这是一篇来自已证抗体库的有关人类 calretinin的综述,是根据88篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合calretinin 抗体。
calretinin 同义词: CAB29; CAL2; CR

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 calretinin抗体(Abcam, ab702)被用于. J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大西洋鳉; 1:100; 图 4
艾博抗(上海)贸易有限公司 calretinin抗体(Abcam, ab702)被用于被用于免疫组化-石蜡切片在大西洋鳉样本上浓度为1:100 (图 4). Toxicology (2019) ncbi
domestic rabbit 单克隆(EPR1799(2))
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 calretinin抗体(Abcam, ab133316)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 calretinin抗体(Abcam, Ab702)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3a). Front Neurosci (2016) ncbi
domestic rabbit 单克隆(SP13)
  • 免疫组化-石蜡切片; 大鼠; 图 5d
艾博抗(上海)贸易有限公司 calretinin抗体(Abcam, ab16694)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; Holothuria glaberrima; 1:100; 图 3
艾博抗(上海)贸易有限公司 calretinin抗体(Abcam, ab702)被用于被用于免疫组化在Holothuria glaberrima样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 表 1
赛默飞世尔 calretinin抗体(Thermo Fisher, PA5-16681)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(SP13)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
赛默飞世尔 calretinin抗体(Thermo Fisher, RM-9113-S0)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(SP13)
  • 免疫组化; 人类; 表 2
赛默飞世尔 calretinin抗体(Thermo Scientific, SP13)被用于被用于免疫组化在人类样本上 (表 2). Diagn Cytopathol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 calretinin抗体(生活技术, PA5-34688)被用于. J Neurochem (2015) ncbi
domestic rabbit 单克隆(SP13)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 calretinin抗体(Thermo Scientific, SP13)被用于被用于免疫组化-石蜡切片在人类样本上. Biomed Res Int (2014) ncbi
domestic rabbit 单克隆(SP13)
  • 免疫组化; 人类; 1:400
赛默飞世尔 calretinin抗体(Neomarkers, SP13)被用于被用于免疫组化在人类样本上浓度为1:400. Clin Med Insights Case Rep (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H-5)
  • 免疫组化-冰冻切片; 小鼠; 1:25; 图 5
圣克鲁斯生物技术 calretinin抗体(Santa Cruz Biotechnology, sc-365,956)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:25 (图 5). J Comp Neurol (2020) ncbi
小鼠 单克隆(D-12)
  • 免疫组化; 小鼠; 图 3c
圣克鲁斯生物技术 calretinin抗体(SantaCruz, sc-365989)被用于被用于免疫组化在小鼠样本上 (图 3c). J Comp Neurol (2017) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6a
安迪生物R&D calretinin抗体(R&D, AF5065)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Cell Rep (2021) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 3d
安迪生物R&D calretinin抗体(R&D, AF5065)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1500 (图 3d). Acta Neuropathol Commun (2020) ncbi
ImmunoStar
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 s21e
ImmunoStar calretinin抗体(Immunostar, 24445)被用于被用于免疫组化在人类样本上浓度为1:500 (图 s21e). Science (2017) ncbi
SWant
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:4000; 图 2c
SWant calretinin抗体(Swant, CG1)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 2c). Neural Dev (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:300
SWant calretinin抗体(Swant, CG1)被用于被用于免疫组化在小鼠样本上浓度为1:300. Front Cell Neurosci (2021) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s1c
SWant calretinin抗体(Swant, CG1)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s1c). Cereb Cortex Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s2a
SWant calretinin抗体(Swant, 7697)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s2a). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4d
SWant calretinin抗体(Swant, 7697)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4d). Front Mol Neurosci (2021) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:2000
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化在小鼠样本上浓度为1:2000. Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1c
SWant calretinin抗体(Swant, 7697)被用于被用于免疫组化在小鼠样本上 (图 1c). elife (2020) ncbi
小鼠 单克隆
  • 流式细胞仪; 小鼠; 1:400; 图 s1b
SWant calretinin抗体(Swant, 6B3)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s1b). Stem Cell Reports (2020) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2b
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2b). Eneuro (2020) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 3a
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 3a). J Comp Neurol (2020) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:1000; 图 2b
