这是一篇来自已证抗体库的有关人类 cdk6的综述,是根据56篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合cdk6 抗体。
cdk6 同义词: MCPH12; PLSTIRE

圣克鲁斯生物技术
小鼠 单克隆(B-10)
  • 免疫印迹; 人类; 1:1000; 图 13
圣克鲁斯生物技术 cdk6抗体(Santa Cruz, sc-7961)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 13). Int J Oncol (2022) ncbi
小鼠 单克隆(B-10)
  • 免疫印迹; 人类; 图 3f
圣克鲁斯生物技术 cdk6抗体(Santa Cruz, sc-7961)被用于被用于免疫印迹在人类样本上 (图 3f). Mol Cancer (2020) ncbi
小鼠 单克隆(B-10)
  • 免疫印迹; 人类; 图 5g
圣克鲁斯生物技术 cdk6抗体(Santa Cruz, sc-7961)被用于被用于免疫印迹在人类样本上 (图 5g). J Exp Clin Cancer Res (2019) ncbi
小鼠 单克隆(B-10)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术 cdk6抗体(Santa Cruz, sc-7961)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Rep (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 1g
圣克鲁斯生物技术 cdk6抗体(Santa Cruz, B?\10)被用于被用于免疫印迹在人类样本上 (图 1g). EMBO J (2017) ncbi
小鼠 单克隆(B-10)
  • 免疫印迹; 人类; 图 1g
圣克鲁斯生物技术 cdk6抗体(Santa Cruz, B?\10)被用于被用于免疫印迹在人类样本上 (图 1g). EMBO J (2017) ncbi
小鼠 单克隆(B-10)
  • 免疫印迹; 人类; 1:500; 图 5h
圣克鲁斯生物技术 cdk6抗体(Santa Cruz, sc-7961)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5h). Nat Commun (2017) ncbi
小鼠 单克隆(SPM383)
  • 免疫印迹; 大鼠; 1:1000; 图 4e
圣克鲁斯生物技术 cdk6抗体(Santa Cruz, sc-56362)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4e). Mol Cell Biochem (2016) ncbi
小鼠 单克隆(DCS-83)
  • 免疫印迹; 大鼠; 1:500; 图 3
圣克鲁斯生物技术 cdk6抗体(Santa Cruz, SC53638)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Int J Mol Med (2015) ncbi
小鼠 单克隆(B-10)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术 cdk6抗体(Santa Cruz, sc7961)被用于被用于免疫细胞化学在人类样本上 (图 3). Cell Stem Cell (2015) ncbi
小鼠 单克隆(B-10)
  • 免疫组化; African green monkey; 1:400
圣克鲁斯生物技术 cdk6抗体(Santa Cruz Biotechnology, SC-7961)被用于被用于免疫组化在African green monkey样本上浓度为1:400. Endocrinology (2014) ncbi
小鼠 单克隆(B-10)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 cdk6抗体(Santa Cruz, sc-7961)被用于被用于免疫印迹在人类样本上 (图 3). Clin Cancer Res (2010) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司 cdk6抗体(Abcam, ab151247)被用于被用于免疫印迹在人类样本上 (图 2f). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(EPR4515)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 cdk6抗体(Abcam, ab124821)被用于被用于免疫印迹在人类样本上 (图 5a). Breast Cancer Res (2021) ncbi
domestic rabbit 单克隆(EPR4515)
  • 免疫印迹; 人类; 1:250; 图 3e
艾博抗(上海)贸易有限公司 cdk6抗体(Abcam, ab124821)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 3e). Cancer Res Treat (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 cdk6抗体(Abcam, ab151247)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 cdk6抗体(Abcam, ab131469)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). elife (2020) ncbi
domestic rabbit 单克隆(EPR4515)
  • 免疫印迹; 人类; 图 2j
艾博抗(上海)贸易有限公司 cdk6抗体(Abcam, ab124821)被用于被用于免疫印迹在人类样本上 (图 2j). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR4515)
  • 免疫印迹; 人类; 图 7g
艾博抗(上海)贸易有限公司 cdk6抗体(Abcam, ab124821)被用于被用于免疫印迹在人类样本上 (图 7g). Sci Rep (2016) ncbi
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司 cdk6抗体(Abcam, ab54576)被用于被用于免疫细胞化学在人类样本上 (图 3). Cell Stem Cell (2015) ncbi
赛默飞世尔
小鼠 单克隆(K6.83 (DCS-83))
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 s17
  • 免疫印迹; 小鼠; 1:1000; 图 s16c
赛默飞世尔 cdk6抗体(Thermo, AHZ0232)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 s17) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s16c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 3c
  • 免疫印迹; 人类; 1:500; 图 s7a
赛默飞世尔 cdk6抗体(Pierce, PA5-27978)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s7a). Nat Commun (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D4S8S)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signal, 13331)被用于被用于免疫印迹在人类样本上 (图 2d). Clin Transl Med (2021) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 小鼠; 1:1000; 图 5a, 5f
