这是一篇来自已证抗体库的有关人类 胱氨酸-天冬氨酸蛋白酶8 (caspase-8) 的综述,是根据173篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合胱氨酸-天冬氨酸蛋白酶8 抗体。
胱氨酸-天冬氨酸蛋白酶8 同义词: ALPS2B; CAP4; Casp-8; FLICE; MACH; MCH5

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Abcam, ab25901)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(E7)
  • 免疫印迹; 小鼠; 1:5000; 图 7f
  • 免疫印迹; 人类; 1:5000; 图 5j
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Abcam, ab32397)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7f) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 5j). J Biol Chem (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Abcam, ab25901)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(E7)
  • 免疫印迹; 人类; 1:250; 图 3e
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Abcam, ab32397)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 3e). Cancer Res Treat (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Abcam, ab25901)被用于被用于免疫印迹在人类样本上 (图 8). Biomolecules (2020) ncbi
domestic rabbit 单克隆(EPR162)
  • 免疫印迹; 牛; 1:1000; 图 2b
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Abcam, ab108333)被用于被用于免疫印迹在牛样本上浓度为1:1000 (图 2b). BMC Vet Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s5
  • 免疫印迹; 人类; 1:3000; 图 s5
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Abcam, ab 25,901)被用于被用于免疫印迹在大鼠样本上 (图 s5) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 s5). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(E6)
  • 免疫印迹; 人类; 图 8d
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Abcam, ab32125)被用于被用于免疫印迹在人类样本上 (图 8d). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6b
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Abcam, ab25901)被用于被用于免疫印迹在小鼠样本上 (图 6b). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 s8
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Abcam, ab25901)被用于被用于免疫组化在人类样本上 (图 s8). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Abcam, ab25901)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Abcam, ab25901)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 6a). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 单克隆(E6)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Abcam, ab32125)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(8CSP03)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶8抗体(Santa Cruz, sc-56070)被用于被用于免疫印迹在人类样本上 (图 4a). Front Immunol (2021) ncbi
小鼠 单克隆(2.1.24)
  • 流式细胞仪; 人类; 图 1e
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶8抗体(Santa Cruz, sc-81657)被用于被用于流式细胞仪在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 2d). PLoS Pathog (2017) ncbi
小鼠 单克隆(1.1.40)
  • 免疫印迹; 小鼠; 图 1d
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶8抗体(Santa Cruz Biotechnology, sc-81656)被用于被用于免疫印迹在小鼠样本上 (图 1d). Int J Mol Med (2016) ncbi
小鼠 单克隆(8CSP03)
  • 免疫印迹; black-spotted frog ; 1:500; 图 7
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶8抗体(Santa Cruz, sc-56070)被用于被用于免疫印迹在black-spotted frog 样本上浓度为1:500 (图 7). Mol Cell Biol (2015) ncbi
小鼠 单克隆(8CSP03)
  • 免疫印迹; black-spotted frog ; 1:500; 图 7
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶8抗体(Santa Cruz, sc-56070)被用于被用于免疫印迹在black-spotted frog 样本上浓度为1:500 (图 7). Chem Res Toxicol (2015) ncbi
小鼠 单克隆(1.1.40)
  • 免疫印迹; 人类; 1:200; 图 7
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶8抗体(santa Cruz, sc-81656)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7). Mol Med Rep (2015) ncbi
小鼠 单克隆(8CSP01)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶8抗体(santa Cruz, sc-81661)被用于被用于免疫印迹在人类样本上 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(2.1.24)
  • 免疫印迹; 人类; 1:200; 图 6
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶8抗体(Santa Cruz, sc-81657)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6). Oncol Lett (2015) ncbi
小鼠 单克隆(8CSP03)
  • 免疫印迹; 人类; 1:1000; 图 8C
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶8抗体(Santa Cruz, sc-56070)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8C). Cell Cycle (2015) ncbi
小鼠 单克隆(8CSP03)
  • 免疫印迹; 人类
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶8抗体(Santa-Cruz, sc-56070)被用于被用于免疫印迹在人类样本上. Biochimie (2014) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术胱氨酸-天冬氨酸蛋白酶8抗体(Santa Cruz Biotechnology, sc-166320)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. World J Biol Chem (2014) ncbi
赛默飞世尔
小鼠 单克隆(90A992)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛默飞世尔胱氨酸-天冬氨酸蛋白酶8抗体(Thermo Fisher Scientific, MA1-41280)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Mol Med Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:25; 图 2c
  • 免疫印迹; 人类; 图 1b
赛默飞世尔胱氨酸-天冬氨酸蛋白酶8抗体(Thermo, PA1-29159)被用于被用于免疫组化在人类样本上浓度为1:25 (图 2c) 和 被用于免疫印迹在人类样本上 (图 1b). Apoptosis (2017) ncbi
小鼠 单克隆(90A992)
  • 免疫印迹; 人类; 图 2
赛默飞世尔胱氨酸-天冬氨酸蛋白酶8抗体(Thermo Scientific, MA141280)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2016) ncbi
小鼠 单克隆(90A992)
  • 免疫组化; 人类; 图 3a
赛默飞世尔胱氨酸-天冬氨酸蛋白酶8抗体(Thermo Scientific, 90A992)被用于被用于免疫组化在人类样本上 (图 3a). J Clin Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛默飞世尔胱氨酸-天冬氨酸蛋白酶8抗体(Thermo Fisher, PA1-29159)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(10HCLC)
  • 免疫印迹; 人类
赛默飞世尔胱氨酸-天冬氨酸蛋白酶8抗体(生活技术, #710535)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(1H10)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔胱氨酸-天冬氨酸蛋白酶8抗体(eBioscience, #14-9934)被用于被用于免疫印迹在人类样本上浓度为1:1000. Neurosci Res (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
Novus Biologicals胱氨酸-天冬氨酸蛋白酶8抗体(Novus, NB100-56116)被用于被用于免疫印迹在小鼠样本上 (图 3c). Cell Death Dis (2022) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 s1f
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 s1f). Mol Ther Oncolytics (2022) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹基因敲除验证; 人类; 图 3h
  • 免疫印迹; 人类; 图 4f
  • 免疫印迹; 小鼠; 图 5s1c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 3h), 被用于免疫印迹在人类样本上 (图 4f) 和 被用于免疫印迹在小鼠样本上 (图 5s1c). elife (2022) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹基因敲除验证; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 4790)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s4b). J Clin Invest (2022) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 4790)被用于被用于免疫印迹在小鼠样本上 (图 3f). Front Immunol (2021) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 2a, 3h
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 3h). elife (2021) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 2c). NPJ Breast Cancer (2021) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 1i
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(CST, 9746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Nat Commun (2021) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 1:1000; 图 1i
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(CST, 9496)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Nat Commun (2021) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 3j