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2b). J Comp Neurol (2019) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2500; 图 5c, 8c, 11c
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2500 (图 5c, 8c, 11c). J Comp Neurol (2020) ncbi
小鼠 单克隆
  • 免疫组化; slender lungfish; 1:1000; 图 8r
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化在slender lungfish样本上浓度为1:1000 (图 8r). J Comp Neurol (2020) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 11g
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 11g). J Comp Neurol (2019) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1500; 图 5
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1500 (图 5). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1a
SWant calretinin抗体(Swant, 7697)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1a). elife (2019) ncbi
小鼠 单克隆
SWant calretinin抗体(Swant, 6B3)被用于. J Comp Neurol (2019) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3a
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3a). PLoS ONE (2018) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:2000; 图 s4
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s4). Nat Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1b
SWant calretinin抗体(Swant, CR7697)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s8f
SWant calretinin抗体(Swant, 7697)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s8f). Science (2017) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000; 表 2
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000 (表 2). Dev Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s4d
SWant calretinin抗体(Swant, 7697)被用于被用于免疫组化在小鼠样本上 (图 s4d). Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 1h
SWant calretinin抗体(Swant, CR7697)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1h). Nature (2017) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:1000; 图 st4
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 st4). Nat Biotechnol (2017) ncbi
小鼠 单克隆
SWant calretinin抗体(SWANT, 6B3)被用于. J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:1000; 图 8b
SWant calretinin抗体(Swant, 7697)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 8b). Front Neural Circuits (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 s1
SWant calretinin抗体(Swant Swiss antibodies, CG1)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 s1). Front Neural Circuits (2016) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 1
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 1). Front Cell Neurosci (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:5000
SWant calretinin抗体(Swant, CG1)被用于被用于免疫细胞化学在人类样本上浓度为1:5000. Methods (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:5000; 图 2
SWant calretinin抗体(SWANT, 6B3)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2). Hippocampus (2016) ncbi
小鼠 单克隆
  • 免疫组化; roundworm
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化在roundworm 样本上. J Neurophysiol (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫组化; 小鼠; 1:200
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 和 被用于免疫组化在小鼠样本上浓度为1:200. F1000Res (2014) ncbi
小鼠 单克隆
  • 免疫组化; 大鼠; 1:500; 图 4
  • 免疫印迹; 大鼠; 1:1000; 图 3
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). J Neurosci Res (2015) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:200
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:2500
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2500. J Comp Neurol (2015) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-石蜡切片在小鼠样本上. Neuroscience (2014) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:1000
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 猕猴
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-自由浮动切片在猕猴样本上. J Neurosci (2014) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:200
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Front Neuroanat (2014) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; gray bichir ; 1:1000
  • 免疫组化-自由浮动切片; reedfish ; 1:1000
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-自由浮动切片在gray bichir 样本上浓度为1:1000 和 被用于免疫组化-自由浮动切片在reedfish 样本上浓度为1:1000. Brain Behav Evol (2014) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 4d
