这是一篇来自已证抗体库的有关人类 钙联接蛋白 (calnexin) 的综述,是根据161篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合钙联接蛋白 抗体。
钙联接蛋白 同义词: CNX; IP90; P90

艾博抗(上海)贸易有限公司
小鼠 单克隆(6F12BE10)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab112995)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Cells (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). EBioMedicine (2022) ncbi
domestic rabbit 单克隆(EPR3633(2))
  • 免疫印迹; 小鼠; 1:1000; 图 3e
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab133615)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Stem Cell Res Ther (2022) ncbi
domestic rabbit 单克隆(EPR3633(2))
  • 免疫印迹; 猕猴; 图 10d
  • 免疫印迹; 人类; 图 8c
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab133615)被用于被用于免疫印迹在猕猴样本上 (图 10d) 和 被用于免疫印迹在人类样本上 (图 8c). Aging Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上 (图 1e) 和 被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5f
  • 免疫印迹; 人类; 图 s6a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在小鼠样本上 (图 5f) 和 被用于免疫印迹在人类样本上 (图 s6a). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上 (图 6e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EPR3633(2))
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, EPR3633)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, AB22595)被用于被用于免疫印迹在人类样本上 (图 2d). J Extracell Vesicles (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1 ug/ml; 图 5d
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, Ab22595)被用于被用于免疫印迹在大鼠样本上浓度为1 ug/ml (图 5d). Life Sci Alliance (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1d
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1d). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:4000; 图 1d
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, 22595)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1d). Mol Ther Nucleic Acids (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1c
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1c). ERJ Open Res (2021) ncbi
domestic rabbit 单克隆(EPR3633(2))
  • 免疫印迹; 人类; 图 s1c
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab133615)被用于被用于免疫印迹在人类样本上 (图 s1c). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上 (图 s4a). Cell Death Differ (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 1:1000; 图 1g
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab92573)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1500; 图 1e
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫细胞化学在人类样本上浓度为1:1500 (图 1e). Alzheimers Res Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3g, 4a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab75801)被用于被用于免疫印迹在小鼠样本上 (图 3g, 4a). Neuron (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab92573)被用于被用于免疫印迹在人类样本上 (图 2d). J Cell Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 3j
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab75801)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3j). Dev Cell (2020) ncbi
小鼠 单克隆(6F12BE10)
  • 免疫印迹; 人类; 图 s6
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab112995)被用于被用于免疫印迹在人类样本上 (图 s6). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1i
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c, s5
艾博抗(上海)贸易有限公司钙联接蛋白抗体(abcam, ab10286)被用于被用于免疫印迹在人类样本上 (图 4c, s5). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:4000; 图 s5
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 s5). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3g
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫细胞化学在小鼠样本上 (图 3g). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4i
  • 免疫印迹; 人类; 图 4h
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab10286)被用于被用于免疫印迹在小鼠样本上 (图 4i) 和 被用于免疫印迹在人类样本上 (图 4h). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1d
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1d). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:4000; 图 s16a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 s16a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 3a
  • 免疫印迹; 人类; 图 3e
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫组化在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 3e). Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Neurobiol Aging (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab10286)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3A
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab75801)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3A). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:250; 表 1
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫组化在大鼠样本上浓度为1:250 (表 1). Front Cell Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; domestic rabbit; 1:100; 图 4a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab75801)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:100 (图 4a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab10286)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 5e). Am J Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3d
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3d). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR3633(2))
  • 免疫细胞化学; 小鼠; 图 3B
  • 免疫印迹; 小鼠; 图 1A
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab133615)被用于被用于免疫细胞化学在小鼠样本上 (图 3B) 和 被用于免疫印迹在小鼠样本上 (图 1A). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 1
艾博抗(上海)贸易有限公司钙联接蛋白抗体(abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 s3
  • 免疫印迹; 人类; 图 s3
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, 22595)被用于被用于免疫沉淀在人类样本上 (图 s3) 和 被用于免疫印迹在人类样本上 (图 s3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫细胞化学在小鼠样本上 (图 3), 被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 6
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab75801)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2500; 图 2
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 2). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1500; 图 3
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab75801)被用于被用于免疫印迹在小鼠样本上浓度为1:1500 (图 3). PLoS ONE (2016) ncbi
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab13505)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Pathog (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(AF18)
  • 免疫细胞化学; 人类; 图 4d
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz Biotechnology, sc-23954)被用于被用于免疫细胞化学在人类样本上 (图 4d). Cell Rep (2021) ncbi
小鼠 单克隆(AF18)
  • 免疫印迹; 小鼠; 图 5b