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 3j). Sci Adv (2021) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(CST, 9746)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2021) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9746)被用于被用于免疫印迹在人类样本上 (图 4a). EMBO Mol Med (2021) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9496)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cell Death Dis (2020) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Commun Signal (2020) ncbi
小鼠 单克隆(11G10)
  • 流式细胞仪; 人类; 图 5e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 11G10)被用于被用于流式细胞仪在人类样本上 (图 5e). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9746)被用于被用于免疫印迹在人类样本上 (图 4d). J Hematol Oncol (2020) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:500; 图 4d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9746)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4d). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 人类; 图 1b, 1c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 4790)被用于被用于免疫印迹在人类样本上 (图 1b, 1c). Cell Death Differ (2020) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9746)被用于被用于免疫印迹在人类样本上 (图 1d). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9496)被用于被用于免疫印迹在人类样本上 (图 3d). Theranostics (2020) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 4790)被用于被用于免疫印迹在人类样本上 (图 3d). Theranostics (2020) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 小鼠; 1:500; 图 4b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(CST, 9746)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4b). Sci Rep (2020) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫组化-石蜡切片; 人类; 图 1e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9496S)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). J Mol Cell Biol (2019) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 9b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signalling, 1C12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9b). Nat Commun (2019) ncbi
小鼠 单克隆(11G10)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9748)被用于被用于免疫印迹在小鼠样本上 (图 3d). Cell (2019) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 4790)被用于被用于免疫印迹在小鼠样本上 (图 3d). Cell (2019) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 2e). J Allergy Clin Immunol (2019) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 s1a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9496)被用于被用于免疫印迹在人类样本上 (图 s1a). Breast Cancer Res (2019) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 4c). Br J Cancer (2019) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 小鼠; 图 s1g
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, D35G2)被用于被用于免疫印迹在小鼠样本上 (图 s1g). Nat Commun (2018) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). PLoS Pathog (2018) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 s15a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9746S)被用于被用于免疫印迹在人类样本上 (图 s15a). J Clin Invest (2018) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Science (2018) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 1C12)被用于被用于免疫印迹在人类样本上 (图 s3a). J Clin Invest (2018) ncbi
小鼠 单克隆(1C12)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:500; 图 4a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9496)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogene (2017) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, D35G2)被用于被用于免疫印迹在小鼠样本上 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, D35G2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Immun Inflamm Dis (2017) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 1C12)被用于被用于免疫印迹在人类样本上 (图 1c). Blood (2017) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9496S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Mol Med Rep (2017) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9496)被用于被用于免疫印迹在人类样本上 (图 3). Anticancer Res (2017) ncbi
小鼠 单克隆(1C12)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(CST, 9746)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 4a). Peerj (2017) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Nat Commun (2017) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Cell Death Dis (2017) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 2b). Front Immunol (2016) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, 9496s)被用于被用于免疫印迹在人类样本上 (图 2b). Front Immunol (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:300; 图 6b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 6b). Int J Mol Sci (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 4d). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, 4790)被用于被用于免疫印迹在小鼠样本上 (图 4). Nature (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, 9746S)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 1C12)被用于被用于免疫印迹在人类样本上 (图 4a). Cancer Sci (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(cell signalling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Toxicol Appl Pharmacol (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(CST, 9746)被用于被用于免疫印迹在人类样本上 (图 2b). Mol Cell Biol (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Mol Cell Biochem (2016) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 7
  • 免疫印迹; 人类; 1:1000; 图 s15
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9496)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 7) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s15). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 人类; 1:1000; 图 s15
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 4790)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s15). Nat Commun (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 1C12)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Signal (2016) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(cell signalling, 18C8)被用于被用于免疫印迹在人类样本上 (图 5g). Oncotarget (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Tech, 9746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9496)被用于被用于免疫印迹在人类样本上浓度为1:500. Sci Rep (2016) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, D391/ 18C8)被用于被用于免疫印迹在人类样本上 (图 2). Cell Res (2016) ncbi
小鼠 单克隆(1C12)
  • 流式细胞仪; 人类; 图 3b
  • 免疫细胞化学; 人类; 图 3e
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signalling, 1C12)被用于被用于流式细胞仪在人类样本上 (图 3b) 和 被用于免疫细胞化学在人类样本上 (图 3e). Apoptosis (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 1). Int J Oncol (2016) ncbi
小鼠 单克隆(11G10)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9748)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9496)被用于被用于免疫印迹在人类样本上 (图 2). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 小鼠; 1:4000; 图 4