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 4d). Cereb Cortex (2015) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:1000
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化在人类样本上浓度为1:1000. Mol Brain (2013) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-冰冻切片在小鼠样本上. Neuropsychopharmacology (2013) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:200
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:200. J Comp Neurol (2012) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Comp Neurol (2012) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 大鼠; 1:5000 or 1:2500
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5000 or 1:2500. J Comp Neurol (2012) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2012) ncbi
小鼠 单克隆
  • 免疫组化; 大鼠; 1:2000
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Eur J Neurosci (2011) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; Mongolian jird; 1:500
SWant calretinin抗体(SWANT, 6B3)被用于被用于免疫组化-自由浮动切片在Mongolian jird样本上浓度为1:500. J Comp Neurol (2011) ncbi
小鼠 单克隆
  • 免疫沉淀; 斑马鱼; 1:500
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫沉淀在斑马鱼样本上浓度为1:500. J Comp Neurol (2011) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 人类; 1:2000
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:2000. J Comp Neurol (2010) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:5000
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000. J Comp Neurol (2009) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2009) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 猕猴; 1:5,000
SWant calretinin抗体(SWANT, 6B3)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:5,000. J Comp Neurol (2009) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆
  • 免疫组化; 大鼠; 1:500
SWant calretinin抗体(Swant, 6B3)被用于被用于免疫组化在大鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(DAK-Calret 1)
  • 免疫组化; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司 calretinin抗体(Dako, DAK-Calret 1)被用于被用于免疫组化在人类样本上浓度为1:40. Arch Dermatol Res (2015) ncbi
小鼠 单克隆(DAK-Calret 1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 calretinin抗体(Dako, DAK-Calret 1)被用于被用于免疫组化在人类样本上浓度为1:50. Fetal Pediatr Pathol (2014) ncbi
Cell Marque
  • 免疫组化-石蜡切片; 人类
Cell Marque calretinin抗体(Cell Marque, 232A-78)被用于被用于免疫组化-石蜡切片在人类样本上. Eur J Cancer (2013) ncbi
碧迪BD
小鼠 单克隆(34/Calretinin)
  • 免疫细胞化学; 人类; 1:50; 图 s4a
  • 免疫组化; 人类; 图 4b4
  • 免疫细胞化学; 大鼠; 1:50; 图 s7a
碧迪BD calretinin抗体(BD Bioscience, 610908)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s4a), 被用于免疫组化在人类样本上 (图 4b4) 和 被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 s7a). EBioMedicine (2019) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫组化; African green monkey; 1:2000; 图 2a
碧迪BD calretinin抗体(BD Bioscience, 610908)被用于被用于免疫组化在African green monkey样本上浓度为1:2000 (图 2a). J Comp Neurol (2017) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫细胞化学; 人类; 1:1000; 表 1
碧迪BD calretinin抗体(BD Biosciences, 610908)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫组化-自由浮动切片; 猕猴; 1:2000
碧迪BD calretinin抗体(BD Biosciences, 610908)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:2000. J Comp Neurol (2015) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫细胞化学; 人类; 1:200
碧迪BD calretinin抗体(BD Bioscience, 610908)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Stem Cell Rev (2013) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD calretinin抗体(BD Transduction Laboratories, 610908)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆(CAL6)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 s2g
徕卡显微系统(上海)贸易有限公司 calretinin抗体(Leica Biosystems, NCL-L-CALRET-566)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 s2g). PLoS ONE (2017) ncbi
单克隆(CAL6)
  • 免疫组化-石蜡切片; 人类; 1:1200; 图 2
徕卡显微系统(上海)贸易有限公司 calretinin抗体(Novacastra, NCL-L-CALRET- 566)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1200 (图 2). Hum Pathol (2017) ncbi
单克隆(CAL6)
  • 免疫细胞化学; 人类; 1:100; 图 2b
徕卡显微系统(上海)贸易有限公司 calretinin抗体(Leica, Cal6)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2b). PLoS ONE (2016) ncbi
