这是一篇来自已证抗体库的有关人类 小窝蛋白1 (caveolin-1) 的综述,是根据118篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合小窝蛋白1 抗体。
小窝蛋白1 同义词: BSCL3; CGL3; LCCNS; MSTP085; PPH3; VIP21

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(E249)
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司小窝蛋白1抗体(Abcam, ab32577)被用于被用于免疫组化在人类样本上 (图 3). Front Oncol (2021) ncbi
小鼠 单克隆(7C8)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司小窝蛋白1抗体(Abcam, ab17052)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 2c
艾博抗(上海)贸易有限公司小窝蛋白1抗体(Abcam, ab2910)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2c). NPJ Regen Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1h
艾博抗(上海)贸易有限公司小窝蛋白1抗体(Abcam, ab2910)被用于被用于免疫印迹在人类样本上 (图 1h). Mol Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
艾博抗(上海)贸易有限公司小窝蛋白1抗体(Abcam, ab18199)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). J Ovarian Res (2019) ncbi
domestic rabbit 单克隆(E249)
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司小窝蛋白1抗体(Abcam, Ab32577)被用于被用于免疫印迹在人类样本上 (图 2b). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司小窝蛋白1抗体(Abcam, ab2910)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司小窝蛋白1抗体(Abcam, ab2910)被用于被用于免疫组化在小鼠样本上. Dis Model Mech (2017) ncbi
小鼠 单克隆(7C8)
  • 免疫细胞化学; 大鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司小窝蛋白1抗体(Abcam, ab17052)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4). Respir Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 3c
  • 免疫印迹; 人类; 1:4000; 图 3d
艾博抗(上海)贸易有限公司小窝蛋白1抗体(Abcam, ab2910)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:4000 (图 3d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 5 ug/ml; 图 3
艾博抗(上海)贸易有限公司小窝蛋白1抗体(Abcam, 2910)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为5 ug/ml (图 3). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(7C8)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司小窝蛋白1抗体(Abcam, ab17052)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
赛默飞世尔
小鼠 单克隆(7C8)
  • 免疫细胞化学; pigs ; 1:200; 表 5
赛默飞世尔小窝蛋白1抗体(Thermo Fisher, MA3-600)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200 (表 5). Methods Mol Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7a
赛默飞世尔小窝蛋白1抗体(Pierce, PA5-17447)被用于被用于免疫细胞化学在人类样本上 (图 7a). Mar Drugs (2016) ncbi
小鼠 单克隆(7C8)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔小窝蛋白1抗体(Thermo Fisher, MA3-600)被用于被用于免疫印迹在小鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(Z034)
  • 免疫细胞化学; 人类
赛默飞世尔小窝蛋白1抗体(Zymed, noca)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2009) ncbi
小鼠 单克隆(Z034)
  • 免疫细胞化学; 小鼠
赛默飞世尔小窝蛋白1抗体(Invitrogen, noca)被用于被用于免疫细胞化学在小鼠样本上. J Cell Biol (2007) ncbi
小鼠 单克隆(Z034)
  • 免疫印迹; 牛; 图 6
赛默飞世尔小窝蛋白1抗体(Zymed, Z034)被用于被用于免疫印迹在牛样本上 (图 6). Am J Physiol Heart Circ Physiol (2004) ncbi
小鼠 单克隆(Z034)
  • 免疫印迹; 人类
赛默飞世尔小窝蛋白1抗体(Zymed, noca)被用于被用于免疫印迹在人类样本上. J Biol Chem (2004) ncbi
小鼠 单克隆(Z034)
  • 免疫沉淀; 仓鼠; 图 4
  • 免疫印迹; 仓鼠; 图 4
赛默飞世尔小窝蛋白1抗体(Zymed, 036000)被用于被用于免疫沉淀在仓鼠样本上 (图 4) 和 被用于免疫印迹在仓鼠样本上 (图 4). Mol Cell Biol (2003) ncbi
小鼠 单克隆(Z034)
  • 免疫组化-冰冻切片; 大鼠
赛默飞世尔小窝蛋白1抗体(Zymed, 03-6000)被用于被用于免疫组化-冰冻切片在大鼠样本上. Cell Tissue Res (2001) ncbi
圣克鲁斯生物技术
小鼠 单克隆(7C8)
  • 抑制或激活实验; 人类; 图 3d
圣克鲁斯生物技术小窝蛋白1抗体(SantaCruz, sc-53564)被用于被用于抑制或激活实验在人类样本上 (图 3d). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(7C8)
  • 免疫印迹; 大鼠; 1:400; 图 4a
圣克鲁斯生物技术小窝蛋白1抗体(Santa Cruz Biotechnology, sc-53564)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 4a). Mol Med Rep (2016) ncbi
小鼠 单克隆(7C8)
  • 免疫细胞化学; 牛; 图 6
  • 免疫细胞化学; 大鼠; 图 6
圣克鲁斯生物技术小窝蛋白1抗体(Santa Cruz Biotechnology, sc53564)被用于被用于免疫细胞化学在牛样本上 (图 6) 和 被用于免疫细胞化学在大鼠样本上 (图 6). J Biol Chem (2016) ncbi
小鼠 单克隆(7C8)
  • 免疫细胞化学; 人类; 1:100; 图 3
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术小窝蛋白1抗体(Santa Cruz Biotechnology, sc-53564)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(C20B)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术小窝蛋白1抗体(Santa Cruz, sc-135860)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:200. Urol Oncol (2014) ncbi
安迪生物R&D
小鼠 单克隆(7C8)
  • 免疫印迹; 人类; 图 1a
安迪生物R&D小窝蛋白1抗体(R&D Systems, MAB5736)被用于被用于免疫印迹在人类样本上 (图 1a). Cancers (Basel) (2021) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(7C8)
  • proximity ligation assay; 人类; 图 5
  • 免疫印迹; 人类; 图 5
亚诺法生技股份有限公司小窝蛋白1抗体(Abnova, MAB2408)被用于被用于proximity ligation assay在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Basic Res Cardiol (2014) ncbi
Novus Biologicals
小鼠 单克隆(7C8)
  • 免疫组化-石蜡切片; 人类; 图 2
Novus Biologicals小窝蛋白1抗体(Novus Biologicals, NB 100-615)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Micron (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D46G3)
  • 免疫组化; 小鼠; 1:200; 图 4d
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(CST, 3267)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4d). Nat Cardiovasc Res (2022) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫组化; 大鼠; 图 1d
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫组化在大鼠样本上 (图 1d). elife (2022) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3a
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell signaling Technology, 3251S)被用于被用于免疫细胞化学在人类样本上 (图 3a). Mol Brain (2021) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹基因敲除验证; 人类; 1:2000; 图 2d