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Tech, 9746)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫细胞化学; 人类; 图 3b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signalling Technology, 1C12)被用于被用于免疫细胞化学在人类样本上 (图 3b). Eur J Vasc Endovasc Surg (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9747)被用于被用于免疫印迹在人类样本上 (图 4). Cell Microbiol (2016) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, D35G2)被用于被用于免疫印迹在人类样本上 (图 1c). Nature (2016) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9496)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(cell signalling, 1C12)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Differ (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:500; 图 3b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, 1C12)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, 18C8)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 4790)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9746)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Tech, 9496s)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 s2). Sci Rep (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 s2). Oncoimmunology (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; African green monkey; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, 1C12)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 7c). Antiviral Res (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9496)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 4790)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 4790)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Am J Physiol Renal Physiol (2015) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9496)被用于被用于免疫印迹在人类样本上 (图 3). EBioMedicine (2015) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 4790)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 4790)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在大鼠样本上. Toxicol Lett (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫沉淀; 人类; 图 2b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫沉淀在人类样本上 (图 2b). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9496)被用于被用于免疫印迹在人类样本上 (图 s5a). PLoS ONE (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 3 a-c
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 3 a-c). Cell Commun Signal (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling TECHNOLOGY, 9746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Sci Signal (2015) ncbi
小鼠 单克隆(11G10)
  • 流式细胞仪; 人类; 图 2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(cell Signaling Tech, 11G10)被用于被用于流式细胞仪在人类样本上 (图 2). Leuk Res (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(cell Signaling Tech, IC12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Leuk Res (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 97465)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, #9496)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, #9746)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9496)被用于被用于免疫印迹在人类样本上. Mediators Inflamm (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9746)被用于被用于免疫印迹在人类样本上 (图 8). J Biol Chem (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(CST, 4790)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Biol Cell (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Tech, 9746)被用于被用于免疫印迹在人类样本上 (图 1). Cancer Cell Int (2015) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signalling, 9496)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 1C12)被用于被用于免疫印迹在人类样本上 (图 s4). Cancer Lett (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 4). Biomed Res Int (2015) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 1:1000; 图 8A
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 18C8)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8A). Cell Cycle (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, IC12)被用于被用于免疫印迹在人类样本上 (图 7d). Mol Pharm (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, clone 1C12)被用于被用于免疫细胞化学在人类样本上. Int J Oncol (2015) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2014) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 人类; 1:2000; 图 6
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 4790)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Commun (2014) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 1:10; 图 4
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9496)被用于被用于免疫印迹在人类样本上浓度为1:10 (图 4). Anal Chem (2014) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9746)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9496)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上 (图 2d). Oncogene (2015) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9496)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9746)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9746)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2014) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9496)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 4790)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D35G2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, D35G2)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746)被用于被用于免疫印迹在人类样本上. Clin Cancer Res (2014) ncbi
domestic rabbit 单克隆(18C8)
  • 流式细胞仪; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 18C8)被用于被用于流式细胞仪在人类样本上 和 被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(1C12)
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 1C12)被用于. Cell Death Dis (2014) ncbi
小鼠 单克隆(1C12)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, clone 1C12)被用于被用于免疫细胞化学在人类样本上. Methods Mol Biol (2014) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9496)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
domestic rabbit 单克隆(18C8)
  • 流式细胞仪; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9496)被用于被用于流式细胞仪在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 18C8)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(cell signalling, 9746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Carcinogenesis (2014) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9496)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell signaling, #9746)被用于被用于免疫印迹在人类样本上. Int J Cancer (2014) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 大鼠; 1:1,000
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9746S)被用于被用于免疫印迹在大鼠样本上浓度为1:1,000. Am J Physiol Endocrinol Metab (2013) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 18C8)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(1C12)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 1C12)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 9496)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2013) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9496)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Cell Mol Med (2013) ncbi
小鼠 单克隆(11G10)
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9748)被用于被用于免疫印迹在人类样本上 (图 s3). Cell Death Dis (2012) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signalling, #9746)被用于被用于免疫印迹在人类样本上 (图 2). Eur J Haematol (2012) ncbi
domestic rabbit 单克隆(18C8)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 18C8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:1000. Placenta (2009) ncbi