赛信通(上海)生物试剂有限公司 cdk6抗体(CST, 3136T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a, 5f). Aging Cell (2021) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling Technology, 3136)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Clin Transl Med (2021) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 cdk6抗体(CST, 3136T)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Am J Cancer Res (2021) ncbi
小鼠 单克隆(DCS83)
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于. Protein Expr Purif (2021) ncbi
domestic rabbit 单克隆(D4S8S)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 13331)被用于被用于免疫印迹在人类样本上 (图 1c). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(D4S8S)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 13331)被用于被用于免疫印迹在人类样本上 (图 1a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(D4S8S)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 cdk6抗体(CST, 13331)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Rep (2019) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 cdk6抗体(Sigma, 3136)被用于被用于免疫印迹在小鼠样本上 (图 4d). Cell Rep (2019) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling Technology, 3136)被用于被用于免疫印迹在人类样本上 (图 4e). Cancer Lett (2019) ncbi
domestic rabbit 单克隆(D4S8S)
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling Technology, 13331)被用于被用于免疫印迹在人类样本上 (图 6h). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D4S8S)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 13331P)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Cell (2017) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 s2i
  • 免疫印迹基因敲除验证; 小鼠; 图 s2h
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上 (图 s2i) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 s2h). Nature (2018) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上 (图 2g). Oncogene (2017) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上 (图 s1c). Nature (2017) ncbi
domestic rabbit 单克隆(D4S8S)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling Technology, 13331S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Mol Med Rep (2017) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D4S8S)
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell signaling, 13331)被用于被用于免疫印迹在大鼠样本上 (图 4a). Mol Med Rep (2017) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 1:500; 图 2b
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell signaling, 3136)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Cell Cycle (2017) ncbi
domestic rabbit 单克隆(D4S8S)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 13331)被用于被用于免疫印迹在人类样本上 (图 5a). Neuroendocrinology (2018) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5a). Nat Commun (2016) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Oncogene (2017) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上 (图 3c). J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling Technology, DCS83)被用于被用于免疫印迹在小鼠样本上 (图 1). J Clin Invest (2016) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上 (图 4). Cell Cycle (2015) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上 (图 3d). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D4S8S)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 13331)被用于被用于免疫印迹在人类样本上 (图 6a). Neuroendocrinology (2016) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上 (图 4). Drug Des Devel Ther (2015) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 1:2000; 图 4a
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling Technology, DCS83)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 1,2
