这是一篇来自已证抗体库的有关人类 cdc42的综述,是根据50篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合cdc42 抗体。
cdc42 同义词: CDC42Hs; G25K; TKS

圣克鲁斯生物技术
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 1:500; 图 7
圣克鲁斯生物技术 cdc42抗体(Santa Cruz, sc-8401)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7). Oncotarget (2017) ncbi
小鼠 单克隆(B-8)
  • 免疫细胞化学; 人类; 1:50; 图 6b
圣克鲁斯生物技术 cdc42抗体(Santa Cruz, sc-8401)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 6b). Mol Syst Biol (2017) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 cdc42抗体(Santa Cruz, sc-8401)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Med (2016) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 大鼠; 图 6
圣克鲁斯生物技术 cdc42抗体(Santa Cruz Biotechnology, sc-8401)被用于被用于免疫印迹在大鼠样本上 (图 6). Mol Biol Cell (2016) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 小鼠; 1:500; 图 4
圣克鲁斯生物技术 cdc42抗体(Santa Cruz, sc-8401)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(B-8)
  • 流式细胞仪; 人类; 图 8
圣克鲁斯生物技术 cdc42抗体(Santa Cruz, sc-8401)被用于被用于流式细胞仪在人类样本上 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 cdc42抗体(Santa Cruz Biotechnology, sc-8401)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2015) ncbi
小鼠 单克隆(B-8)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 cdc42抗体(Santa CruZ, sc-8401)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-8)
  • 免疫组化-自由浮动切片; 小鼠
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 cdc42抗体(Santa Cruz Biotechnology, sc-8401)被用于被用于免疫组化-自由浮动切片在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 小鼠; 图 s11
圣克鲁斯生物技术 cdc42抗体(Santa Cruz Biotechnology, sc-8401)被用于被用于免疫印迹在小鼠样本上 (图 s11). PLoS Genet (2013) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR15620)
  • 免疫印迹; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 cdc42抗体(abcam, ab187643)被用于被用于免疫印迹在小鼠样本上 (图 3d). Sci Adv (2019) ncbi
domestic rabbit 单克隆(EPR15620)
  • 免疫印迹; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 cdc42抗体(Abcam, ab187643)被用于被用于免疫印迹在小鼠样本上 (图 6a). PLoS Genet (2017) ncbi
domestic rabbit 单克隆(EPR15620)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 5a
  • 免疫印迹; 人类; 1:10,000; 图 2a
艾博抗(上海)贸易有限公司 cdc42抗体(Abcam, ab187643)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 2a). Oncol Rep (2017) ncbi
小鼠 单克隆(M152)
  • 免疫印迹; 人类; 1:500; 图 s4d
艾博抗(上海)贸易有限公司 cdc42抗体(Abcam, ab41429)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s4d). J Cell Biol (2016) ncbi
小鼠 单克隆(M152)
  • 免疫印迹; Clostridioides difficile; 图 4
艾博抗(上海)贸易有限公司 cdc42抗体(Abcam, ab41429)被用于被用于免疫印迹在Clostridioides difficile样本上 (图 4). Infect Immun (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3f
赛默飞世尔 cdc42抗体(生活技术, 44-214G)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3f). Mol Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:30; 图 1c
  • 免疫印迹; 人类; 1:1000; 图 1a
赛默飞世尔 cdc42抗体(LI-COR Biosciences, PA1- 092)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Breast Cancer Res Treat (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2e
赛默飞世尔 cdc42抗体(ThermoFisher Scientific, PA1-092)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛默飞世尔 cdc42抗体(Thermo Fisher Scientific, PA1-092X)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Mol Cells (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛默飞世尔 cdc42抗体(Thermo Scientific, PA1-092X)被用于被用于免疫印迹在人类样本上 (图 4c). FEMS Microbiol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s2