小鼠 单克隆(11G10)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling, 9748)被用于被用于免疫组化在小鼠样本上. J Comp Neurol (2007) ncbi
小鼠 单克隆(1C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胱氨酸-天冬氨酸蛋白酶8抗体(Cell Signaling Technology, 1C12)被用于被用于免疫印迹在人类样本上. J Biol Chem (2004) ncbi
碧迪BD
小鼠 单克隆(3-1-9)
  • 免疫印迹; 人类; 1:1000; 图 s5b
碧迪BD胱氨酸-天冬氨酸蛋白酶8抗体(BD Biosciences, 551242)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5b). NPJ Precis Oncol (2021) ncbi
小鼠 单克隆(3-1-9)
  • 免疫印迹; 人类; 1:200; 图 4f
碧迪BD胱氨酸-天冬氨酸蛋白酶8抗体(BD Pharmigen, 551242)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4f). Sci Rep (2016) ncbi
小鼠 单克隆(3-1-9)
  • 免疫印迹; 人类; 图 3, 4
碧迪BD胱氨酸-天冬氨酸蛋白酶8抗体(BD Biosciences, 551242)被用于被用于免疫印迹在人类样本上 (图 3, 4). J Biol Chem (2016) ncbi
小鼠 单克隆(3-1-9)
  • 免疫印迹; 人类
碧迪BD胱氨酸-天冬氨酸蛋白酶8抗体(BD Biosciences, 551242)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(3-1-9)
  • 免疫印迹; 人类; 0.25 ug/ml
碧迪BD胱氨酸-天冬氨酸蛋白酶8抗体(BD Biosciences, 551242)被用于被用于免疫印迹在人类样本上浓度为0.25 ug/ml. Oncol Rep (2015) ncbi
小鼠 单克隆(3-1-9)
  • 免疫印迹; 人类
碧迪BD胱氨酸-天冬氨酸蛋白酶8抗体(BD Pharmingen, 551242)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(3-1-9)
  • 免疫印迹; 人类
碧迪BD胱氨酸-天冬氨酸蛋白酶8抗体(BD Biosciences, 551242)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
MBL International
小鼠 单克隆(5D3)
  • 免疫印迹基因敲除验证; 人类; 图 5b
  • 免疫沉淀; 人类; 图 7a
  • 免疫印迹; 人类; 图 4d
MBL International胱氨酸-天冬氨酸蛋白酶8抗体(MBL, M058-3)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5b), 被用于免疫沉淀在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 4d). Cell Death Differ (2017) ncbi
ProSci
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1j
ProSci胱氨酸-天冬氨酸蛋白酶8抗体(ProSci, 3473)被用于被用于免疫印迹在人类样本上 (图 s1j). Nature (2016) ncbi
文章列表
  1. Fei X, Wu X, Dou Y, Sun K, Guo Q, Zhang L, et al. TRIM22 orchestrates the proliferation of GBMs and the benefits of TMZ by coordinating the modification and degradation of RIG-I. Mol Ther Oncolytics. 2022;26:413-428 pubmed 出版商
  2. Zhao Z, Li Q, Ashraf U, Yang M, Zhu W, Gu J, et al. Zika virus causes placental pyroptosis and associated adverse fetal outcomes by activating GSDME. elife. 2022;11: pubmed 出版商
  3. Chen J, Chen K, Wang L, Luo J, Zheng Q, He Y. Decoy receptor 2 mediates the apoptosis-resistant phenotype of senescent renal tubular cells and accelerates renal fibrosis in diabetic nephropathy. Cell Death Dis. 2022;13:522 pubmed 出版商
  4. Jin Y, Liu Y, Xu L, Xu J, Xiong Y, Peng Y, et al. Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis. Cell Death Dis. 2022;13:512 pubmed 出版商
  5. Rusu I, Mennillo E, Bain J, Li Z, Sun X, Ly K, et al. Microbial signals, MyD88, and lymphotoxin drive TNF-independent intestinal epithelial tissue damage. J Clin Invest. 2022;132: pubmed 出版商
  6. Wang X, Xiong J, Zhou D, Zhang S, Wang L, Tian Q, et al. TRIM34 modulates influenza virus-activated programmed cell death by targeting Z-DNA-binding protein 1 for K63-linked polyubiquitination. J Biol Chem. 2022;298:101611 pubmed 出版商
  7. Li B, Lian M, Li Y, Qian Q, Zhang J, Liu Q, et al. Myeloid-Derived Suppressive Cells Deficient in Liver X Receptor α Protected From Autoimmune Hepatitis. Front Immunol. 2021;12:732102 pubmed 出版商
  8. Sánchez Fdez A, Re Louhau M, Rodríguez Núñez P, Ludeña D, Matilla Almazán S, Pandiella A, et al. Clinical, genetic and pharmacological data support targeting the MEK5/ERK5 module in lung cancer. NPJ Precis Oncol. 2021;5:78 pubmed 出版商
  9. Lassiter R, Merchen T, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol. 2021;12:671025 pubmed 出版商
  10. Li D, Chen J, Guo J, Li L, Cai G, Chen S, et al. A phosphorylation of RIPK3 kinase initiates an intracellular apoptotic pathway that promotes prostaglandin2α-induced corpus luteum regression. elife. 2021;10: pubmed 出版商
  11. Yin Z, Chen W, Yin J, Sun J, Xie Q, Wu M, et al. RIPK1 is a negative mediator in Aquaporin 1-driven triple-negative breast carcinoma progression and metastasis. NPJ Breast Cancer. 2021;7:53 pubmed 出版商
  12. Supper E, Rudat S, Iyer V, Droop A, Wong K, Spinella J, et al. Cut-like homeobox 1 (CUX1) tumor suppressor gene haploinsufficiency induces apoptosis evasion to sustain myeloid leukemia. Nat Commun. 2021;12:2482 pubmed 出版商
  13. Kitamura Y, Kanaya N, Moleirinho S, Du W, Reinshagen C, Attia N, et al. Anti-EGFR VHH-armed death receptor ligand-engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. Sci Adv. 2021;7: pubmed 出版商
  14. Shen X, Wang H, Weng C, Jiang H, Chen J. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity. Cell Death Dis. 2021;12:186 pubmed 出版商
  15. Mondal T, Shivange G, Tihagam R, Lyerly E, Battista M, Talwar D, et al. Unexpected PD-L1 immune evasion mechanism in TNBC, ovarian, and other solid tumors by DR5 agonist antibodies. EMBO Mol Med. 2021;13:e12716 pubmed 出版商
  16. Liang H, Matei N, McBride D, Xu Y, Zhou Z, Tang J, et al. TGR5 activation attenuates neuroinflammation via Pellino3 inhibition of caspase-8/NLRP3 after middle cerebral artery occlusion in rats. J Neuroinflammation. 2021;18:40 pubmed 出版商
  17. Chiu C, Weng Y, Huang Y, Chen R, Liu Y, Yeh T, et al. (D620N) VPS35 causes the impairment of Wnt/β-catenin signaling cascade and mitochondrial dysfunction in a PARK17 knockin mouse model. Cell Death Dis. 2020;11:1018 pubmed 出版商
  18. Lomphithak T, Choksi S, Mutirangura A, Tohtong R, Tencomnao T, Usubuchi H, et al. Receptor-interacting protein kinase 1 is a key mediator in TLR3 ligand and Smac mimetic-induced cell death and suppresses TLR3 ligand-promoted invasion in cholangiocarcinoma. Cell Commun Signal. 2020;18:161 pubmed 出版商
  19. Zhang Y, Zhang L, Lu S, Xiang Y, Zeng C, He T, et al. Long Non-coding RNA CASC15 Promotes Intrahepatic Cholangiocarcinoma Possibly through Inducing PRDX2/PI3K/AKT Axis. Cancer Res Treat. 2021;53:184-198 pubmed 出版商
  20. Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol. 2021;11:249-272 pubmed 出版商
  21. Zhou X, Chen N, Xu H, Zhou X, Wang J, Fang X, et al. Regulation of Hippo-YAP signaling by insulin-like growth factor-1 receptor in the tumorigenesis of diffuse large B-cell lymphoma. J Hematol Oncol. 2020;13:77 pubmed 出版商
  22. Wu Y, Chou T, Young L, Hsieh F, Pan H, Mo S, et al. Tumor suppressor death-associated protein kinase 1 inhibits necroptosis by p38 MAPK activation. Cell Death Dis. 2020;11:305 pubmed 出版商
  23. Simula L, Corrado M, Accordi B, Di Rita A, Nazio F, Antonucci Y, et al. JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death Differ. 2020;: pubmed 出版商
  24. Ding B, Yuan F, Damle P, Litovchick L, Drapkin R, Grossman S. CtBP determines ovarian cancer cell fate through repression of death receptors. Cell Death Dis. 2020;11:286 pubmed 出版商
  25. Han B, Meng X, Wu P, Li Z, Li S, Zhang Y, et al. ATRX/EZH2 complex epigenetically regulates FADD/PARP1 axis, contributing to TMZ resistance in glioma. Theranostics. 2020;10:3351-3365 pubmed 出版商
