这是一篇来自已证抗体库的有关人类 隐钙素 (calsequestrin) 的综述,是根据31篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合隐钙素 抗体。
隐钙素 同义词: CASQ; PDIB1; VMCQA

赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7b
赛默飞世尔隐钙素抗体(ThermoFisher, PA1-913)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7b). Front Physiol (2021) ncbi
小鼠 单克隆(VIIID12)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛默飞世尔隐钙素抗体(Thermofisher, MA3-913)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Am J Hum Genet (2021) ncbi
小鼠 单克隆(VIIID12)
  • 免疫组化; 人类; 1:200; 图 5ab
赛默飞世尔隐钙素抗体(Thermo Fisher scientific, MA3-913)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5ab). elife (2020) ncbi
小鼠 单克隆(VIIID12)
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔隐钙素抗体(Thermo Scientific, MA3-913)被用于被用于免疫印迹在小鼠样本上 (图 5a). Physiol Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 3c
  • 免疫印迹; 小鼠; 1:1000; 图 s2f
赛默飞世尔隐钙素抗体(Thermo Scientific, PA1-913)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2f). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2500; 图 1b
赛默飞世尔隐钙素抗体(Thermo Fischer, PA1-913)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1b). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(VIIID12)
  • 免疫印迹; 小鼠; 图 2f
赛默飞世尔隐钙素抗体(Pierce Antibodies, MA3-913)被用于被用于免疫印迹在小鼠样本上 (图 2f). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔隐钙素抗体(Fisher Scientific, PA1-913)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Muscle Res Cell Motil (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 10
赛默飞世尔隐钙素抗体(Affinity BioReagents, pA-913)被用于被用于免疫印迹在小鼠样本上 (图 10). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛默飞世尔隐钙素抗体(Thermo Scientific, PA1-913)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Exp Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
赛默飞世尔隐钙素抗体(Thermo Pierce, PA1-913)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Circulation (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1b
赛默飞世尔隐钙素抗体(Thermo Fisher, PA1-913)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). J Physiol (2016) ncbi
小鼠 单克隆(VIIID12)
  • 免疫印迹; 小鼠; 1:2000; 图 3
赛默飞世尔隐钙素抗体(Thermo Fisher Scientific, MA3-913)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛默飞世尔隐钙素抗体(Thermo Scientific, PA1-913)被用于被用于免疫印迹在人类样本上 (图 1). Biochem J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛默飞世尔隐钙素抗体(Thermo Scientific, PA1-913)被用于被用于免疫印迹在小鼠样本上 (图 7a). Cardiovasc Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 11
赛默飞世尔隐钙素抗体(Thermo Fisher, PA1-913)被用于被用于免疫印迹在大鼠样本上 (图 11). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔隐钙素抗体(Affinity BioReagents, PA1-913)被用于被用于免疫印迹在小鼠样本上 (图 3). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(VIIID12)
  • 免疫印迹; 大鼠; 1:3000; 图 3
赛默飞世尔隐钙素抗体(Thermo Fisher Scientific, MA3-913)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 3). Front Physiol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔隐钙素抗体(Thermo Fisher Scientific, PA1-913)被用于. Front Physiol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔隐钙素抗体(Fisher Scientific, PA1-913)被用于. Eur J Histochem (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔隐钙素抗体(Fisher Scientific, PA1-913)被用于. Cell Calcium (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔隐钙素抗体(Affinity Bioreagents, PA1-913)被用于. Physiol Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔隐钙素抗体(ThermoScientific, PA1-913)被用于. Mol Ther Methods Clin Dev (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔隐钙素抗体(Thermo Scientific, PA1-913)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔隐钙素抗体(Thermo Scientific, PA1-913)被用于. FEBS Lett (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔隐钙素抗体(Thermo Scientific, PA1-913)被用于. Mol Biosyst (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔隐钙素抗体(Pierce Thermo Scientific, PA1-913)被用于. Circ Heart Fail (2015) ncbi
