这是一篇来自已证抗体库的有关人类 嗜铬颗粒蛋白A (chromogranin A) 的综述,是根据67篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合嗜铬颗粒蛋白A 抗体。
嗜铬颗粒蛋白A 同义词: CGA

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1e, 4b, 4c
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, 15160)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1e, 4b, 4c). Cell Mol Gastroenterol Hepatol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1e
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, ab15160)被用于被用于免疫组化在小鼠样本上 (图 1e). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s3b
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, ab15160)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3b). Mucosal Immunol (2021) ncbi
domestic rabbit 单克隆(EP1030Y)
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, EP1030Y)被用于被用于免疫组化在小鼠样本上 (图 3). BMC Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1i
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, Ab15160)被用于被用于免疫组化在小鼠样本上 (图 1i). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1o
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, ab15160)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1o). Dis Model Mech (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s2c
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, ab15160)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2c). Oncotarget (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3c
  • 免疫细胞化学; 人类; 图 3b
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, ab15160)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a), 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3c), 被用于免疫细胞化学在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncol Lett (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s4c
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, ab15160)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:500; 图 e7f
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, ab15160)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 e7f). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5e
  • 免疫组化-石蜡切片; 人类; 图 7b
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, Ab15160)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e) 和 被用于免疫组化-石蜡切片在人类样本上 (图 7b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s2a
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, ab15160)被用于被用于免疫组化在小鼠样本上 (图 s2a). PLoS Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1e
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, ab15160)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1e). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, ab15160)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:4000; 图 s2
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, 15160)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:4000 (图 s2). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Abcam, ab15160)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Sci Rep (2016) ncbi
赛默飞世尔
domestic rabbit 单克隆(SP12)
  • 免疫印迹; 大鼠; 图 8c
赛默飞世尔嗜铬颗粒蛋白A抗体(ThermoFisher, MA5-14536)被用于被用于免疫印迹在大鼠样本上 (图 8c). Nat Commun (2020) ncbi
小鼠 单克隆(LK2H10)
  • 免疫组化-石蜡切片; 人类; 图 7a
赛默飞世尔嗜铬颗粒蛋白A抗体(Thermo Scientific, MA5-13096)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7a). Sci Rep (2017) ncbi
小鼠 单克隆(LK2H10)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔嗜铬颗粒蛋白A抗体(Thermo Fisher, MS-324-P0)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(SP12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
赛默飞世尔嗜铬颗粒蛋白A抗体(Thermo Fisher, SP12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e). Contemp Oncol (Pozn) (2016) ncbi
domestic rabbit 单克隆(SP12)
  • 免疫组化; 人类; 1:50
赛默飞世尔嗜铬颗粒蛋白A抗体(Thermo Scientific, SP12)被用于被用于免疫组化在人类样本上浓度为1:50. Balkan Med J (2016) ncbi
小鼠 单克隆(LK2H10)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
赛默飞世尔嗜铬颗粒蛋白A抗体(NeoMarkers, LK2H10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2). BMC Endocr Disord (2016) ncbi
小鼠 单克隆(LK2H10)
  • 免疫组化-冰冻切片; 人类; 1:800; 图 5
赛默飞世尔嗜铬颗粒蛋白A抗体(Thermo Scientific, MS-324-P)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:800 (图 5). Gastroenterology (2016) ncbi
小鼠 单克隆(LK2H10)
  • 免疫组化; 人类; 1:150; 图 1
赛默飞世尔嗜铬颗粒蛋白A抗体(Thermo Fisher Scientific, LK2H10)被用于被用于免疫组化在人类样本上浓度为1:150 (图 1). Diabetes (2016) ncbi