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:2000 (图 2d). Commun Biol (2021) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 3f). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3251)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(CST, 3267S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Nat Metab (2021) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫组化; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(CST, 3267)被用于被用于免疫组化在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8b). PLoS Biol (2021) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 人类; 1:1000; 图 7g
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(CST, 3267)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7g). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Invest Ophthalmol Vis Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 11e
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell signaling, 3238)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 11e). J Comp Neurol (2021) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling Technology, D46G3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). Bone Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 7d
  • 免疫印迹; 人类; 1:50,000; 图 7a
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3238)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7d) 和 被用于免疫印迹在人类样本上浓度为1:50,000 (图 7a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:140; 图 6c
  • 免疫印迹; 人类; 1:500; 图 7a
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3251)被用于被用于免疫细胞化学在人类样本上浓度为1:140 (图 6c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 7a). elife (2019) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(CST, 3267)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 s12
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 s12). PLoS Pathog (2019) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 小鼠; 1:1000; 图 1s1a
  • 免疫印迹; 人类; 1:1000; 图 1s1a
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1s1a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1s1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 4e
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3238)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Cell Stem Cell (2018) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫沉淀; 人类; 图 1a
  • 免疫细胞化学; 人类; 1:100; 图 1b
  • 免疫印迹; 人类; 1:100; 图 1a
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫沉淀在人类样本上 (图 1a), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 1a). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7f
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3238)被用于被用于免疫细胞化学在人类样本上 (图 7f). Nat Immunol (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3238)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 小鼠; 图 s6a
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫印迹在小鼠样本上 (图 s6a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3238)被用于被用于免疫组化在小鼠样本上 (图 1d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫印迹在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 大鼠; 图 4g
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling Technology, 3267)被用于被用于免疫印迹在大鼠样本上 (图 4g). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(CST, 3238)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(cell signalling, 3238s)被用于被用于免疫组化在小鼠样本上. Dis Model Mech (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling Technology, 3238)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3238)被用于被用于免疫印迹在小鼠样本上 (图 1c). Exp Clin Endocrinol Diabetes (2017) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫印迹在人类样本上 (图 6a). Int J Nanomedicine (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 st1
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3238)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 犬; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267p)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 3a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 4
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267P)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Neural Regen Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling Technology, 3238)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Respir Res (2016) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫细胞化学; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling Technology, 3267)被用于被用于免疫细胞化学在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 3). Mol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling Technology, 3238)被用于被用于免疫印迹在小鼠样本上 (图 4b). Int J Food Sci Nutr (2016) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫组化; 小鼠; 1:100; 图 7
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, D46G3)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling Technology, 3267)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫组化-石蜡切片; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:2000; 图 7
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, D46G3,)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7). Eur J Pharmacol (2015) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 大鼠; 1:5000
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, D46G3)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Microcirculation (2014) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫印迹在小鼠样本上. J Neuroinflammation (2014) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫组化-冰冻切片; 大鼠; 1:1200