赛默飞世尔 cdc42抗体(Thermo Scientific-Pierce, PA1-092)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s2). Biol Cell (2016) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
GeneTex cdc42抗体(GeneTex, GTX100904)被用于被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurobiol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(11A11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 cdc42抗体(Cell Signaling, 2466)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(11A11)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 cdc42抗体(cell signalling, 2466)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(11A11)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 cdc42抗体(Cell Signaling, 11A11)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 6a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1i
赛信通(上海)生物试剂有限公司 cdc42抗体(CST, 2462S)被用于被用于免疫印迹在人类样本上 (图 1i). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3i
赛信通(上海)生物试剂有限公司 cdc42抗体(Cell Signaling, 2462)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3i). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(11A11)
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 cdc42抗体(Cell signaling, 2466P)被用于被用于免疫印迹在人类样本上 (图 s4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4d
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 cdc42抗体(Cell Signaling Technology, 2462)被用于被用于免疫细胞化学在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(11A11)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 cdc42抗体(Cell Signaling, 2466)被用于被用于免疫印迹在人类样本上 (图 6c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(11A11)
  • 免疫组化基因敲除验证; 小鼠; 1:300; 图 s1
赛信通(上海)生物试剂有限公司 cdc42抗体(Cell Signaling, 2466)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:300 (图 s1). Biol Open (2016) ncbi
domestic rabbit 单克隆(11A11)
  • 免疫印迹; 人类; 图 10e
赛信通(上海)生物试剂有限公司 cdc42抗体(Cell Signaling, 11A11)被用于被用于免疫印迹在人类样本上 (图 10e). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(11A11)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 cdc42抗体(Cell Signaling, 2466)被用于被用于免疫印迹在人类样本上 (图 2f). Sci Rep (2015) ncbi
domestic rabbit 单克隆(11A11)
  • 免疫印迹; 人类; 1:5000; 图 3
赛信通(上海)生物试剂有限公司 cdc42抗体(Cell Signalling Technology, 11A11)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(11A11)
  • 免疫印迹; 大鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司 cdc42抗体(Cell Signaling, 11A11)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5). Front Cell Neurosci (2015) ncbi
domestic rabbit 单克隆(11A11)
  • 免疫印迹; 人类; 图 s9
赛信通(上海)生物试剂有限公司 cdc42抗体(Cell Signaling Technology, 11A11)被用于被用于免疫印迹在人类样本上 (图 s9). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(11A11)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 cdc42抗体(Cell signaling, 2466)被用于被用于免疫印迹在小鼠样本上 (图 1). Cancer Res (2014) ncbi
NewEast Biosciences
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:100
NewEast Biosciences cdc42抗体(NewEast Biosciences, 26905)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nat Commun (2014) ncbi
碧迪BD
小鼠 单克隆(44/CDC42)
  • 免疫沉淀; 小鼠; 图 6c
碧迪BD cdc42抗体(BD Biosciences, 610928)被用于被用于免疫沉淀在小鼠样本上 (图 6c). FASEB J (2019) ncbi
小鼠 单克隆(44/CDC42)
  • 免疫印迹; 小鼠; 图 6b
碧迪BD cdc42抗体(BD Biosciences, 610928)被用于被用于免疫印迹在小鼠样本上 (图 6b). Immunity (2019) ncbi
小鼠 单克隆(44/CDC42)
  • 免疫印迹基因敲除验证; 小鼠; 图 3a
碧迪BD cdc42抗体(BD Biosciences, 610929)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3a). J Biol Chem (2018) ncbi
小鼠 单克隆(44/CDC42)
  • 免疫印迹; 大鼠; 图 3c
