这是一篇来自已证抗体库的有关人类 钙联接蛋白 (calnexin) 的综述,是根据143篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合钙联接蛋白 抗体。
钙联接蛋白 同义词: CNX; IP90; P90

Enzo Life Sciences
domestic rabbit 多克隆
  • 免疫细胞化学; 仓鼠; 1:200; 图 5a
Enzo Life Sciences钙联接蛋白抗体(Stressgen, SPA-860)被用于被用于免疫细胞化学在仓鼠样本上浓度为1:200 (图 5a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:20,000; 图 3s2a
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860-F)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 3s2a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1f
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860-F)被用于被用于免疫印迹在小鼠样本上 (图 1f). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上 (图 2a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Science, ADI-SPA-860-F)被用于被用于免疫印迹在人类样本上 (图 3f). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3g
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Science, ADI-SPA-860-F)被用于被用于免疫印迹在小鼠样本上 (图 3g). Biochem Biophys Res Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
Enzo Life Sciences钙联接蛋白抗体(Stressgen, SPA-860)被用于被用于免疫印迹在人类样本上 (图 1a). Cells (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-865-D)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Front Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6a
Enzo Life Sciences钙联接蛋白抗体(Enzo Life, ADI-SPA-860F)被用于被用于免疫印迹在大鼠样本上 (图 6a). Life Sci Alliance (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 2b
Enzo Life Sciences钙联接蛋白抗体(Enzo Lifesciences, ADI-SPA-865)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1b
Enzo Life Sciences钙联接蛋白抗体(Enzo, SPA-860)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1b). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1b
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-865)被用于被用于免疫印迹在大鼠样本上 (图 1b). Biochim Biophys Acta Mol Cell Biol Lipids (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:8000; 图 3i
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上浓度为1:8000 (图 3i). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1c
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, SPA-860)被用于被用于免疫细胞化学在人类样本上 (图 1c). Viruses (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s8g
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-865)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s8g). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 e2d
Enzo Life Sciences钙联接蛋白抗体(ENZO, ADI-SPA-860)被用于被用于免疫印迹在人类样本上 (图 e2d). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1e
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上 (图 1e). Sci Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1e
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上 (图 1e). Sci Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1e
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上 (图 1e). Sci Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; pigs ; 1:100; 表 5
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860- D)被用于被用于免疫细胞化学在pigs 样本上浓度为1:100 (表 5). Methods Mol Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 1a
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 1a). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 1a
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 1a). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 1a
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 1a). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860)被用于被用于免疫印迹在人类样本上 (图 1e). Eur J Pharm Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860)被用于被用于免疫印迹在人类样本上 (图 1e). Eur J Pharm Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860)被用于被用于免疫印迹在人类样本上 (图 1e). Eur J Pharm Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 3a
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 3a). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上 (图 1a). Mol Neurodegener (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上 (图 1a). Mol Neurodegener (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上 (图 1a). Mol Neurodegener (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 ev4e
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860-F)被用于被用于免疫印迹在人类样本上 (图 ev4e). EMBO J (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s2a
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s2a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s2a
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s2a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s2a
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s2a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-865)被用于被用于免疫印迹在人类样本上 (图 1b). Biochem J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-865)被用于被用于免疫印迹在人类样本上 (图 1b). Biochem J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 7g
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Science, ADI-SPA 860)被用于被用于免疫印迹在大鼠样本上 (图 7g). ACS Nano (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 7g
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Science, ADI-SPA 860)被用于被用于免疫印迹在大鼠样本上 (图 7g). ACS Nano (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 7g
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Science, ADI-SPA 860)被用于被用于免疫印迹在大鼠样本上 (图 7g). ACS Nano (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 13
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 13). Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:300; 图 2d
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-865)被用于被用于免疫组化在人类样本上浓度为1:300 (图 2d). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:300; 图 2d
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-865)被用于被用于免疫组化在人类样本上浓度为1:300 (图 2d). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 鸡; 1:10,000; 图 3
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860)被用于被用于免疫印迹在鸡样本上浓度为1:10,000 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 鸡; 1:10,000; 图 3
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860)被用于被用于免疫印迹在鸡样本上浓度为1:10,000 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 鸡; 1:10,000; 图 3