小鼠 单克隆(VIIID12)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔隐钙素抗体(Thermo Scientific, MA3-913)被用于被用于免疫组化在小鼠样本上浓度为1:300. Hum Mutat (2014) ncbi
小鼠 单克隆(VIIID12)
  • 免疫印迹; 人类
赛默飞世尔隐钙素抗体(Pierce, VIIID12)被用于被用于免疫印迹在人类样本上. J Card Fail (2012) ncbi
小鼠 单克隆(VIIID12)
  • 免疫印迹; domestic rabbit; 1:2500; 图 8
赛默飞世尔隐钙素抗体(Affinity BioReagents, MA3-913)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:2500 (图 8). J Biol Chem (2007) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-10)
  • 免疫沉淀; 人类; 1:1000; 图 1b
圣克鲁斯生物技术隐钙素抗体(Santa Cruz Biotechnology, SC-137080)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 1b). Sci Rep (2015) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; pigs
圣克鲁斯生物技术隐钙素抗体(Santa Cruz Biotechnologies, D-10)被用于被用于免疫印迹在pigs 样本上. Int J Legal Med (2016) ncbi
文章列表
  1. Lewis H, Eminaga S, Gautel M, Avkiran M. Phosphorylation at Serines 157 and 161 Is Necessary for Preserving Cardiac Expression Level and Functions of Sarcomeric Z-Disc Protein Telethonin. Front Physiol. 2021;12:732020 pubmed 出版商
  2. Wyckelsma V, Venckunas T, Houweling P, Schlittler M, Lauschke V, Tiong C, et al. Loss of α-actinin-3 during human evolution provides superior cold resilience and muscle heat generation. Am J Hum Genet. 2021;108:446-457 pubmed 出版商
  3. Tammineni E, Kraeva N, Figueroa L, Manno C, Ibarra C, Klip A, et al. Intracellular calcium leak lowers glucose storage in human muscle, promoting hyperglycemia and diabetes. elife. 2020;9: pubmed 出版商
  4. Eshima H, Tamura Y, Kakehi S, Kurebayashi N, Murayama T, Nakamura K, et al. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol Rep. 2017;5: pubmed 出版商
  5. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  6. Amici D, Pinal Fernández I, Mázala D, Lloyd T, Corse A, Christopher Stine L, et al. Calcium dysregulation, functional calpainopathy, and endoplasmic reticulum stress in sporadic inclusion body myositis. Acta Neuropathol Commun. 2017;5:24 pubmed 出版商
  7. Fajardo V, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers P, et al. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS ONE. 2017;12:e0173708 pubmed 出版商
  8. Gueffier M, Zintz J, Lambert K, Finan A, Aimond F, Chakouri N, et al. The TRPM4 channel is functionally important for the beneficial cardiac remodeling induced by endurance training. J Muscle Res Cell Motil. 2017;38:3-16 pubmed 出版商
  9. Ramratnam M, Salama G, Sharma R, Wang D, Smith S, Banerjee S, et al. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization. PLoS ONE. 2016;11:e0167681 pubmed 出版商
  10. Huang M, Lee K, Kim K, Ahn M, Cho C, Kim D, et al. The maintenance ability and Ca2+ availability of skeletal muscle are enhanced by sildenafil. Exp Mol Med. 2016;48:e278 pubmed 出版商
  11. Helms A, Alvarado F, Yob J, Tang V, Pagani F, Russell M, et al. Genotype-Dependent and -Independent Calcium Signaling Dysregulation in Human Hypertrophic Cardiomyopathy. Circulation. 2016;134:1738-1748 pubmed
  12. Oláh T, Bodnár D, Tóth A, Vincze J, Fodor J, Reischl B, et al. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle. J Physiol. 2016;594:7381-7398 pubmed 出版商
  13. Bal N, Maurya S, Singh S, Wehrens X, Periasamy M. Increased Reliance on Muscle-based Thermogenesis upon Acute Minimization of Brown Adipose Tissue Function. J Biol Chem. 2016;291:17247-57 pubmed 出版商
  14. Wanichawan P, Hodne K, Hafver T, Lunde M, Martinsen M, Louch W, et al. Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1). Biochem J. 2016;473:2413-23 pubmed 出版商
