这是一篇来自已证抗体库的有关人类 水闸蛋白1 (claudin-1) 的综述,是根据128篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合水闸蛋白1 抗体。
水闸蛋白1 同义词: CLD1; ILVASC; SEMP1

赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 5a
赛默飞世尔水闸蛋白1抗体(ZYMED实验室, 51-9000)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 0.5 ug/ml; 图 6k
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于被用于免疫印迹在小鼠样本上浓度为0.5 ug/ml (图 6k). Science (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 3c
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3c). Science (2020) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫印迹; 小鼠; 1:500; 图 6d
赛默飞世尔水闸蛋白1抗体(Zymed, 71-7800)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6d). Cell Mol Gastroenterol Hepatol (2020) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫细胞化学; 小鼠; 图 3a
赛默飞世尔水闸蛋白1抗体(Thermo Fisher, 717800)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6a
  • 免疫印迹; 小鼠; 1:200; 图 6b
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 6b). Cell Mol Gastroenterol Hepatol (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 图 2
  • 免疫印迹; 犬; 图 2
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于被用于免疫细胞化学在犬样本上 (图 2) 和 被用于免疫印迹在犬样本上 (图 2). PLoS ONE (2017) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫印迹; 大鼠; 1:250; 图 7c
赛默飞世尔水闸蛋白1抗体(Invitrogen, 717800)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (图 7c). BMC Genomics (2017) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫印迹; 人类; 图 6c
赛默飞世尔水闸蛋白1抗体(生活技术, 71-7800)被用于被用于免疫印迹在人类样本上 (图 6c). J Clin Invest (2017) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类; 1:2000; 图 4d
赛默飞世尔水闸蛋白1抗体(ZYMED, 37-4900)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4d). Nat Commun (2017) ncbi
小鼠 单克隆(2H10D10)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:1000; 表 3
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:1000 (表 3). Mol Cell Biochem (2017) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫细胞化学; 人类; 1:50; 图 1b
赛默飞世尔水闸蛋白1抗体(Invitrogen, 71-7800)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1b). PLoS ONE (2016) ncbi
小鼠 单克隆(2H10D10)
  • 流式细胞仪; 人类; 1:100; 图 3a
  • 免疫沉淀; 人类; 图 6
  • 免疫细胞化学; 人类; 1:100; 图 3c
  • 免疫印迹; 人类; 1:500; 图 11a
赛默飞世尔水闸蛋白1抗体(Invitrogen, 374900)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3a), 被用于免疫沉淀在人类样本上 (图 6), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 11a). Exp Cell Res (2017) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫组化; 小鼠; 图 3e
赛默飞世尔水闸蛋白1抗体(Thermo Scientific, 71-7800)被用于被用于免疫组化在小鼠样本上 (图 3e). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛默飞世尔水闸蛋白1抗体(Invitrogen, 71-7800)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫细胞化学; domestic rabbit; 1:100; 图 6a
  • 免疫印迹; domestic rabbit; 1:1000; 图 6b
赛默飞世尔水闸蛋白1抗体(Thermo Fisher, 71-7800)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:100 (图 6a) 和 被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 6b). J Cell Physiol (2017) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类; 1:50; 图 5e
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 5e). J Nutr Biochem (2017) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛默飞世尔水闸蛋白1抗体(Invitrogen, 71-7800)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Inflamm Bowel Dis (2016) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫细胞化学; 犬; 图 7a
  • 免疫印迹; 犬; 图 1b
  • 免疫印迹; 人类; 图 1a
赛默飞世尔水闸蛋白1抗体(Zymed Laboratories, 71-7800)被用于被用于免疫细胞化学在犬样本上 (图 7a), 被用于免疫印迹在犬样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于被用于免疫印迹在人类样本上 (图 1b). Proteomics (2016) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类; 1:200; 图 3f
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3f). Acta Physiol (Oxf) (2017) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 2a
  • 免疫印迹; 犬; 1:1000; 图 1e
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 2a) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 1e). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s1d
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于被用于免疫细胞化学在小鼠样本上 (图 s1d). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫印迹; 小鼠; 1:250; 图 7a
赛默飞世尔水闸蛋白1抗体(Invitrogen, 71-7800)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 7a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:50; 图 4j
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 4j). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:1000; 图 3a
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 3a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(2H10D10)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔水闸蛋白1抗体(Thermo Fisher, 2H10D10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Drug Des Devel Ther (2016) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔水闸蛋白1抗体(Invitrogen, 374900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). elife (2016) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫组化; 小鼠; 图 3c