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860)被用于被用于免疫印迹在鸡样本上浓度为1:10,000 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 9c
Enzo Life Sciences钙联接蛋白抗体(Enzo life sciences, ADISPA860)被用于被用于免疫印迹在小鼠样本上 (图 9c). EMBO Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 9c
Enzo Life Sciences钙联接蛋白抗体(Enzo life sciences, ADISPA860)被用于被用于免疫印迹在小鼠样本上 (图 9c). EMBO Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 9c
Enzo Life Sciences钙联接蛋白抗体(Enzo life sciences, ADISPA860)被用于被用于免疫印迹在小鼠样本上 (图 9c). EMBO Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
Enzo Life Sciences钙联接蛋白抗体(stressgen, SPA-865)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
Enzo Life Sciences钙联接蛋白抗体(stressgen, SPA-865)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 8
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860-F)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 8). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, ADI-SPA-860-F)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Enzo Life Sciences钙联接蛋白抗体(Enzo, ADI-SPA-860)被用于被用于免疫印迹在小鼠样本上 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Science, ADI-SPA-860-D)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:200; 图 2
Enzo Life Sciences钙联接蛋白抗体(Enzo Life Sciences, SPA-860)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 2). Biochem J (2016) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(6F12BE10)
  • 免疫印迹; 人类; 图 s6
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab112995)被用于被用于免疫印迹在人类样本上 (图 s6). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1i
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c, s5
艾博抗(上海)贸易有限公司钙联接蛋白抗体(abcam, ab10286)被用于被用于免疫印迹在人类样本上 (图 4c, s5). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:4000; 图 s5
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 s5). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3g
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫细胞化学在小鼠样本上 (图 3g). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4h
  • 免疫印迹; 小鼠; 图 4i
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab10286)被用于被用于免疫印迹在人类样本上 (图 4h) 和 被用于免疫印迹在小鼠样本上 (图 4i). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1d
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1d). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:4000; 图 s16a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 s16a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 3a
  • 免疫印迹; 人类; 图 3e
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫组化在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 3e). Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Neurobiol Aging (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab10286)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3A
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab75801)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3A). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:250; 表 1
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫组化在大鼠样本上浓度为1:250 (表 1). Front Cell Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; domestic rabbit; 1:100; 图 4a
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab75801)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:100 (图 4a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab10286)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 5e). Am J Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3d
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3d). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR3633(2))
  • 免疫细胞化学; 小鼠; 图 3B
  • 免疫印迹; 小鼠; 图 1A
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab133615)被用于被用于免疫细胞化学在小鼠样本上 (图 3B) 和 被用于免疫印迹在小鼠样本上 (图 1A). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 1
艾博抗(上海)贸易有限公司钙联接蛋白抗体(abcam, ab22595)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 s3
  • 免疫印迹; 人类; 图 s3
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, 22595)被用于被用于免疫沉淀在人类样本上 (图 s3) 和 被用于免疫印迹在人类样本上 (图 s3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
  • 免疫细胞化学; 小鼠; 图 3
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫细胞化学在人类样本上 (图 3), 被用于免疫印迹在人类样本上 (图 3) 和 被用于免疫细胞化学在小鼠样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 6
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab75801)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2500; 图 2
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab22595)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 2). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1500; 图 3
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab75801)被用于被用于免疫印迹在小鼠样本上浓度为1:1500 (图 3). PLoS ONE (2016) ncbi
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司钙联接蛋白抗体(Abcam, ab13505)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Pathog (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(E-10)
  • 免疫印迹; 人类; 图 e8r
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc-46669)被用于被用于免疫印迹在人类样本上 (图 e8r). Nature (2019) ncbi
小鼠 单克隆(AF18)
  • 免疫印迹; 小鼠; 图 6i
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz Biotechnology, sc-23954)被用于被用于免疫印迹在小鼠样本上 (图 6i). Cell (2019) ncbi
小鼠 单克隆(TO-5)
  • 免疫细胞化学; 人类; 图 4a
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc-80645)被用于被用于免疫细胞化学在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 3b). Sci Rep (2016) ncbi
小鼠 单克隆(AF18)
  • 免疫细胞化学; 人类; 图 3b
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc-23954)被用于被用于免疫细胞化学在人类样本上 (图 3b). Pharmacol Res (2016) ncbi
小鼠 单克隆(6D195)
  • 免疫细胞化学; 人类; 图 1C
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc-70481)被用于被用于免疫细胞化学在人类样本上 (图 1C). BMC Cancer (2016) ncbi
小鼠 单克隆(AF18)
  • 免疫印迹; 人类; 1:500; 图 s10
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc23954)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s10). Nat Commun (2016) ncbi
小鼠 单克隆(AF18)
  • 免疫印迹; 人类
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc-23954)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2015) ncbi