小鼠 单克隆(LK2H10)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔嗜铬颗粒蛋白A抗体(Thermo Scientific, LK2H10+PHES)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Endocr Pathol (2015) ncbi
小鼠 单克隆(LK2H10)
  • 免疫组化-石蜡切片; 豚鼠; 1:800
赛默飞世尔嗜铬颗粒蛋白A抗体(Lab Vision Corp, LK2H10)被用于被用于免疫组化-石蜡切片在豚鼠样本上浓度为1:800. Tissue Cell (2015) ncbi
小鼠 单克隆(LK2H10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔嗜铬颗粒蛋白A抗体(Zymed, LK2H10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Int J Surg Pathol (2010) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫组化; 人类; 1:200; 图 1b
圣克鲁斯生物技术嗜铬颗粒蛋白A抗体(Santa Cruz, sc-393941)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1b). Cell Rep (2022) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1e
圣克鲁斯生物技术嗜铬颗粒蛋白A抗体(Santa Cruz Biotechnology, sc-393941)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1e). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:200; 图 5e
圣克鲁斯生物技术嗜铬颗粒蛋白A抗体(Santa Cruz, sc-393941)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5e). Nat Commun (2019) ncbi
小鼠 单克隆(F-12)
  • 免疫组化-冰冻切片; 小鼠; 图 s3c
圣克鲁斯生物技术嗜铬颗粒蛋白A抗体(Santa, sc-376827)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3c). Nat Commun (2018) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:500; 图 3c
圣克鲁斯生物技术嗜铬颗粒蛋白A抗体(Santa Cruz, sc-393941)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3c). Nat Commun (2016) ncbi
小鼠 单克隆(LK2H10)
  • 免疫印迹; 人类; 1:1000; 图 s3
圣克鲁斯生物技术嗜铬颗粒蛋白A抗体(Santa Cruz, LK2H10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). J Clin Endocrinol Metab (2016) ncbi
北京傲锐东源
小鼠 单克隆(OTI1G3)
  • 免疫细胞化学; 人类; 1:100; 图 1f
北京傲锐东源嗜铬颗粒蛋白A抗体(Beijing Zhongshan Golden Bridge Biotech, TA506095)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1f). J Cancer (2022) ncbi
Novus Biologicals
domestic rabbit 多克隆(9F9.F9)
  • 免疫组化; 小鼠; 1:500; 图 5d
Novus Biologicals嗜铬颗粒蛋白A抗体(Novus, NB120-15160SS)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5d). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(CGA/414)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1f
Novus Biologicals嗜铬颗粒蛋白A抗体(Novus Biologicals, NBP2-29428)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1f). J Neurosci (2018) ncbi
GeneTex
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 表 1
  • 免疫组化-石蜡切片; 人类; 1:2000; 表 1
GeneTex嗜铬颗粒蛋白A抗体(GeneTex, GTX 15160)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (表 1) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (表 1). Biochim Biophys Acta (2016) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(DAK-A3)
  • 免疫组化; 人类; 1:200; 图 s5b
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(DAKO, M0869)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s5b). iScience (2022) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, M0869)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). ESMO Open (2022) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, DAK-A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). BMC Cancer (2019) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3s1f
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, M086901)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3s1f). elife (2019) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 人类; 图 3c
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, M869)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3c). Science (2018) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, DAK-A3)被用于被用于免疫组化在人类样本上. Nature (2017) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 3a
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, M869)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 3a). Int J Mol Med (2016) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, DAK-A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Clin Cancer Res (2017) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, DAK-A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Nat Med (2016) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫细胞化学; 人类; 1:300; 图 1
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(DakoCytomation, DAK-A3)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化; 人类; 1:500; 表 1
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, DAK-A3)被用于被用于免疫组化在人类样本上浓度为1:500 (表 1). Pathol Int (2016) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 人类; 1:150