赛默飞世尔水闸蛋白1抗体(Thermo Fisher, 71-7800)被用于被用于免疫组化在小鼠样本上 (图 3c). Hepatology (2016) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛默飞世尔水闸蛋白1抗体(Novex, 374900)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔水闸蛋白1抗体(Invitrogen, 2H10D10)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫印迹; 人类; 图 2
赛默飞世尔水闸蛋白1抗体(Thermo Fisher Scientific, 71-7800)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔水闸蛋白1抗体(Zymed, 51-9000)被用于被用于免疫细胞化学在人类样本上 (图 5). J Tissue Eng Regen Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). J Control Release (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 1:1000; 表 6
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (表 6). Br J Nutr (2016) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化-石蜡切片; 国内马; 图 2
  • 免疫印迹; 国内马; 1:1000; 图 1
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫组化-石蜡切片在国内马样本上 (图 2) 和 被用于免疫印迹在国内马样本上浓度为1:1000 (图 1). J Vet Sci (2016) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔水闸蛋白1抗体(生活技术, 2H10D10)被用于被用于免疫印迹在小鼠样本上 (图 4). J Nutr Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Ultrastruct Pathol (2016) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫细胞化学; 小鼠; 图 3
赛默飞世尔水闸蛋白1抗体(生活技术, 71-7800)被用于被用于免疫细胞化学在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(MH25)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛默飞世尔水闸蛋白1抗体(LifeTechnologies, 717800)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类; 1:50; 图 3
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 3). Arch Biochem Biophys (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3
赛默飞世尔水闸蛋白1抗体(生活技术, 51-9000)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 5 ug/ml; 图 2
赛默飞世尔水闸蛋白1抗体(Invitrogen, 519000)被用于被用于免疫细胞化学在小鼠样本上浓度为5 ug/ml (图 2). Fluids Barriers CNS (2016) ncbi
小鼠 单克隆(2H10D10)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 2
赛默飞世尔水闸蛋白1抗体(生活技术, 2H10D10)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 2). Cell Microbiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔水闸蛋白1抗体(生活技术, 51-9000)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Biomaterials (2016) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类; 图 1
赛默飞世尔水闸蛋白1抗体(Zymed, 2H10D10)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛默飞世尔水闸蛋白1抗体(生活技术, 51-9000)被用于被用于免疫印迹在人类样本上 (图 1c). Oncogene (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔水闸蛋白1抗体(Invitrogene, 51-9000)被用于. Exp Cell Res (2015) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化-石蜡切片; 小鼠; 1:5000
赛默飞世尔水闸蛋白1抗体(Invitrogen, 2H10D10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000. Am J Pathol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类
赛默飞世尔水闸蛋白1抗体(生活技术, clone 2H10D10)被用于被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 鸡; 1:1000
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于被用于免疫印迹在鸡样本上浓度为1:1000. J Anim Physiol Anim Nutr (Berl) (2016) ncbi
domestic rabbit 多克隆(MH25)
赛默飞世尔水闸蛋白1抗体(Invitrogen, 71-7800)被用于. Endocr Relat Cancer (2015) ncbi
domestic rabbit 多克隆(MH25)
赛默飞世尔水闸蛋白1抗体(Invitrogen, 717800)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔水闸蛋白1抗体(生活技术, 51-9000)被用于. Am J Clin Nutr (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔水闸蛋白1抗体(生活技术, 51-9000)被用于. Biomaterials (2015) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类
赛默飞世尔水闸蛋白1抗体(Invitrogen, 2H10D10)被用于被用于免疫印迹在人类样本上. Hepatology (2015) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; African green monkey; 图 s1b
  • 免疫印迹; 人类; 1:400; 图 s1b
  • 免疫印迹; 猕猴; 图 s1b
赛默飞世尔水闸蛋白1抗体(Invitrogen, 2H10D10)被用于被用于免疫印迹在African green monkey样本上 (图 s1b), 被用于免疫印迹在人类样本上浓度为1:400 (图 s1b) 和 被用于免疫印迹在猕猴样本上 (图 s1b). Hepatology (2015) ncbi
domestic rabbit 多克隆(MH25)
赛默飞世尔水闸蛋白1抗体(Invitrogen, 71-7800)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(MH25)
赛默飞世尔水闸蛋白1抗体(Invitrogen, 71-7800)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于. Fluids Barriers CNS (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于. Eur J Pharm Biopharm (2015) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Int J Mol Med (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔水闸蛋白1抗体(Invitrogen, 51-9000)被用于. Surg Obes Relat Dis (2015) ncbi
domestic rabbit 多克隆(MH25)
赛默飞世尔水闸蛋白1抗体(Zymed-Life Technologies, 71-7800)被用于. Pharm Res (2015) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2
赛默飞世尔水闸蛋白1抗体(Invitrogen, 2H10D10)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2). Pathol Oncol Res (2014) ncbi
小鼠 单克隆(2H10D10)
  • 免疫细胞化学; 人类; 5 ug/ml; 图 s5
赛默飞世尔水闸蛋白1抗体(Invitrogen, 2H10D10)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml (图 s5). Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔水闸蛋白1抗体(Zymed, 51-9000)被用于. Perit Dial Int (2015) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔水闸蛋白1抗体(Zymed Laboratories, 37-4900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Clin Nutr (2014) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化-冰冻切片; 小鼠; 图 7