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz Biotechnology, sc-23954)被用于被用于免疫印迹在小鼠样本上 (图 5b). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(E-10)
  • 免疫印迹; 人类; 图 e8r
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc-46669)被用于被用于免疫印迹在人类样本上 (图 e8r). Nature (2019) ncbi
小鼠 单克隆(AF18)
  • 免疫印迹; 小鼠; 图 6i
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz Biotechnology, sc-23954)被用于被用于免疫印迹在小鼠样本上 (图 6i). Cell (2019) ncbi
小鼠 单克隆(TO-5)
  • 免疫细胞化学; 人类; 图 4a
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc-80645)被用于被用于免疫细胞化学在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 3b). Sci Rep (2016) ncbi
小鼠 单克隆(AF18)
  • 免疫细胞化学; 人类; 图 3b
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc-23954)被用于被用于免疫细胞化学在人类样本上 (图 3b). Pharmacol Res (2016) ncbi
小鼠 单克隆(6D195)
  • 免疫细胞化学; 人类; 图 1C
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc-70481)被用于被用于免疫细胞化学在人类样本上 (图 1C). BMC Cancer (2016) ncbi
小鼠 单克隆(AF18)
  • 免疫印迹; 人类; 1:500; 图 s10
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc23954)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s10). Nat Commun (2016) ncbi
小鼠 单克隆(AF18)
  • 免疫印迹; 人类
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc-23954)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2015) ncbi
小鼠 单克隆(AF18)
  • 免疫印迹; 小鼠; 图 1a
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, 23954)被用于被用于免疫印迹在小鼠样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(E-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc-46669)被用于被用于免疫印迹在人类样本上. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(TO-5)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, SC-80645)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2013) ncbi
Novus Biologicals
小鼠 单克隆(AF18)
  • 免疫细胞化学; 人类; 1:100; 图 ev1c
Novus Biologicals钙联接蛋白抗体(Novus Biologicals, AF18)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 ev1c). EMBO Mol Med (2021) ncbi
小鼠 单克隆(AF18)
  • 免疫细胞化学; 人类; 图 s6f
Novus Biologicals钙联接蛋白抗体(Novus, NB300-518B)被用于被用于免疫细胞化学在人类样本上 (图 s6f). Mol Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
Novus Biologicals钙联接蛋白抗体(Novus, NB100-1965)被用于被用于免疫印迹在小鼠样本上 (图 2a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8
Novus Biologicals钙联接蛋白抗体(Novus, NB100-1965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
Novus Biologicals钙联接蛋白抗体(Novus, NB100-1965)被用于被用于免疫印迹在小鼠样本上 (图 1). J Dent Res (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6d
赛默飞世尔钙联接蛋白抗体(Thermo Fisher, PA5-34754)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6d). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; African green monkey; 图 5c
赛默飞世尔钙联接蛋白抗体(Pierce, PA1-30197)被用于被用于免疫细胞化学在African green monkey样本上 (图 5c). Viruses (2019) ncbi
小鼠 单克隆(AF18)
  • 免疫细胞化学; 人类; 图 s9
赛默飞世尔钙联接蛋白抗体(Thermo Scientific, MA3-027)被用于被用于免疫细胞化学在人类样本上 (图 s9). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2c
赛默飞世尔钙联接蛋白抗体(Invitrogen, PA5-34665)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2c). Mol Ther (2016) ncbi
小鼠 单克隆(AF18)
  • 免疫细胞化学; 人类; 图 s4
赛默飞世尔钙联接蛋白抗体(ThermoFisher Scientific, MA3-027)被用于被用于免疫细胞化学在人类样本上 (图 s4). EMBO Rep (2016) ncbi
小鼠 单克隆(AF18)
  • 免疫组化-冰冻切片; 小鼠; 1:40
赛默飞世尔钙联接蛋白抗体(Thermo Scientific, MA3-027)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:40. Hum Gene Ther Methods (2015) ncbi
小鼠 单克隆(AF18)
  • 免疫印迹; 人类; 图 1
赛默飞世尔钙联接蛋白抗体(Pierce, MA3-027)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2012) ncbi
StressMarq Biosciences
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4
StressMarq Biosciences钙联接蛋白抗体(StressMarq Biosciences, SPC-108)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Am J Hum Genet (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, C5C9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nat Commun (2022) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2679)被用于被用于免疫印迹在人类样本上 (图 1b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(CST, 2679T)被用于被用于免疫印迹在人类样本上 (图 3b). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(CST, 2679)被用于被用于免疫印迹在人类样本上 (图 3f). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2433s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1e
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2433s)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1e). Aging Dis (2021) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫组化; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫组化在小鼠样本上 (图 5c). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(CST, 2679)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 单克隆(C5C9)
  • 其他; 人类; 图 5c, 5e
  • 免疫印迹; 小鼠; 图 5k
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, C5C9)被用于被用于其他在人类样本上 (图 5c, 5e) 和 被用于免疫印迹在小鼠样本上 (图 5k). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signalling, C5C9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). J Extracell Vesicles (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2433S)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 图 1
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(CST, 2679)被用于被用于免疫细胞化学在人类样本上 (图 1). J Cell Mol Med (2020) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). elife (2019) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, C5C9)被用于被用于免疫印迹在人类样本上 (图 5d). Science (2019) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫组化; 人类; 图 6c
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫组化在人类样本上 (图 6c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2433)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3c). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 1:100; 图 2b
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(CST, 2679)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2b). Proc Natl Acad Sci U S A (2019) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 图 4d
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫细胞化学在人类样本上 (图 4d). Mol Cell Biol (2018) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679S)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679P)被用于被用于免疫印迹在人类样本上 (图 s1). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上 (图 4). Int J Med Sci (2017) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 小鼠; 1:1000; 图 s2l
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2l). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 大鼠; 图 1c