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, DAK-A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. Endocr J (2016) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 2
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(DakoCytomation, DAK-A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 2). J Pediatr Hematol Oncol (2016) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化; 人类; 1:5000
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(DAKO Corporation, DAK-A3)被用于被用于免疫组化在人类样本上浓度为1:5000. Virchows Arch (2015) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, M0869)被用于被用于免疫组化在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(DakoCytomation, DAK-A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Am J Surg Pathol (2015) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, DAK-A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. J Clin Pathol (2015) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(DAKO, DAK-A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Endocr Pathol (2014) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫细胞化学; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(DakoCytomation, M0869)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫细胞化学在人类样本上浓度为1:50. J Clin Invest (2014) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 人类; 1:4000
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, M0869)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000. Exp Mol Pathol (2014) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(DAKO, DAK-A3)被用于被用于免疫组化在人类样本上. Dig Endosc (2013) ncbi
小鼠 单克隆(DAK-A3)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司嗜铬颗粒蛋白A抗体(Dako, DAK-A3)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Surg Pathol (2009) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆(5H7)
  • 免疫组化; 人类; 0.84 ug/ml; 图 3o
徕卡显微系统(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Leica, 5H7)被用于被用于免疫组化在人类样本上浓度为0.84 ug/ml (图 3o). Nat Commun (2021) ncbi
单克隆(5H7)
  • 免疫组化-石蜡切片; 人类; 图 2b
徕卡显微系统(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Leica Biosystems/Novocastra, 5H7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Int J Mol Sci (2020) ncbi
小鼠 单克隆(5H7)
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Novocastra, NCL-L-CHROM-430)被用于被用于免疫组化在人类样本上. Kaohsiung J Med Sci (2016) ncbi
单克隆(5H7)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1c
徕卡显微系统(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Novocastra, PA0431)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1c). Oncol Lett (2016) ncbi
单克隆(5H7)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Novocastra, 5H7)被用于被用于免疫组化-石蜡切片在人类样本上. Hum Pathol (2015) ncbi
单克隆(5H7)
  • 免疫组化; 人类; 1:100
徕卡显微系统(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Novocastra, 5H7)被用于被用于免疫组化在人类样本上浓度为1:100. Arch Dermatol Res (2015) ncbi
单克隆(5H7)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
徕卡显微系统(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Novocastra, 5H7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Pathol Res Pract (2014) ncbi
小鼠 单克隆(5H7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
徕卡显微系统(上海)贸易有限公司嗜铬颗粒蛋白A抗体(Novocastra, NCL-CHROM-430)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Acta Neuropathol Commun (2014) ncbi
文章列表
  1. Duan S, Sawyer T, Sontz R, Wieland B, Diaz A, Merchant J. GFAP-directed Inactivation of Men1 Exploits Glial Cell Plasticity in Favor of Neuroendocrine Reprogramming. Cell Mol Gastroenterol Hepatol. 2022;14:1025-1051 pubmed 出版商
  2. Koide T, Koyanagi Aoi M, Uehara K, Kakeji Y, Aoi T. CDX2-induced intestinal metaplasia in human gastric organoids derived from induced pluripotent stem cells. iScience. 2022;25:104314 pubmed 出版商
  3. Yan S, Conley J, Reilly A, Stull N, Abhyankar S, Ericsson A, et al. Intestinal Gpr17 deficiency improves glucose metabolism by promoting GLP-1 secretion. Cell Rep. 2022;38:110179 pubmed 出版商
  4. Zhao Y, Wang Q, Zeng Y, Xie Y, Zhou J. Gastrin/CCK-B Receptor Signaling Promotes Cell Invasion and Metastasis by Upregulating MMP-2 and VEGF Expression in Gastric Cancer. J Cancer. 2022;13:134-145 pubmed 出版商