赛默飞世尔水闸蛋白1抗体(Invitrogen, clone 2H10D10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). Am J Pathol (2013) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 小鼠; 3 ug/ml; 图 3
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫印迹在小鼠样本上浓度为3 ug/ml (图 3). Am J Physiol Gastrointest Liver Physiol (2013) ncbi
小鼠 单克隆(2H10D10)
  • 免疫细胞化学; 人类; 1:150; 表 1
赛默飞世尔水闸蛋白1抗体(Zymed, 2H10D10)被用于被用于免疫细胞化学在人类样本上浓度为1:150 (表 1). PLoS ONE (2013) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类; 图 1, 2
赛默飞世尔水闸蛋白1抗体(Invitrogen, 2H10D10)被用于被用于免疫印迹在人类样本上 (图 1, 2). J Virol (2013) ncbi
小鼠 单克隆(2H10D10)
  • 免疫细胞化学; 小鼠; 图 4
赛默飞世尔水闸蛋白1抗体(Zymed, 37-4900)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Development (2013) ncbi
小鼠 单克隆(2H10D10)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔水闸蛋白1抗体(Zymed Laboratories, 2H10D10)被用于被用于免疫细胞化学在人类样本上 (图 2). Cell Tissue Res (2013) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类; 图 4
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2012) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔水闸蛋白1抗体(生活技术, 37-4900)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2012) ncbi
小鼠 单克隆(2H10D10)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔水闸蛋白1抗体(Zymed, 2H10D10)被用于被用于流式细胞仪在人类样本上 (图 5). J Biol Chem (2012) ncbi
小鼠 单克隆(2H10D10)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 2
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 2). Exp Dermatol (2012) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 4a
赛默飞世尔水闸蛋白1抗体(Invitrogen, 2H10D10)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 4a). Anesthesiology (2012) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化-石蜡切片; domestic rabbit; 1:500; 图 4
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:500 (图 4). PLoS Pathog (2012) ncbi
小鼠 单克隆(2H10D10)
  • 流式细胞仪; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 s1
赛默飞世尔水闸蛋白1抗体(Invitrogen, 2H10D10)被用于被用于流式细胞仪在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 s1). Scand J Immunol (2012) ncbi
小鼠 单克隆(2H10D10)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔水闸蛋白1抗体(Invitrogen, 2H10D10)被用于被用于免疫细胞化学在人类样本上 (图 1). Histochem Cell Biol (2012) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类; 图 1
赛默飞世尔水闸蛋白1抗体(Zymed, 2H10D10)被用于被用于免疫印迹在人类样本上 (图 1). Cell Tissue Res (2011) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化-石蜡切片; 大鼠; 1:3000; 图 2
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:3000 (图 2). J Periodontal Res (2012) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化; 鸡; 1:200; 图 3
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫组化在鸡样本上浓度为1:200 (图 3). Dev Dyn (2011) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类; 图 2
赛默飞世尔水闸蛋白1抗体(Zymed/Invitrogen, clone 2H10D10)被用于被用于免疫印迹在人类样本上 (图 2). J Virol (2011) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化; 小鼠; 1:100; 图 3a
赛默飞世尔水闸蛋白1抗体(Zymed, 2H10D10)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3a). Dev Cell (2010) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化; 小鼠; 1:100; 图 3c
赛默飞世尔水闸蛋白1抗体(Zymed, 2H10D10)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3c). J Immunol (2010) ncbi
小鼠 单克隆(2H10D10)
  • 免疫细胞化学; 人类; 1:80; 图 9
  • 免疫印迹; 人类; 图 8
赛默飞世尔水闸蛋白1抗体(Zymed, 2H10D10)被用于被用于免疫细胞化学在人类样本上浓度为1:80 (图 9) 和 被用于免疫印迹在人类样本上 (图 8). Virology (2010) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化; 人类; 图 5
赛默飞世尔水闸蛋白1抗体(Invitrogen, 2H10D10)被用于被用于免疫组化在人类样本上 (图 5). Stem Cells (2010) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类; 图 1
赛默飞世尔水闸蛋白1抗体(Zymed, clone 2H10010)被用于被用于免疫印迹在人类样本上 (图 1). J Viral Hepat (2011) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔水闸蛋白1抗体(Zymed, 2H10D10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Physiol (2010) ncbi
小鼠 单克隆(2H10D10)
赛默飞世尔水闸蛋白1抗体(Zymed, 2H10010)被用于. Gastroenterology (2010) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化; 人类; 1:50; 图 1a
  • 免疫组化; 猫; 1:50; 图 1c
赛默飞世尔水闸蛋白1抗体(Invitrogen, 37-4900)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1a) 和 被用于免疫组化在猫样本上浓度为1:50 (图 1c). Biotech Histochem (2011) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化; 人类; 1:100; 图 2
赛默飞世尔水闸蛋白1抗体(Zymed, 2H10D10)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2). Med Mol Morphol (2009) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类; 1:500; 图 3
赛默飞世尔水闸蛋白1抗体(Zymed, 2H10D10)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Virology (2009) ncbi
小鼠 单克隆(2H10D10)
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 图 3c
赛默飞世尔水闸蛋白1抗体(Zymed, 2H10d10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上 (图 3c). Toxicol In Vitro (2009) ncbi
小鼠 单克隆(2H10D10)
  • 免疫细胞化学; 人类; 图 6c
  • 免疫印迹; 人类; 图 6b