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在大鼠样本上 (图 1c). Toxicology (2017) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 小鼠; 1:100; 图 s5a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell signaling, C5C9)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s5a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell signaling, 2433)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Lipid Res (2017) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2679S)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Signal (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上 (图 6a). JCI Insight (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 1:100; 图 3e
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2679S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3e). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 2d
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell signaling, 2433)被用于被用于免疫细胞化学在人类样本上 (图 2c), 被用于免疫印迹在人类样本上 (图 2d) 和 被用于免疫印迹在小鼠样本上 (图 2d). EBioMedicine (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(CST, 2679)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Gerontol A Biol Sci Med Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2433)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Autophagy (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679P)被用于被用于免疫细胞化学在人类样本上 (图 4). Arterioscler Thromb Vasc Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2433)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, C5C9)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell signaling, 2679)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上. FEBS Lett (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679S)被用于被用于免疫印迹在人类样本上 (图 1). J Extracell Vesicles (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(CST, 2679)被用于被用于免疫细胞化学在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2679)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cell Physiol Biochem (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上 (图 s4). Oncogene (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫组化-石蜡切片; 人类; 图 2
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technologies, 2679)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2679)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上 (图 6b). J Virol (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2679)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, C5C9)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2014) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上浓度为1:500. J Biomol Screen (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2j
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2j). Brain Pathol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100; 图 1b
西格玛奥德里奇钙联接蛋白抗体(Sigma-Aldrich, C4731)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 1b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 鸡; 1:500; 图 4b
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于被用于免疫细胞化学在鸡样本上浓度为1:500 (图 4b). Int J Biol Macromol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 ev1c
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev1c). EMBO Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4c
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于被用于免疫细胞化学在人类样本上 (图 4c). PLoS Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2b
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于被用于免疫印迹在大鼠样本上 (图 2b). Front Mol Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1g
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1g). Nat Med (2019) ncbi
小鼠 单克隆(TO-5)
  • 免疫印迹; 人类; 图 4c
西格玛奥德里奇钙联接蛋白抗体(Sigma, C7617)被用于被用于免疫印迹在人类样本上 (图 4c). Viruses (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1f
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1f). Cancers (Basel) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
西格玛奥德里奇钙联接蛋白抗体(Sigma-Aldrich, C4731)被用于被用于免疫印迹在小鼠样本上 (图 3a). EMBO J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4c
西格玛奥德里奇钙联接蛋白抗体(Sigma-Aldrich, c4731)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4c). EMBO J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7e
西格玛奥德里奇钙联接蛋白抗体(Sigma-Aldrich, C4731)被用于被用于免疫印迹在小鼠样本上 (图 7e). J Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇钙联接蛋白抗体(Sigma Aldrich, C4731)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:600; 图 2e
  • 免疫组化-冰冻切片; 大鼠; 1:600; 图 6c
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600 (图 2e) 和 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:600 (图 6c). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于被用于免疫印迹在人类样本上 (图 4d). EMBO J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). MBio (2016) ncbi
小鼠 单克隆(TO-5)
  • 免疫细胞化学; 犬; 图 2a
西格玛奥德里奇钙联接蛋白抗体(Sigma, TO-5)被用于被用于免疫细胞化学在犬样本上 (图 2a). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于被用于免疫细胞化学在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s1
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1) 和 被用于免疫印迹在小鼠样本上 (图 4). Mol Psychiatry (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 3
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于被用于免疫印迹在pigs 样本上 (图 3). J Virol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于. Skelet Muscle (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇钙联接蛋白抗体(Sigma-Aldrich, C4731)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于. PLoS Pathog (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇钙联接蛋白抗体(Sigma, c4731)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇钙联接蛋白抗体(Sigma, C4731)被用于. PLoS Genet (2015) ncbi
小鼠 单克隆(TO-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6
西格玛奥德里奇钙联接蛋白抗体(Sigma, C7617)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6). J Neurosci (2015) ncbi
小鼠 单克隆(TO-5)
  • 免疫沉淀; 人类
西格玛奥德里奇钙联接蛋白抗体(Sigma, C7617)被用于被用于免疫沉淀在人类样本上. Biochem J (2013) ncbi
碧迪BD
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
碧迪BD钙联接蛋白抗体(BD Biosciences, 610523)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Biol Chem (2021) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 图 1b
碧迪BD钙联接蛋白抗体(BD, 610523)被用于被用于免疫印迹在人类样本上 (图 1b). Curr Biol (2020) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 图 7d
碧迪BD钙联接蛋白抗体(BD Transduction Laboratories, 610523)被用于被用于免疫印迹在人类样本上 (图 7d). Sci Rep (2017) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 1:2000; 图 st1
碧迪BD钙联接蛋白抗体(Transduction Laboratories, C45520 (BD#610524))被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 st1). Nat Commun (2016) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 图 6b