小鼠 单克隆(AF18)
  • 免疫印迹; 小鼠; 图 1a
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, 23954)被用于被用于免疫印迹在小鼠样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(E-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, sc-46669)被用于被用于免疫印迹在人类样本上. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(TO-5)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术钙联接蛋白抗体(Santa Cruz, SC-80645)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2013) ncbi
西格玛奥德里奇
小鼠 单克隆(TO-5)
  • 免疫印迹; 人类; 图 4c
西格玛奥德里奇钙联接蛋白抗体(Sigma, C7617)被用于被用于免疫印迹在人类样本上 (图 4c). Viruses (2019) ncbi
小鼠 单克隆(TO-5)
  • 免疫细胞化学; 犬; 图 2a
西格玛奥德里奇钙联接蛋白抗体(Sigma, TO-5)被用于被用于免疫细胞化学在犬样本上 (图 2a). Mol Biol Cell (2016) ncbi
小鼠 单克隆(TO-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6
西格玛奥德里奇钙联接蛋白抗体(Sigma, C7617)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6). J Neurosci (2015) ncbi
小鼠 单克隆(TO-5)
  • 免疫沉淀; 人类
西格玛奥德里奇钙联接蛋白抗体(Sigma, C7617)被用于被用于免疫沉淀在人类样本上. Biochem J (2013) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫细胞化学; African green monkey; 图 5c
赛默飞世尔钙联接蛋白抗体(Pierce, PA1-30197)被用于被用于免疫细胞化学在African green monkey样本上 (图 5c). Viruses (2019) ncbi
小鼠 单克隆(AF18)
  • 免疫细胞化学; 人类; 图 s9
赛默飞世尔钙联接蛋白抗体(Thermo Scientific, MA3-027)被用于被用于免疫细胞化学在人类样本上 (图 s9). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2c
赛默飞世尔钙联接蛋白抗体(Invitrogen, PA5-34665)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2c). Mol Ther (2016) ncbi
小鼠 单克隆(AF18)
  • 免疫细胞化学; 人类; 图 s4
赛默飞世尔钙联接蛋白抗体(ThermoFisher Scientific, MA3-027)被用于被用于免疫细胞化学在人类样本上 (图 s4). EMBO Rep (2016) ncbi
小鼠 单克隆(AF18)
  • 免疫组化-冰冻切片; 小鼠; 1:40
赛默飞世尔钙联接蛋白抗体(Thermo Scientific, MA3-027)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:40. Hum Gene Ther Methods (2015) ncbi
小鼠 单克隆(AF18)
  • 免疫印迹; 人类; 图 1
赛默飞世尔钙联接蛋白抗体(Pierce, MA3-027)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2012) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
Novus Biologicals钙联接蛋白抗体(Novus, NB100-1965)被用于被用于免疫印迹在小鼠样本上 (图 2a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8
Novus Biologicals钙联接蛋白抗体(Novus, NB100-1965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
Novus Biologicals钙联接蛋白抗体(Novus, NB100-1965)被用于被用于免疫印迹在小鼠样本上 (图 1). J Dent Res (2016) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 5a
  • 免疫印迹; 小鼠; 图 5b
武汉三鹰钙联接蛋白抗体(Proteintech, 10427-2-AP)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 5b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
武汉三鹰钙联接蛋白抗体(Proteintech, 10427-2-AP)被用于. Nat Cell Biol (2015) ncbi
GeneTex
domestic rabbit 多克隆
GeneTex钙联接蛋白抗体(Genetex, GTX13504)被用于. Cell (2016) ncbi
StressMarq Biosciences
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4
StressMarq Biosciences钙联接蛋白抗体(StressMarq Biosciences, SPC-108)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Am J Hum Genet (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C5C9)
  • 其他; 人类; 图 5c, 5e
  • 免疫印迹; 小鼠; 图 5k
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, C5C9)被用于被用于其他在人类样本上 (图 5c, 5e) 和 被用于免疫印迹在小鼠样本上 (图 5k). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signalling, C5C9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). J Extracell Vesicles (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2433S)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 图 1
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(CST, 2679)被用于被用于免疫细胞化学在人类样本上 (图 1). J Cell Mol Med (2020) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). elife (2019) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 26 ng/ml; 图 5d
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, C5C9)被用于被用于免疫印迹在人类样本上浓度为26 ng/ml (图 5d). Science (2019) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫组化; 人类; 图 6c
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫组化在人类样本上 (图 6c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2433)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3c). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 1:100; 图 2b
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(CST, 2679)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2b). Proc Natl Acad Sci U S A (2019) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 图 4d
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫细胞化学在人类样本上 (图 4d). Mol Cell Biol (2018) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679S)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679P)被用于被用于免疫印迹在人类样本上 (图 s1). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上 (图 4). Int J Med Sci (2017) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 小鼠; 1:1000; 图 s2l
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2l). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 大鼠; 图 1c
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在大鼠样本上 (图 1c). Toxicology (2017) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 小鼠; 1:100; 图 s5a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell signaling, C5C9)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s5a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell signaling, 2433)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Lipid Res (2017) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2679S)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Signal (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上 (图 6a). JCI Insight (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 1:100; 图 3e