  26. Reventun P, Sanchez Esteban S, Cook A, Cuadrado I, Roza C, Moreno Gómez Toledano R, et al. Bisphenol A induces coronary endothelial cell necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep. 2020;10:4190 pubmed 出版商
  27. Sheng L, Zhang J, Li L, Xie X, Wen X, Cheng K. Design, Synthesis, and Evaluation of Novel 2-Methoxyestradiol Derivatives as Apoptotic Inducers Through an Intrinsic Apoptosis Pathway. Biomolecules. 2020;10: pubmed 出版商
  28. Jonczyk A, Piotrowska Tomala K, Skarzynski D. Effects of prostaglandin F2α (PGF2α) on cell-death pathways in the bovine corpus luteum (CL). BMC Vet Res. 2019;15:416 pubmed 出版商
  29. Wang R, Yu R, Zhu C, Lin H, Lu X, Wang H. Tubulin detyrosination promotes human trophoblast syncytium formation. J Mol Cell Biol. 2019;: pubmed 出版商
  30. Sharma S, Carmona A, Skowronek A, Yu F, Collins M, Naik S, et al. Apoptotic signalling targets the post-endocytic sorting machinery of the death receptor Fas/CD95. Nat Commun. 2019;10:3105 pubmed 出版商
  31. Vredevoogd D, Kuilman T, Ligtenberg M, Boshuizen J, Stecker K, de Bruijn B, et al. Augmenting Immunotherapy Impact by Lowering Tumor TNF Cytotoxicity Threshold. Cell. 2019;178:585-599.e15 pubmed 出版商
  32. Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, et al. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res. 2019;38:184 pubmed 出版商
  33. Gordon E, Yao X, Xu H, Karkowsky W, Kaler M, Kalchiem Dekel O, et al. Apolipoprotein E is a concentration-dependent pulmonary danger signal that activates the NLRP3 inflammasome and IL-1β secretion by bronchoalveolar fluid macrophages from asthmatic subjects. J Allergy Clin Immunol. 2019;: pubmed 出版商
  34. Greer Y, Gilbert S, Gril B, Narwal R, Peacock Brooks D, Tice D, et al. MEDI3039, a novel highly potent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 agonist, causes regression of orthotopic tumors and inhibits outgrowth of metastatic triple-negative breast cancer. Breast Cancer Res. 2019;21:27 pubmed 出版商
  35. Dufour F, Silina L, Neyret Kahn H, Moreno Vega A, Krucker C, Karboul N, et al. TYRO3 as a molecular target for growth inhibition and apoptosis induction in bladder cancer. Br J Cancer. 2019;120:555-564 pubmed 出版商
  36. Fiore A, Ugel S, De Sanctis F, Sandri S, Fracasso G, Trovato R, et al. Induction of immunosuppressive functions and NF-κB by FLIP in monocytes. Nat Commun. 2018;9:5193 pubmed 出版商
  37. Guerrini V, Prideaux B, Blanc L, Bruiners N, Arrigucci R, Singh S, et al. Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathog. 2018;14:e1007223 pubmed 出版商
  38. Lee S, North K, Kim E, Jang E, Obeng E, Lu S, et al. Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations. Cancer Cell. 2018;34:225-241.e8 pubmed 出版商
  39. Zhao D, Kim Y, Jeong S, Greenson J, Chaudhry M, Hoepting M, et al. Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. J Clin Invest. 2018;128:4970-4979 pubmed 出版商
  40. Cuchet Lourenço D, Eletto D, Wu C, Plagnol V, Papapietro O, CURTIS J, et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science. 2018;361:810-813 pubmed 出版商
  41. Lau A, Chung H, Komada T, Platnich J, Sandall C, Choudhury S, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest. 2018;128:2894-2913 pubmed 出版商
  42. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  43. Miles M, Hawkins C. Executioner caspases and CAD are essential for mutagenesis induced by TRAIL or vincristine. Cell Death Dis. 2017;8:e3062 pubmed 出版商
  44. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  45. Ogura H, Nagatake Kobayashi Y, Adachi J, Tomonaga T, Fujita N, Katayama R. TKI-addicted ROS1-rearranged cells are destined to survival or death by the intensity of ROS1 kinase activity. Sci Rep. 2017;7:5519 pubmed 出版商
  46. Lang M, Jenkins S, Balzano P, Owoyele A, Patel A, Bamezai A. Engaging Ly-6A/Sca-1 triggers lipid raft-dependent and -independent responses in CD4+ T-cell lines. Immun Inflamm Dis. 2017;5:448-460 pubmed 出版商
  47. Iampietro M, Younan P, Nishida A, Dutta M, Lubaki N, Santos R, et al. Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLoS Pathog. 2017;13:e1006397 pubmed 出版商
  48. Greenlee Wacker M, Kremserová S, Nauseef W. Lysis of human neutrophils by community-associated methicillin-resistant Staphylococcus aureus. Blood. 2017;129:3237-3244 pubmed 出版商
  49. Sun J, Zhang X, Sun Y, Tang Z, Guo D. Effects of Hylomecon vernalis ethanol extracts on cell cycle and apoptosis of colon cancer cells. Mol Med Rep. 2017;15:3485-3492 pubmed 出版商
  50. Jelinek M, Kabelova A, Srámek J, Seitz J, Ojima I, Kovar J. Differing Mechanisms of Death Induction by Fluorinated Taxane SB-T-12854 in Breast Cancer Cells. Anticancer Res. 2017;37:1581-1590 pubmed
  51. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  52. Ha S, Jin F, Kwak C, Abekura F, Park J, Park N, et al. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells. Peerj. 2017;5:e2895 pubmed 出版商
  53. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017;13:739-753 pubmed 出版商
  54. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  55. Tanzer M, Khan N, Rickard J, Etemadi N, Lalaoui N, Spall S, et al. Combination of IAP antagonist and IFNγ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death Differ. 2017;24:481-491 pubmed 出版商
  56. Guicciardi M, Krishnan A, Bronk S, Hirsova P, Griffith T, Gores G. Biliary tract instillation of a SMAC mimetic induces TRAIL-dependent acute sclerosing cholangitis-like injury in mice. Cell Death Dis. 2017;8:e2535 pubmed 出版商
  57. Yu G, Dou Z, Jia Z. 5?bromo?3?(3?hydroxyprop?1?ynyl)?2H?pyran?2?one induces apoptosis in T24 human bladder cancer cells through mitochondria-dependent signaling pathways. Mol Med Rep. 2017;15:153-159 pubmed 出版商
  58. Ma W, Tummers B, van Esch E, Goedemans R, Melief C, Meyers C, et al. Human Papillomavirus Downregulates the Expression of IFITM1 and RIPK3 to Escape from IFN?- and TNF?-Mediated Antiproliferative Effects and Necroptosis. Front Immunol. 2016;7:496 pubmed
  59. Zhu X, Wang K, Zhang K, Zhang T, Yin Y, Xu F. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis. Int J Mol Sci. 2016;17: pubmed
  60. Martínez Castillo M, Bonilla Moreno R, Alemán Lazarini L, Meraz Rios M, Orozco L, Cedillo Barron L, et al. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe. PLoS ONE. 2016;11:e0165971 pubmed 出版商
  61. Lin J, Kumari S, Kim C, Van T, Wachsmuth L, Polykratis A, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature. 2016;540:124-128 pubmed 出版商
  62. Pu X, Storr S, Zhang Y, Rakha E, Green A, Ellis I, et al. Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis. 2017;22:357-368 pubmed 出版商
  63. Arora R, Sawney S, Saini V, Steffi C, Tiwari M, Saluja D. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol Cancer. 2016;15:64 pubmed
  64. Pradhan S, Mahajan D, Kaur P, Pandey N, Sharma C, Srivastava T. Scriptaid overcomes hypoxia-induced cisplatin resistance in both wild-type and mutant p53 lung cancer cells. Oncotarget. 2016;7:71841-71855 pubmed 出版商