碧迪BD钙联接蛋白抗体(BD Biosciences, 37)被用于被用于免疫印迹在人类样本上 (图 6b). PLoS ONE (2016) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 图 7b
碧迪BD钙联接蛋白抗体(BD Biosciences, 610524)被用于被用于免疫印迹在人类样本上 (图 7b). J Lipid Res (2016) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫细胞化学; 小鼠; 1:500; 图 6b
碧迪BD钙联接蛋白抗体(BD, 610523)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 6b). Mol Brain (2016) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
碧迪BD钙联接蛋白抗体(BD Biosciences, BD 610523)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD钙联接蛋白抗体(BD Transduction Laboratories, 610523)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 1:100
碧迪BD钙联接蛋白抗体(BD, 610523)被用于被用于免疫印迹在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 图 7
碧迪BD钙联接蛋白抗体(BD Transduction Laboratories, 610523)被用于被用于免疫印迹在人类样本上 (图 7). RNA Biol (2014) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫细胞化学; 人类
碧迪BD钙联接蛋白抗体(BD Transduction Laboratories, 37)被用于被用于免疫细胞化学在人类样本上. Gene (2014) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 图 2b
碧迪BD钙联接蛋白抗体(BD Transduction, 610523)被用于被用于免疫印迹在人类样本上 (图 2b). Sci Rep (2014) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫细胞化学; 人类
碧迪BD钙联接蛋白抗体(BD Transduction Laboratories, 610524)被用于被用于免疫细胞化学在人类样本上. J Invest Dermatol (2014) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类
碧迪BD钙联接蛋白抗体(BD Biosciences, 37)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
MBL International
  • 免疫印迹; 人类
MBL International钙联接蛋白抗体(Medical and Biological Laboratories, M178-3)被用于被用于免疫印迹在人类样本上. Cell Stress Chaperones (2013) ncbi
文章列表
  1. Petkevicius K, Palmgren H, Glover M, Ahnmark A, Andr xe9 asson A, Madeyski Bengtson K, et al. TLCD1 and TLCD2 regulate cellular phosphatidylethanolamine composition and promote the progression of non-alcoholic steatohepatitis. Nat Commun. 2022;13:6020 pubmed 出版商
  2. Tayyeb A, Dihazi G, Tampe B, Zeisberg M, Tampe D, Hakroush S, et al. Calreticulin Shortage Results in Disturbance of Calcium Storage, Mitochondrial Disease, and Kidney Injury. Cells. 2022;11: pubmed 出版商
  3. Han X, Wang C, Song L, Wang X, Tang S, Hou T, et al. KIBRA regulates amyloid β metabolism by controlling extracellular vesicles secretion. EBioMedicine. 2022;78:103980 pubmed 出版商
  4. Liu M, Liu Z, Chen Y, Peng S, Yang J, Chen C, et al. Dendritic epidermal T cells secreting exosomes promote the proliferation of epidermal stem cells to enhance wound re-epithelialization. Stem Cell Res Ther. 2022;13:121 pubmed 出版商
  5. Ziaei A, Garcia Miralles M, Radulescu C, Sidik H, Silvin A, Bae H, et al. Ermin deficiency leads to compromised myelin, inflammatory milieu, and susceptibility to demyelinating insult. Brain Pathol. 2022;32:e13064 pubmed 出版商
  6. Lebeau P, Byun J, Platko K, Saliba P, Sguazzin M, Macdonald M, et al. Caffeine blocks SREBP2-induced hepatic PCSK9 expression to enhance LDLR-mediated cholesterol clearance. Nat Commun. 2022;13:770 pubmed 出版商
  7. Méndez Solís O, Bendjennat M, Naipauer J, Theodoridis P, Ho J, Verdun R, et al. Kaposi's sarcoma herpesvirus activates the hypoxia response to usurp HIF2α-dependent translation initiation for replication and oncogenesis. Cell Rep. 2021;37:110144 pubmed 出版商
  8. Zhang Z, Li X, Yang F, Chen C, Liu P, Ren Y, et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 2021;12:5872 pubmed 出版商
  9. Sil S, Singh S, Chemparathy D, Chivero E, Gordon L, Buch S. Astrocytes & Astrocyte derived Extracellular Vesicles in Morphine Induced Amyloidopathy: Implications for Cognitive Deficits in Opiate Abusers. Aging Dis. 2021;12:1389-1408 pubmed 出版商
  10. Zhao F, Zheng T, Gong W, Wu J, Xie H, Li W, et al. Extracellular vesicles package dsDNA to aggravate Crohn's disease by activating the STING pathway. Cell Death Dis. 2021;12:815 pubmed 出版商
  11. Lim K, Dayem A, Choi Y, Lee Y, An J, Gil M, et al. High Therapeutic and Esthetic Properties of Extracellular Vesicles Produced from the Stem Cells and Their Spheroids Cultured from Ocular Surgery-Derived Waste Orbicularis Oculi Muscle Tissues. Antioxidants (Basel). 2021;10: pubmed 出版商
  12. Sugiyama T, Murao N, Kadowaki H, Takao K, Miyakawa T, Matsushita Y, et al. ERAD components Derlin-1 and Derlin-2 are essential for postnatal brain development and motor function. iScience. 2021;24:102758 pubmed 出版商
  13. Guo E, Mao X, Wang X, Guo L, An C, Zhang C, et al. Alternatively spliced ANLN isoforms synergistically contribute to the progression of head and neck squamous cell carcinoma. Cell Death Dis. 2021;12:764 pubmed 出版商
  14. Mathieu M, Nevo N, Jouve M, Valenzuela J, Maurin M, Verweij F, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat Commun. 2021;12:4389 pubmed 出版商
  15. Ko P, Choi J, Song S, Keum S, Jeong J, Hwang Y, et al. Microtubule Acetylation Controls MDA-MB-231 Breast Cancer Cell Invasion through the Modulation of Endoplasmic Reticulum Stress. Int J Mol Sci. 2021;22: pubmed 出版商
  16. Troyer Z, Alhusaini N, Tabler C, Sweet T, de Carvalho K, Schlatzer D, et al. Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies. J Extracell Vesicles. 2021;10:e12112 pubmed 出版商
  17. Guix F, Capitán A, Casadomé Perales Á, Palomares Perez I, López Del Castillo I, Miguel V, et al. Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup. Life Sci Alliance. 2021;4: pubmed 出版商
  18. Baik S, Selvaraji S, Fann D, Poh L, Jo D, Herr D, et al. Hippocampal transcriptome profiling reveals common disease pathways in chronic hypoperfusion and aging. Aging (Albany NY). 2021;13:14651-14674 pubmed 出版商
  19. Cuello F, Knaust A, Saleem U, Loos M, Raabe J, Mosqueira D, et al. Impairment of the ER/mitochondria compartment in human cardiomyocytes with PLN p.Arg14del mutation. EMBO Mol Med. 2021;13:e13074 pubmed 出版商
  20. Dong Y, Liang F, Huang L, Fang F, Yang G, Tanzi R, et al. The anesthetic sevoflurane induces tau trafficking from neurons to microglia. Commun Biol. 2021;4:560 pubmed 出版商
  21. Jang S, Economides K, Moniz R, Sia C, Lewis N, McCoy C, et al. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. Commun Biol. 2021;4:497 pubmed 出版商
  22. Corbin J, Georgescu C, Wren J, Xu C, Asch A, Ruiz Echevarría M. Seed-mediated RNA interference of androgen signaling and survival networks induces cell death in prostate cancer cells. Mol Ther Nucleic Acids. 2021;24:337-351 pubmed 出版商