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, D46G3)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1200 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Lab Invest (2014) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling Tech, D46G3)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). Pflugers Arch (2014) ncbi
domestic rabbit 单克隆(D46G3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司小窝蛋白1抗体(Cell Signaling, 3267)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
碧迪BD
小鼠 单克隆(2297/Caveolin 1)
  • 免疫组化-自由浮动切片; 小鼠; 1:50; 图 s4a
碧迪BD小窝蛋白1抗体(BD Biosciences, 610407)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:50 (图 s4a). Theranostics (2022) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类; 图 4d
碧迪BD小窝蛋白1抗体(BD Biosciences, 610406)被用于被用于免疫印迹在人类样本上 (图 4d). Sci Rep (2021) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫组化; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 图 1a
碧迪BD小窝蛋白1抗体(BD Biosciences, 610407)被用于被用于免疫组化在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 1a). Mol Brain (2021) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 小鼠; 1:500; 图 1c, 1d
碧迪BD小窝蛋白1抗体(BD Biosciences, 2297)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1c, 1d). elife (2020) ncbi
小鼠 单克隆(C060)
  • 免疫印迹; 大鼠; 图 3d
碧迪BD小窝蛋白1抗体(BD Biosciences, 610058)被用于被用于免疫印迹在大鼠样本上 (图 3d). J Cachexia Sarcopenia Muscle (2020) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类; 1:2000; 图 1a
碧迪BD小窝蛋白1抗体(BD, 610406)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Sci Rep (2019) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s4d
碧迪BD小窝蛋白1抗体(BD Biosciences, 610406)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s4d). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(C060)
  • 免疫组化-石蜡切片; 小鼠; 图 6
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫细胞化学; 人类; 图 3c
碧迪BD小窝蛋白1抗体(BD Biosciences, 610057)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6), 被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫细胞化学在人类样本上 (图 3c). Front Pharmacol (2017) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
碧迪BD小窝蛋白1抗体(BD Transduction Lab, 610406)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). J Biol Chem (2017) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫组化; 小鼠
碧迪BD小窝蛋白1抗体(BD Transduction lab, 610406)被用于被用于免疫组化在小鼠样本上. Dis Model Mech (2017) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 小鼠; 图 2a
碧迪BD小窝蛋白1抗体(BD Transduction, 610407)被用于被用于免疫印迹在小鼠样本上 (图 2a). FEBS Lett (2017) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类; 图 1d
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories, 610406)被用于被用于免疫印迹在人类样本上 (图 1d). J Biol Chem (2016) ncbi
小鼠 单克隆(C060)
  • 免疫印迹; 人类; 1:1000; 图 2d
碧迪BD小窝蛋白1抗体(BD Biosciences, 610058)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). PLoS ONE (2016) ncbi
小鼠 单克隆(56/Caveolin)
  • 免疫印迹; 人类; 图 4g
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories, 611338)被用于被用于免疫印迹在人类样本上 (图 4g). J Cereb Blood Flow Metab (2017) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫细胞化学; 小鼠; 1:200; 图 6
碧迪BD小窝蛋白1抗体(BD Biosciences, 610406)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(2234/Caveolin 1)
  • 免疫细胞化学; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 图 1
  • 免疫细胞化学; 小鼠; 1:200; 图 s1
碧迪BD小窝蛋白1抗体(BD Biosciences, 610493)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1), 被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s1). J Clin Invest (2016) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫组化; 犬; 5 ug/ml; 图 5
碧迪BD小窝蛋白1抗体(BD Biosciences, 610406)被用于被用于免疫组化在犬样本上浓度为5 ug/ml (图 5). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(2234/Caveolin 1)
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories, 610494)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Arch Biochem Biophys (2016) ncbi
小鼠 单克隆(56/Caveolin)
  • 免疫印迹; 小鼠; 1:2000; 图 3
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories, 611338)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(2234/Caveolin 1)
  • 其他; 人类; 图 st1
碧迪BD小窝蛋白1抗体(BD, 2234)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫细胞化学; 人类; 1:20; 图 3b
  • 免疫印迹; 人类; 1:500; 图 2a
碧迪BD小窝蛋白1抗体(BD Bioscience, 610407)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 3b) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Nat Commun (2016) ncbi
小鼠 单克隆(C060)
  • 免疫印迹; 小鼠; 图 1d
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories (, 610058)被用于被用于免疫印迹在小鼠样本上 (图 1d). Proteome Sci (2015) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类; 1:1000; 图 5C
碧迪BD小窝蛋白1抗体(BD, 610406)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5C). PLoS ONE (2015) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹基因敲除验证; 小鼠; 图 3b
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories, 610406)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 3b). Mol Cells (2015) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫细胞化学; 人类; 图 s5b
碧迪BD小窝蛋白1抗体(BD Bioscience, 610406)被用于被用于免疫细胞化学在人类样本上 (图 s5b). Traffic (2016) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类; 图 5c
碧迪BD小窝蛋白1抗体(BD Transduction lab, 610407)被用于被用于免疫印迹在人类样本上 (图 5c). Int J Obes (Lond) (2016) ncbi
小鼠 单克隆(2234/Caveolin 1)
  • 免疫印迹; 人类; 图 2
碧迪BD小窝蛋白1抗体(BD Transduction Lab, 610493)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 5