  5. Simbolo M, Centonze G, Ali G, Garzone G, Taormina S, Sabella G, et al. Integrative molecular analysis of combined small-cell lung carcinomas identifies major subtypes with different therapeutic opportunities. ESMO Open. 2022;7:100308 pubmed 出版商
  6. Risbridger G, Clark A, Porter L, Toivanen R, Bakshi A, Lister N, et al. The MURAL collection of prostate cancer patient-derived xenografts enables discovery through preclinical models of uro-oncology. Nat Commun. 2021;12:5049 pubmed 出版商
  7. Das B, Okamoto K, Rabalais J, Young J, Barrett K, Sivagnanam M. Aberrant Epithelial Differentiation Contributes to Pathogenesis in a Murine Model of Congenital Tufting Enteropathy. Cell Mol Gastroenterol Hepatol. 2021;12:1353-1371 pubmed 出版商
  8. Krausová A, Buresova P, Sarnova L, Oyman Eyrilmez G, Skarda J, Wohl P, et al. Plectin ensures intestinal epithelial integrity and protects colon against colitis. Mucosal Immunol. 2021;14:691-702 pubmed 出版商
  9. Hofving T, Elias E, Rehammar A, Inge L, Altiparmak G, Persson M, et al. SMAD4 haploinsufficiency in small intestinal neuroendocrine tumors. BMC Cancer. 2021;21:101 pubmed 出版商
  10. Quintero M, Liu S, Xia Y, Huang Y, Zou Y, Li G, et al. Cdk5rap3 is essential for intestinal Paneth cell development and maintenance. Cell Death Dis. 2021;12:131 pubmed 出版商
  11. Lin L, Petralia R, Lake R, Wang Y, Hoffman D. A novel structure associated with aging is augmented in the DPP6-KO mouse brain. Acta Neuropathol Commun. 2020;8:197 pubmed 出版商
  12. Thorsen A, Khamis D, Kemp R, Colombé M, Lourenco F, Morrissey E, et al. Heterogeneity in clone dynamics within and adjacent to intestinal tumours identified by Dre-mediated lineage tracing. Dis Model Mech. 2021;14: pubmed 出版商
  13. Xu E, Vosburgh E, Wong C, Tang L, Notterman D. Genetic analysis of the cooperative tumorigenic effects of targeted deletions of tumor suppressors Rb1, Trp53, Men1, and Pten in neuroendocrine tumors in mice. Oncotarget. 2020;11:2718-2739 pubmed 出版商
  14. Dong Y, Li Y, Liu R, Li Y, Zhang H, Liu H, et al. Secretagogin, a marker for neuroendocrine cells, is more sensitive and specific in large cell neuroendocrine carcinoma compared with the markers CD56, CgA, Syn and Napsin A. Oncol Lett. 2020;19:2223-2230 pubmed 出版商
  15. Kővári B, Turkevi Nagy S, Báthori Á, Fekete Z, Krenacs L. Syntaxin 1: A Novel Robust Immunophenotypic Marker of Neuroendocrine Tumors. Int J Mol Sci. 2020;21: pubmed 出版商
  16. Santos M, Anderson C, Neschen S, Zumbrennen Bullough K, Romney S, Kahle Stephan M, et al. Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification. Nat Commun. 2020;11:296 pubmed 出版商
  17. Xing T, Benderman L, Sabu S, Parker J, Yang J, Lu Q, et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol. 2020;9:641-659 pubmed 出版商
  18. Fusco P, Parisatto B, Rampazzo E, Persano L, Frasson C, Di Meglio A, et al. Patient-derived organoids (PDOs) as a novel in vitro model for neuroblastoma tumours. BMC Cancer. 2019;19:970 pubmed 出版商
  19. Yung T, Poon F, Liang M, Coquenlorge S, McGaugh E, Hui C, et al. Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. Nat Commun. 2019;10:4647 pubmed 出版商
  20. Veres A, Faust A, Bushnell H, Engquist E, Kenty J, Harb G, et al. Charting cellular identity during human in vitro β-cell differentiation. Nature. 2019;569:368-373 pubmed 出版商
  21. Lodge E, Santambrogio A, Russell J, Xekouki P, Jacques T, Johnson R, et al. Homeostatic and tumourigenic activity of SOX2+ pituitary stem cells is controlled by the LATS/YAP/TAZ cascade. elife. 2019;8: pubmed 出版商
  22. Fenderico N, van Scherpenzeel R, Goldflam M, Proverbio D, Jordens I, Kralj T, et al. Anti-LRP5/6 VHHs promote differentiation of Wnt-hypersensitive intestinal stem cells. Nat Commun. 2019;10:365 pubmed 出版商
  23. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  24. Koren E, Yosefzon Y, Ankawa R, Soteriou D, Jacob A, Nevelsky A, et al. ARTS mediates apoptosis and regeneration of the intestinal stem cell niche. Nat Commun. 2018;9:4582 pubmed 出版商
  25. Park J, Lee J, Sheu K, Wang L, Balanis N, Nguyen K, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91-95 pubmed 出版商
  26. Lyons J, Ghazi P, Starchenko A, Tovaglieri A, Baldwin K, Poulin E, et al. The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile. PLoS Biol. 2018;16:e2002417 pubmed 出版商