赛默飞世尔水闸蛋白1抗体(Zymed/Invitrogen, 2H10D10)被用于被用于免疫细胞化学在人类样本上 (图 6c) 和 被用于免疫印迹在人类样本上 (图 6b). Hepatology (2008) ncbi
小鼠 单克隆(2H10D10)
  • 免疫细胞化学; 人类; 图 3c
赛默飞世尔水闸蛋白1抗体(Zymed, 37-4900)被用于被用于免疫细胞化学在人类样本上 (图 3c). Neurosci Lett (2008) ncbi
小鼠 单克隆(2H10D10)
  • 免疫组化-石蜡切片; 人类; 图 2a
赛默飞世尔水闸蛋白1抗体(Zymed, 2H10D10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). AIDS (2008) ncbi
小鼠 单克隆(2H10D10)
  • 免疫印迹; 人类
赛默飞世尔水闸蛋白1抗体(Zymed Laboratories, 2H10D10)被用于被用于免疫印迹在人类样本上. J Biol Chem (2008) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 1:1000; 图 1d
艾博抗(上海)贸易有限公司水闸蛋白1抗体(Abcam, ab129119)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 1d). Virulence (2021) ncbi
小鼠 单克隆(CL3698)
  • 免疫组化; 小鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司水闸蛋白1抗体(Abcam, ab242370)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 1d
艾博抗(上海)贸易有限公司水闸蛋白1抗体(Abcam, ab15098)被用于被用于免疫印迹在pigs 样本上 (图 1d). Animals (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6f, 6g
  • 免疫印迹; 小鼠; 1:250; 图 6c
艾博抗(上海)贸易有限公司水闸蛋白1抗体(Abcam, 15098)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6f, 6g) 和 被用于免疫印迹在小鼠样本上浓度为1:250 (图 6c). Clin Transl Gastroenterol (2020) ncbi
domestic rabbit 单克隆(EPR9306)
  • 免疫细胞化学; 人类; 1:400; 图 5e
  • 免疫印迹; 人类; 1:50; 图 5e
艾博抗(上海)贸易有限公司水闸蛋白1抗体(Abcam, ab180158)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5e) 和 被用于免疫印迹在人类样本上浓度为1:50 (图 5e). J Nutr Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2D
艾博抗(上海)贸易有限公司水闸蛋白1抗体(Abcam, ab15098)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2D). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1o
艾博抗(上海)贸易有限公司水闸蛋白1抗体(Abcam, ab15098)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1o). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司水闸蛋白1抗体(Abcam, ab15098)被用于被用于免疫印迹在人类样本上 (图 1d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司水闸蛋白1抗体(abcam, ab15098)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). Virol J (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
艾博抗(上海)贸易有限公司水闸蛋白1抗体(Abcam, ab15098)被用于被用于免疫细胞化学在人类样本上 (图 4). Exp Biol Med (Maywood) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 犬; 1:50; 图 1
艾博抗(上海)贸易有限公司水闸蛋白1抗体(Abcam, ab15098)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:50 (图 1). Vet Dermatol (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(XX7)
  • 免疫组化-石蜡切片; 人类; 图 1d
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 1:500; 图 3a
圣克鲁斯生物技术水闸蛋白1抗体(Santa Cruz, XX7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d), 被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Hum Pathol (2016) ncbi
小鼠 单克隆(XX7)
  • 免疫印迹; 人类; 图 1d
圣克鲁斯生物技术水闸蛋白1抗体(Santa Cruz, sc-81796)被用于被用于免疫印迹在人类样本上 (图 1d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(A-9)
  • 免疫印迹; pigs ; 1:1000
圣克鲁斯生物技术水闸蛋白1抗体(Santa Cruz, sc-166338)被用于被用于免疫印迹在pigs 样本上浓度为1:1000. Chem Res Toxicol (2016) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术水闸蛋白1抗体(Santa Cruz Biotechnology, sc-137121)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(A-9)
  • 免疫组化-石蜡切片; 小鼠; 1:100
圣克鲁斯生物技术水闸蛋白1抗体(Santa Cruz Biotechnology, sc-166338)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Exp Ther Med (2015) ncbi
小鼠 单克隆(XX7)
  • 免疫组化-冰冻切片; 小鼠
圣克鲁斯生物技术水闸蛋白1抗体(Santa Cruz Biotechnology, sc-81796)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS Genet (2014) ncbi
小鼠 单克隆(XX7)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术水闸蛋白1抗体(Santa Cruz, sc 81796)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Eur Acad Dermatol Venereol (2015) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(1C5-D9)
  • 免疫组化-石蜡切片; 家羊; 1:100
亚诺法生技股份有限公司水闸蛋白1抗体(Abnova Corporation, 1C5-D9)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:100. Virchows Arch (2014) ncbi
小鼠 单克隆(1C5-D9)
  • 免疫印迹; 人类
亚诺法生技股份有限公司水闸蛋白1抗体(Abnova, H00009076-M01)被用于被用于免疫印迹在人类样本上. FEBS Lett (2013) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5c
Novus Biologicals水闸蛋白1抗体(Novus, NBP1-77036)被用于被用于免疫组化在小鼠样本上 (图 5c). Eur J Nutr (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司水闸蛋白1抗体(Cell Signaling Technology, 4933T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司水闸蛋白1抗体(Cell Signaling, 4933S)被用于被用于免疫印迹在人类样本上 (图 s2b). J Mol Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 5f
赛信通(上海)生物试剂有限公司水闸蛋白1抗体(Cell Signalling, 4933)被用于被用于免疫组化在大鼠样本上 (图 5f). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司水闸蛋白1抗体(Cell signaling, 4933s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Dev Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司水闸蛋白1抗体(Cell Signaling Technology, 4933)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Endocr Relat Cancer (2016) ncbi
文章列表
  1. Cao Q, Wei W, Wang H, Wang Z, Lv Y, Dai M, et al. Cleavage of E-cadherin by porcine respiratory bacterial pathogens facilitates airway epithelial barrier disruption and bacterial paracellular transmigration. Virulence. 2021;12:2296-2313 pubmed 出版商