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories, 610407)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类
碧迪BD小窝蛋白1抗体(BD, 610406)被用于被用于免疫印迹在人类样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类; 图 2
碧迪BD小窝蛋白1抗体(BD, 610406)被用于被用于免疫印迹在人类样本上 (图 2). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(C060)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD小窝蛋白1抗体(BD, #610058)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Cell Physiol (2015) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; African green monkey; 图 3c
  • 免疫印迹; 人类; 图 7b
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories, 610406)被用于被用于免疫印迹在African green monkey样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 7b). Traffic (2015) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类
碧迪BD小窝蛋白1抗体(BD Biosciences, 610406)被用于被用于免疫印迹在人类样本上. Mol Cancer (2015) ncbi
小鼠 单克隆(2234/Caveolin 1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
碧迪BD小窝蛋白1抗体(BD Biosciences, 610493)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). elife (2014) ncbi
小鼠 单克隆(56/Caveolin)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD小窝蛋白1抗体(BD, 611339)被用于被用于免疫组化-石蜡切片在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫组化-冰冻切片; 大鼠; 1:250; 图 1
  • 免疫印迹; 大鼠; 1:2000; 图 4
碧迪BD小窝蛋白1抗体(BD Transduction Labs, 610406)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:250 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类
碧迪BD小窝蛋白1抗体(BD Biosciences, 610407)被用于被用于免疫印迹在人类样本上. Arch Pharm Res (2015) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫组化-冰冻切片; 鸡
碧迪BD小窝蛋白1抗体(BD Transduction, 610406)被用于被用于免疫组化-冰冻切片在鸡样本上. J Proteomics (2014) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 小鼠; 1:10,000
碧迪BD小窝蛋白1抗体(BD Transduction laboratories, 610407)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. PLoS ONE (2014) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫组化-冰冻切片; 大鼠; 1:100
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories, 610407)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. Lab Invest (2014) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; African green monkey
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories, 610406)被用于被用于免疫印迹在African green monkey样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 小鼠
碧迪BD小窝蛋白1抗体(BD Transduction laboratories, 610407)被用于被用于免疫印迹在小鼠样本上. Physiol Rep (2013) ncbi
小鼠 单克隆(2234/Caveolin 1)
  • 免疫细胞化学; 小鼠; 1:250
碧迪BD小窝蛋白1抗体(Becton Dickinson, 610493)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250. Genes Dev (2013) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 小鼠; 图 4
碧迪BD小窝蛋白1抗体(BD, 610406)被用于被用于免疫印迹在小鼠样本上 (图 4). Autophagy (2014) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories, 610406)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类
碧迪BD小窝蛋白1抗体(BD Bioscience, 610407)被用于被用于免疫印迹在人类样本上. J Cell Sci (2013) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories, 610406)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 人类
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories, 610407)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹; 小鼠
碧迪BD小窝蛋白1抗体(BD Biosciences, 2297)被用于被用于免疫印迹在小鼠样本上. Eur J Pharmacol (2013) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫印迹基因敲除验证; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
碧迪BD小窝蛋白1抗体(BD, 610406)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2012) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫组化-冰冻切片; 大鼠
碧迪BD小窝蛋白1抗体(BD Transduction Laboratories, 610406)被用于被用于免疫组化-冰冻切片在大鼠样本上. J Comp Neurol (2012) ncbi
小鼠 单克隆(2297/Caveolin 1)
  • 免疫组化基因敲除验证; 小鼠; 1:100; 图 1
碧迪BD小窝蛋白1抗体(BD Transduction Labs, 610,406)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:100 (图 1). J Cell Mol Med (2008) ncbi
文章列表
  1. Al Ahmady Z, Dickie B, Aldred I, Jasim D, Barrington J, Haley M, et al. Selective brain entry of lipid nanoparticles in haemorrhagic stroke is linked to biphasic blood-brain barrier disruption. Theranostics. 2022;12:4477-4497 pubmed 出版商
  2. Krolak T, Chan K, Kaplan L, Huang Q, Wu J, Zheng Q, et al. A High-Efficiency AAV for Endothelial Cell Transduction Throughout the Central Nervous System. Nat Cardiovasc Res. 2022;1:389-400 pubmed 出版商
  3. Chen L, You Q, Liu M, Li S, Wu Z, Hu J, et al. Remodeling of dermal adipose tissue alleviates cutaneous toxicity induced by anti-EGFR therapy. elife. 2022;11: pubmed 出版商
  4. Tian Y, Liu X, Hu J, Zhang H, Wang B, Li Y, et al. Integrated Bioinformatic Analysis of the Expression and Prognosis of Caveolae-Related Genes in Human Breast Cancer. Front Oncol. 2021;11:703501 pubmed 出版商
  5. Lin C, Huang P, Chen C, Wu M, Chen J, Chen J, et al. Sitagliptin attenuates arterial calcification by downregulating oxidative stress-induced receptor for advanced glycation end products in LDLR knockout mice. Sci Rep. 2021;11:17851 pubmed 出版商
  6. Ha T, Choi Y, Noh H, Cha S, Kim J, Park S. Age-related increase in caveolin-1 expression facilitates cell-to-cell transmission of α-synuclein in neurons. Mol Brain. 2021;14:122 pubmed 出版商
  7. Kearney A, Norris D, Ghomlaghi M, Kin Lok Wong M, Humphrey S, Carroll L, et al. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. elife. 2021;10: pubmed 出版商