碧迪BD cdc42抗体(BD Transduction Laboratories, 610928)被用于被用于免疫印迹在大鼠样本上 (图 3c). J Clin Invest (2017) ncbi
小鼠 单克隆(44/CDC42)
  • 免疫印迹; 小鼠; 图 8
碧迪BD cdc42抗体(BD Transduction Laboratories, 610929)被用于被用于免疫印迹在小鼠样本上 (图 8). Cell Death Dis (2017) ncbi
小鼠 单克隆(44/CDC42)
  • 免疫印迹; 人类; 图 1s1
碧迪BD cdc42抗体(BD Transduction Laboratories, 610929)被用于被用于免疫印迹在人类样本上 (图 1s1). elife (2016) ncbi
小鼠 单克隆(44/CDC42)
  • 免疫细胞化学; 人类; 1:300; 图 s5i
  • 免疫印迹; 人类; 1:300; 图 s5f
碧迪BD cdc42抗体(BD Biosciences, 610928)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s5i) 和 被用于免疫印迹在人类样本上浓度为1:300 (图 s5f). Nat Cell Biol (2015) ncbi
小鼠 单克隆(44/CDC42)
  • 免疫印迹; 小鼠; 图 4
碧迪BD cdc42抗体(Becton Dickinson, 610928)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Biol Cell (2015) ncbi
小鼠 单克隆(44/CDC42)
  • 免疫印迹; 人类; 图 s5
碧迪BD cdc42抗体(BD Transduction Laboratories, 610929)被用于被用于免疫印迹在人类样本上 (图 s5). Hum Genet (2015) ncbi
小鼠 单克隆(44/CDC42)
  • 免疫印迹; 斑马鱼; 图 1d
碧迪BD cdc42抗体(BD Transduction Laboratories, 610929)被用于被用于免疫印迹在斑马鱼样本上 (图 1d). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(44/CDC42)
  • 免疫细胞化学; 人类; 图 s4g
碧迪BD cdc42抗体(BD, 610929)被用于被用于免疫细胞化学在人类样本上 (图 s4g). J Cell Biol (2015) ncbi
小鼠 单克隆(44/CDC42)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD cdc42抗体(BD Transduction Laboratories, 610929)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Breast Cancer Res (2013) ncbi
文章列表
  1. Zhang Y, Jin X, Liang J, Guo Y, Sun G, Zeng X, et al. Extracellular vesicles derived from ODN-stimulated macrophages transfer and activate Cdc42 in recipient cells and thereby increase cellular permissiveness to EV uptake. Sci Adv. 2019;5:eaav1564 pubmed 出版商
  2. Huang K, Ru B, Zhang Y, Chan W, Chow S, Zhang J, et al. Sertoli cell-specific coxsackievirus and adenovirus receptor knockout regulates cell adhesion and gene transcription via β-catenin inactivation and Cdc42 activation. FASEB J. 2019;33:7588-7602 pubmed 出版商
  3. Lin C, Zhang Y, Zhang K, Zheng Y, Lu L, Chang H, et al. Fever Promotes T Lymphocyte Trafficking via a Thermal Sensory Pathway Involving Heat Shock Protein 90 and α4 Integrins. Immunity. 2019;50:137-151.e6 pubmed 出版商
  4. Ge J, Burnier L, Adamopoulou M, Kwa M, Schaks M, Rottner K, et al. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358-9369 pubmed 出版商
  5. Mao X, Fan C, Yu X, Chen B, Jin F. DDEFL1 correlated with Rho GTPases activity in breast cancer. Oncotarget. 2017;8:112487-112497 pubmed 出版商
  6. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  7. Chrysanthou E, Gorringe K, Joseph C, Craze M, Nolan C, Diez Rodriguez M, et al. Phenotypic characterisation of breast cancer: the role of CDC42. Breast Cancer Res Treat. 2017;164:317-325 pubmed 出版商
  8. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  9. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  10. Horsthemke M, Bachg A, Groll K, Moyzio S, Müther B, Hemkemeyer S, et al. Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion. J Biol Chem. 2017;292:7258-7273 pubmed 出版商
  11. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed 出版商
  12. Lovric S, Gonçalves S, Gee H, Oskouian B, Srinivas H, Choi W, et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest. 2017;127:912-928 pubmed 出版商
  13. Scott N, Rogers L, Prudova A, Brown N, Fortelny N, Overall C, et al. Interactome disassembly during apoptosis occurs independent of caspase cleavage. Mol Syst Biol. 2017;13:906 pubmed 出版商