  2. Liu M, Rao H, Liu J, Li X, Feng W, Gui L, et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 2021;43:102004 pubmed 出版商
  3. Fayad R, Rojas M, Partisani M, Finetti P, Dib S, Abélanet S, et al. EFA6B regulates a stop signal for collective invasion in breast cancer. Nat Commun. 2021;12:2198 pubmed 出版商
  4. Yin S, Li L, Tao Y, Yu J, Wei S, Liu M, et al. The Inhibitory Effect of Artesunate on Excessive Endoplasmic Reticulum Stress Alleviates Experimental Colitis in Mice. Front Pharmacol. 2021;12:629798 pubmed 出版商
  5. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  6. Tian M, Chen J, Wu Z, Song H, Yang F, Cui C, et al. Fat Encapsulation Reduces Diarrhea in Piglets Partially by Repairing the Intestinal Barrier and Improving Fatty Acid Transport. Animals (Basel). 2020;11: pubmed 出版商
  7. Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster M. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 2020;: pubmed 出版商
  8. Shinde T, Perera A, Vemuri R, Gondalia S, Beale D, Karpe A, et al. Synbiotic supplementation with prebiotic green banana resistant starch and probiotic Bacillus coagulans spores ameliorates gut inflammation in mouse model of inflammatory bowel diseases. Eur J Nutr. 2020;: pubmed 出版商
  9. Wang F, Duan X, Chen J, Gao Z, Zhou J, Wu X, et al. Integrated Imaging Methodology Detects Claudin-1 Expression in Premalignant Nonpolypoid and Polypoid Colonic Epithelium in Mice. Clin Transl Gastroenterol. 2020;11:e00089 pubmed 出版商
  10. Xing T, Benderman L, Sabu S, Parker J, Yang J, Lu Q, et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol. 2020;9:641-659 pubmed 出版商
  11. Wang R, Yu R, Zhu C, Lin H, Lu X, Wang H. Tubulin detyrosination promotes human trophoblast syncytium formation. J Mol Cell Biol. 2019;: pubmed 出版商
  12. Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1609-1621 pubmed 出版商
  13. Cox C, Lu R, Salcin K, Wilson J. The Endosomal Protein Endotubin Is Required for Enterocyte Differentiation. Cell Mol Gastroenterol Hepatol. 2018;5:145-156 pubmed 出版商
  14. Berrout J, Kyriakopoulou E, Moparthi L, Hogea A, Berrout L, Ivan C, et al. TRPA1-FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p. Nat Commun. 2017;8:947 pubmed 出版商
  15. Tokuda S, Hirai T, Furuse M. Claudin-4 knockout by TALEN-mediated gene targeting in MDCK cells: Claudin-4 is dispensable for the permeability properties of tight junctions in wild-type MDCK cells. PLoS ONE. 2017;12:e0182521 pubmed 出版商
  16. Beaumont M, Andriamihaja M, Armand L, Grauso M, Jaffrézic F, Laloë D, et al. Epithelial response to a high-protein diet in rat colon. BMC Genomics. 2017;18:116 pubmed 出版商
  17. Wu C, Feng X, Lu M, Morimura S, Udey M. Matriptase-mediated cleavage of EpCAM destabilizes claudins and dysregulates intestinal epithelial homeostasis. J Clin Invest. 2017;127:623-634 pubmed 出版商
  18. Chen C, Huang J, Wang C, Tahara S, Zhou L, Kondo Y, et al. Hepatitis C virus has a genetically determined lymphotropism through co-receptor B7.2. Nat Commun. 2017;8:13882 pubmed 出版商
  19. Sivagurunathan S, Palanisamy K, Arunachalam J, Chidambaram S. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway. Mol Cell Biochem. 2017;427:145-156 pubmed 出版商
  20. Fall B, Scott C, Mauer M, Shankland S, Pippin J, Jefferson J, et al. Urinary Podocyte Loss Is Increased in Patients with Fabry Disease and Correlates with Clinical Severity of Fabry Nephropathy. PLoS ONE. 2016;11:e0168346 pubmed 出版商
  21. Torres Martínez A, Gallardo Vera J, Lara Holguin A, Montano L, Rendón Huerta E. Claudin-6 enhances cell invasiveness through claudin-1 in AGS human adenocarcinoma gastric cancer cells. Exp Cell Res. 2017;350:226-235 pubmed 出版商
  22. Yuan J, Cha J, Deng W, Bartos A, Sun X, Ho H, et al. Planar cell polarity signaling in the uterus directs appropriate positioning of the crypt for embryo implantation. Proc Natl Acad Sci U S A. 2016;113:E8079-E8088 pubmed
  23. Lin Z, Zhang Y, Xia Y, Xu X, Jiao X, Sun J. Salmonella enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway. J Biol Chem. 2016;291:26837-26849 pubmed 出版商
  24. Martínez Rendón J, Sánchez Guzmán E, Rueda A, González J, Gulias Cañizo R, Aquino Jarquin G, et al. TRPV4 Regulates Tight Junctions and Affects Differentiation in a Cell Culture Model of the Corneal Epithelium. J Cell Physiol. 2017;232:1794-1807 pubmed 出版商
  25. Van Rymenant E, Abranko L, Tumova S, Grootaert C, Van Camp J, Williamson G, et al. Chronic exposure to short-chain fatty acids modulates transport and metabolism of microbiome-derived phenolics in human intestinal cells. J Nutr Biochem. 2017;39:156-168 pubmed 出版商