小鼠 单克隆(5A5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
徕卡显微系统(上海)贸易有限公司 calretinin抗体(Novocastra, NCL-CALRETININ)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Acta Neuropathol Commun (2014) ncbi
单克隆(CAL6)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司 calretinin抗体(Leica, CAL6)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Gynecol Pathol (2014) ncbi
文章列表
  1. Miller D, Wright K. Neuronal Dystroglycan regulates postnatal development of CCK/cannabinoid receptor-1 interneurons. Neural Dev. 2021;16:4 pubmed 出版商
  2. Stalmann U, Franke A, Al Moyed H, Strenzke N, Reisinger E. Otoferlin Is Required for Proper Synapse Maturation and for Maintenance of Inner and Outer Hair Cells in Mouse Models for DFNB9. Front Cell Neurosci. 2021;15:677543 pubmed 出版商
  3. Levenga J, Wong H, Milstead R, LaPlante L, Hoeffer C. Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cereb Cortex Commun. 2021;2:tgab036 pubmed 出版商
  4. Geisler C, Ghimire S, Hepler C, Miller K, Bruggink S, Kentch K, et al. Hepatocyte membrane potential regulates serum insulin and insulin sensitivity by altering hepatic GABA release. Cell Rep. 2021;35:109298 pubmed 出版商
  5. Magno L, Asgarian Z, Pendolino V, Velona T, Mackintosh A, Lee F, et al. Transient developmental imbalance of cortical interneuron subtypes presages long-term changes in behavior. Cell Rep. 2021;35:109249 pubmed 出版商
  6. Sahu M, Pazos Boubeta Y, Steinzeig A, Kaurinkoski K, Palmisano M, Borowecki O, et al. Depletion of TrkB Receptors From Adult Serotonergic Neurons Increases Brain Serotonin Levels, Enhances Energy Metabolism and Impairs Learning and Memory. Front Mol Neurosci. 2021;14:616178 pubmed 出版商
  7. Gribaudo S, Saraulli D, Nato G, Bonzano S, Gambarotta G, Luzzati F, et al. Neurogranin Regulates Adult-Born Olfactory Granule Cell Spine Density and Odor-Reward Associative Memory in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  8. Beard H, Chidlow G, Neumann D, Nazri N, Douglass M, Trim P, et al. Is the eye a window to the brain in Sanfilippo syndrome?. Acta Neuropathol Commun. 2020;8:194 pubmed 出版商
  9. Rattner A, Terrillion C, Jou C, Kleven T, Hu S, Williams J, et al. Developmental, cellular, and behavioral phenotypes in a mouse model of congenital hypoplasia of the dentate gyrus. elife. 2020;9: pubmed 出版商
  10. Mayerl S, Heuer H, Ffrench Constant C. Hippocampal Neurogenesis Requires Cell-Autonomous Thyroid Hormone Signaling. Stem Cell Reports. 2020;14:845-860 pubmed 出版商
  11. Agoglia A, Zhu M, Ying R, Sidhu H, Natividad L, Wolfe S, et al. Corticotropin-Releasing Factor Receptor-1 Neurons in the Lateral Amygdala Display Selective Sensitivity to Acute and Chronic Ethanol Exposure. Eneuro. 2020;7: pubmed 出版商
  12. Wakeham C, Ren G, Morgans C. Expression and distribution of trophoblast glycoprotein in the mouse retina. J Comp Neurol. 2020;528:1660-1671 pubmed 出版商
  13. Tran M, Braz J, Hamel K, Kuhn J, Todd A, Basbaum A. Ablation of spinal cord estrogen receptor α-expressing interneurons reduces chemically induced modalities of pain and itch. J Comp Neurol. 2020;528:1629-1643 pubmed 出版商
  14. Emam A, Yoffe M, Cardona H, Soares D. Retinal morphology in Astyanax mexicanus during eye degeneration. J Comp Neurol. 2020;528:1523-1534 pubmed 出版商
  15. Carceller H, Guirado R, Nacher J. Dark exposure affects plasticity-related molecules and interneurons throughout the visual system during adulthood. J Comp Neurol. 2019;: pubmed 出版商
  16. Carron S, Sun M, Shultz S, Rajan R. Inhibitory neuronal changes following a mixed diffuse-focal model of traumatic brain injury. J Comp Neurol. 2020;528:175-198 pubmed 出版商
  17. L pez J, Morona R, Moreno N, Lozano D, Jim nez S, Gonz lez A. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J Comp Neurol. 2020;528:135-159 pubmed 出版商
  18. Tulloch A, Teo S, Carvajal B, Tessier Lavigne M, Jaworski A. Diverse spinal commissural neuron populations revealed by fate mapping and molecular profiling using a novel Robo3Cre mouse. J Comp Neurol. 2019;527:2948-2972 pubmed 出版商
  19. Wen Y, Zhang Z, Li Z, Liu G, Tao G, Song X, et al. The PROK2/PROKR2 signaling pathway is required for the migration of most olfactory bulb interneurons. J Comp Neurol. 2019;527:2931-2947 pubmed 出版商