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2679S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3e). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell signaling, 2433)被用于被用于免疫印迹在小鼠样本上 (图 2d), 被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 2d). EBioMedicine (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(CST, 2679)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Gerontol A Biol Sci Med Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2433)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Autophagy (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679P)被用于被用于免疫细胞化学在人类样本上 (图 4). Arterioscler Thromb Vasc Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2433)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, C5C9)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell signaling, 2679)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上. FEBS Lett (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679S)被用于被用于免疫印迹在人类样本上 (图 1). J Extracell Vesicles (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(CST, 2679)被用于被用于免疫细胞化学在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2679)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cell Physiol Biochem (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上 (图 s4). Oncogene (2016) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫组化-石蜡切片; 人类; 图 2
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technologies, 2679)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2679)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上 (图 6b). J Virol (2015) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling Technology, 2679)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, C5C9)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2014) ncbi
domestic rabbit 单克隆(C5C9)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司钙联接蛋白抗体(Cell Signaling, 2679)被用于被用于免疫印迹在人类样本上浓度为1:500. J Biomol Screen (2014) ncbi
碧迪BD
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 图 1b
碧迪BD钙联接蛋白抗体(BD, 610523)被用于被用于免疫印迹在人类样本上 (图 1b). Curr Biol (2020) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 图 7d
碧迪BD钙联接蛋白抗体(BD Transduction Laboratories, 610523)被用于被用于免疫印迹在人类样本上 (图 7d). Sci Rep (2017) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 1:2000; 图 st1
碧迪BD钙联接蛋白抗体(Transduction Laboratories, C45520 (BD#610524))被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 st1). Nat Commun (2016) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 图 6b
碧迪BD钙联接蛋白抗体(BD Biosciences, 37)被用于被用于免疫印迹在人类样本上 (图 6b). PLoS ONE (2016) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 图 7b
碧迪BD钙联接蛋白抗体(BD Biosciences, 610524)被用于被用于免疫印迹在人类样本上 (图 7b). J Lipid Res (2016) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫细胞化学; 小鼠; 1:500; 图 6b
碧迪BD钙联接蛋白抗体(BD, 610523)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 6b). Mol Brain (2016) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
碧迪BD钙联接蛋白抗体(BD Biosciences, BD 610523)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD钙联接蛋白抗体(BD Transduction Laboratories, 610523)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 1:100
碧迪BD钙联接蛋白抗体(BD, 610523)被用于被用于免疫印迹在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 图 7
碧迪BD钙联接蛋白抗体(BD Transduction Laboratories, 610523)被用于被用于免疫印迹在人类样本上 (图 7). RNA Biol (2014) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫细胞化学; 人类
碧迪BD钙联接蛋白抗体(BD Transduction Laboratories, 37)被用于被用于免疫细胞化学在人类样本上. Gene (2014) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类; 图 2b
碧迪BD钙联接蛋白抗体(BD Transduction, 610523)被用于被用于免疫印迹在人类样本上 (图 2b). Sci Rep (2014) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫细胞化学; 人类
碧迪BD钙联接蛋白抗体(BD Transduction Laboratories, 610524)被用于被用于免疫细胞化学在人类样本上. J Invest Dermatol (2014) ncbi
小鼠 单克隆(37/Calnexin)
  • 免疫印迹; 人类
碧迪BD钙联接蛋白抗体(BD Biosciences, 37)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
MBL International
  • 免疫印迹; 人类
MBL International钙联接蛋白抗体(Medical and Biological Laboratories, M178-3)被用于被用于免疫印迹在人类样本上. Cell Stress Chaperones (2013) ncbi
文章列表
  1. Giovinazzo J, Thomson R, Khalizova N, Zager P, Malani N, Rodriguez Boulan E, et al. Apolipoprotein L-1 renal risk variants form active channels at the plasma membrane driving cytotoxicity. elife. 2020;9: pubmed 出版商
  2. Sundararaman A, Fukushima Y, Norman J, Uemura A, Mellor H. RhoJ Regulates α5β1 Integrin Trafficking to Control Fibronectin Remodeling during Angiogenesis. Curr Biol. 2020;30:2146-2155.e5 pubmed 出版商
  3. Li J, Liang C, Pappas S, Dauer W. TorsinB overexpression prevents abnormal twisting in DYT1 dystonia mouse models. elife. 2020;9: pubmed 出版商
  4. Wang W, Hu D, Wu C, Feng Y, Li A, Liu W, et al. STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection. PLoS Pathog. 2020;16:e1008335 pubmed 出版商
  5. Wang J, Wuethrich A, Sina A, Lane R, Lin L, Wang Y, et al. Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. Sci Adv. 2020;6:eaax3223 pubmed 出版商
  6. Crescitelli R, Lässer C, Jang S, Cvjetkovic A, Malmhäll C, Karimi N, et al. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J Extracell Vesicles. 2020;9:1722433 pubmed 出版商
  7. Coccia E, Planells Ferrer L, Badillos Rodríguez R, Pascual M, Segura M, Fernández Hernández R, et al. SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death Dis. 2020;11:82 pubmed 出版商
  8. Deng M, Chen Z, Tan J, Liu H. Down-regulation of SLC35C1 induces colon cancer through over-activating Wnt pathway. J Cell Mol Med. 2020;24:3079-3090 pubmed 出版商
  9. Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY). 2019;11:8777-8791 pubmed 出版商
  10. Majer O, Liu B, Woo B, Kreuk L, Van Dis E, Barton G. Release from UNC93B1 reinforces the compartmentalized activation of select TLRs. Nature. 2019;575:371-374 pubmed 出版商
  11. Majer O, Liu B, Kreuk L, Krogan N, Barton G. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature. 2019;575:366-370 pubmed 出版商
  12. Schwarz A, Möller Hackbarth K, Ebarasi L, Unnersjö Jess D, Zambrano S, Blom H, et al. Coro2b, a podocyte protein downregulated in human diabetic nephropathy, is involved in the development of protamine sulphate-induced foot process effacement. Sci Rep. 2019;9:8888 pubmed 出版商
  13. Yang S, Harding A, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019;5:eaav7999 pubmed 出版商
  14. Stefanius K, Servage K, de Souza Santos M, Gray H, Toombs J, Chimalapati S, et al. Human pancreatic cancer cell exosomes, but not human normal cell exosomes, act as an initiator in cell transformation. elife. 2019;8: pubmed 出版商