  • 免疫印迹; 小鼠; 图 1,2
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling Technology Inc., 3136S)被用于被用于免疫印迹在人类样本上 (图 1,2) 和 被用于免疫印迹在小鼠样本上 (图 1,2). Oncogene (2015) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling Technology, 3136)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上 (图 5). J Cell Physiol (2015) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上 (图 6e). Mol Endocrinol (2014) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(DCS83)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 cdk6抗体(Cell Signaling, 3136)被用于被用于免疫印迹在人类样本上浓度为1:500. PPAR Res (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2i
西格玛奥德里奇 cdk6抗体(Sigma-Aldrich, HPA002637)被用于被用于免疫印迹在小鼠样本上 (图 2i). Life Sci Alliance (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4f
西格玛奥德里奇 cdk6抗体(MilliporeSigma, HPA002637)被用于被用于染色质免疫沉淀 在人类样本上 (图 4f). J Clin Invest (2020) ncbi
文章列表
  1. Geng F, Yang W, Song D, Hou H, Han B, Chen Y, et al. MDIG, a 2‑oxoglutarate‑dependent oxygenase, acts as an oncogene and predicts the prognosis of multiple types of cancer. Int J Oncol. 2022;61: pubmed 出版商
  2. Liu X, Liu Y, Liu Z, Lin C, Meng F, Xu L, et al. CircMYH9 drives colorectal cancer growth by regulating serine metabolism and redox homeostasis in a p53-dependent manner. Mol Cancer. 2021;20:114 pubmed 出版商
  3. Zhang Y, He L, Huang L, Yao S, Lin N, Li P, et al. Oncogenic PAX6 elicits CDK4/6 inhibitor resistance by epigenetically inactivating the LATS2-Hippo signaling pathway. Clin Transl Med. 2021;11:e503 pubmed 出版商
  4. Xu X, Shen X, Wang J, Feng W, Wang M, Miao X, et al. YAP prevents premature senescence of astrocytes and cognitive decline of Alzheimer's disease through regulating CDK6 signaling. Aging Cell. 2021;20:e13465 pubmed 出版商
  5. Sakai H, Kawakami H, Teramura T, Onodera Y, Somers E, Furuuchi K, et al. Folate receptor α increases chemotherapy resistance through stabilizing MDM2 in cooperation with PHB2 that is overcome by MORAb-202 in gastric cancer. Clin Transl Med. 2021;11:e454 pubmed 出版商
  6. Kaminska K, Akrap N, Staaf J, Alves C, Ehinger A, Ebbesson A, et al. Distinct mechanisms of resistance to fulvestrant treatment dictate level of ER independence and selective response to CDK inhibitors in metastatic breast cancer. Breast Cancer Res. 2021;23:26 pubmed 出版商
  7. Yang D, Xu X, Wang X, Feng W, Shen X, Zhang J, et al. β-elemene promotes the senescence of glioma cells through regulating YAP-CDK6 signaling. Am J Cancer Res. 2021;11:370-388 pubmed
  8. Redl E, Sheibani Tezerji R, Cardona C, Hamminger P, Timelthaler G, Hassler M, et al. Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK-driven lymphomagenesis. Life Sci Alliance. 2021;4: pubmed 出版商
  9. Abdel Aziz M, Fan Y, Liu L, Moasser M, Fu H, Jura N, et al. Expression and purification of active human kinases using Pichia pastoris as a general-purpose host. Protein Expr Purif. 2021;179:105780 pubmed 出版商
  10. Zhang Y, Zhang L, Lu S, Xiang Y, Zeng C, He T, et al. Long Non-coding RNA CASC15 Promotes Intrahepatic Cholangiocarcinoma Possibly through Inducing PRDX2/PI3K/AKT Axis. Cancer Res Treat. 2021;53:184-198 pubmed 出版商
  11. Muller A, Dickmanns A, Resch C, Schakel K, Hailfinger S, Dobbelstein M, et al. The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis. J Clin Invest. 2020;: pubmed 出版商
  12. Qi J, Liu S, Liu W, Cai G, Liao G. Identification of UAP1L1 as tumor promotor in gastric cancer through regulation of CDK6. Aging (Albany NY). 2020;12:6904-6927 pubmed 出版商
  13. Che H, Li J, Li Y, Ma C, Liu H, Qin J, et al. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. elife. 2020;9: pubmed 出版商