  23. Koba T, Takeda Y, Narumi R, Shiromizu T, Nojima Y, Ito M, et al. Proteomics of serum extracellular vesicles identifies a novel COPD biomarker, fibulin-3 from elastic fibres. ERJ Open Res. 2021;7: pubmed 出版商
  24. Heider M, Eichner R, Stroh J, Morath V, Kuisl A, Zecha J, et al. The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma. Mol Cell. 2021;: pubmed 出版商
  25. Kim W, Watanabe H, Lomoio S, Tesco G. Spatiotemporal processing of neural cell adhesion molecules 1 and 2 by BACE1 in vivo. J Biol Chem. 2021;296:100372 pubmed 出版商
  26. Xu M, Su X, Xiao X, Yu H, Li X, Keating A, et al. Hydrogen Peroxide-Induced Senescence Reduces the Wound Healing-Promoting Effects of Mesenchymal Stem Cell-Derived Exosomes Partially via miR-146a. Aging Dis. 2021;12:102-115 pubmed 出版商
  27. Quintero M, Liu S, Xia Y, Huang Y, Zou Y, Li G, et al. Cdk5rap3 is essential for intestinal Paneth cell development and maintenance. Cell Death Dis. 2021;12:131 pubmed 出版商
  28. Chen F, Xu B, Li J, Yang X, Gu J, Yao X, et al. Hypoxic tumour cell-derived exosomal miR-340-5p promotes radioresistance of oesophageal squamous cell carcinoma via KLF10. J Exp Clin Cancer Res. 2021;40:38 pubmed 出版商
  29. Luo X, Gong H, Gao H, Wu Y, Sun W, Li Z, et al. Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ. 2021;: pubmed 出版商
  30. Guo S, Chen Y, Yang Y, Zhang X, Ma L, Xue X, et al. TRIB2 modulates proteasome function to reduce ubiquitin stability and protect liver cancer cells against oxidative stress. Cell Death Dis. 2021;12:42 pubmed 出版商
  31. Hall Roberts H, Agarwal D, Obst J, Smith T, Monzón Sandoval J, Di Daniel E, et al. TREM2 Alzheimer's variant R47H causes similar transcriptional dysregulation to knockout, yet only subtle functional phenotypes in human iPSC-derived macrophages. Alzheimers Res Ther. 2020;12:151 pubmed 出版商
  32. Kuijpers M, Kochlamazashvili G, Stumpf A, Puchkov D, Swaminathan A, Lucht M, et al. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron. 2021;109:299-313.e9 pubmed 出版商
  33. Watanabe R, Higashi S, Nonaka T, Kawakami I, Oshima K, Niizato K, et al. Intracellular dynamics of Ataxin-2 in the human brains with normal and frontotemporal lobar degeneration with TDP-43 inclusions. Acta Neuropathol Commun. 2020;8:176 pubmed 出版商
  34. Cheng S, Xi Z, Chen G, Liu K, Ma R, Zhou C. Extracellular vesicle-carried microRNA-27b derived from mesenchymal stem cells accelerates cutaneous wound healing via E3 ubiquitin ligase ITCH. J Cell Mol Med. 2020;24:11254-11271 pubmed 出版商
  35. Dabelsteen S, Pallesen E, Marinova I, Nielsen M, Adamopoulou M, Rømer T, et al. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell. 2020;54:669-684.e7 pubmed 出版商
  36. Sundararaman A, Fukushima Y, Norman J, Uemura A, Mellor H. RhoJ Regulates α5β1 Integrin Trafficking to Control Fibronectin Remodeling during Angiogenesis. Curr Biol. 2020;30:2146-2155.e5 pubmed 出版商
  37. Wang W, Hu D, Wu C, Feng Y, Li A, Liu W, et al. STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection. PLoS Pathog. 2020;16:e1008335 pubmed 出版商
  38. Wang J, Wuethrich A, Sina A, Lane R, Lin L, Wang Y, et al. Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. Sci Adv. 2020;6:eaax3223 pubmed 出版商
  39. Crescitelli R, Lässer C, Jang S, Cvjetkovic A, Malmhäll C, Karimi N, et al. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J Extracell Vesicles. 2020;9:1722433 pubmed 出版商
  40. Coccia E, Planells Ferrer L, Badillos Rodríguez R, Pascual M, Segura M, Fernández Hernández R, et al. SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death Dis. 2020;11:82 pubmed 出版商
  41. Deng M, Chen Z, Tan J, Liu H. Down-regulation of SLC35C1 induces colon cancer through over-activating Wnt pathway. J Cell Mol Med. 2020;24:3079-3090 pubmed 出版商
  42. Strazic Geljic I, Kucan Brlic P, Angulo G, Brizic I, Lisnić B, Jenus T, et al. Cytomegalovirus protein m154 perturbs the adaptor protein-1 compartment mediating broad-spectrum immune evasion. elife. 2020;9: pubmed 出版商
  43. Wang J, Ba G, Han Y, Ming S, Wang M, Fu P, et al. Cyclic GMP-AMP synthase is essential for cytosolic double-stranded DNA and fowl adenovirus serotype 4 triggered innate immune responses in chickens. Int J Biol Macromol. 2020;146:497-507 pubmed 出版商
  44. Ehinger Y, Bruyère J, Panayotis N, Abada Y, Borloz E, Matagne V, et al. Huntingtin phosphorylation governs BDNF homeostasis and improves the phenotype of Mecp2 knockout mice. EMBO Mol Med. 2020;12:e10889 pubmed 出版商
  45. Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY). 2019;11:8777-8791 pubmed 出版商
  46. Gao G, Zhu C, Liu E, Nabi I. Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules. PLoS Biol. 2019;17:e3000355 pubmed 出版商
  47. Sophie B, Jacob H, Jordan V, Yungki P, Laura F, Yannick P. YAP and TAZ Regulate Cc2d1b and Purβ in Schwann Cells. Front Mol Neurosci. 2019;12:177 pubmed 出版商
  48. Zeitler B, Froelich S, Marlen K, Shivak D, Yu Q, Li D, et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington's disease. Nat Med. 2019;25:1131-1142 pubmed 出版商
  49. Schwarz A, Möller Hackbarth K, Ebarasi L, Unnersjö Jess D, Zambrano S, Blom H, et al. Coro2b, a podocyte protein downregulated in human diabetic nephropathy, is involved in the development of protamine sulphate-induced foot process effacement. Sci Rep. 2019;9:8888 pubmed 出版商
  50. Yang S, Harding A, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019;5:eaav7999 pubmed 出版商
  51. Stefanius K, Servage K, de Souza Santos M, Gray H, Toombs J, Chimalapati S, et al. Human pancreatic cancer cell exosomes, but not human normal cell exosomes, act as an initiator in cell transformation. elife. 2019;8: pubmed 出版商
  52. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  53. Wang J, Liu Y, Liu Y, Zheng S, Wang X, Zhao J, et al. Time-resolved protein activation by proximal decaging in living systems. Nature. 2019;569:509-513 pubmed 出版商
  54. Wisskirchen K, Kah J, Malo A, Asen T, Volz T, Allweiss L, et al. T cell receptor grafting allows virological control of Hepatitis B virus infection. J Clin Invest. 2019;129:2932-2945 pubmed 出版商
  55. Morwitzer M, Tritsch S, Cazares L, Ward M, Nuss J, Bavari S, et al. Identification of RUVBL1 and RUVBL2 as Novel Cellular Interactors of the Ebola Virus Nucleoprotein. Viruses. 2019;11: pubmed 出版商
  56. Brody M, Vanhoutte D, Bakshi C, Liu R, Correll R, Sargent M, et al. Disruption of valosin-containing protein activity causes cardiomyopathy and reveals pleiotropic functions in cardiac homeostasis. J Biol Chem. 2019;294:8918-8929 pubmed 出版商