  20. Balmer T, Trussell L. Selective targeting of unipolar brush cell subtypes by cerebellar mossy fibers. elife. 2019;8: pubmed 出版商
  21. Szymkowicz D, Sims K, Schwendinger K, Tatnall C, Powell R, Bruce T, et al. Exposure to arsenic during embryogenesis impairs olfactory sensory neuron differentiation and function into adulthood. Toxicology. 2019;420:73-84 pubmed 出版商
  22. Wang M, Xiong L, Jiang L, Lu Y, Liu F, Song L, et al. miR-4739 mediates pleural fibrosis by targeting bone morphogenetic protein 7. EBioMedicine. 2019;41:670-682 pubmed 出版商
  23. Kawaguchi M, Hagio H, Yamamoto N, Matsumoto K, Nakayama K, Akazome Y, et al. Atlas of the telencephalon based on cytoarchitecture, neurochemical markers, and gene expressions in Rhinogobius flumineus [Mizuno, 1960]. J Comp Neurol. 2019;527:874-900 pubmed 出版商
  24. Lin Y, Kuo K, Chen S, Huang H. RBFOX3/NeuN is dispensable for visual function. PLoS ONE. 2018;13:e0192355 pubmed 出版商
  25. Gstrein T, Edwards A, Přistoupilová A, Leca I, Breuss M, Pilat Carotta S, et al. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat Neurosci. 2018;21:207-217 pubmed 出版商
  26. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018;172:409-422.e21 pubmed 出版商
  27. Sousa A, Zhu Y, Raghanti M, Kitchen R, Onorati M, Tebbenkamp A, et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science. 2017;358:1027-1032 pubmed 出版商
  28. Chandra A, Lee S, Grünert U. Thorny ganglion cells in marmoset retina: Morphological and neurochemical characterization with antibodies against calretinin. J Comp Neurol. 2017;525:3962-3974 pubmed 出版商
  29. Paul A, Chaker Z, Doetsch F. Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science. 2017;356:1383-1386 pubmed 出版商
  30. DeWalt G, Eldred W. Visual system pathology in humans and animal models of blast injury. J Comp Neurol. 2017;525:2955-2967 pubmed 出版商
  31. Solek C, Feng S, Perin S, Weinschutz Mendes H, Ekker M. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Dev Biol. 2017;427:131-147 pubmed 出版商
  32. del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit Bremer G, Borrell V, et al. Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell. 2017;169:621-635.e16 pubmed 出版商
  33. Birey F, Andersen J, Makinson C, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54-59 pubmed 出版商
  34. Chen J, Borges M. Histopathology and enhanced detection of tumor invasion of peritoneal membranes. PLoS ONE. 2017;12:e0173833 pubmed 出版商
  35. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  36. Wild J. Dorsal pallidal neurons directly link the nidopallium and midbrain in the zebra finch (Taeniopygia guttata). J Comp Neurol. 2017;525:1731-1742 pubmed 出版商
  37. Mesa H, Gilles S, Datta M, Murugan P, Larson W, Dachel S, et al. Comparative immunomorphology of testicular Sertoli and sertoliform tumors. Hum Pathol. 2017;61:181-189 pubmed 出版商
  38. Ruiz C, Kustermann S, Pietilae E, Vlajnic T, Baschiera B, Arabi L, et al. Culture and Drug Profiling of Patient Derived Malignant Pleural Effusions for Personalized Cancer Medicine. PLoS ONE. 2016;11:e0160807 pubmed 出版商
  39. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  40. Akopian A, Kumar S, Ramakrishnan H, Viswanathan S, Bloomfield S. Amacrine cells coupled to ganglion cells via gap junctions are highly vulnerable in glaucomatous mouse retinas. J Comp Neurol. 2019;527:159-173 pubmed 出版商
  41. Kim J, Jeong J, Park S, Jeong J, Ryu Y, Song S. Recurrent renal cell carcinoma manifesting as a large intrathoracic fibrotic mass: A case report. Oncol Lett. 2016;11:3835-3838 pubmed
  42. Figueres Oñate M, López Mascaraque L. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors. Front Neurosci. 2016;10:194 pubmed 出版商
  43. Turner K, Hawkins T, Yáñez J, Anadón R, Wilson S, Folgueira M. Afferent Connectivity of the Zebrafish Habenulae. Front Neural Circuits. 2016;10:30 pubmed 出版商
  44. Roulois D, Deshayes S, Guilly M, Nader J, Liddell C, Robard M, et al. Characterization of preneoplastic and neoplastic rat mesothelial cell lines: the involvement of TETs, DNMTs, and 5-hydroxymethylcytosine. Oncotarget. 2016;7:34664-87 pubmed 出版商