  8. Jozic I, Abujamra B, Elliott M, Wikramanayake T, Marjanovic J, Stone R, et al. Glucocorticoid-mediated induction of caveolin-1 disrupts cytoskeletal organization, inhibits cell migration and re-epithelialization of non-healing wounds. Commun Biol. 2021;4:757 pubmed 出版商
  9. Shi X, Wen Z, Wang Y, Liu Y, Shi K, Jiu Y. Feedback-Driven Mechanisms Between Phosphorylated Caveolin-1 and Contractile Actin Assemblies Instruct Persistent Cell Migration. Front Cell Dev Biol. 2021;9:665919 pubmed 出版商
  10. Saunders D, Aamodt K, Richardson T, Hopkirk A, Aramandla R, Poffenberger G, et al. Coordinated interactions between endothelial cells and macrophages in the islet microenvironment promote β cell regeneration. NPJ Regen Med. 2021;6:22 pubmed 出版商
  11. Ganig N, Baenke F, Thepkaysone M, Lin K, Rao V, Wong F, et al. Proteomic Analyses of Fibroblast- and Serum-Derived Exosomes Identify QSOX1 as a Marker for Non-invasive Detection of Colorectal Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  12. Habtemichael E, Li D, Camporez J, Westergaard X, Sales C, Liu X, et al. Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake. Nat Metab. 2021;3:378-393 pubmed 出版商
  13. Sripada A, Sirohi K, Michalec L, Guo L, McKay J, Yadav S, et al. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol. 2021;19:e3001063 pubmed 出版商
  14. He Y, Kan W, Li Y, Hao Y, Huang A, Gu H, et al. A potent and selective small molecule inhibitor of myoferlin attenuates colorectal cancer progression. Clin Transl Med. 2021;11:e289 pubmed 出版商
  15. Fu C, Zhang Q, Wang A, Yang S, Jiang Y, Bai L, et al. EWI-2 controls nucleocytoplasmic shuttling of EGFR signaling molecules and miRNA sorting in exosomes to inhibit prostate cancer cell metastasis. Mol Oncol. 2021;15:1543-1565 pubmed 出版商
  16. Gurley J, Gmyrek G, McClellan M, Hargis E, Hauck S, Dozmorov M, et al. Neuroretinal-Derived Caveolin-1 Promotes Endotoxin-Induced Inflammation in the Murine Retina. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  17. Ded L, Hwang J, Miki K, Shi H, Chung J. 3D in situ imaging of the female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice. elife. 2020;9: pubmed 出版商
  18. Pasquettaz R, Kolotuev I, Rohrbach A, Gouelle C, Pellerin L, Langlet F. Peculiar protrusions along tanycyte processes face diverse neural and nonneural cell types in the hypothalamic parenchyma. J Comp Neurol. 2021;529:553-575 pubmed 出版商
  19. Shah D, Nisr R, Stretton C, Krasteva Christ G, Hundal H. Caveolin-3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function. J Cachexia Sarcopenia Muscle. 2020;11:838-858 pubmed 出版商
  20. Zhang Z, Le K, La Placa D, Armstrong B, Miller M, Shively J. CXCR2 specific endocytosis of immunomodulatory peptide LL-37 in human monocytes and formation of LL-37 positive large vesicles in differentiated monoosteophils. Bone Rep. 2020;12:100237 pubmed 出版商
  21. Luxan G, Stewen J, Díaz N, Kato K, Maney S, Aravamudhan A, et al. Endothelial EphB4 maintains vascular integrity and transport function in adult heart. elife. 2019;8: pubmed 出版商
  22. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  23. Wang C, Puerta Guardo H, Biering S, Glasner D, Tran E, Patana M, et al. Endocytosis of flavivirus NS1 is required for NS1-mediated endothelial hyperpermeability and is abolished by a single N-glycosylation site mutation. PLoS Pathog. 2019;15:e1007938 pubmed 出版商
  24. Liu B, Zhang J, Yang D. miR-96-5p promotes the proliferation and migration of ovarian cancer cells by suppressing Caveolae1. J Ovarian Res. 2019;12:57 pubmed 出版商
  25. Li Y, Li K, Hu W, Ojcius D, Fang J, Li S, et al. Endocytic recycling and vesicular transport systems mediate transcytosis of Leptospira interrogans across cell monolayer. elife. 2019;8: pubmed 出版商
  26. Rangel L, Bernabé Rubio M, Fernández Barrera J, Casares Arias J, Millan J, Alonso M, et al. Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity. Sci Rep. 2019;9:1116 pubmed 出版商
  27. Baghdadi M, Firmino J, Soni K, Evano B, Di Girolamo D, Mourikis P, et al. Notch-Induced miR-708 Antagonizes Satellite Cell Migration and Maintains Quiescence. Cell Stem Cell. 2018;23:859-868.e5 pubmed 出版商
  28. Jiu Y. Vimentin intermediate filaments function as a physical barrier during intracellular trafficking of caveolin-1. Biochem Biophys Res Commun. 2018;507:161-167 pubmed 出版商
  29. Borlido J, Sakuma S, Raices M, Carrette F, Tinoco R, Bradley L, et al. Nuclear pore complex-mediated modulation of TCR signaling is required for naïve CD4+ T cell homeostasis. Nat Immunol. 2018;19:594-605 pubmed 出版商
  30. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  31. Clemente C, Rius C, Alonso Herranz L, Martín Alonso M, Pollán A, Camafeita E, et al. MT4-MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis. Nat Commun. 2018;9:910 pubmed 出版商
  32. Hiromura M, Nohtomi K, Mori Y, Kataoka H, Sugano M, Ohnuma K, et al. Caveolin-1, a binding protein of CD26, is essential for the anti-inflammatory effects of dipeptidyl peptidase-4 inhibitors on human and mouse macrophages. Biochem Biophys Res Commun. 2018;495:223-229 pubmed 出版商
  33. Maurya D, Bohm S, Alenius M. Hedgehog signaling regulates ciliary localization of mouse odorant receptors. Proc Natl Acad Sci U S A. 2017;114:E9386-E9394 pubmed 出版商