  57. Pergu R, Dagar S, Kumar H, Kumar R, Bhattacharya J, Mylavarapu S. The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec. J Biol Chem. 2019;294:7177-7193 pubmed 出版商
  58. Le Vasseur M, Chen V, Huang K, Vogl W, Naus C. Pannexin 2 Localizes at ER-Mitochondria Contact Sites. Cancers (Basel). 2019;11: pubmed 出版商
  59. Su L, Zhou L, Chen F, Wang H, Qian H, Sheng Y, et al. Cideb controls sterol-regulated ER export of SREBP/SCAP by promoting cargo loading at ER exit sites. EMBO J. 2019;38: pubmed 出版商
  60. Subramanian A, Capalbo A, Iyengar N, Rizzo R, Di Campli A, Di Martino R, et al. Auto-regulation of Secretory Flux by Sensing and Responding to the Folded Cargo Protein Load in the Endoplasmic Reticulum. Cell. 2019;176:1461-1476.e23 pubmed 出版商
  61. Jo Y, Hamilton J, Hwang S, Garland K, Smith G, Su S, et al. Schnyder corneal dystrophy-associated UBIAD1 inhibits ER-associated degradation of HMG CoA reductase in mice. elife. 2019;8: pubmed 出版商
  62. Chun J, Zhang J, Wilkins M, Subramanian B, Riella C, Magraner J, et al. Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity. Proc Natl Acad Sci U S A. 2019;116:3712-3721 pubmed 出版商
  63. Tiwarekar V, Fehrholz M, Schneider Schaulies J. KDELR2 Competes with Measles Virus Envelope Proteins for Cellular Chaperones Reducing Their Chaperone-Mediated Cell Surface Transport. Viruses. 2019;11: pubmed 出版商
  64. Theisen D, Davidson J, Briseño C, Gargaro M, Lauron E, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018;362:694-699 pubmed 出版商
  65. Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, et al. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J. 2019;38: pubmed 出版商
  66. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  67. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  68. Bagashev A, Sotillo E, Tang C, Black K, Perazzelli J, Seeholzer S, et al. CD19 Alterations Emerging after CD19-Directed Immunotherapy Cause Retention of the Misfolded Protein in the Endoplasmic Reticulum. Mol Cell Biol. 2018;38: pubmed 出版商
  69. Xu D, Li Y, Wu L, Li Y, Zhao D, Yu J, et al. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J Cell Biol. 2018;217:975-995 pubmed 出版商
  70. Kathayat R, Cao Y, Elvira P, Sandoz P, Zaballa M, Springer M, et al. Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes. Nat Commun. 2018;9:334 pubmed 出版商
  71. Viswanath P, Radoul M, Izquierdo Garcia J, Ong W, Luchman H, Cairncross J, et al. 2-Hydroxyglutarate-Mediated Autophagy of the Endoplasmic Reticulum Leads to an Unusual Downregulation of Phospholipid Biosynthesis in Mutant IDH1 Gliomas. Cancer Res. 2018;78:2290-2304 pubmed 出版商
  72. Zhang S, Eitan E, Wu T, Mattson M. Intercellular transfer of pathogenic α-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal. Neurobiol Aging. 2018;61:52-65 pubmed 出版商
  73. Merrill N, Schipper J, Karnes J, Kauffman A, Martin K, Mackeigan J. PI3K-C2? knockdown decreases autophagy and maturation of endocytic vesicles. PLoS ONE. 2017;12:e0184909 pubmed 出版商
  74. Rong X, Wang B, Palladino E, de Aguiar Vallim T, Ford D, Tontonoz P. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest. 2017;127:3640-3651 pubmed 出版商
  75. Yanatori I, Richardson D, Toyokuni S, Kishi F. The iron chaperone poly(rC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. J Biol Chem. 2017;292:13205-13229 pubmed 出版商
  76. Huang B, Lin C, Wang C, Kao S. Upregulation of heat shock protein 70 and the differential protein expression induced by tumor necrosis factor-alpha enhances migration and inhibits apoptosis of hepatocellular carcinoma cell HepG2. Int J Med Sci. 2017;14:284-293 pubmed 出版商
  77. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  78. Chambers T, Santiesteban L, Gomez D, Chambers J. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017;382:24-35 pubmed 出版商
  79. Miles A, Burr S, Grice G, Nathan J. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1? prolyl hydroxylation by regulating cellular iron levels. elife. 2017;6: pubmed 出版商
  80. Kim J, Hyun H, Min S, Kang T. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci. 2017;11:47 pubmed 出版商
  81. Sasaki Y, Hidaka T, Ueno T, Akiba Takagi M, Oliva Trejo J, Seki T, et al. Sorting Nexin 9 facilitates podocin endocytosis in the injured podocyte. Sci Rep. 2017;7:43921 pubmed 出版商
  82. Bagh M, Peng S, Chandra G, Zhang Z, Singh S, Pattabiraman N, et al. Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nat Commun. 2017;8:14612 pubmed 出版商
  83. Zhang Y, Stefanovic B. mTORC1 phosphorylates LARP6 to stimulate type I collagen expression. Sci Rep. 2017;7:41173 pubmed 出版商
  84. Urakova N, Strive T, Frese M. RNA-Dependent RNA Polymerases of Both Virulent and Benign Rabbit Caliciviruses Induce Striking Rearrangement of Golgi Membranes. PLoS ONE. 2017;12:e0169913 pubmed 出版商
  85. Athanasiou D, Aguilà M, Opefi C, South K, Bellingham J, Bevilacqua D, et al. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration. Hum Mol Genet. 2017;26:305-319 pubmed 出版商
  86. Guiraud S, Migeon T, Ferry A, Chen Z, Ouchelouche S, Verpont M, et al. HANAC Col4a1 Mutation in Mice Leads to Skeletal Muscle Alterations due to a Primary Vascular Defect. Am J Pathol. 2017;187:505-516 pubmed 出版商
  87. Xie C, Gong X, Luo J, Li B, Song B. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. J Lipid Res. 2017;58:512-518 pubmed 出版商
  88. Li C, Luo X, Zhao S, Siu G, Liang Y, Chan H, et al. COPI-TRAPPII activates Rab18 and regulates its lipid droplet association. EMBO J. 2017;36:441-457 pubmed 出版商
  89. Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, et al. Functional Analyses of the Crohn's Disease Risk Gene LACC1. PLoS ONE. 2016;11:e0168276 pubmed 出版商
  90. Shahani N, Swarnkar S, Giovinazzo V, Morgenweck J, Bohn L, Scharager Tapia C, et al. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network ("Rhesactome") in the striatum. Sci Signal. 2016;9:ra111 pubmed
  91. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  92. Li J, Huang W, Lin P, Wu B, Fu Z, Shen H, et al. N-linked glycosylation at Asn152 on CD147 affects protein folding and stability: promoting tumour metastasis in hepatocellular carcinoma. Sci Rep. 2016;6:35210 pubmed 出版商