  45. Zhang L, Hernandez V, Vázquez Juárez E, Chay F, Barrio R. Thirst Is Associated with Suppression of Habenula Output and Active Stress Coping: Is there a Role for a Non-canonical Vasopressin-Glutamate Pathway?. Front Neural Circuits. 2016;10:13 pubmed 出版商
  46. Díaz Balzac C, Lázaro Peña M, Vázquez Figueroa L, Díaz Balzac R, Garcia Arraras J. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis. PLoS ONE. 2016;11:e0151129 pubmed 出版商
  47. Alshammari M, Alshammari T, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci. 2016;10:5 pubmed 出版商
  48. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  49. Ahn S, Kim T, Kim K, Chung S. Differentiation of human pluripotent stem cells into Medial Ganglionic Eminence vs. Caudal Ganglionic Eminence cells. Methods. 2016;101:103-12 pubmed 出版商
  50. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed 出版商
  51. Hooper A, Maguire J. Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone. Hippocampus. 2016;26:41-53 pubmed 出版商
  52. Debertin G, Kántor O, Kovács Öller T, Balogh L, Szabó Meleg E, Orbán J, et al. Tyrosine hydroxylase positive perisomatic rings are formed around various amacrine cell types in the mammalian retina. J Neurochem. 2015;134:416-28 pubmed 出版商
  53. Huwe J, Logan G, Williams B, Rowe M, Peterson E. Utricular afferents: morphology of peripheral terminals. J Neurophysiol. 2015;113:2420-33 pubmed 出版商
  54. Molgaard S, Ulrichsen M, Boggild S, Holm M, Vaegter C, Nyengaard J, et al. Immunohistochemical visualization of mouse interneuron subtypes. F1000Res. 2014;3:242 pubmed 出版商
  55. Caminos E, Garcia Pino E, Juiz J. Loss of auditory activity modifies the location of potassium channel KCNQ5 in auditory brainstem neurons. J Neurosci Res. 2015;93:604-14 pubmed 出版商
  56. Wang W, Cheng C, Tsaur M. Immunohistochemical localization of DPP10 in rat brain supports the existence of a Kv4/KChIP/DPPL ternary complex in neurons. J Comp Neurol. 2015;523:608-28 pubmed 出版商
  57. Sánchez Pérez A, Arnal Vicente I, Santos F, Pereira C, ElMlili N, Sanjuan J, et al. Septal projections to nucleus incertus in the rat: bidirectional pathways for modulation of hippocampal function. J Comp Neurol. 2015;523:565-88 pubmed 出版商
  58. Weltzien F, Percival K, Martin P, Grünert U. Analysis of bipolar and amacrine populations in marmoset retina. J Comp Neurol. 2015;523:313-34 pubmed 出版商
  59. Gurzu S, Ciortea D, Tamasi A, Golea M, Bodi A, Sahlean D, et al. The immunohistochemical profile of granular cell (Abrikossoff) tumor suggests an endomesenchymal origin. Arch Dermatol Res. 2015;307:151-7 pubmed 出版商
  60. Karetko Sysa M, Skangiel Kramska J, Nowicka D. Aging somatosensory cortex displays increased density of WFA-binding perineuronal nets associated with GAD-negative neurons. Neuroscience. 2014;277:734-46 pubmed 出版商
  61. Ho T, Vessey K, Fletcher E. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience. 2014;277:55-71 pubmed 出版商
  62. Abdelzaher E, Abdallah D. Expression of mesothelioma-related markers in meningiomas: an immunohistochemical study. Biomed Res Int. 2014;2014:968794 pubmed 出版商
  63. TIMBIE C, Barbas H. Specialized pathways from the primate amygdala to posterior orbitofrontal cortex. J Neurosci. 2014;34:8106-18 pubmed 出版商
  64. Gonzalez Gomez M, Meyer G. Dynamic expression of calretinin in embryonic and early fetal human cortex. Front Neuroanat. 2014;8:41 pubmed 出版商
  65. Lopez J, González A. Organization of the serotonergic system in the central nervous system of two basal actinopterygian fishes: the Cladistians Polypterus senegalus and Erpetoichthys calabaricus. Brain Behav Evol. 2014;83:54-76 pubmed 出版商
  66. Bodi I, Curran O, Selway R, Elwes R, Burrone J, Laxton R, et al. Two cases of multinodular and vacuolating neuronal tumour. Acta Neuropathol Commun. 2014;2:7 pubmed 出版商
  67. Jones H, Gold M, Giannico G, Troutman A, Vnencak Jones C, Schultenover S, et al. Lymphoepithelioma-like carcinoma of the endometrium: immunophenotypic characterization of a rare tumor with microsatellite instability testing. Int J Gynecol Pathol. 2014;33:64-73 pubmed 出版商