  14. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28 pubmed 出版商
  15. Patel H, Tao N, Lee K, Huerta M, Arlt H, Mullarkey T, et al. Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Res. 2019;21:146 pubmed 出版商
  16. Si J, Ma Y, Bi J, Xiong Y, Lv C, Li S, et al. Shisa3 brakes resistance to EGFR-TKIs in lung adenocarcinoma by suppressing cancer stem cell properties. J Exp Clin Cancer Res. 2019;38:481 pubmed 出版商
  17. Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019;11:7830-7846 pubmed 出版商
  18. Krimpenfort P, Snoek M, Lambooij J, Song J, van der Weide R, Bhaskaran R, et al. A natural WNT signaling variant potently synergizes with Cdkn2ab loss in skin carcinogenesis. Nat Commun. 2019;10:1425 pubmed 出版商
  19. Cornell L, Wander S, Visal T, Wagle N, Shapiro G. MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. Cell Rep. 2019;26:2667-2680.e7 pubmed 出版商
  20. Lin K, Qiang W, Zhu M, Ding Y, Shi Q, Chen X, et al. Mammalian Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor Cdkn1b. Cell Rep. 2019;26:2434-2450.e6 pubmed 出版商
  21. Song X, Chen H, Zhang C, Yu Y, Chen Z, Liang H, et al. SRC-3 inhibition blocks tumor growth of pancreatic ductal adenocarcinoma. Cancer Lett. 2019;442:310-319 pubmed 出版商
  22. Martinez Soria N, McKenzie L, Draper J, Ptasinska A, Issa H, Potluri S, et al. The Oncogenic Transcription Factor RUNX1/ETO Corrupts Cell Cycle Regulation to Drive Leukemic Transformation. Cancer Cell. 2018;34:626-642.e8 pubmed 出版商
  23. Liao P, Zeng S, Zhou X, Chen T, Zhou F, Cao B, et al. Mutant p53 Gains Its Function via c-Myc Activation upon CDK4 Phosphorylation at Serine 249 and Consequent PIN1 Binding. Mol Cell. 2017;68:1134-1146.e6 pubmed 出版商
  24. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  25. Zhou Y, Huang T, Zhang J, Wong C, Zhang B, Dong Y, et al. TEAD1/4 exerts oncogenic role and is negatively regulated by miR-4269 in gastric tumorigenesis. Oncogene. 2017;36:6518-6530 pubmed 出版商
  26. Wang H, Nicolay B, Chick J, Gao X, Geng Y, Ren H, et al. The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature. 2017;546:426-430 pubmed 出版商
  27. Sun J, Zhang X, Sun Y, Tang Z, Guo D. Effects of Hylomecon vernalis ethanol extracts on cell cycle and apoptosis of colon cancer cells. Mol Med Rep. 2017;15:3485-3492 pubmed 出版商
  28. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  29. Mlcochova P, Sutherland K, Watters S, Bertoli C, de Bruin R, Rehwinkel J, et al. A G1-like state allows HIV-1 to bypass SAMHD1 restriction in macrophages. EMBO J. 2017;36:604-616 pubmed 出版商
  30. Yang F, Li H, Du Y, Shi Q, Zhao L. Downregulation of microRNA‑34b is responsible for the elevation of blood pressure in spontaneously hypertensive rats. Mol Med Rep. 2017;15:1031-1036 pubmed 出版商
  31. Liu T, Yu J, Deng M, Yin Y, Zhang H, Luo K, et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat Commun. 2017;8:13923 pubmed 出版商
  32. Nuzzo A, Giuffrida D, Masturzo B, Mele P, Piccoli E, Eva C, et al. Altered expression of G1/S phase cell cycle regulators in placental mesenchymal stromal cells derived from preeclamptic pregnancies with fetal-placental compromise. Cell Cycle. 2017;16:200-212 pubmed 出版商
  33. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  34. Hong Y, Liang H, Uzair Ur Rehman -, Wang Y, Zhang W, Zhou Y, et al. miR-96 promotes cell proliferation, migration and invasion by targeting PTPN9 in breast cancer. Sci Rep. 2016;6:37421 pubmed 出版商
  35. Schlierf A, Altmann E, Quancard J, Jefferson A, Assenberg R, Renatus M, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166 pubmed 出版商