  93. Veglia E, Pini A, Moggio A, Grange C, Premoselli F, Miglio G, et al. Histamine type 1-receptor activation by low dose of histamine undermines human glomerular slit diaphragm integrity. Pharmacol Res. 2016;114:27-38 pubmed 出版商
  94. Cvoro A, Bajić A, Zhang A, Simon M, Golic I, Sieglaff D, et al. Ligand Independent and Subtype-Selective Actions of Thyroid Hormone Receptors in Human Adipose Derived Stem Cells. PLoS ONE. 2016;11:e0164407 pubmed 出版商
  95. Thura M, Al Aidaroos A, Yong W, Kono K, Gupta A, Lin Y, et al. PRL3-zumab, a first-in-class humanized antibody for cancer therapy. JCI Insight. 2016;1:e87607 pubmed 出版商
  96. Zhao G, Zhu P, Renvoisé B, Maldonado Baez L, Park S, Blackstone C. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp Cell Res. 2016;349:32-44 pubmed 出版商
  97. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  98. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  99. Jagadish N, Parashar D, Gupta N, Agarwal S, Suri V, Kumar R, et al. Heat shock protein 70-2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth. BMC Cancer. 2016;16:561 pubmed 出版商
  100. Gallagher C, Walter P. Ceapins inhibit ATF6α signaling by selectively preventing transport of ATF6α to the Golgi apparatus during ER stress. elife. 2016;5: pubmed 出版商
  101. Friedrich T, Söhn M, Gutting T, Janssen K, Behrens H, Rocken C, et al. Subcellular compartmentalization of docking protein-1 contributes to progression in colorectal cancer. EBioMedicine. 2016;8:159-172 pubmed 出版商
  102. Liu S, Hossinger A, Hofmann J, Denner P, Vorberg I. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles. MBio. 2016;7: pubmed 出版商
  103. Pagliuso A, Valente C, Giordano L, Filograna A, Li G, Circolo D, et al. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase ?. Nat Commun. 2016;7:12148 pubmed 出版商
  104. Osman E, Washington C, Kaifer K, Mazzasette C, Patitucci T, Florea K, et al. Optimization of Morpholino Antisense Oligonucleotides Targeting the Intronic Repressor Element1 in Spinal Muscular Atrophy. Mol Ther. 2016;24:1592-601 pubmed 出版商
  105. Marzesco A, Flötenmeyer M, Bühler A, Obermüller U, Staufenbiel M, Jucker M, et al. Highly potent intracellular membrane-associated A? seeds. Sci Rep. 2016;6:28125 pubmed 出版商
  106. Massarweh A, Bosco M, Iatmanen Harbi S, Tessier C, Amana L, Busca P, et al. Brefeldin A promotes the appearance of oligosaccharyl phosphates derived from Glc3Man9GlcNAc2-PP-dolichol within the endomembrane system of HepG2 cells. J Lipid Res. 2016;57:1477-91 pubmed 出版商
  107. Wu X, Zhao L, Chen Z, Ji X, Qiao X, Jin Y, et al. FLCN Maintains the Leucine Level in Lysosome to Stimulate mTORC1. PLoS ONE. 2016;11:e0157100 pubmed 出版商
  108. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  109. Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, et al. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep. 2016;17:1061-80 pubmed 出版商
  110. Treyer A, Pujato M, Pechuan X, Müsch A. Iterative sorting of apical and basolateral cargo in Madin-Darby canine kidney cells. Mol Biol Cell. 2016;27:2259-71 pubmed 出版商
  111. Tamura Y, Matsunaga Y, Kitaoka Y, Hatta H. Effects of Heat Stress Treatment on Age-dependent Unfolded Protein Response in Different Types of Skeletal Muscle. J Gerontol A Biol Sci Med Sci. 2017;72:299-308 pubmed 出版商
  112. Zattas D, Berk J, Kreft S, Hochstrasser M. A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation. J Biol Chem. 2016;291:12105-18 pubmed 出版商
  113. Polanco J, Scicluna B, Hill A, Götz J. Extracellular Vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner. J Biol Chem. 2016;291:12445-66 pubmed 出版商
  114. Smagris E, Gilyard S, BasuRay S, Cohen J, Hobbs H. Inactivation of Tm6sf2, a Gene Defective in Fatty Liver Disease, Impairs Lipidation but Not Secretion of Very Low Density Lipoproteins. J Biol Chem. 2016;291:10659-76 pubmed 出版商
  115. Siu G, Zhou F, Yu M, Zhang L, Wang T, Liang Y, et al. Hepatitis C virus NS5A protein cooperates with phosphatidylinositol 4-kinase IIIα to induce mitochondrial fragmentation. Sci Rep. 2016;6:23464 pubmed 出版商
  116. Son S, Cha M, Choi H, Kang S, Choi H, Lee M, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy. 2016;12:784-800 pubmed 出版商
  117. Ouimet M, Hennessy E, van Solingen C, Koelwyn G, Hussein M, Ramkhelawon B, et al. miRNA Targeting of Oxysterol-Binding Protein-Like 6 Regulates Cholesterol Trafficking and Efflux. Arterioscler Thromb Vasc Biol. 2016;36:942-951 pubmed 出版商
  118. Marek I, Lichtneger T, Cordasic N, Hilgers K, Volkert G, Fahlbusch F, et al. Alpha8 Integrin (Itga8) Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover. PLoS ONE. 2016;11:e0150471 pubmed 出版商
  119. Huynh N, VonMoss L, Smith D, Rahman I, Felemban M, Zuo J, et al. Characterization of Regulatory Extracellular Vesicles from Osteoclasts. J Dent Res. 2016;95:673-9 pubmed 出版商
  120. Prabhu A, Luu W, Sharpe L, Brown A. Cholesterol-mediated Degradation of 7-Dehydrocholesterol Reductase Switches the Balance from Cholesterol to Vitamin D Synthesis. J Biol Chem. 2016;291:8363-73 pubmed 出版商
  121. Jansen J, Cirak S, van Scherpenzeel M, Timal S, Reunert J, Rust S, et al. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation. Am J Hum Genet. 2016;98:310-21 pubmed 出版商
  122. Wu J, Xu Y, Jiang Y, Xu J, Hu Y, Zha X. ASIC subunit ratio and differential surface trafficking in the brain. Mol Brain. 2016;9:4 pubmed 出版商
  123. Paladino D, Yue P, Furuya H, Acoba J, Rosser C, Turkson J. A novel nuclear Src and p300 signaling axis controls migratory and invasive behavior in pancreatic cancer. Oncotarget. 2016;7:7253-67 pubmed 出版商
  124. Sharoar M, Shi Q, Ge Y, He W, Hu X, Perry G, et al. Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease. Mol Psychiatry. 2016;21:1263-71 pubmed 出版商
  125. Du J, Ge X, Liu Y, Jiang P, Wang Z, Zhang R, et al. Targeting Swine Leukocyte Antigen Class I Molecules for Proteasomal Degradation by the nsp1α Replicase Protein of the Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Strain JXwn06. J Virol. 2016;90:682-93 pubmed 出版商
  126. Covarrubias Pinto A, Moll P, Solís Maldonado M, Acuña A, Riveros A, Miró M, et al. Beyond the redox imbalance: Oxidative stress contributes to an impaired GLUT3 modulation in Huntington's disease. Free Radic Biol Med. 2015;89:1085-96 pubmed 出版商
  127. Patel M, Jacobson B, Ji Y, Drees J, Tang S, Xiong K, et al. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget. 2015;6:33165-77 pubmed 出版商