  65. Nonomiya Y, Noguchi K, Tanaka N, Kasagaki T, Katayama K, Sugimoto Y. Effect of AKT3 expression on MYC- and caspase-8-dependent apoptosis caused by polo-like kinase inhibitors in HCT 116 cells. Cancer Sci. 2016;107:1877-1887 pubmed 出版商
  66. Greene L, Nathwani S, Zisterer D. Inhibition of ?-secretase activity synergistically enhances tumour necrosis factor-related apoptosis-inducing ligand induced apoptosis in T-cell acute lymphoblastic leukemia cells via upregulation of death receptor 5. Oncol Lett. 2016;12:2900-2905 pubmed
  67. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  68. Joo D, Tang Y, Blonska M, Jin J, Zhao X, Lin X. Regulation of Linear Ubiquitin Chain Assembly Complex by Caspase-Mediated Cleavage of RNF31. Mol Cell Biol. 2016;36:3010-3018 pubmed
  69. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  70. Ranjan K, Pathak C. Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death. Mol Cell Biochem. 2016;422:135-150 pubmed
  71. Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, et al. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun. 2016;7:12547 pubmed 出版商
  72. Radke D, Ungefroren H, Helm O, Voigt S, Alp G, Braun H, et al. Negative control of TRAIL-R1 signaling by transforming growth factor ?1 in pancreatic tumor cells involves Smad-dependent down regulation of TRAIL-R1. Cell Signal. 2016;28:1652-62 pubmed 出版商
  73. Strilic B, Yang L, Albarrán Juárez J, Wachsmuth L, Han K, Müller U, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature. 2016;536:215-8 pubmed
  74. Wu J, Lei H, Zhang J, Chen X, Tang C, Wang W, et al. Momordin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation. Oncotarget. 2016;7:58995-59005 pubmed 出版商
  75. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  76. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  77. Al Lamki R, Lu W, Manalo P, Wang J, Warren A, Tolkovsky A, et al. Tubular epithelial cells in renal clear cell carcinoma express high RIPK1/3 and show increased susceptibility to TNF receptor 1-induced necroptosis. Cell Death Dis. 2016;7:e2287 pubmed 出版商
  78. Helmke C, Raab M, Rodel F, Matthess Y, Oellerich T, Mandal R, et al. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res. 2016;26:914-34 pubmed 出版商
  79. Cooley Andrade O, Cheung K, Chew A, Connor D, Parsi K. Detergent sclerosants at sub-lytic concentrations induce endothelial cell apoptosis through a caspase dependent pathway. Apoptosis. 2016;21:836-45 pubmed 出版商
  80. Huang Y, Yang X, Xu T, Kong Q, Zhang Y, Shen Y, et al. Overcoming resistance to TRAIL-induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and IAPs. Int J Oncol. 2016;49:153-63 pubmed 出版商
  81. Tortola L, Nitsch R, Bertrand M, Kogler M, Redouane Y, Kozieradzki I, et al. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep. 2016;15:1481-1492 pubmed 出版商
  82. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  83. Song J, Wang Y, Teng M, Zhang S, Yin M, Lu J, et al. Cordyceps militaris induces tumor cell death via the caspase?dependent mitochondrial pathway in HepG2 and MCF?7 cells. Mol Med Rep. 2016;13:5132-40 pubmed 出版商
  84. Yin S, Jian F, Chen Y, Chien S, Hsieh M, Hsiao P, et al. Induction of IL-25 secretion from tumour-associated fibroblasts suppresses mammary tumour metastasis. Nat Commun. 2016;7:11311 pubmed 出版商
  85. Cooley Andrade O, Goh W, Connor D, Ma D, Parsi K. Detergent Sclerosants Stimulate Leukocyte Apoptosis and Oncosis. Eur J Vasc Endovasc Surg. 2016;51:846-56 pubmed 出版商
  86. Waguia Kontchou C, Tzivelekidis T, Gentle I, Hacker G. Infection of epithelial cells with Chlamydia trachomatis inhibits TNF-induced apoptosis at the level of receptor internalization while leaving non-apoptotic TNF-signalling intact. Cell Microbiol. 2016;18:1583-1595 pubmed 出版商
  87. Malherbe J, Fuller K, Mirzai B, Kavanagh S, So C, Ip H, et al. Dysregulation of the intrinsic apoptotic pathway mediates megakaryocytic hyperplasia in myeloproliferative neoplasms. J Clin Pathol. 2016;: pubmed 出版商
  88. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  89. Martin B, Wang C, Zhang C, Kang Z, Gulen M, Zepp J, et al. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583-92 pubmed 出版商
  90. Ranjan K, Pathak C. FADD regulates NF-κB activation and promotes ubiquitination of cFLIPL to induce apoptosis. Sci Rep. 2016;6:22787 pubmed 出版商
  91. Gao X, Feng J, He Y, Xu F, Fan X, Huang W, et al. hnRNPK inhibits GSK3β Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells. Sci Rep. 2016;6:22999 pubmed 出版商
  92. Rauch J, VanDamme D, Mack B, McCann B, Volinsky N, Blanco A, et al. Differential localization of A-Raf regulates MST2-mediated apoptosis during epithelial differentiation. Cell Death Differ. 2016;23:1283-95 pubmed 出版商
  93. Pesakhov S, Nachliely M, Barvish Z, Aqaqe N, Schwartzman B, Voronov E, et al. Cancer-selective cytotoxic Ca2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget. 2016;7:31847-61 pubmed 出版商
  94. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  95. Wu M, Ai W, Chen L, Zhao S, Liu E. Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice. Int J Mol Med. 2016;37:565-74 pubmed 出版商
  96. Crowder R, Dicker D, El Deiry W. The Deubiquitinase Inhibitor PR-619 Sensitizes Normal Human Fibroblasts to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Cell Death. J Biol Chem. 2016;291:5960-70 pubmed 出版商
  97. Lub S, Maes A, Maes K, De Veirman K, De Bruyne E, Menu E, et al. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget. 2016;7:4062-76 pubmed 出版商
  98. Monian P, Jiang X. The Cellular Apoptosis Susceptibility Protein (CAS) Promotes Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-induced Apoptosis and Cell Proliferation. J Biol Chem. 2016;291:2379-88 pubmed 出版商
  99. Natarelli L, Ranaldi G, Leoni G, Roselli M, Guantario B, Comitato R, et al. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells. PLoS ONE. 2015;10:e0142421 pubmed 出版商
  100. Oh Y, Yue P, Wang D, Tong J, Chen Z, Khuri F, et al. Suppression of death receptor 5 enhances cancer cell invasion and metastasis through activation of caspase-8/TRAF2-mediated signaling. Oncotarget. 2015;6:41324-38 pubmed 出版商
  101. Shen W, Chang A, Wang J, Zhou W, Gao R, Li J, et al. TIFA, an inflammatory signaling adaptor, is tumor suppressive for liver cancer. Oncogenesis. 2015;4:e173 pubmed 出版商
  102. Campo Verde Arboccó F, Sasso C, Actis E, Carón R, Hapon M, Jahn G. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs. Mol Cell Endocrinol. 2016;419:18-28 pubmed 出版商
  103. Ma H, Su L, Yue H, Yin X, Zhao J, Zhang S, et al. HMBOX1 interacts with MT2A to regulate autophagy and apoptosis in vascular endothelial cells. Sci Rep. 2015;5:15121 pubmed 出版商
  104. Karagiannis P, Villanova F, Josephs D, Correa I, Van Hemelrijck M, Hobbs C, et al. Elevated IgG4 in patient circulation is associated with the risk of disease progression in melanoma. Oncoimmunology. 2015;4:e1032492 pubmed