  15. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  16. Wang J, Liu Y, Liu Y, Zheng S, Wang X, Zhao J, et al. Time-resolved protein activation by proximal decaging in living systems. Nature. 2019;569:509-513 pubmed 出版商
  17. Wisskirchen K, Kah J, Malo A, Asen T, Volz T, Allweiss L, et al. T cell receptor grafting allows virological control of Hepatitis B virus infection. J Clin Invest. 2019;129:2932-2945 pubmed 出版商
  18. Morwitzer M, Tritsch S, Cazares L, Ward M, Nuss J, Bavari S, et al. Identification of RUVBL1 and RUVBL2 as Novel Cellular Interactors of the Ebola Virus Nucleoprotein. Viruses. 2019;11: pubmed 出版商
  19. Brody M, Vanhoutte D, Bakshi C, Liu R, Correll R, Sargent M, et al. Disruption of valosin-containing protein activity causes cardiomyopathy and reveals pleiotropic functions in cardiac homeostasis. J Biol Chem. 2019;294:8918-8929 pubmed 出版商
  20. Pergu R, Dagar S, Kumar H, Kumar R, Bhattacharya J, Mylavarapu S. The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec. J Biol Chem. 2019;294:7177-7193 pubmed 出版商
  21. Subramanian A, Capalbo A, Iyengar N, Rizzo R, Di Campli A, Di Martino R, et al. Auto-regulation of Secretory Flux by Sensing and Responding to the Folded Cargo Protein Load in the Endoplasmic Reticulum. Cell. 2019;176:1461-1476.e23 pubmed 出版商
  22. Gentili M, Lahaye X, Nadalin F, Nader G, Puig Lombardi E, Hervé S, et al. The N-Terminal Domain of cGAS Determines Preferential Association with Centromeric DNA and Innate Immune Activation in the Nucleus. Cell Rep. 2019;26:2377-2393.e13 pubmed 出版商
  23. Fu Y, Zhang B, Mu T. LMAN1 (ERGIC-53) promotes trafficking of neuroreceptors. Biochem Biophys Res Commun. 2019;511:356-362 pubmed 出版商
  24. Jo Y, Hamilton J, Hwang S, Garland K, Smith G, Su S, et al. Schnyder corneal dystrophy-associated UBIAD1 inhibits ER-associated degradation of HMG CoA reductase in mice. elife. 2019;8: pubmed 出版商
  25. Chun J, Zhang J, Wilkins M, Subramanian B, Riella C, Magraner J, et al. Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity. Proc Natl Acad Sci U S A. 2019;116:3712-3721 pubmed 出版商
  26. Saiz Ros N, Czapiewski R, Epifano I, Stevenson A, Swanson S, Dixon C, et al. Host Vesicle Fusion Protein VAPB Contributes to the Nuclear Egress Stage of Herpes Simplex Virus Type-1 (HSV-1) Replication. Cells. 2019;8: pubmed 出版商
  27. Gerber H, Mosser S, Boury Jamot B, Stumpe M, Piersigilli A, Goepfert C, et al. The APMAP interactome reveals new modulators of APP processing and beta-amyloid production that are altered in Alzheimer's disease. Acta Neuropathol Commun. 2019;7:13 pubmed 出版商
  28. Tiwarekar V, Fehrholz M, Schneider Schaulies J. KDELR2 Competes with Measles Virus Envelope Proteins for Cellular Chaperones Reducing Their Chaperone-Mediated Cell Surface Transport. Viruses. 2019;11: pubmed 出版商
  29. Gómez Fernández P, Urtasun A, Paton A, Paton J, Borrego F, Dersh D, et al. Long Interleukin-22 Binding Protein Isoform-1 Is an Intracellular Activator of the Unfolded Protein Response. Front Immunol. 2018;9:2934 pubmed 出版商
  30. Hartmann H, Hornburg D, Czuppa M, Bader J, Michaelsen M, Farny D, et al. Proteomics and C9orf72 neuropathology identify ribosomes as poly-GR/PR interactors driving toxicity. Life Sci Alliance. 2018;1:e201800070 pubmed 出版商
  31. Chitwood P, Juszkiewicz S, Guna A, Shao S, Hegde R. EMC Is Required to Initiate Accurate Membrane Protein Topogenesis. Cell. 2018;175:1507-1519.e16 pubmed 出版商
  32. Theisen D, Davidson J, Briseño C, Gargaro M, Lauron E, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018;362:694-699 pubmed 出版商
  33. López Erauskin J, Tadokoro T, Baughn M, Myers B, McAlonis Downes M, Chillon Marinas C, et al. ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS. Neuron. 2018;100:816-830.e7 pubmed 出版商
  34. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  35. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  36. Bagashev A, Sotillo E, Tang C, Black K, Perazzelli J, Seeholzer S, et al. CD19 Alterations Emerging after CD19-Directed Immunotherapy Cause Retention of the Misfolded Protein in the Endoplasmic Reticulum. Mol Cell Biol. 2018;38: pubmed 出版商
  37. Li T, Song L, Sun Y, Li J, Yi C, Lam S, et al. Tip60-mediated lipin 1 acetylation and ER translocation determine triacylglycerol synthesis rate. Nat Commun. 2018;9:1916 pubmed 出版商
  38. Kathayat R, Cao Y, Elvira P, Sandoz P, Zaballa M, Springer M, et al. Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes. Nat Commun. 2018;9:334 pubmed 出版商
  39. Viswanath P, Radoul M, Izquierdo Garcia J, Ong W, Luchman H, Cairncross J, et al. 2-Hydroxyglutarate-Mediated Autophagy of the Endoplasmic Reticulum Leads to an Unusual Downregulation of Phospholipid Biosynthesis in Mutant IDH1 Gliomas. Cancer Res. 2018;78:2290-2304 pubmed 出版商
  40. Blunsom N, Gomez Espinosa E, Ashlin T, Cockcroft S. Mitochondrial CDP-diacylglycerol synthase activity is due to the peripheral protein, TAMM41 and not due to the integral membrane protein, CDP-diacylglycerol synthase 1. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:284-298 pubmed 出版商
  41. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  42. Zhang S, Eitan E, Wu T, Mattson M. Intercellular transfer of pathogenic α-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal. Neurobiol Aging. 2018;61:52-65 pubmed 出版商
  43. Merrill N, Schipper J, Karnes J, Kauffman A, Martin K, Mackeigan J. PI3K-C2? knockdown decreases autophagy and maturation of endocytic vesicles. PLoS ONE. 2017;12:e0184909 pubmed 出版商
  44. Rong X, Wang B, Palladino E, de Aguiar Vallim T, Ford D, Tontonoz P. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest. 2017;127:3640-3651 pubmed 出版商
  45. Yanatori I, Richardson D, Toyokuni S, Kishi F. The iron chaperone poly(rC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. J Biol Chem. 2017;292:13205-13229 pubmed 出版商