  36. Wu K, Phuektes P, Kumar P, Goh G, Moreau D, Chow V, et al. Human genome-wide RNAi screen reveals host factors required for enterovirus 71 replication. Nat Commun. 2016;7:13150 pubmed 出版商
  37. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  38. Li J, Tang C, Li L, Li R, Fan Y. Quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo. J Exp Clin Cancer Res. 2016;35:61 pubmed 出版商
  39. Yuan W, Tang C, Zhu W, Zhu J, Lin Q, Fu Y, et al. CDK6 mediates the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy. Mol Cell Biochem. 2016;412:289-96 pubmed 出版商
  40. Lagarrigue S, Lopez Mejia I, Denechaud P, Escoté X, Castillo Armengol J, Jimenez V, et al. CDK4 is an essential insulin effector in adipocytes. J Clin Invest. 2016;126:335-48 pubmed 出版商
  41. Adam M, Matt S, Christian S, Hess Stumpp H, Haegebarth A, Hofmann T, et al. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 2015;14:3734-47 pubmed 出版商
  42. Kim Y, Chen C, Bolton E. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells. PLoS ONE. 2015;10:e0138286 pubmed 出版商
  43. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  44. Chiang K, Chen H, Hsu S, Pang J, Wang S, Hsu J, et al. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo. Drug Des Devel Ther. 2015;9:4631-8 pubmed 出版商
  45. Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, et al. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med. 2015;36:1001-11 pubmed 出版商
  46. Marzagalli M, Casati L, Moretti R, Montagnani Marelli M, Limonta P. Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines. PLoS ONE. 2015;10:e0134396 pubmed 出版商
  47. Navarro F, Lieberman J. miR-34 and p53: New Insights into a Complex Functional Relationship. PLoS ONE. 2015;10:e0132767 pubmed 出版商
  48. Bikkavilli R, Avasarala S, Van Scoyk M, Arcaroli J, Brzezinski C, Zhang W, et al. Wnt7a is a novel inducer of β-catenin-independent tumor-suppressive cellular senescence in lung cancer. Oncogene. 2015;34:5317-28 pubmed 出版商
  49. Laurenti E, Frelin C, Xie S, Ferrari R, Dunant C, Zandi S, et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell. 2015;16:302-13 pubmed 出版商
  50. Su C, Zhang C, Tecle A, Fu X, He J, Song J, et al. Tudor staphylococcal nuclease (Tudor-SN), a novel regulator facilitating G1/S phase transition, acting as a co-activator of E2F-1 in cell cycle regulation. J Biol Chem. 2015;290:7208-20 pubmed 出版商
  51. Dumitrescu A, Aberdeen G, Pepe G, Albrecht E. Placental estrogen suppresses cyclin D1 expression in the nonhuman primate fetal adrenal cortex. Endocrinology. 2014;155:4774-84 pubmed 出版商
  52. Zhang K, Dai L, Zhang B, Xu X, Shi J, Fu L, et al. miR-203 is a direct transcriptional target of E2F1 and causes G1 arrest in esophageal cancer cells. J Cell Physiol. 2015;230:903-10 pubmed 出版商
  53. Wang Y, Zhou D, Chen S. SGK3 is an androgen-inducible kinase promoting prostate cancer cell proliferation through activation of p70 S6 kinase and up-regulation of cyclin D1. Mol Endocrinol. 2014;28:935-48 pubmed 出版商
  54. van der Linden M, Willekes M, van Roon E, Seslija L, Schneider P, Pieters R, et al. MLL fusion-driven activation of CDK6 potentiates proliferation in MLL-rearranged infant ALL. Cell Cycle. 2014;13:834-44 pubmed 出版商
  55. Malaviya A, Sylvester P. Synergistic Antiproliferative Effects of Combined ? -Tocotrienol and PPAR ? Antagonist Treatment Are Mediated through PPAR ? -Independent Mechanisms in Breast Cancer Cells. PPAR Res. 2014;2014:439146 pubmed 出版商
  56. Yang G, Chang B, Yang F, Guo X, Cai K, Xiao X, et al. Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clin Cancer Res. 2010;16:3171-81 pubmed 出版商