  105. Li J, Davidson D, Martins Souza C, Zhong M, Wu N, Park M, et al. Loss of PTPN12 Stimulates Progression of ErbB2-Dependent Breast Cancer by Enhancing Cell Survival, Migration, and Epithelial-to-Mesenchymal Transition. Mol Cell Biol. 2015;35:4069-82 pubmed 出版商
  106. Jia X, Wang D, Gao N, Cao H, Zhang H. Atrazine Triggers the Extrinsic Apoptosis Pathway in Lymphocytes of the Frog Pelophylax nigromaculata in Vivo. Chem Res Toxicol. 2015;28:2010-8 pubmed 出版商
  107. Weiss R, Laengle J, Sachet M, Shurygina A, Kiselev O, Egorov A, et al. Interleukin-24 inhibits influenza A virus replication in vitro through induction of toll-like receptor 3 dependent apoptosis. Antiviral Res. 2015;123:93-104 pubmed 出版商
  108. Mao D, Che J, Han S, Zhao H, Zhu Y, Zhu H. RNAi-mediated knockdown of the CLN3 gene inhibits proliferation and promotes apoptosis in drug-resistant ovarian cancer cells. Mol Med Rep. 2015;12:6635-41 pubmed 出版商
  109. Stefanowicz Hajduk J, Bartoszewski R, Bartoszewska S, Kochan K, Adamska A, KosiÅ„ski I, et al. Pennogenyl Saponins from Paris quadrifolia L. Induce Extrinsic and Intrinsic Pathway of Apoptosis in Human Cervical Cancer HeLa Cells. PLoS ONE. 2015;10:e0135993 pubmed 出版商
  110. Lizarraga F, Ceballos Cancino G, Espinosa M, Vazquez Santillan K, Maldonado V, Melendez Zajgla J. Tissue Inhibitor of Metalloproteinase-4 Triggers Apoptosis in Cervical Cancer Cells. PLoS ONE. 2015;10:e0135929 pubmed 出版商
  111. Li X, Liang Q, Liu W, Zhang N, Xu L, Zhang X, et al. Ras association domain family member 10 suppresses gastric cancer growth by cooperating with GSTP1 to regulate JNK/c-Jun/AP-1 pathway. Oncogene. 2016;35:2453-64 pubmed 出版商
  112. Wang Y, Li Q, Wei X, Xu J, Chen Q, Song S, et al. Targeted knockout of TNF-? by injection of lentivirus-mediated siRNA into the subacromial bursa for the treatment of subacromial bursitis in rats. Mol Med Rep. 2015;12:4389-4395 pubmed 出版商
  113. Liu K, Chuang S, Long C, Lee Y, Wang C, Lu M, et al. Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Renal Physiol. 2015;309:F318-31 pubmed 出版商
  114. Yang L, Li Y, Bhattacharya A, Zhang Y. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant. EBioMedicine. 2015;2:396-405 pubmed
  115. Deutsch M, Graffeo C, Rokosh R, Pansari M, Ochi A, Levie E, et al. Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury. Cell Death Dis. 2015;6:e1759 pubmed 出版商
  116. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  117. Selmi T, Alecci C, dell Aquila M, Montorsi L, Martello A, Guizzetti F, et al. ZFP36 stabilizes RIP1 via degradation of XIAP and cIAP2 thereby promoting ripoptosome assembly. BMC Cancer. 2015;15:357 pubmed 出版商
  118. Yang N, Gilman P, Mirzayans R, Sun X, Touret N, Weinfeld M, et al. Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound. PLoS ONE. 2015;10:e0125381 pubmed 出版商
  119. Philipp S, Sosna J, Plenge J, Kalthoff H, Adam D. Homoharringtonine, a clinically approved anti-leukemia drug, sensitizes tumor cells for TRAIL-induced necroptosis. Cell Commun Signal. 2015;13:25 pubmed 出版商
  120. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  121. Difranco K, Johnson Farley N, Bertino J, Elson D, Vega B, Belinka B, et al. LFA-1-targeting Leukotoxin (LtxA; Leukothera®) causes lymphoma tumor regression in a humanized mouse model and requires caspase-8 and Fas to kill malignant lymphocytes. Leuk Res. 2015;39:649-56 pubmed 出版商
  122. Leclere L, Fransolet M, Côté F, Cambier P, Arnould T, Van Cutsem P, et al. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells. PLoS ONE. 2015;10:e0115831 pubmed 出版商
  123. Yanagi T, Shi R, Aza Blanc P, Reed J, Matsuzawa S. PCTAIRE1-knockdown sensitizes cancer cells to TNF family cytokines. PLoS ONE. 2015;10:e0119404 pubmed 出版商
  124. Shen X, Sun W, Shi Y, Xing Z, Su X. Altered viral replication and cell responses by inserting microRNA recognition element into PB1 in pandemic influenza A virus (H1N1) 2009. Mediators Inflamm. 2015;2015:976575 pubmed 出版商
  125. Li T, Su L, Lei Y, Liu X, Zhang Y, Liu X. DDIT3 and KAT2A Proteins Regulate TNFRSF10A and TNFRSF10B Expression in Endoplasmic Reticulum Stress-mediated Apoptosis in Human Lung Cancer Cells. J Biol Chem. 2015;290:11108-18 pubmed 出版商
  126. Braun F, Mathur R, Sehgal L, Wilkie Grantham R, Chandra J, Berkova Z, et al. Inhibition of methyltransferases accelerates degradation of cFLIP and sensitizes B-cell lymphoma cells to TRAIL-induced apoptosis. PLoS ONE. 2015;10:e0117994 pubmed 出版商
  127. ErLin S, WenJie W, LiNing W, BingXin L, MingDe L, Yan S, et al. Musashi-1 maintains blood-testis barrier structure during spermatogenesis and regulates stress granule formation upon heat stress. Mol Biol Cell. 2015;26:1947-56 pubmed 出版商
  128. Cui J, Sun W, Hao X, Wei M, Su X, Zhang Y, et al. EHMT2 inhibitor BIX-01294 induces apoptosis through PMAIP1-USP9X-MCL1 axis in human bladder cancer cells. Cancer Cell Int. 2015;15:4 pubmed 出版商
  129. Shi S, Wang Q, Xu J, Jang J, Padilla M, Nyunoya T, et al. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis. Oncotarget. 2015;6:1640-51 pubmed
  130. Long J, Schoonen P, Graczyk D, O Prey J, Ryan K. p73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene. 2015;34:5152-62 pubmed 出版商
  131. Lu K, Fang X, Feng L, Jiang Y, Zhou X, Liu X, et al. The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett. 2015;359:250-8 pubmed 出版商
  132. Huang P, Hung S, Pao C, Wang T. N-(1-pyrenyl) maleimide induces bak oligomerization and mitochondrial dysfunction in Jurkat Cells. Biomed Res Int. 2015;2015:798489 pubmed 出版商
  133. Suo H, Song J, Zhou Y, Liu Z, Yi R, Zhu K, et al. Induction of apoptosis in HCT-116 colon cancer cells by polysaccharide of Larimichthys crocea swim bladder. Oncol Lett. 2015;9:972-978 pubmed
  134. Silva V, Plooster M, Leung J, Cassimeris L. A delay prior to mitotic entry triggers caspase 8-dependent cell death in p53-deficient Hela and HCT-116 cells. Cell Cycle. 2015;14:1070-81 pubmed 出版商
  135. Meng P, Yoshida H, Tanji K, Matsumiya T, Xing F, Hayakari R, et al. Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells. Neurosci Res. 2015;94:1-9 pubmed 出版商
  136. Peterson E, Menon V, Gatti L, Kipping R, Dewasinghe D, Perego P, et al. Nucleolar targeting by platinum: p53-independent apoptosis follows rRNA inhibition, cell-cycle arrest, and DNA compaction. Mol Pharm. 2015;12:287-97 pubmed 出版商
  137. Kanda M, Sugimoto H, Nomoto S, Oya H, Hibino S, Shimizu D, et al. B‑cell translocation gene 1 serves as a novel prognostic indicator of hepatocellular carcinoma. Int J Oncol. 2015;46:641-8 pubmed 出版商
  138. Li S, Song Y, Zhang H, Jin B, Liu Y, Liu W, et al. UbcH10 overexpression increases carcinogenesis and blocks ALLN susceptibility in colorectal cancer. Sci Rep. 2014;4:6910 pubmed 出版商
  139. Cuevas M, Lindeman T. In vitro cytotoxicity of 4'-OH-tamoxifen and estradiol in human endometrial adenocarcinoma cells HEC-1A and HEC-1B. Oncol Rep. 2015;33:464-70 pubmed 出版商