  68. Yu L, Cheng H, Yang S. Clinicopathological and extensive immunohistochemical study of a type II pleuropulmonary blastoma. Fetal Pediatr Pathol. 2014;33:1-8 pubmed 出版商
  69. Al Jaberi N, Lindsay S, Sarma S, Bayatti N, Clowry G. The early fetal development of human neocortical GABAergic interneurons. Cereb Cortex. 2015;25:631-45 pubmed 出版商
  70. Kuhn E, Ayhan A, Shih I, Seidman J, Kurman R. Ovarian Brenner tumour: a morphologic and immunohistochemical analysis suggesting an origin from fallopian tube epithelium. Eur J Cancer. 2013;49:3839-49 pubmed 出版商
  71. Higurashi N, Uchida T, Lossin C, Misumi Y, Okada Y, Akamatsu W, et al. A human Dravet syndrome model from patient induced pluripotent stem cells. Mol Brain. 2013;6:19 pubmed 出版商
  72. Delli Carri A, Onorati M, Castiglioni V, Faedo A, Camnasio S, Toselli M, et al. Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev. 2013;9:461-74 pubmed 出版商
  73. Takao K, Kobayashi K, Hagihara H, Ohira K, Shoji H, Hattori S, et al. Deficiency of schnurri-2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia. Neuropsychopharmacology. 2013;38:1409-25 pubmed 出版商
  74. Carvalho F, Carvalho J, Pereira R, Ceccato B, Lacordia R, Baracat E. Leiomyomatosis peritonealis disseminata associated with endometriosis and multiple uterus-like mass: report of two cases. Clin Med Insights Case Rep. 2012;5:63-8 pubmed 出版商
  75. Braubach O, Fine A, Croll R. Distribution and functional organization of glomeruli in the olfactory bulbs of zebrafish (Danio rerio). J Comp Neurol. 2012;520:2317-39, Spc1 pubmed 出版商
  76. Huang C, Chu D, Hwang W, Tsaur M. Coexpression of high-voltage-activated ion channels Kv3.4 and Cav1.2 in pioneer axons during pathfinding in the developing rat forebrain. J Comp Neurol. 2012;520:3650-72 pubmed 出版商
  77. Olucha Bordonau F, Otero García M, Sánchez Pérez A, Nunez A, Ma S, Gundlach A. Distribution and targets of the relaxin-3 innervation of the septal area in the rat. J Comp Neurol. 2012;520:1903-39 pubmed 出版商
  78. Arellano J, Guadiana S, Breunig J, Rakic P, Sarkisian M. Development and distribution of neuronal cilia in mouse neocortex. J Comp Neurol. 2012;520:848-73 pubmed 出版商
  79. Corteen N, Cole T, Sarna A, Sieghart W, Swinny J. Localization of GABA-A receptor alpha subunits on neurochemically distinct cell types in the rat locus coeruleus. Eur J Neurosci. 2011;34:250-62 pubmed 出版商
  80. Kaiser A, Alexandrova O, Grothe B. Urocortin-expressing olivocochlear neurons exhibit tonotopic and developmental changes in the auditory brainstem and in the innervation of the cochlea. J Comp Neurol. 2011;519:2758-78 pubmed 出版商
  81. Gayoso J, Castro A, Anadón R, Manso M. Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio). J Comp Neurol. 2011;519:247-76 pubmed 出版商
  82. Garcia Marin V, Blazquez Llorca L, Rodriguez J, Gonzalez Soriano J, Defelipe J. Differential distribution of neurons in the gyral white matter of the human cerebral cortex. J Comp Neurol. 2010;518:4740-59 pubmed 出版商
  83. Gribaudo S, Bovetti S, Garzotto D, Fasolo A, De Marchis S. Expression and localization of the calmodulin-binding protein neurogranin in the adult mouse olfactory bulb. J Comp Neurol. 2009;517:683-94 pubmed 出版商
  84. Chua J, Fletcher E, Kalloniatis M. Functional remodeling of glutamate receptors by inner retinal neurons occurs from an early stage of retinal degeneration. J Comp Neurol. 2009;514:473-91 pubmed 出版商
  85. Stillman A, Krsnik Z, Sun J, Rasin M, State M, Sestan N, et al. Developmentally regulated and evolutionarily conserved expression of SLITRK1 in brain circuits implicated in Tourette syndrome. J Comp Neurol. 2009;513:21-37 pubmed 出版商
  86. Lavenex P, Lavenex P, Bennett J, Amaral D. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation. J Comp Neurol. 2009;512:27-51 pubmed 出版商
  87. Xu Q, Tam M, Anderson S. Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol. 2008;506:16-29 pubmed
  88. Caminos E, Garcia Pino E, Martinez Galan J, Juiz J. The potassium channel KCNQ5/Kv7.5 is localized in synaptic endings of auditory brainstem nuclei of the rat. J Comp Neurol. 2007;505:363-78 pubmed