  15. Mederle K, Gess B, Pluteanu F, Plackic J, Tiefenbach K, Grill A, et al. The angiotensin receptor-associated protein Atrap is a stimulator of the cardiac Ca2+-ATPase SERCA2a. Cardiovasc Res. 2016;110:359-70 pubmed 出版商
  16. Hafver T, Hodne K, Wanichawan P, Aronsen J, Dalhus B, Lunde P, et al. Protein Phosphatase 1c Associated with the Cardiac Sodium Calcium Exchanger 1 Regulates Its Activity by Dephosphorylating Serine 68-phosphorylated Phospholemman. J Biol Chem. 2016;291:4561-79 pubmed 出版商
  17. Shimura D, Kusakari Y, Sasano T, Nakashima Y, Nakai G, Jiao Q, et al. Heterozygous deletion of sarcolipin maintains normal cardiac function. Am J Physiol Heart Circ Physiol. 2016;310:H92-103 pubmed 出版商
  18. de Andrade P, Neff L, Strosova M, Arsenijevic D, Patthey Vuadens O, Scapozza L, et al. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding. Front Physiol. 2015;6:254 pubmed 出版商
  19. Fantinato E, Milani L, Sironi G. Sox9 expression in canine epithelial skin tumors. Eur J Histochem. 2015;59:2514 pubmed 出版商
  20. Meschin P, Demion M, Cazorla O, Finan A, Thireau J, Richard S, et al. p11 modulates calcium handling through 5-HTâ‚„R pathway in rat ventricular cardiomyocytes. Cell Calcium. 2015;58:549-57 pubmed 出版商
  21. Ferretti R, Marques M, Khurana T, Santo Neto H. Expression of calcium-buffering proteins in rat intrinsic laryngeal muscles. Physiol Rep. 2015;3: pubmed 出版商
  22. Wang L, Zhang L, Li S, Zheng Y, Yan X, Chen M, et al. Retrograde regulation of STIM1-Orai1 interaction and store-operated Ca2+ entry by calsequestrin. Sci Rep. 2015;5:11349 pubmed 出版商
  23. Rapti K, Stillitano F, Karakikes I, Nonnenmacher M, Weber T, Hulot J, et al. Effectiveness of gene delivery systems for pluripotent and differentiated cells. Mol Ther Methods Clin Dev. 2015;2:14067 pubmed 出版商
  24. Foditsch E, Saenger A, Monticelli F. Skeletal muscle proteins: a new approach to delimitate the time since death. Int J Legal Med. 2016;130:433-40 pubmed 出版商
  25. Tóth A, Fodor J, Vincze J, Oláh T, Juhász T, Zákány R, et al. The Effect of SERCA1b Silencing on the Differentiation and Calcium Homeostasis of C2C12 Skeletal Muscle Cells. PLoS ONE. 2015;10:e0123583 pubmed 出版商
  26. Van B, Nishi M, Komazaki S, Ichimura A, Kakizawa S, Nakanaga K, et al. Mitsugumin 56 (hedgehog acyltransferase-like) is a sarcoplasmic reticulum-resident protein essential for postnatal muscle maturation. FEBS Lett. 2015;589:1095-104 pubmed 出版商
  27. Gehmlich K, Dodd M, Allwood J, Kelly M, Bellahcene M, Lad H, et al. Changes in the cardiac metabolome caused by perhexiline treatment in a mouse model of hypertrophic cardiomyopathy. Mol Biosyst. 2015;11:564-73 pubmed 出版商
  28. Carley A, Taglieri D, Bi J, Solaro R, Lewandowski E. Metabolic efficiency promotes protection from pressure overload in hearts expressing slow skeletal troponin I. Circ Heart Fail. 2015;8:119-27 pubmed 出版商
  29. Rossi D, Vezzani B, Galli L, Paolini C, Toniolo L, Pierantozzi E, et al. A mutation in the CASQ1 gene causes a vacuolar myopathy with accumulation of sarcoplasmic reticulum protein aggregates. Hum Mutat. 2014;35:1163-70 pubmed 出版商
  30. Middlekauff H, Vigna C, Verity M, Fonarow G, Horwich T, Hamilton M, et al. Abnormalities of calcium handling proteins in skeletal muscle mirror those of the heart in humans with heart failure: a shared mechanism?. J Card Fail. 2012;18:724-33 pubmed 出版商
  31. Phimister A, Lango J, Lee E, Ernst Russell M, Takeshima H, Ma J, et al. Conformation-dependent stability of junctophilin 1 (JP1) and ryanodine receptor type 1 (RyR1) channel complex is mediated by their hyper-reactive thiols. J Biol Chem. 2007;282:8667-77 pubmed