  14. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  15. Han F, Liu C, Zhang L, Zhou Y, Qin Y, Wang Y, et al. Globozoospermia and lack of acrosome formation in GM130-deficient mice. Cell Death Dis. 2017;8:e2532 pubmed 出版商
  16. Cui X, Song L, Bai Y, Wang Y, Wang B, Wang W. Elevated IQGAP1 and CDC42 levels correlate with tumor malignancy of human glioma. Oncol Rep. 2017;37:768-776 pubmed 出版商
  17. Rafiq N, Lieu Z, Jiang T, Yu C, Matsudaira P, Jones G, et al. Podosome assembly is controlled by the GTPase ARF1 and its nucleotide exchange factor ARNO. J Cell Biol. 2017;216:181-197 pubmed 出版商
  18. Chiang C, Flint M, Lin J, Spiropoulou C. Endocytic Pathways Used by Andes Virus to Enter Primary Human Lung Endothelial Cells. PLoS ONE. 2016;11:e0164768 pubmed 出版商
  19. Liu Z, Chu S, Yao S, Li Y, Fan S, Sun X, et al. CD74 interacts with CD44 and enhances tumorigenesis and metastasis via RHOA-mediated cofilin phosphorylation in human breast cancer cells. Oncotarget. 2016;7:68303-68313 pubmed 出版商
  20. Gaitanos T, Koerner J, Klein R. Tiam-Rac signaling mediates trans-endocytosis of ephrin receptor EphB2 and is important for cell repulsion. J Cell Biol. 2016;214:735-52 pubmed 出版商
  21. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  22. Shi D, Shi G, Xie J, Du X, Yang H. MicroRNA-27a Inhibits Cell Migration and Invasion of Fibroblast-Like Synoviocytes by Targeting Follistatin-Like Protein 1 in Rheumatoid Arthritis. Mol Cells. 2016;39:611-8 pubmed 出版商
  23. Rodas P, Álamos Musre A, Álvarez F, Escobar A, Tapia C, Osorio E, et al. The NarE protein of Neisseria gonorrhoeae catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion. FEMS Microbiol Lett. 2016;363: pubmed 出版商
  24. Xiao B, Chen D, Luo S, Hao W, Jing F, Liu T, et al. Extracellular translationally controlled tumor protein promotes colorectal cancer invasion and metastasis through Cdc42/JNK/ MMP9 signaling. Oncotarget. 2016;7:50057-50073 pubmed 出版商
  25. Mounir Z, Korn J, Westerling T, Lin F, Kirby C, Schirle M, et al. ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor. elife. 2016;5: pubmed 出版商
  26. Wynn M, Yates J, Evans C, Van Wassenhove L, Wu Z, Bridges S, et al. RhoC GTPase Is a Potent Regulator of Glutamine Metabolism and N-Acetylaspartate Production in Inflammatory Breast Cancer Cells. J Biol Chem. 2016;291:13715-29 pubmed 出版商
  27. Loebel D, Plageman T, Tang T, Jones V, Muccioli M, Tam P. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open. 2016;5:130-9 pubmed 出版商
  28. Quesada Gómez C, López Ureña D, Chumbler N, Kroh H, Castro Peña C, Rodriguez C, et al. Analysis of TcdB Proteins within the Hypervirulent Clade 2 Reveals an Impact of RhoA Glucosylation on Clostridium difficile Proinflammatory Activities. Infect Immun. 2016;84:856-65 pubmed 出版商
  29. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  30. Ogura Y, Hindi S, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun. 2015;6:10123 pubmed 出版商
  31. Bowser J, Blackburn M, Shipley G, Molina J, Dunner K, Broaddus R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest. 2016;126:220-38 pubmed 出版商
  32. Shrivastava A, Prasad A, Kuzontkoski P, Yu J, Groopman J. Slit2N Inhibits Transmission of HIV-1 from Dendritic Cells to T-cells by Modulating Novel Cytoskeletal Elements. Sci Rep. 2015;5:16833 pubmed 出版商
  33. Oprea T, Sklar L, Agola J, Guo Y, Silberberg M, Roxby J, et al. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases. PLoS ONE. 2015;10:e0142182 pubmed 出版商