  26. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  27. Keppner A, Malsure S, Nobile A, Auberson M, Bonny O, Hummler E. Altered Prostasin (CAP1/Prss8) Expression Favors Inflammation and Tissue Remodeling in DSS-induced Colitis. Inflamm Bowel Dis. 2016;22:2824-2839 pubmed
  28. Fujii N, Matsuo Y, Matsunaga T, Endo S, Sakai H, Yamaguchi M, et al. Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. J Biol Chem. 2016;291:24787-24799 pubmed
  29. Mathieu A, Ohl Séguy E, Dubois M, Jean D, Jones C, Boudreau F, et al. Subcellular proteomics analysis of different stages of colorectal cancer cell lines. Proteomics. 2016;16:3009-3018 pubmed 出版商
  30. Feng X, Zhang D, Wang Y, Fan R, Hong F, Zhang Y, et al. Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent. Acta Physiol (Oxf). 2017;220:113-123 pubmed 出版商
  31. Ahn C, Shin D, Lee D, Kang S, Seok J, Kang H, et al. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs. Mol Med Rep. 2016;14:3697-703 pubmed 出版商
  32. Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016;8:1162-1183 pubmed 出版商
  33. Yuki T, Tobiishi M, Kusaka Kikushima A, Ota Y, Tokura Y. Impaired Tight Junctions in Atopic Dermatitis Skin and in a Skin-Equivalent Model Treated with Interleukin-17. PLoS ONE. 2016;11:e0161759 pubmed 出版商
  34. Lan A, Blais A, Coelho D, Capron J, Maarouf M, Benamouzig R, et al. Dual effects of a high-protein diet on DSS-treated mice during colitis resolution phase. Am J Physiol Gastrointest Liver Physiol. 2016;311:G624-G633 pubmed 出版商
  35. Wardill H, Bowen J, Van Sebille Y, Secombe K, Coller J, Ball I, et al. TLR4-Dependent Claudin-1 Internalization and Secretagogue-Mediated Chloride Secretion Regulate Irinotecan-Induced Diarrhea. Mol Cancer Ther. 2016;15:2767-2779 pubmed
  36. Ronaghan N, Shang J, Iablokov V, Zaheer R, Colarusso P, Dion S, et al. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction. Am J Physiol Gastrointest Liver Physiol. 2016;311:G466-79 pubmed 出版商
  37. Zhang L, Du S, Lu Y, Liu C, Tian Z, Yang C, et al. Puerarin transport across a Calu-3 cell monolayer - an in vitro model of nasal mucosa permeability and the influence of paeoniflorin and menthol. Drug Des Devel Ther. 2016;10:2227-37 pubmed 出版商
  38. Babkair H, Yamazaki M, Uddin M, Maruyama S, Abe T, Essa A, et al. Aberrant expression of the tight junction molecules claudin-1 and zonula occludens-1 mediates cell growth and invasion in oral squamous cell carcinoma. Hum Pathol. 2016;57:51-60 pubmed 出版商
  39. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  40. Porat Shliom N, Tietgens A, Van Itallie C, Vitale Cross L, Jarnik M, Harding O, et al. Liver kinase B1 regulates hepatocellular tight junction distribution and function in vivo. Hepatology. 2016;64:1317-29 pubmed 出版商
  41. Gulhane M, Murray L, Lourie R, Tong H, Sheng Y, Wang R, et al. High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22. Sci Rep. 2016;6:28990 pubmed 出版商
  42. Li Q, Sodroski C, Lowey B, Schweitzer C, Cha H, Zhang F, et al. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113:7620-5 pubmed 出版商
  43. Dianati E, Poiraud J, Weber Ouellette A, Plante I. Connexins, E-cadherin, Claudin-7 and ?-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol. 2016;416:52-68 pubmed 出版商
  44. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  45. Teo W, Merino V, Cho S, Korangath P, Liang X, Wu R, et al. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene. 2016;35:5539-5551 pubmed 出版商
  46. Maria O, Liu Y, El Hakim M, Zeitouni A, Tran S. The role of human fibronectin- or placenta basement membrane extract-based gels in favouring the formation of polarized salivary acinar-like structures. J Tissue Eng Regen Med. 2017;11:2643-2657 pubmed 出版商
  47. Zoschke C, Ulrich M, Sochorová M, Wolff C, Vavrova K, Ma N, et al. The barrier function of organotypic non-melanoma skin cancer models. J Control Release. 2016;233:10-8 pubmed 出版商
  48. Zhu H, Liu Y, Chen S, Wang X, Pi D, Leng W, et al. Fish oil enhances intestinal barrier function and inhibits corticotropin-releasing hormone/corticotropin-releasing hormone receptor 1 signalling pathway in weaned pigs after lipopolysaccharide challenge. Br J Nutr. 2016;115:1947-57 pubmed 出版商
  49. Ling K, Wan M, El Nezami H, Wang M. Protective Capacity of Resveratrol, a Natural Polyphenolic Compound, against Deoxynivalenol-Induced Intestinal Barrier Dysfunction and Bacterial Translocation. Chem Res Toxicol. 2016;29:823-33 pubmed 出版商
  50. Sa Ngiamsuntorn K, Wongkajornsilp A, Phanthong P, Borwornpinyo S, Kitiyanant N, Chantratita W, et al. A robust model of natural hepatitis C infection using hepatocyte-like cells derived from human induced pluripotent stem cells as a long-term host. Virol J. 2016;13:59 pubmed 出版商
  51. Wardill H, Gibson R, Van Sebille Y, Secombe K, Logan R, Bowen J. A novel in vitro platform for the study of SN38-induced mucosal damage and the development of Toll-like receptor 4-targeted therapeutic options. Exp Biol Med (Maywood). 2016;241:1386-94 pubmed 出版商
