Mol Biol Cell. 2014;25:2682-94 pubmed 出版商
  17. Zeng H, Rao X, Zhang L, Zhao X, Zhang W, Wang J, et al. Quantitative proteomics reveals olfactory input-dependent alterations in the mouse olfactory bulb proteome. J Proteomics. 2014;109:125-42 pubmed 出版商
  18. Morales P, Garneau L, Klein H, Lavoie M, Parent L, Sauve R. Contribution of the KCa3.1 channel-calmodulin interactions to the regulation of the KCa3.1 gating process. J Gen Physiol. 2013;142:37-60 pubmed 出版商
  19. Yang W, Wang X, Duan C, Lu L, Yang H. Alpha-synuclein overexpression increases phospho-protein phosphatase 2A levels via formation of calmodulin/Src complex. Neurochem Int. 2013;63:180-94 pubmed 出版商
  20. Makinoshima H, Ishii G, Kojima M, Fujii S, Higuchi Y, Kuwata T, et al. PTPRZ1 regulates calmodulin phosphorylation and tumor progression in small-cell lung carcinoma. BMC Cancer. 2012;12:537 pubmed 出版商