  34. Michaux G, Massey Harroche D, Nicolle O, Rabant M, Brousse N, Goulet O, et al. The localisation of the apical Par/Cdc42 polarity module is specifically affected in microvillus inclusion disease. Biol Cell. 2016;108:19-28 pubmed 出版商
  35. Wang S, Hsu J, Ko C, Chiu N, Kan W, Lai M, et al. Astrocytic CCAAT/Enhancer-Binding Protein Delta Contributes to Glial Scar Formation and Impairs Functional Recovery After Spinal Cord Injury. Mol Neurobiol. 2016;53:5912-5927 pubmed 出版商
  36. Bruurs L, Donker L, Zwakenberg S, Zwartkruis F, Begthel H, Knisely A, et al. ATP8B1-mediated spatial organization of Cdc42 signaling maintains singularity during enterocyte polarization. J Cell Biol. 2015;210:1055-63 pubmed 出版商
  37. Priya R, Gomez G, Budnar S, Verma S, Cox H, Hamilton N, et al. Feedback regulation through myosin II confers robustness on RhoA signalling at E-cadherin junctions. Nat Cell Biol. 2015;17:1282-93 pubmed 出版商
  38. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, et al. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell. 2015;26:3489-503 pubmed 出版商
  39. Bijata M, Wlodarczyk J, Figiel I. Dystroglycan controls dendritic morphogenesis of hippocampal neurons in vitro. Front Cell Neurosci. 2015;9:199 pubmed 出版商
  40. Hwang D, Kohl S, Fan X, Vivante A, Chan S, Dworschak G, et al. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum Genet. 2015;134:905-16 pubmed 出版商
  41. Choi S, Baek J, Zuo X, Kim S, Dunaief J, Lipschutz J. Cdc42 and sec10 Are Required for Normal Retinal Development in Zebrafish. Invest Ophthalmol Vis Sci. 2015;56:3361-70 pubmed 出版商
  42. Westcott J, Prechtl A, Maine E, Dang T, Esparza M, Sun H, et al. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest. 2015;125:1927-43 pubmed 出版商
  43. Seo H, Woo J, Shin Y, Ko S. Identification of biomarkers regulated by rexinoids (LGD1069, LG100268 and Ro25-7386) in human breast cells using Affymetrix microarray. Mol Med Rep. 2015;12:800-18 pubmed 出版商
  44. Artym V, Swatkoski S, Matsumoto K, Campbell C, Petrie R, Dimitriadis E, et al. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network. J Cell Biol. 2015;208:331-50 pubmed 出版商
  45. Vitiello E, Ferreira J, Maiato H, Balda M, Matter K. The tumour suppressor DLC2 ensures mitotic fidelity by coordinating spindle positioning and cell-cell adhesion. Nat Commun. 2014;5:5826 pubmed 出版商
  46. Ko H, Guo L, Su B, Gao L, Gelman I. Suppression of chemotaxis by SSeCKS via scaffolding of phosphoinositol phosphates and the recruitment of the Cdc42 GEF, Frabin, to the leading edge. PLoS ONE. 2014;9:e111534 pubmed 出版商
  47. Toyo oka K, Wachi T, Hunt R, Baraban S, Taya S, Ramshaw H, et al. 14-3-3ε and ζ regulate neurogenesis and differentiation of neuronal progenitor cells in the developing brain. J Neurosci. 2014;34:12168-81 pubmed 出版商
  48. Sakamori R, Yu S, Zhang X, Hoffman A, Sun J, Das S, et al. CDC42 inhibition suppresses progression of incipient intestinal tumors. Cancer Res. 2014;74:5480-92 pubmed 出版商
  49. Bray K, Gillette M, Young J, Loughran E, Hwang M, Sears J, et al. Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration. Breast Cancer Res. 2013;15:R91 pubmed
  50. Reginensi A, Scott R, Gregorieff A, Bagherie Lachidan M, Chung C, Lim D, et al. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 2013;9:e1003380 pubmed 出版商