  128. Poitelon Y, Bogni S, Matafora V, Della Flora Nunes G, Hurley E, Ghidinelli M, et al. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nat Commun. 2015;6:8303 pubmed 出版商
  129. Domi T, Porrello E, Velardo D, Capotondo A, Biffi A, Tonlorenzi R, et al. Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A. Skelet Muscle. 2015;5:30 pubmed 出版商
  130. Xu D, Wang Z, Zhang Y, Jiang W, Pan Y, Song B, et al. PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus. Nat Commun. 2015;6:8100 pubmed 出版商
  131. Cavieres V, González A, Muñoz V, Yefi C, Bustamante H, Barraza R, et al. Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy. PLoS ONE. 2015;10:e0136313 pubmed 出版商
  132. Tan B, Mu R, Chang Y, Wang Y, Wu M, Tu H, et al. RNF4 negatively regulates NF-κB signaling by down-regulating TAB2. FEBS Lett. 2015;589:2850-8 pubmed 出版商
  133. Rennoll Bankert K, Rahman M, Gillespie J, Guillotte M, Kaur S, Lehman S, et al. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion. PLoS Pathog. 2015;11:e1005115 pubmed 出版商
  134. Lobb R, Becker M, Wen S, Wong C, Wiegmans A, Leimgruber A, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031 pubmed 出版商
  135. Wang J, Ma L, Tang X, Zhang X, Qiao Y, Shi Y, et al. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells. Oncotarget. 2015;6:24075-91 pubmed
  136. Wang Y, Lian Q, Yang B, Yan S, Zhou H, He L, et al. TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING. PLoS Pathog. 2015;11:e1005012 pubmed 出版商
  137. Li H, Han L, Yang Z, Huang W, Zhang X, Gu Y, et al. Differential Proteomic Analysis of Syncytiotrophoblast Extracellular Vesicles from Early-Onset Severe Preeclampsia, using 8-Plex iTRAQ Labeling Coupled with 2D Nano LC-MS/MS. Cell Physiol Biochem. 2015;36:1116-30 pubmed 出版商
  138. Theodorou M, Rauser B, Zhang J, Prakash N, Wurst W, Schick J. Limitations of In Vivo Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy. Hum Gene Ther Methods. 2015;26:107-22 pubmed 出版商
  139. Milkereit R, Persaud A, Vanoaica L, Guetg A, Verrey F, Rotin D. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun. 2015;6:7250 pubmed 出版商
  140. Reilly J, Zhou X, Tong H, Kuder C, Wiemer D, Hohl R. In vitro studies in a myelogenous leukemia cell line suggest an organized binding of geranylgeranyl diphosphate synthase inhibitors. Biochem Pharmacol. 2015;96:83-92 pubmed 出版商
  141. Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget. 2015;6:13772-89 pubmed
  142. Min K, Liggett J, Silva G, Wu W, Wang R, Shen R, et al. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene. 2016;35:377-88 pubmed 出版商
  143. Li G, Nguyen C, Ryckman B, Britt W, Kamil J. A viral regulator of glycoprotein complexes contributes to human cytomegalovirus cell tropism. Proc Natl Acad Sci U S A. 2015;112:4471-6 pubmed 出版商
  144. Raju D, Schonauer S, Hamzeh H, FLYNN K, Bradke F, Vom Dorp K, et al. Accumulation of glucosylceramide in the absence of the beta-glucosidase GBA2 alters cytoskeletal dynamics. PLoS Genet. 2015;11:e1005063 pubmed 出版商
  145. Matsuno H, Ohi K, Hashimoto R, Yamamori H, Yasuda Y, Fujimoto M, et al. A naturally occurring null variant of the NMDA type glutamate receptor NR3B subunit is a risk factor of schizophrenia. PLoS ONE. 2015;10:e0116319 pubmed 出版商
  146. Stefanovic L, Longo L, Zhang Y, Stefanovic B. Characterization of binding of LARP6 to the 5' stem-loop of collagen mRNAs: implications for synthesis of type I collagen. RNA Biol. 2014;11:1386-401 pubmed 出版商
  147. Wang Y, Tan B, Mu R, Chang Y, Wu M, Tu H, et al. Ubiquitin-associated domain-containing ubiquitin regulatory X (UBX) protein UBXN1 is a negative regulator of nuclear factor κB (NF-κB) signaling. J Biol Chem. 2015;290:10395-405 pubmed 出版商
  148. Spilsbury A, Miwa S, Attems J, Saretzki G. The role of telomerase protein TERT in Alzheimer's disease and in tau-related pathology in vitro. J Neurosci. 2015;35:1659-74 pubmed 出版商
  149. Taura M, Kudo E, Kariya R, Goto H, Matsuda K, Hattori S, et al. COMMD1/Murr1 reinforces HIV-1 latent infection through IκB-α stabilization. J Virol. 2015;89:2643-58 pubmed 出版商
  150. Chigwechokha P, Komatsu M, Itakura T, Shiozaki K. Nile Tilapia Neu3 sialidases: molecular cloning, functional characterization and expression in Oreochromis niloticus. Gene. 2014;552:155-64 pubmed 出版商
  151. Kemp M, Gaddameedhi S, Choi J, Hu J, Sancar A. DNA repair synthesis and ligation affect the processing of excised oligonucleotides generated by human nucleotide excision repair. J Biol Chem. 2014;289:26574-83 pubmed 出版商
  152. McNally A, Anderson J. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J Biomed Mater Res A. 2015;103:1380-90 pubmed 出版商
  153. Shaiken T, Opekun A. Dissecting the cell to nucleus, perinucleus and cytosol. Sci Rep. 2014;4:4923 pubmed 出版商
  154. Termini C, Cotter M, Marjon K, Buranda T, Lidke K, Gillette J. The membrane scaffold CD82 regulates cell adhesion by altering α4 integrin stability and molecular density. Mol Biol Cell. 2014;25:1560-73 pubmed 出版商
  155. Scharadin T, Adhikary G, Shaw K, Grun D, Xu W, Eckert R. Pericentrosomal localization of the TIG3 tumor suppressor requires an N-terminal hydrophilic region motif. J Invest Dermatol. 2014;134:1220-1229 pubmed 出版商
  156. Kinoshita S, Kogure A, Taguchi S, Nolan G. Snapin, positive regulator of stimulation- induced Ca²? release through RyR, is necessary for HIV-1 replication in T cells. PLoS ONE. 2013;8:e75297 pubmed 出版商
  157. Montague C, Fitzmaurice A, Hover B, Salazar N, Fey J. Screen for small molecules increasing the mitochondrial membrane potential. J Biomol Screen. 2014;19:387-98 pubmed 出版商
  158. Pace P, Peskin A, Han M, Hampton M, Winterbourn C. Hyperoxidized peroxiredoxin 2 interacts with the protein disulfide- isomerase ERp46. Biochem J. 2013;453:475-85 pubmed 出版商
  159. Koreishi M, Yu S, Oda M, Honjo Y, Satoh A. CK2 phosphorylates Sec31 and regulates ER-To-Golgi trafficking. PLoS ONE. 2013;8:e54382 pubmed 出版商
  160. Takayanagi S, Fukuda R, Takeuchi Y, Tsukada S, Yoshida K. Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress. Cell Stress Chaperones. 2013;18:11-23 pubmed 出版商
  161. Wei P, Lo W, Su M, Shew J, Lee W. Non-targeting siRNA induces NPGPx expression to cooperate with exoribonuclease XRN2 for releasing the stress. Nucleic Acids Res. 2012;40:323-32 pubmed 出版商