  46. Bartusch C, Döring T, Prange R. Rab33B Controls Hepatitis B Virus Assembly by Regulating Core Membrane Association and Nucleocapsid Processing. Viruses. 2017;9: pubmed 出版商
  47. Huang B, Lin C, Wang C, Kao S. Upregulation of heat shock protein 70 and the differential protein expression induced by tumor necrosis factor-alpha enhances migration and inhibits apoptosis of hepatocellular carcinoma cell HepG2. Int J Med Sci. 2017;14:284-293 pubmed 出版商
  48. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  49. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  50. Chambers T, Santiesteban L, Gomez D, Chambers J. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017;382:24-35 pubmed 出版商
  51. Miles A, Burr S, Grice G, Nathan J. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1? prolyl hydroxylation by regulating cellular iron levels. elife. 2017;6: pubmed 出版商
  52. Kim J, Hyun H, Min S, Kang T. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci. 2017;11:47 pubmed 出版商
  53. Bagh M, Peng S, Chandra G, Zhang Z, Singh S, Pattabiraman N, et al. Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nat Commun. 2017;8:14612 pubmed 出版商
  54. Sugiura A, Mattie S, Prudent J, McBride H. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature. 2017;542:251-254 pubmed 出版商
  55. Zhang Y, Stefanovic B. mTORC1 phosphorylates LARP6 to stimulate type I collagen expression. Sci Rep. 2017;7:41173 pubmed 出版商
  56. Urakova N, Strive T, Frese M. RNA-Dependent RNA Polymerases of Both Virulent and Benign Rabbit Caliciviruses Induce Striking Rearrangement of Golgi Membranes. PLoS ONE. 2017;12:e0169913 pubmed 出版商
  57. Guiraud S, Migeon T, Ferry A, Chen Z, Ouchelouche S, Verpont M, et al. HANAC Col4a1 Mutation in Mice Leads to Skeletal Muscle Alterations due to a Primary Vascular Defect. Am J Pathol. 2017;187:505-516 pubmed 出版商
  58. Xie C, Gong X, Luo J, Li B, Song B. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. J Lipid Res. 2017;58:512-518 pubmed 出版商
  59. Polanco M, Parodi S, Piol D, Stack C, Chivet M, Contestabile A, et al. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy. Sci Transl Med. 2016;8:370ra181 pubmed 出版商
  60. Démoulins T, Englezou P, Milona P, Ruggli N, Tirelli N, Pichon C, et al. Self-Replicating RNA Vaccine Delivery to Dendritic Cells. Methods Mol Biol. 2017;1499:37-75 pubmed
  61. Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, et al. Functional Analyses of the Crohn's Disease Risk Gene LACC1. PLoS ONE. 2016;11:e0168276 pubmed 出版商
  62. Wang S, Jacquemyn J, Murru S, Martinelli P, Barth E, Langer T, et al. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying. PLoS Genet. 2016;12:e1006463 pubmed 出版商
  63. Shahani N, Swarnkar S, Giovinazzo V, Morgenweck J, Bohn L, Scharager Tapia C, et al. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network ("Rhesactome") in the striatum. Sci Signal. 2016;9:ra111 pubmed
  64. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  65. Li J, Huang W, Lin P, Wu B, Fu Z, Shen H, et al. N-linked glycosylation at Asn152 on CD147 affects protein folding and stability: promoting tumour metastasis in hepatocellular carcinoma. Sci Rep. 2016;6:35210 pubmed 出版商
  66. Puhka M, Nordberg M, Valkonen S, Rannikko A, Kallioniemi O, Siljander P, et al. KeepEX, a simple dilution protocol for improving extracellular vesicle yields from urine. Eur J Pharm Sci. 2017;98:30-39 pubmed 出版商
  67. Veglia E, Pini A, Moggio A, Grange C, Premoselli F, Miglio G, et al. Histamine type 1-receptor activation by low dose of histamine undermines human glomerular slit diaphragm integrity. Pharmacol Res. 2016;114:27-38 pubmed 出版商
  68. Cvoro A, Bajić A, Zhang A, Simon M, Golic I, Sieglaff D, et al. Ligand Independent and Subtype-Selective Actions of Thyroid Hormone Receptors in Human Adipose Derived Stem Cells. PLoS ONE. 2016;11:e0164407 pubmed 出版商
  69. Sivadasan R, Hornburg D, Drepper C, Frank N, Jablonka S, Hansel A, et al. C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons. Nat Neurosci. 2016;19:1610-1618 pubmed 出版商
  70. Pigoni M, Wanngren J, Kuhn P, Munro K, Gunnersen J, Takeshima H, et al. Seizure protein 6 and its homolog seizure 6-like protein are physiological substrates of BACE1 in neurons. Mol Neurodegener. 2016;11:67 pubmed
  71. Thura M, Al Aidaroos A, Yong W, Kono K, Gupta A, Lin Y, et al. PRL3-zumab, a first-in-class humanized antibody for cancer therapy. JCI Insight. 2016;1:e87607 pubmed 出版商
  72. Zhao G, Zhu P, Renvoisé B, Maldonado Baez L, Park S, Blackstone C. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp Cell Res. 2016;349:32-44 pubmed 出版商
  73. Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, et al. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell. 2016;167:219-232.e14 pubmed 出版商
  74. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  75. Schwenk B, Hartmann H, Serdaroglu A, Schludi M, Hornburg D, Meissner F, et al. TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons. EMBO J. 2016;35:2350-2370 pubmed
  76. Guo X, Sun X, Hu D, Wang Y, Fujioka H, Vyas R, et al. VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington's disease. Nat Commun. 2016;7:12646 pubmed 出版商
  77. BRANDT C, McFie P, Stone S. Diacylglycerol acyltransferase-2 and monoacylglycerol acyltransferase-2 are ubiquitinated proteins that are degraded by the 26S proteasome. Biochem J. 2016;473:3621-3637 pubmed
  78. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  79. Kweon H, Kim D, Bae Y, Park J, Suh B. Acid-Sensing Ion Channel 2a (ASIC2a) Promotes Surface Trafficking of ASIC2b via Heteromeric Assembly. Sci Rep. 2016;6:30684 pubmed 出版商
  80. Jagadish N, Parashar D, Gupta N, Agarwal S, Suri V, Kumar R, et al. Heat shock protein 70-2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth. BMC Cancer. 2016;16:561 pubmed 出版商
  81. Gallagher C, Walter P. Ceapins inhibit ATF6α signaling by selectively preventing transport of ATF6α to the Golgi apparatus during ER stress. elife. 2016;5: pubmed 出版商