  34. Jiang Y, Lin X, Tang Z, Lee C, Tian G, Du Y, et al. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proc Natl Acad Sci U S A. 2017;114:10737-10742 pubmed 出版商
  35. Marsboom G, Chen Z, Yuan Y, Zhang Y, Tiruppathi C, Loyd J, et al. Aberrant caveolin-1-mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: a new perspective on the mechanism of pulmonary hypertension. Mol Biol Cell. 2017;28:1177-1185 pubmed 出版商
  36. Rippe C, Zhu B, Krawczyk K, Bavel E, Albinsson S, Sjölund J, et al. Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Sci Rep. 2017;7:1334 pubmed 出版商
  37. Lee R, Reese C, Carmen Lopez G, Perry B, Bonner M, Zemskova M, et al. Deficient Adipogenesis of Scleroderma Patient and Healthy African American Monocytes. Front Pharmacol. 2017;8:174 pubmed 出版商
  38. Song Z, Xiaoli A, Zhang Q, Zhang Y, Yang E, Wang S, et al. Cyclin C regulates adipogenesis by stimulating transcriptional activity of CCAAT/enhancer-binding protein ?. J Biol Chem. 2017;292:8918-8932 pubmed 出版商
  39. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  40. Sasaki Y, Hidaka T, Ueno T, Akiba Takagi M, Oliva Trejo J, Seki T, et al. Sorting Nexin 9 facilitates podocin endocytosis in the injured podocyte. Sci Rep. 2017;7:43921 pubmed 出版商
  41. Otis J, Shen M, Quinlivan V, Anderson J, Farber S. Intestinal epithelial cell caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels. Dis Model Mech. 2017;10:283-295 pubmed 出版商
  42. Krycer J, Fazakerley D, Cater R, C Thomas K, Naghiloo S, Burchfield J, et al. The amino acid transporter, SLC1A3, is plasma membrane-localised in adipocytes and its activity is insensitive to insulin. FEBS Lett. 2017;591:322-330 pubmed 出版商
  43. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  44. Tian X, Ye M, Cao Y, Wang C. Losartan Improves Palmitate-Induced Insulin Resistance in 3T3-L1 Adipocytes Through Upregulation of Src Phosphorylation. Exp Clin Endocrinol Diabetes. 2017;125:136-140 pubmed 出版商
  45. Démoulins T, Englezou P, Milona P, Ruggli N, Tirelli N, Pichon C, et al. Self-Replicating RNA Vaccine Delivery to Dendritic Cells. Methods Mol Biol. 2017;1499:37-75 pubmed
  46. Parag Sharma K, Leyme A, DiGiacomo V, Marivin A, Broselid S, Garcia Marcos M. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (G?-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling. J Biol Chem. 2016;291:27098-27111 pubmed 出版商
  47. Shi D, Liu Y, Xi R, Zou W, Wu L, Zhang Z, et al. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells. Int J Nanomedicine. 2016;11:5823-5835 pubmed
  48. Chiang C, Flint M, Lin J, Spiropoulou C. Endocytic Pathways Used by Andes Virus to Enter Primary Human Lung Endothelial Cells. PLoS ONE. 2016;11:e0164768 pubmed 出版商
  49. Marinval N, Saboural P, Haddad O, Maire M, Bassand K, Geinguenaud F, et al. Identification of a Pro-Angiogenic Potential and Cellular Uptake Mechanism of a LMW Highly Sulfated Fraction of Fucoidan from Ascophyllum nodosum. Mar Drugs. 2016;14: pubmed
  50. Cizmecioglu O, Ni J, Xie S, Zhao J, Roberts T. Rac1-mediated membrane raft localization of PI3K/p110? is required for its activation by GPCRs or PTEN loss. elife. 2016;5: pubmed 出版商
  51. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  52. Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab. 2017;37:2471-2484 pubmed 出版商
  53. Ronaghan N, Shang J, Iablokov V, Zaheer R, Colarusso P, Dion S, et al. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction. Am J Physiol Gastrointest Liver Physiol. 2016;311:G466-79 pubmed 出版商
  54. Zhao Y, Song J, Ma X, Zhang B, Li D, Pang H. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression. Neural Regen Res. 2016;11:944-50 pubmed 出版商
  55. Xu S, Xue X, You K, Fu J. Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respir Res. 2016;17:50 pubmed 出版商
  56. Boothe T, Lim G, Cen H, Skovsø S, Piske M, Li S, et al. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells. Mol Metab. 2016;5:366-378 pubmed 出版商
  57. Hersrud S, Kovács A, Pearce D. Antigen presenting cell abnormalities in the Cln3(-/-) mouse model of juvenile neuronal ceroid lipofuscinosis. Biochim Biophys Acta. 2016;1862:1324-36 pubmed 出版商
  58. Bourseau Guilmain E, Menard J, Lindqvist E, Indira Chandran V, Christianson H, Cerezo Magaña M, et al. Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells. Nat Commun. 2016;7:11371 pubmed 出版商
  59. Kim D, Bynoe M. A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood-brain barrier. J Clin Invest. 2016;126:1717-33 pubmed 出版商
  60. Bach F, Zhang Y, Miranda Bedate A, Verdonschot L, Bergknut N, Creemers L, et al. Increased caveolin-1 in intervertebral disc degeneration facilitates repair. Arthritis Res Ther. 2016;18:59 pubmed 出版商
  61. Ishibashi K, Nehashi K, Oshima T, Ohkura N, Atsumi G. Differentiation with elaidate tends to impair insulin-dependent glucose uptake and GLUT4 translocation in 3T3-L1 adipocytes. Int J Food Sci Nutr. 2016;67:99-110 pubmed 出版商
  62. WoÅ› M, Szczepanowska J, PikuÅ‚a S, Tylki SzymaÅ„ska A, ZabÅ‚ocki K, Bandorowicz PikuÅ‚a J. Mitochondrial dysfunction in fibroblasts derived from patients with Niemann-Pick type C disease. Arch Biochem Biophys. 2016;593:50-9 pubmed 出版商
  63. West J, Carrier E, Bloodworth N, Schroer A, Chen P, Ryzhova L, et al. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension. PLoS ONE. 2016;11:e0148657 pubmed 出版商