  27. Jiang Z, Rajamanickam S, Justice N. Local Corticotropin-Releasing Factor Signaling in the Hypothalamic Paraventricular Nucleus. J Neurosci. 2018;38:1874-1890 pubmed 出版商
  28. Chang Y, Lin T, Campbell M, Pan C, Lee S, Lee H, et al. REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Sci Rep. 2017;7:42795 pubmed 出版商
  29. Scarpa A, Chang D, Nones K, Corbo V, Patch A, Bailey P, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543:65-71 pubmed 出版商
  30. Szczyrba J, Niesen A, Wagner M, Wandernoth P, Aumüller G, Wennemuth G. Neuroendocrine Cells of the Prostate Derive from the Neural Crest. J Biol Chem. 2017;292:2021-2031 pubmed 出版商
  31. El Salhy M, Mazzawi T, Umezawa K, Gilja O. Enteroendocrine cells, stem cells and differentiation progenitors in rats with TNBS-induced colitis. Int J Mol Med. 2016;38:1743-1751 pubmed 出版商
  32. Hinckelmann M, Virlogeux A, Niehage C, Poujol C, Choquet D, Hoflack B, et al. Self-propelling vesicles define glycolysis as the minimal energy machinery for neuronal transport. Nat Commun. 2016;7:13233 pubmed 出版商
  33. Maina P, Shao P, Liu Q, Fazli L, Tyler S, Nasir M, et al. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget. 2016;7:75585-75602 pubmed 出版商
  34. Deng Y, Chen X, Ye Y, Shi X, Zhu K, Huang L, et al. Histological characterisation and prognostic evaluation of 62 gastric neuroendocrine carcinomas. Contemp Oncol (Pozn). 2016;20:311-9 pubmed 出版商
  35. George J, Saito M, Tsuta K, Iwakawa R, Shiraishi K, Scheel A, et al. Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer. Clin Cancer Res. 2017;23:1220-1226 pubmed 出版商
  36. Tonyali S, Yazici S, Yeşilırmak A, Ergen A. The Ewing's Sarcoma Family of Tumors of Urinary Bladder: A Case Report and Review of the Literature. Balkan Med J. 2016;33:462-6 pubmed 出版商
  37. Fotouhi O, Kjellin H, Larsson C, Hashemi J, Barriuso J, Juhlin C, et al. Proteomics Suggests a Role for APC-Survivin in Response to Somatostatin Analog Treatment of Neuroendocrine Tumors. J Clin Endocrinol Metab. 2016;101:3616-3627 pubmed
  38. Ugras N, Yerci O, Coşkun S, Ocakoglu G, Sarkut P, Dündar H. Retrospective analysis of clinicopathological features of solid pseudopapillary neoplasm of the pancreas. Kaohsiung J Med Sci. 2016;32:356-61 pubmed 出版商
  39. Edfeldt K, Hellman P, Westin G, Stalberg P. A plausible role for actin gamma smooth muscle 2 (ACTG2) in small intestinal neuroendocrine tumorigenesis. BMC Endocr Disord. 2016;16:19 pubmed 出版商
  40. Sei Y, Feng J, Zhao X, Forbes J, Tang D, Nagashima K, et al. Polyclonal Crypt Genesis and Development of Familial Small Intestinal Neuroendocrine Tumors. Gastroenterology. 2016;151:140-51 pubmed 出版商
  41. Ravindran R, Loebbermann J, Nakaya H, Khan N, Ma H, Gama L, et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature. 2016;531:523-527 pubmed 出版商
  42. Beyaz S, Mana M, Roper J, Kedrin D, Saadatpour A, Hong S, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531:53-8 pubmed 出版商
  43. Kumar A, Coleman I, Morrissey C, Zhang X, True L, Gulati R, et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med. 2016;22:369-78 pubmed 出版商
  44. Ji C, Zhou M, Gan W, Zheng J, Yan X, Guo H. Advanced prostatic ductal carcinoma in a patient with a long survival time following a total pelvis exenteration: A case report. Oncol Lett. 2016;11:1509-1511 pubmed
  45. Gradiz R, Silva H, Carvalho L, Botelho M, Mota Pinto A. MIA PaCa-2 and PANC-1 - pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci Rep. 2016;6:21648 pubmed 出版商
  46. Nakagawa A, Adams C, Huang Y, Hamarneh S, Liu W, Von Alt K, et al. Selective and reversible suppression of intestinal stem cell differentiation by pharmacological inhibition of BET bromodomains. Sci Rep. 2016;6:20390 pubmed 出版商
  47. Korsgren E, Korsgren O. An Apparent Deficiency of Lymphatic Capillaries in the Islets of Langerhans in the Human Pancreas. Diabetes. 2016;65:1004-8 pubmed 出版商
  48. Bolier R, Tolenaars D, Kremer A, Saris J, Pares A, Verheij J, et al. Enteroendocrine cells are a potential source of serum autotaxin in men. Biochim Biophys Acta. 2016;1862:696-704 pubmed 出版商
  49. Yamaguchi M, Komori T, Nakata Y, Yagishita A, Morino M, Isozaki E. Multinodular and vacuolating neuronal tumor affecting amygdala and hippocampus: A quasi-tumor?. Pathol Int. 2016;66:34-41 pubmed 出版商