  82. Friedrich T, Söhn M, Gutting T, Janssen K, Behrens H, Rocken C, et al. Subcellular compartmentalization of docking protein-1 contributes to progression in colorectal cancer. EBioMedicine. 2016;8:159-172 pubmed 出版商
  83. Pagliuso A, Valente C, Giordano L, Filograna A, Li G, Circolo D, et al. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase ?. Nat Commun. 2016;7:12148 pubmed 出版商
  84. Osman E, Washington C, Kaifer K, Mazzasette C, Patitucci T, Florea K, et al. Optimization of Morpholino Antisense Oligonucleotides Targeting the Intronic Repressor Element1 in Spinal Muscular Atrophy. Mol Ther. 2016;24:1592-601 pubmed 出版商
  85. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vazquez E, León Castellanos V, et al. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano. 2016;10:7154-71 pubmed 出版商
  86. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  87. Marzesco A, Flötenmeyer M, Bühler A, Obermüller U, Staufenbiel M, Jucker M, et al. Highly potent intracellular membrane-associated A? seeds. Sci Rep. 2016;6:28125 pubmed 出版商
  88. Schrul B, Kopito R. Peroxin-dependent targeting of a lipid-droplet-destined membrane protein to ER subdomains. Nat Cell Biol. 2016;18:740-51 pubmed 出版商
  89. Massarweh A, Bosco M, Iatmanen Harbi S, Tessier C, Amana L, Busca P, et al. Brefeldin A promotes the appearance of oligosaccharyl phosphates derived from Glc3Man9GlcNAc2-PP-dolichol within the endomembrane system of HepG2 cells. J Lipid Res. 2016;57:1477-91 pubmed 出版商
  90. Wu X, Zhao L, Chen Z, Ji X, Qiao X, Jin Y, et al. FLCN Maintains the Leucine Level in Lysosome to Stimulate mTORC1. PLoS ONE. 2016;11:e0157100 pubmed 出版商
  91. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  92. Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, et al. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep. 2016;17:1061-80 pubmed 出版商
  93. Nishito Y, Tsuji N, Fujishiro H, Takeda T, Yamazaki T, Teranishi F, et al. Direct Comparison of Manganese Detoxification/Efflux Proteins and Molecular Characterization of ZnT10 Protein as a Manganese Transporter. J Biol Chem. 2016;291:14773-87 pubmed 出版商
  94. Treyer A, Pujato M, Pechuan X, Müsch A. Iterative sorting of apical and basolateral cargo in Madin-Darby canine kidney cells. Mol Biol Cell. 2016;27:2259-71 pubmed 出版商
  95. Sánchez A, Urrego D, Pardo L. Cyclic expression of the voltage-gated potassium channel KV10.1 promotes disassembly of the primary cilium. EMBO Rep. 2016;17:708-23 pubmed 出版商
  96. Gerl M, Bittl V, Kirchner S, Sachsenheimer T, Brunner H, Lüchtenborg C, et al. Sphingosine-1-Phosphate Lyase Deficient Cells as a Tool to Study Protein Lipid Interactions. PLoS ONE. 2016;11:e0153009 pubmed 出版商
  97. Tamura Y, Matsunaga Y, Kitaoka Y, Hatta H. Effects of Heat Stress Treatment on Age-dependent Unfolded Protein Response in Different Types of Skeletal Muscle. J Gerontol A Biol Sci Med Sci. 2017;72:299-308 pubmed 出版商
  98. Zattas D, Berk J, Kreft S, Hochstrasser M. A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation. J Biol Chem. 2016;291:12105-18 pubmed 出版商
  99. Polanco J, Scicluna B, Hill A, Götz J. Extracellular Vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner. J Biol Chem. 2016;291:12445-66 pubmed 出版商
  100. Smagris E, Gilyard S, BasuRay S, Cohen J, Hobbs H. Inactivation of Tm6sf2, a Gene Defective in Fatty Liver Disease, Impairs Lipidation but Not Secretion of Very Low Density Lipoproteins. J Biol Chem. 2016;291:10659-76 pubmed 出版商
  101. Son S, Cha M, Choi H, Kang S, Choi H, Lee M, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy. 2016;12:784-800 pubmed 出版商
  102. Di X, Wang Y, Han D, Fu Y, Duerfeldt A, Blagg B, et al. Grp94 Protein Delivers γ-Aminobutyric Acid Type A (GABAA) Receptors to Hrd1 Protein-mediated Endoplasmic Reticulum-associated Degradation. J Biol Chem. 2016;291:9526-39 pubmed 出版商
  103. Ouimet M, Hennessy E, van Solingen C, Koelwyn G, Hussein M, Ramkhelawon B, et al. miRNA Targeting of Oxysterol-Binding Protein-Like 6 Regulates Cholesterol Trafficking and Efflux. Arterioscler Thromb Vasc Biol. 2016;36:942-951 pubmed 出版商
  104. Marek I, Lichtneger T, Cordasic N, Hilgers K, Volkert G, Fahlbusch F, et al. Alpha8 Integrin (Itga8) Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover. PLoS ONE. 2016;11:e0150471 pubmed 出版商
  105. Huynh N, VonMoss L, Smith D, Rahman I, Felemban M, Zuo J, et al. Characterization of Regulatory Extracellular Vesicles from Osteoclasts. J Dent Res. 2016;95:673-9 pubmed 出版商
  106. Prabhu A, Luu W, Sharpe L, Brown A. Cholesterol-mediated Degradation of 7-Dehydrocholesterol Reductase Switches the Balance from Cholesterol to Vitamin D Synthesis. J Biol Chem. 2016;291:8363-73 pubmed 出版商
  107. Jansen J, Cirak S, van Scherpenzeel M, Timal S, Reunert J, Rust S, et al. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation. Am J Hum Genet. 2016;98:310-21 pubmed 出版商
  108. Kuhn P, Colombo A, Schusser B, Dreymueller D, Wetzel S, Schepers U, et al. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. elife. 2016;5: pubmed 出版商
  109. Salomon J, Spahn S, Wang X, Füllekrug J, Bertrand C, Mall M. Generation and functional characterization of epithelial cells with stable expression of SLC26A9 Cl- channels. Am J Physiol Lung Cell Mol Physiol. 2016;310:L593-602 pubmed 出版商
  110. Wu J, Xu Y, Jiang Y, Xu J, Hu Y, Zha X. ASIC subunit ratio and differential surface trafficking in the brain. Mol Brain. 2016;9:4 pubmed 出版商
  111. Paladino D, Yue P, Furuya H, Acoba J, Rosser C, Turkson J. A novel nuclear Src and p300 signaling axis controls migratory and invasive behavior in pancreatic cancer. Oncotarget. 2016;7:7253-67 pubmed 出版商
  112. Ulbrich L, Favaloro F, Trobiani L, Marchetti V, Patel V, Pascucci T, et al. Autism-associated R451C mutation in neuroligin3 leads to activation of the unfolded protein response in a PC12 Tet-On inducible system. Biochem J. 2016;473:423-34 pubmed 出版商