  64. Zhang J, Jiang Z, Bao C, Mei J, Zhu J. Cardiopulmonary bypass increases pulmonary microvascular permeability through the Src kinase pathway: Involvement of caveolin-1 and vascular endothelial cadherin. Mol Med Rep. 2016;13:2918-24 pubmed 出版商
  65. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  66. Pugh R, Slee J, Farwell S, Li Y, Barthol T, Patton W, et al. Transmembrane Protein 184A Is a Receptor Required for Vascular Smooth Muscle Cell Responses to Heparin. J Biol Chem. 2016;291:5326-41 pubmed 出版商
  67. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed 出版商
  68. Guan X, Wang N, Cui F, Liu Y, Liu P, Zhao J, et al. Caveolin-1 is essential in the differentiation of human adipose-derived stem cells into hepatocyte-like cells via an MAPK pathway-dependent mechanism. Mol Med Rep. 2016;13:1487-94 pubmed 出版商
  69. Suica V, Uyy E, Boteanu R, Ivan L, Antohe F. Alteration of actin dependent signaling pathways associated with membrane microdomains in hyperlipidemia. Proteome Sci. 2015;13:30 pubmed 出版商
  70. Lin C, Huang P, Lai C, Chen J, Lin S, Chen J. Simvastatin Attenuates Oxidative Stress, NF-κB Activation, and Artery Calcification in LDLR-/- Mice Fed with High Fat Diet via Down-regulation of Tumor Necrosis Factor-α and TNF Receptor 1. PLoS ONE. 2015;10:e0143686 pubmed 出版商
  71. Lim J, Nguyen K, Han J, Jang I, Fabian C, Cho K. Direct Regulation of TLR5 Expression by Caveolin-1. Mol Cells. 2015;38:1111-7 pubmed 出版商
  72. Albecka A, Laine R, Janssen A, Kaminski C, Crump C. HSV-1 Glycoproteins Are Delivered to Virus Assembly Sites Through Dynamin-Dependent Endocytosis. Traffic. 2016;17:21-39 pubmed 出版商
  73. Singh P, Sharma P, Sahakyan K, Davison D, Sert Kuniyoshi F, Romero Corral A, et al. Differential effects of leptin on adiponectin expression with weight gain versus obesity. Int J Obes (Lond). 2016;40:266-74 pubmed 出版商
  74. Kennedy A, Vallurupalli M, Chen L, Crompton B, Cowley G, Vazquez F, et al. Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma. Oncotarget. 2015;6:30178-93 pubmed 出版商
  75. Krawczyk K, Yao Mattisson I, Ekman M, Oskolkov N, Grantinge R, Kotowska D, et al. Myocardin Family Members Drive Formation of Caveolae. PLoS ONE. 2015;10:e0133931 pubmed 出版商
  76. Yokomori H, Ando W, Yoshimura K, Yamazaki H, Takahashi Y, Oda M. Increases in endothelial caveolin-1 and cavins correlate with cirrhosis progression. Micron. 2015;76:52-61 pubmed 出版商
  77. Wang W, Runkle K, Terkowski S, Ekaireb R, Witze E. Protein Depalmitoylation Is Induced by Wnt5a and Promotes Polarized Cell Behavior. J Biol Chem. 2015;290:15707-16 pubmed 出版商
  78. Moon H, Ruelcke J, Choi E, Sharpe L, Nassar Z, Bielefeldt Ohmann H, et al. Diet-induced hypercholesterolemia promotes androgen-independent prostate cancer metastasis via IQGAP1 and caveolin-1. Oncotarget. 2015;6:7438-53 pubmed
  79. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128:2179-90 pubmed 出版商
  80. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  81. Kobayashi K, Sakurai K, Hiramatsu H, Inada K, Shiogama K, Nakamura S, et al. The miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth in epithelial tumor cell lines. Sci Rep. 2015;5:8428 pubmed 出版商
  82. Kwon H, Lee J, Jeong K, Jang D, Pak Y. Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation. Biochim Biophys Acta. 2015;1853:1022-34 pubmed 出版商
  83. Huang Y, Chang S, Harn H, Huang H, Lin H, Shen M, et al. Mechanosensitive store-operated calcium entry regulates the formation of cell polarity. J Cell Physiol. 2015;230:2086-97 pubmed 出版商
  84. Han B, Tiwari A, Kenworthy A. Tagging strategies strongly affect the fate of overexpressed caveolin-1. Traffic. 2015;16:417-38 pubmed 出版商
  85. Zeng J, Ekman M, Grossi M, Svensson D, Nilsson B, Jiang C, et al. Vasopressin-induced mouse urethral contraction is modulated by caveolin-1. Eur J Pharmacol. 2015;750:59-65 pubmed 出版商
  86. Lim H, Multhaupt H, Couchman J. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol Cancer. 2015;14:15 pubmed 出版商
  87. Sadegh M, Ekman M, Krawczyk K, Svensson D, Göransson O, Dahan D, et al. Detrusor induction of miR-132/212 following bladder outlet obstruction: association with MeCP2 repression and cell viability. PLoS ONE. 2015;10:e0116784 pubmed 出版商
  88. Ye R, Holland W, Gordillo R, Wang M, Wang Q, Shao M, et al. Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β-cell regeneration. elife. 2014;3: pubmed 出版商
  89. Fork C, Hitzel J, Nichols B, Tikkanen R, Brandes R. Flotillin-1 facilitates toll-like receptor 3 signaling in human endothelial cells. Basic Res Cardiol. 2014;109:439 pubmed 出版商
  90. Korhan P, Erdal E, Kandemiş E, Cokakli M, Nart D, Yilmaz F, et al. Reciprocal activating crosstalk between c-Met and caveolin 1 promotes invasive phenotype in hepatocellular carcinoma. PLoS ONE. 2014;9:e105278 pubmed 出版商
  91. Traini C, Faussone Pellegrini M, Evangelista S, Mazzaferro K, Cipriani G, Santicioli P, et al. Inner and outer portions of colonic circular muscle: ultrastructural and immunohistochemical changes in rat chronically treated with otilonium bromide. PLoS ONE. 2014;9:e103237 pubmed 出版商
  92. Yang H, Hwangbo K, Zheng M, Cho J, Son J, Kim H, et al. Inhibitory effects of (-)-loliolide on cellular senescence in human dermal fibroblasts. Arch Pharm Res. 2015;38:876-84 pubmed 出版商