  140. Luan Z, He Y, He F, Chen Z. Rocaglamide overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase-8 through cellular FLICE-like-inhibitory protein downregulation. Mol Med Rep. 2015;11:203-11 pubmed 出版商
  141. Pooya S, Liu X, Kumar V, Anderson J, Imai F, Zhang W, et al. The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism. Nat Commun. 2014;5:4993 pubmed 出版商
  142. Zebboudj A, Maroui M, Dutrieux J, Touil Boukoffa C, Bourouba M, Chelbi Alix M, et al. Sodium arsenite induces apoptosis and Epstein-Barr virus reactivation in lymphoblastoid cells. Biochimie. 2014;107 Pt B:247-56 pubmed 出版商
  143. Kang C, Lin J, Xu Z, Kumar S, Herr A. Single-cell Western blotting after whole-cell imaging to assess cancer chemotherapeutic response. Anal Chem. 2014;86:10429-36 pubmed 出版商
  144. Dirks Naylor A, Kouzi S, Bero J, Tran N, Yang S, Mabolo R. Effects of acute doxorubicin treatment on hepatic proteome lysine acetylation status and the apoptotic environment. World J Biol Chem. 2014;5:377-86 pubmed 出版商
  145. Xu H, Shen Z, Xiao J, Yang Y, Huang W, Zhou Z, et al. Acetylcholinesterase overexpression mediated by oncolytic adenovirus exhibited potent anti-tumor effect. BMC Cancer. 2014;14:668 pubmed 出版商
  146. Zhang S, Tang W, Weng S, Liu X, Rao B, Gu J, et al. Apollon modulates chemosensitivity in human esophageal squamous cell carcinoma. Oncotarget. 2014;5:7183-97 pubmed
  147. Yang C, Matsuura K, Huang N, Robeson A, Huang B, Zhang L, et al. Fatty acid synthase inhibition engages a novel caspase-2 regulatory mechanism to induce ovarian cancer cell death. Oncogene. 2015;34:3264-72 pubmed 出版商
  148. Derangère V, Chevriaux A, Courtaut F, Bruchard M, Berger H, Chalmin F, et al. Liver X receptor ? activation induces pyroptosis of human and murine colon cancer cells. Cell Death Differ. 2014;21:1914-24 pubmed 出版商
  149. Watanabe T, Nakamura S, Ono T, Ui S, Yagi S, Kagawa H, et al. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma. Biochem Biophys Res Commun. 2014;451:93-100 pubmed 出版商
  150. Li C, Egloff A, Sen M, Grandis J, Johnson D. Caspase-8 mutations in head and neck cancer confer resistance to death receptor-mediated apoptosis and enhance migration, invasion, and tumor growth. Mol Oncol. 2014;8:1220-30 pubmed 出版商
  151. Garimella S, Gehlhaus K, Dine J, Pitt J, Grandin M, Chakka S, et al. Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening. Breast Cancer Res. 2014;16:R41 pubmed 出版商
  152. Ishikawa K, Saiki S, Furuya N, Yamada D, Imamichi Y, Li Y, et al. P150glued-associated disorders are caused by activation of intrinsic apoptotic pathway. PLoS ONE. 2014;9:e94645 pubmed 出版商
  153. Chou C, Huang N, Jhuang S, Pan H, Peng N, Cheng J, et al. Ubiquitin-conjugating enzyme UBE2C is highly expressed in breast microcalcification lesions. PLoS ONE. 2014;9:e93934 pubmed 出版商
  154. Iwasaki K, Sudo H, Yamada K, Ito M, Iwasaki N. Cytotoxic effects of the radiocontrast agent iotrolan and anesthetic agents bupivacaine and lidocaine in three-dimensional cultures of human intervertebral disc nucleus pulposus cells: identification of the apoptotic pathways. PLoS ONE. 2014;9:e92442 pubmed 出版商
  155. Roh J, Huang J, Hu W, Yang X, Jennings N, Sehgal V, et al. Biologic effects of platelet-derived growth factor receptor ? blockade in uterine cancer. Clin Cancer Res. 2014;20:2740-50 pubmed 出版商
  156. Villa Morales M, Cobos M, González Gugel E, Alvarez Iglesias V, Martinez B, Piris M, et al. FAS system deregulation in T-cell lymphoblastic lymphoma. Cell Death Dis. 2014;5:e1110 pubmed 出版商
  157. Olsson M, Zhivotovsky B. Measurement of caspase activation in mammalian cell cultures. Methods Mol Biol. 2014;1133:155-73 pubmed 出版商
  158. Matthess Y, Raab M, Knecht R, Becker S, Strebhardt K. Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol Oncol. 2014;8:596-608 pubmed 出版商
  159. Pavet V, Shlyakhtina Y, He T, Ceschin D, Kohonen P, Perala M, et al. Plasminogen activator urokinase expression reveals TRAIL responsiveness and supports fractional survival of cancer cells. Cell Death Dis. 2014;5:e1043 pubmed 出版商
  160. Chopra A, Anderson A, Giardina C. Novel piperazine-based compounds inhibit microtubule dynamics and sensitize colon cancer cells to tumor necrosis factor-induced apoptosis. J Biol Chem. 2014;289:2978-91 pubmed 出版商
  161. Kim T, Kang Y, Park Z, Kim Y, Hong S, Oh S, et al. SH3RF2 functions as an oncogene by mediating PAK4 protein stability. Carcinogenesis. 2014;35:624-34 pubmed 出版商
  162. Linderoth E, Pilia G, Mahajan N, Ferby I. Activated Cdc42-associated kinase 1 (Ack1) is required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor recruitment to lipid rafts and induction of cell death. J Biol Chem. 2013;288:32922-31 pubmed 出版商
  163. Liu W, Han F, Du X, Jiang X, Li Y, Liu Y, et al. Epigenetic silencing of Aristaless-like homeobox-4, a potential tumor suppressor gene associated with lung cancer. Int J Cancer. 2014;134:1311-22 pubmed 出版商
  164. He W, Wang Q, Srinivasan B, Xu J, Padilla M, Li Z, et al. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene. 2014;33:3004-13 pubmed 出版商
  165. Hernandez A, Colvin E, Chen Y, Geiss S, Eller L, Fueger P. Upregulation of p21 activates the intrinsic apoptotic pathway in ?-cells. Am J Physiol Endocrinol Metab. 2013;304:E1281-90 pubmed 出版商
  166. Sung M, Giannakakou P. BRCA1 regulates microtubule dynamics and taxane-induced apoptotic cell signaling. Oncogene. 2014;33:1418-28 pubmed 出版商
  167. Han J, Soletti R, Sadarangani A, Sridevi P, Ramirez M, Eckmann L, et al. Nuclear expression of ?-catenin promotes RB stability and resistance to TNF-induced apoptosis in colon cancer cells. Mol Cancer Res. 2013;11:207-18 pubmed 出版商
  168. Giansanti V, Rodriguez G, Savoldelli M, Gioia R, Forlino A, Mazzini G, et al. Characterization of stress response in human retinal epithelial cells. J Cell Mol Med. 2013;17:103-15 pubmed 出版商
  169. Orzáez M, Guevara T, Sancho M, Perez Paya E. Intrinsic caspase-8 activation mediates sensitization of erlotinib-resistant tumor cells to erlotinib/cell-cycle inhibitors combination treatment. Cell Death Dis. 2012;3:e415 pubmed 出版商
  170. Lamottke B, Kaiser M, Mieth M, Heider U, Gao Z, Nikolova Z, et al. The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases. Eur J Haematol. 2012;88:406-15 pubmed 出版商
  171. Gauster M, Siwetz M, Huppertz B. Fusion of villous trophoblast can be visualized by localizing active caspase 8. Placenta. 2009;30:547-50 pubmed 出版商
  172. Martin L, Liu Z, Chen K, Price A, Pan Y, Swaby J, et al. Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death. J Comp Neurol. 2007;500:20-46 pubmed
  173. Jin T, Kurakin A, Benhaga N, Abe K, Mohseni M, Sandra F, et al. Fas-associated protein with death domain (FADD)-independent recruitment of c-FLIPL to death receptor 5. J Biol Chem. 2004;279:55594-601 pubmed