  113. Covarrubias Pinto A, Moll P, Solís Maldonado M, Acuña A, Riveros A, Miró M, et al. Beyond the redox imbalance: Oxidative stress contributes to an impaired GLUT3 modulation in Huntington's disease. Free Radic Biol Med. 2015;89:1085-96 pubmed 出版商
  114. Patel M, Jacobson B, Ji Y, Drees J, Tang S, Xiong K, et al. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget. 2015;6:33165-77 pubmed 出版商
  115. Cavieres V, González A, Muñoz V, Yefi C, Bustamante H, Barraza R, et al. Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy. PLoS ONE. 2015;10:e0136313 pubmed 出版商
  116. Tan B, Mu R, Chang Y, Wang Y, Wu M, Tu H, et al. RNF4 negatively regulates NF-κB signaling by down-regulating TAB2. FEBS Lett. 2015;589:2850-8 pubmed 出版商
  117. Rennoll Bankert K, Rahman M, Gillespie J, Guillotte M, Kaur S, Lehman S, et al. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion. PLoS Pathog. 2015;11:e1005115 pubmed 出版商
  118. Lobb R, Becker M, Wen S, Wong C, Wiegmans A, Leimgruber A, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031 pubmed 出版商
  119. Wang J, Ma L, Tang X, Zhang X, Qiao Y, Shi Y, et al. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells. Oncotarget. 2015;6:24075-91 pubmed
  120. Li H, Han L, Yang Z, Huang W, Zhang X, Gu Y, et al. Differential Proteomic Analysis of Syncytiotrophoblast Extracellular Vesicles from Early-Onset Severe Preeclampsia, using 8-Plex iTRAQ Labeling Coupled with 2D Nano LC-MS/MS. Cell Physiol Biochem. 2015;36:1116-30 pubmed 出版商
  121. Theodorou M, Rauser B, Zhang J, Prakash N, Wurst W, Schick J. Limitations of In Vivo Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy. Hum Gene Ther Methods. 2015;26:107-22 pubmed 出版商
  122. Reilly J, Zhou X, Tong H, Kuder C, Wiemer D, Hohl R. In vitro studies in a myelogenous leukemia cell line suggest an organized binding of geranylgeranyl diphosphate synthase inhibitors. Biochem Pharmacol. 2015;96:83-92 pubmed 出版商
  123. Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget. 2015;6:13772-89 pubmed
  124. Min K, Liggett J, Silva G, Wu W, Wang R, Shen R, et al. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene. 2016;35:377-88 pubmed 出版商
  125. Li G, Nguyen C, Ryckman B, Britt W, Kamil J. A viral regulator of glycoprotein complexes contributes to human cytomegalovirus cell tropism. Proc Natl Acad Sci U S A. 2015;112:4471-6 pubmed 出版商
  126. Matsuno H, Ohi K, Hashimoto R, Yamamori H, Yasuda Y, Fujimoto M, et al. A naturally occurring null variant of the NMDA type glutamate receptor NR3B subunit is a risk factor of schizophrenia. PLoS ONE. 2015;10:e0116319 pubmed 出版商
  127. Chen W, Wu J, Li L, Zhang Z, Ren J, Liang Y, et al. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat Cell Biol. 2015;17:434-44 pubmed 出版商
  128. Stefanovic L, Longo L, Zhang Y, Stefanovic B. Characterization of binding of LARP6 to the 5' stem-loop of collagen mRNAs: implications for synthesis of type I collagen. RNA Biol. 2014;11:1386-401 pubmed 出版商
  129. Wang Y, Tan B, Mu R, Chang Y, Wu M, Tu H, et al. Ubiquitin-associated domain-containing ubiquitin regulatory X (UBX) protein UBXN1 is a negative regulator of nuclear factor κB (NF-κB) signaling. J Biol Chem. 2015;290:10395-405 pubmed 出版商
  130. Spilsbury A, Miwa S, Attems J, Saretzki G. The role of telomerase protein TERT in Alzheimer's disease and in tau-related pathology in vitro. J Neurosci. 2015;35:1659-74 pubmed 出版商
  131. Taura M, Kudo E, Kariya R, Goto H, Matsuda K, Hattori S, et al. COMMD1/Murr1 reinforces HIV-1 latent infection through IκB-α stabilization. J Virol. 2015;89:2643-58 pubmed 出版商
  132. Chigwechokha P, Komatsu M, Itakura T, Shiozaki K. Nile Tilapia Neu3 sialidases: molecular cloning, functional characterization and expression in Oreochromis niloticus. Gene. 2014;552:155-64 pubmed 出版商
  133. Kemp M, Gaddameedhi S, Choi J, Hu J, Sancar A. DNA repair synthesis and ligation affect the processing of excised oligonucleotides generated by human nucleotide excision repair. J Biol Chem. 2014;289:26574-83 pubmed 出版商
  134. McNally A, Anderson J. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J Biomed Mater Res A. 2015;103:1380-90 pubmed 出版商
  135. Shaiken T, Opekun A. Dissecting the cell to nucleus, perinucleus and cytosol. Sci Rep. 2014;4:4923 pubmed 出版商
  136. Termini C, Cotter M, Marjon K, Buranda T, Lidke K, Gillette J. The membrane scaffold CD82 regulates cell adhesion by altering α4 integrin stability and molecular density. Mol Biol Cell. 2014;25:1560-73 pubmed 出版商
  137. Scharadin T, Adhikary G, Shaw K, Grun D, Xu W, Eckert R. Pericentrosomal localization of the TIG3 tumor suppressor requires an N-terminal hydrophilic region motif. J Invest Dermatol. 2014;134:1220-1229 pubmed 出版商
  138. Kinoshita S, Kogure A, Taguchi S, Nolan G. Snapin, positive regulator of stimulation- induced Ca²? release through RyR, is necessary for HIV-1 replication in T cells. PLoS ONE. 2013;8:e75297 pubmed 出版商
  139. Montague C, Fitzmaurice A, Hover B, Salazar N, Fey J. Screen for small molecules increasing the mitochondrial membrane potential. J Biomol Screen. 2014;19:387-98 pubmed 出版商
  140. Pace P, Peskin A, Han M, Hampton M, Winterbourn C. Hyperoxidized peroxiredoxin 2 interacts with the protein disulfide- isomerase ERp46. Biochem J. 2013;453:475-85 pubmed 出版商
  141. Koreishi M, Yu S, Oda M, Honjo Y, Satoh A. CK2 phosphorylates Sec31 and regulates ER-To-Golgi trafficking. PLoS ONE. 2013;8:e54382 pubmed 出版商
  142. Takayanagi S, Fukuda R, Takeuchi Y, Tsukada S, Yoshida K. Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress. Cell Stress Chaperones. 2013;18:11-23 pubmed 出版商
  143. Wei P, Lo W, Su M, Shew J, Lee W. Non-targeting siRNA induces NPGPx expression to cooperate with exoribonuclease XRN2 for releasing the stress. Nucleic Acids Res. 2012;40:323-32 pubmed 出版商