  52. Lee B, Kang H, Lee D, Ahn C, Jeung E. Claudin-1, -2, -4, and -5: comparison of expression levels and distribution in equine tissues. J Vet Sci. 2016;17:445-451 pubmed 出版商
  53. Hagenlocher Y, Hösel A, Bischoff S, Lorentz A. Cinnamon extract reduces symptoms, inflammatory mediators and mast cell markers in murine IL-10(-/-) colitis. J Nutr Biochem. 2016;30:85-92 pubmed 出版商
  54. Kacem M, Agili F, Tounsi H, Zribi H, Zaraa I, Mokni M, et al. Immunohistological study of tight junction protein expression in mal de Meleda. Ultrastruct Pathol. 2016;40:176-80 pubmed 出版商
  55. Strazielle N, Creidy R, Malcus C, Boucraut J, Ghersi Egea J. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium. PLoS ONE. 2016;11:e0150945 pubmed 出版商
  56. Achamrah N, Nobis S, Breton J, Jésus P, Belmonte L, Maurer B, et al. Maintaining physical activity during refeeding improves body composition, intestinal hyperpermeability and behavior in anorectic mice. Sci Rep. 2016;6:21887 pubmed 出版商
  57. Ziegler K, Kerimi A, Poquet L, Williamson G. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4). Arch Biochem Biophys. 2016;599:3-12 pubmed 出版商
  58. Patkee W, Carr G, Baker E, Baines D, Garnett J. Metformin prevents the effects of Pseudomonas aeruginosa on airway epithelial tight junctions and restricts hyperglycaemia-induced bacterial growth. J Cell Mol Med. 2016;20:758-64 pubmed 出版商
  59. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  60. Böhringer M, Pohlers S, Schulze S, Albrecht Eckardt D, Piegsa J, Weber M, et al. Candida albicans infection leads to barrier breakdown and a MAPK/NF-κB mediated stress response in the intestinal epithelial cell line C2BBe1. Cell Microbiol. 2016;18:889-904 pubmed 出版商
  61. Yang S, Krug S, Heitmann J, Hu L, Reinhold A, Sauer S, et al. Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials. 2016;82:20-33 pubmed 出版商
  62. Kim H, Cronin M, Ahrens K, Papastavros V, Santoro D, Marsella R. A comparative study of epidermal tight junction proteins in a dog model of atopic dermatitis. Vet Dermatol. 2016;27:40-e11 pubmed 出版商
  63. Rafehi S, Ramos Valdes Y, Bertrand M, McGee J, Préfontaine M, Sugimoto A, et al. TGFβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids. Endocr Relat Cancer. 2016;23:147-59 pubmed 出版商
  64. Nadeem A, Thomas P, Ulf M, Elena N, Anggakusuma A, Mohamed B, et al. Cell culture-derived HCV cannot infect synovial fibroblasts. Sci Rep. 2015;5:18043 pubmed 出版商
  65. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  66. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  67. Gruber R, Börnchen C, Rose K, Daubmann A, Volksdorf T, Wladykowski E, et al. Diverse regulation of claudin-1 and claudin-4 in atopic dermatitis. Am J Pathol. 2015;185:2777-89 pubmed 出版商
  68. Qu D, Weygant N, May R, Chandrakesan P, Madhoun M, Ali N, et al. Ablation of Doublecortin-Like Kinase 1 in the Colonic Epithelium Exacerbates Dextran Sulfate Sodium-Induced Colitis. PLoS ONE. 2015;10:e0134212 pubmed 出版商
  69. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif A, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology. Nat Commun. 2015;6:7967 pubmed 出版商
  70. Shiomi R, Shigetomi K, Inai T, Sakai M, Ikenouchi J. CaMKII regulates the strength of the epithelial barrier. Sci Rep. 2015;5:13262 pubmed 出版商
  71. Liu S, Zhao J, Fan X, Liu G, Jiao H, Wang X, et al. Rapamycin, a specific inhibitor of the target of rapamycin complex 1, disrupts intestinal barrier integrity in broiler chicks. J Anim Physiol Anim Nutr (Berl). 2016;100:323-30 pubmed 出版商
  72. Zwanziger D, Badziong J, Ting S, Moeller L, Schmid K, Siebolts U, et al. The impact of CLAUDIN-1 on follicular thyroid carcinoma aggressiveness. Endocr Relat Cancer. 2015;22:819-30 pubmed 出版商
  73. Yuksel H, Yilmaz O, Karaman M, Fırıncı F, Turkeli A, Kanik E, et al. Vascular endothelial growth factor antagonism restores epithelial barrier dysfunction via affecting zonula occludens proteins. Exp Ther Med. 2015;10:362-368 pubmed
  74. Lee J, Lee Y, Lim J, Byun H, Park I, Kim G, et al. Mitochondrial Respiratory Dysfunction Induces Claudin-1 Expression via Reactive Oxygen Species-mediated Heat Shock Factor 1 Activation, Leading to Hepatoma Cell Invasiveness. J Biol Chem. 2015;290:21421-31 pubmed 出版商
  75. Goichon A, Bertrand J, Chan P, Lecleire S, Coquard A, Cailleux A, et al. Enteral delivery of proteins enhances the expression of proteins involved in the cytoskeleton and protein biosynthesis in human duodenal mucosa. Am J Clin Nutr. 2015;102:359-67 pubmed 出版商
  76. Staat C, Coisne C, Dabrowski S, Stamatovic S, Andjelkovic A, Wolburg H, et al. Mode of action of claudin peptidomimetics in the transient opening of cellular tight junction barriers. Biomaterials. 2015;54:9-20 pubmed 出版商