  93. Liang W, Hao Z, Han J, Zhu D, Jin Z, Xie W. CAV-1 contributes to bladder cancer progression by inducing epithelial-to-mesenchymal transition. Urol Oncol. 2014;32:855-63 pubmed 出版商
  94. Yang N, Liu Y, Pan C, Sun K, Wei X, Mao X, et al. Pretreatment with andrographolide pills(®) attenuates lipopolysaccharide-induced pulmonary microcirculatory disturbance and acute lung injury in rats. Microcirculation. 2014;21:703-16 pubmed 出版商
  95. Thomas P, Cheng A, Colby C, Liu L, Patel C, Josephs L, et al. Localization and proteomic characterization of cholesterol-rich membrane microdomains in the inner ear. J Proteomics. 2014;103:178-93 pubmed 出版商
  96. Swärd K, Albinsson S, Rippe C. Arterial dysfunction but maintained systemic blood pressure in cavin-1-deficient mice. PLoS ONE. 2014;9:e92428 pubmed 出版商
  97. Niesman I, Schilling J, Shapiro L, Kellerhals S, Bonds J, Kleschevnikov A, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation. 2014;11:39 pubmed 出版商
  98. Ekman M, Uvelius B, Albinsson S, Swärd K. HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition. Lab Invest. 2014;94:557-68 pubmed 出版商
  99. Wehmeyer L, Du Toit A, Lang D, Hapgood J. Lipid raft- and protein kinase C-mediated synergism between glucocorticoid- and gonadotropin-releasing hormone signaling results in decreased cell proliferation. J Biol Chem. 2014;289:10235-51 pubmed 出版商
  100. Clarysse L, Gueguinou M, Potier Cartereau M, Vandecasteele G, Bougnoux P, Chevalier S, et al. cAMP-PKA inhibition of SK3 channel reduced both Ca2+ entry and cancer cell migration by regulation of SK3-Orai1 complex. Pflugers Arch. 2014;466:1921-32 pubmed 出版商
  101. Ekman M, Bhattachariya A, Dahan D, Uvelius B, Albinsson S, Swärd K. Mir-29 repression in bladder outlet obstruction contributes to matrix remodeling and altered stiffness. PLoS ONE. 2013;8:e82308 pubmed 出版商
  102. Swärd K, Sadegh M, Mori M, Erjefalt J, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep. 2013;1:e00008 pubmed 出版商
  103. Nakayama A, Nakayama M, Turner C, Höing S, Lepore J, Adams R. Ephrin-B2 controls PDGFR? internalization and signaling. Genes Dev. 2013;27:2576-89 pubmed 出版商
  104. Tan S, Shui G, Zhou J, Shi Y, Huang J, Xia D, et al. Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway. Autophagy. 2014;10:226-42 pubmed 出版商
  105. Linderoth E, Pilia G, Mahajan N, Ferby I. Activated Cdc42-associated kinase 1 (Ack1) is required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor recruitment to lipid rafts and induction of cell death. J Biol Chem. 2013;288:32922-31 pubmed 出版商
  106. Barceló C, Paco N, Beckett A, Alvarez Moya B, Garrido E, Gelabert M, et al. Oncogenic K-ras segregates at spatially distinct plasma membrane signaling platforms according to its phosphorylation status. J Cell Sci. 2013;126:4553-9 pubmed 出版商
  107. Avena P, Anselmo W, Whitaker Menezes D, Wang C, Pestell R, Lamb R, et al. Compartment-specific activation of PPAR? governs breast cancer tumor growth, via metabolic reprogramming and symbiosis. Cell Cycle. 2013;12:1360-70 pubmed 出版商
  108. Sánchez Alvarez R, Martinez Outschoorn U, Lamb R, Hulit J, Howell A, Gandara R, et al. Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin. Cell Cycle. 2013;12:172-82 pubmed 出版商
  109. Rahman A, Ekman M, Shakirova Y, Andersson K, Morgelin M, Erjefalt J, et al. Late onset vascular dysfunction in the R6/1 model of Huntington's disease. Eur J Pharmacol. 2013;698:345-53 pubmed 出版商
  110. Li W, Liu H, Zhou J, Cao J, Zhou X, Choi A, et al. Caveolin-1 inhibits expression of antioxidant enzymes through direct interaction with nuclear erythroid 2 p45-related factor-2 (Nrf2). J Biol Chem. 2012;287:20922-30 pubmed 出版商
  111. Takahashi Iwanaga H, Iwanaga T. Accumulated caveolae constitute subcellular compartments for glial calcium signaling in lanceolate sensory endings innervating rat vibrissae. J Comp Neurol. 2012;520:2053-66 pubmed 出版商
  112. Cobbe N, Marshall K, Gururaja Rao S, Chang C, Di Cara F, Duca E, et al. The conserved metalloprotease invadolysin localizes to the surface of lipid droplets. J Cell Sci. 2009;122:3414-23 pubmed 出版商
  113. El Yazbi A, Cho W, Cena J, Schulz R, Daniel E. Smooth muscle NOS, colocalized with caveolin-1, modulates contraction in mouse small intestine. J Cell Mol Med. 2008;12:1404-15 pubmed 出版商
  114. Lajoie P, Partridge E, Guay G, Goetz J, Pawling J, Lagana A, et al. Plasma membrane domain organization regulates EGFR signaling in tumor cells. J Cell Biol. 2007;179:341-56 pubmed
  115. Czarny M, Schnitzer J. Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J Physiol Heart Circ Physiol. 2004;287:H1344-52 pubmed
  116. Duxbury M, Ito H, Ashley S, Whang E. CEACAM6 cross-linking induces caveolin-1-dependent, Src-mediated focal adhesion kinase phosphorylation in BxPC3 pancreatic adenocarcinoma cells. J Biol Chem. 2004;279:23176-82 pubmed
  117. Razandi M, Alton G, Pedram A, Ghonshani S, Webb P, Levin E. Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane. Mol Cell Biol. 2003;23:1633-46 pubmed
  118. Voldstedlund M, Vinten J, Tranum Jensen J. cav-p60 expression in rat muscle tissues. Distribution of caveolar proteins. Cell Tissue Res. 2001;306:265-76 pubmed