  50. Nakamura A, Mitsuhashi T, Takano Y, Miyoshi H, Kameda H, Nomoto H, et al. Usefulness of the octreotide test in Japanese patients for predicting the presence/absence of somatostatin receptor 2 expression in insulinomas. Endocr J. 2016;63:135-42 pubmed 出版商
  51. Kong G, Hofman M, Murray W, Wilson S, Wood P, Downie P, et al. Initial Experience With Gallium-68 DOTA-Octreotate PET/CT and Peptide Receptor Radionuclide Therapy for Pediatric Patients With Refractory Metastatic Neuroblastoma. J Pediatr Hematol Oncol. 2016;38:87-96 pubmed 出版商
  52. Lu J, Adam B, Jack A, Lam A, Broad R, Chik C. Immune Cell Infiltrates in Pituitary Adenomas: More Macrophages in Larger Adenomas and More T Cells in Growth Hormone Adenomas. Endocr Pathol. 2015;26:263-72 pubmed 出版商
  53. Vanoli A, Argenti F, Vinci A, La Rosa S, Viglio A, Riboni R, et al. Hepatoid carcinoma of the pancreas with lymphoid stroma: first description of the clinical, morphological, immunohistochemical, and molecular characteristics of an unusual pancreatic carcinoma. Virchows Arch. 2015;467:237-45 pubmed 出版商
  54. Hussein O, Elgamal D, Elgayar S. Structure of the secretory cells of male and female adult guinea pigs Harderian gland. Tissue Cell. 2015;47:323-35 pubmed 出版商
  55. Miracco C, Toscano M, Butorano M, Baldino G, Tacchini D, Barone A, et al. Unusual clear cell, lymphoplasmacyte-rich, dural-based tumor with divergent differentiation: a tricky case mimicking a meningioma. Hum Pathol. 2015;46:1050-6 pubmed 出版商
  56. Aguilera Ã, González Sancho J, Zazo S, Rincón R, Fernández A, Tapia O, et al. Nuclear DICKKOPF-1 as a biomarker of chemoresistance and poor clinical outcome in colorectal cancer. Oncotarget. 2015;6:5903-17 pubmed
  57. Kim J, Kim M, Kim K, Song K, Lee S, Hwang D, et al. Clinicopathologic and prognostic significance of multiple hormone expression in pancreatic neuroendocrine tumors. Am J Surg Pathol. 2015;39:592-601 pubmed 出版商
  58. Projetti F, Serrano E, Vergez S, Bissainthe A, Delisle M, Uro Coste E. Is neuroendocrine differentiation useful to discriminate primary sinonasal intestinal-type adenocarcinomas from metastatic colorectal adenocarcinomas?. J Clin Pathol. 2015;68:79-82 pubmed 出版商
  59. Gurzu S, Ciortea D, Tamasi A, Golea M, Bodi A, Sahlean D, et al. The immunohistochemical profile of granular cell (Abrikossoff) tumor suggests an endomesenchymal origin. Arch Dermatol Res. 2015;307:151-7 pubmed 出版商
  60. Kasem K, Lam A. Adrenal oncocytic phaeochromocytoma with putative adverse histologic features: a unique case report and review of the literature. Endocr Pathol. 2014;25:416-21 pubmed 出版商
  61. Changchien Y, Bocskai P, Kovacs I, Hargitai Z, Kollár S, Torok M. Pleomorphic hyalinizing angiectatic tumor of soft parts: case report with unusual ganglion-like cells and review of the literature. Pathol Res Pract. 2014;210:1146-51 pubmed 出版商
  62. Scharfmann R, Pechberty S, Hazhouz Y, von Bülow M, Bricout Neveu E, Grenier Godard M, et al. Development of a conditionally immortalized human pancreatic ? cell line. J Clin Invest. 2014;124:2087-98 pubmed 出版商
  63. Sørdal Ø, Qvigstad G, Nordrum I, Sandvik A, Gustafsson B, Waldum H. The PAS positive material in gastric cancer cells of signet ring type is not mucin. Exp Mol Pathol. 2014;96:274-8 pubmed 出版商
  64. Bodi I, Curran O, Selway R, Elwes R, Burrone J, Laxton R, et al. Two cases of multinodular and vacuolating neuronal tumour. Acta Neuropathol Commun. 2014;2:7 pubmed 出版商
  65. Noda Y, Fujita N, Kobayashi G, Ito K, Horaguchi J, Hashimoto S, et al. Prospective randomized controlled study comparing cell block method and conventional smear method for bile cytology. Dig Endosc. 2013;25:444-52 pubmed 出版商
  66. Yong Jiang -, Huawei Liu -, Hu Long -, Yingying Yang -, Dianying Liao -, Xiuhui Zhang -. Goblet cell carcinoid of the appendix: a clinicopathological and immunohistochemical study of 26 cases from southwest china. Int J Surg Pathol. 2010;18:488-92 pubmed 出版商
  67. Ryan P, Nguyen V, Gholoum S, Carpineta L, Abish S, Ahmed N, et al. Polypoid PEComa in the rectum of a 15-year-old girl: case report and review of PEComa in the gastrointestinal tract. Am J Surg Pathol. 2009;33:475-82 pubmed 出版商