  77. Hopcraft S, Evans M. Selection of a hepatitis C virus with altered entry factor requirements reveals a genetic interaction between the E1 glycoprotein and claudins. Hepatology. 2015;62:1059-69 pubmed 出版商
  78. Scull M, Shi C, De Jong Y, Gerold G, Ries M, von Schaewen M, et al. Hepatitis C virus infects rhesus macaque hepatocytes and simianized mice. Hepatology. 2015;62:57-67 pubmed 出版商
  79. Barkho B, Monuki E. Proliferation of cultured mouse choroid plexus epithelial cells. PLoS ONE. 2015;10:e0121738 pubmed 出版商
  80. Klein W, Westendorf C, Schmidt A, Conill Cortés M, Rutz C, Blohs M, et al. Defining a conformational consensus motif in cotransin-sensitive signal sequences: a proteomic and site-directed mutagenesis study. PLoS ONE. 2015;10:e0120886 pubmed 出版商
  81. Ghersi Egea J, Babikian A, Blondel S, Strazielle N. Changes in the cerebrospinal fluid circulatory system of the developing rat: quantitative volumetric analysis and effect on blood-CSF permeability interpretation. Fluids Barriers CNS. 2015;12:8 pubmed 出版商
  82. Tokuda S, Furuse M. Claudin-2 knockout by TALEN-mediated gene targeting in MDCK cells: claudin-2 independently determines the leaky property of tight junctions in MDCK cells. PLoS ONE. 2015;10:e0119869 pubmed 出版商
  83. Wu J, Peng D, Zhang Y, Lu Z, Voehler M, Sanders C, et al. Biophysical characterization of interactions between the C-termini of peripheral nerve claudins and the PDZ₁ domain of zonula occludens. Biochem Biophys Res Commun. 2015;459:87-93 pubmed 出版商
  84. Watari A, Hashegawa M, Yagi K, Kondoh M. Homoharringtonine increases intestinal epithelial permeability by modulating specific claudin isoforms in Caco-2 cell monolayers. Eur J Pharm Biopharm. 2015;89:232-8 pubmed 出版商
  85. DiTommaso T, Cottle D, Pearson H, Schlüter H, Kaur P, Humbert P, et al. Keratin 76 is required for tight junction function and maintenance of the skin barrier. PLoS Genet. 2014;10:e1004706 pubmed 出版商
  86. Lei Q, Qiang F, Chao D, Di W, Guoqian Z, Bo Y, et al. Amelioration of hypoxia and LPS-induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF-κB and HIF-1α signaling pathways. Int J Mol Med. 2014;34:1629-39 pubmed 出版商
  87. Casselbrant A, Elias E, Fändriks L, Wallenius V. Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis. 2015;11:45-53 pubmed 出版商
  88. Visconti B, Paolino G, Carotti S, Pendolino A, Morini S, Richetta A, et al. Immunohistochemical expression of VDR is associated with reduced integrity of tight junction complex in psoriatic skin. J Eur Acad Dermatol Venereol. 2015;29:2038-42 pubmed 出版商
  89. Kreft M, Jerman U, Lasič E, LaniÅ¡nik Rižner T, Hevir Kene N, Peternel L, et al. The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model. Pharm Res. 2015;32:665-79 pubmed 出版商
  90. Miki Y, Hamada K, Yoshino T, Miyatani K, Takahashi K. Type AB thymoma is not a mixed tumor of type A and type B thymomas, but a distinct type of thymoma. Virchows Arch. 2014;464:725-34 pubmed 出版商
  91. Somorácz A, Korompay A, Törzsök P, Patonai A, Erdélyi Belle B, Lotz G, et al. Tricellulin expression and its prognostic significance in primary liver carcinomas. Pathol Oncol Res. 2014;20:755-64 pubmed 出版商
  92. Yang D, Zuo C, Wang X, Meng X, Xue B, Liu N, et al. Complete replication of hepatitis B virus and hepatitis C virus in a newly developed hepatoma cell line. Proc Natl Acad Sci U S A. 2014;111:E1264-73 pubmed 出版商
  93. Retana C, Sanchez E, Perez Lopez A, Cruz A, Lagunas J, Cruz C, et al. Alterations of intercellular junctions in peritoneal mesothelial cells from patients undergoing dialysis: effect of retinoic Acid. Perit Dial Int. 2015;35:275-87 pubmed 出版商
  94. Jesus P, Ouelaa W, François M, Riachy L, Guérin C, Aziz M, et al. Alteration of intestinal barrier function during activity-based anorexia in mice. Clin Nutr. 2014;33:1046-53 pubmed 出版商
  95. Ratovitski E. Phospho-?Np63? regulates AQP3, ALOX12B, CASP14 and CLDN1 expression through transcription and microRNA modulation. FEBS Lett. 2013;587:3581-6 pubmed 出版商
  96. Migliorini A, Angelotti M, Mulay S, Kulkarni O, Demleitner J, Dietrich A, et al. The antiviral cytokines IFN-? and IFN-? modulate parietal epithelial cells and promote podocyte loss: implications for IFN toxicity, viral glomerulonephritis, and glomerular regeneration. Am J Pathol. 2013;183:431-40 pubmed 出版商
  97. Fang Y, Chen H, Hu Y, Djukic Z, Tevebaugh W, Shaheen N, et al. Gastroesophageal reflux activates the NF-?B pathway and impairs esophageal barrier function in mice. Am J Physiol Gastrointest Liver Physiol. 2013;305:G58-65 pubmed 出版商
  98. Rachow S, Zorn Kruppa M, Ohnemus U, Kirschner N, Vidal Y Sy S, von den Driesch P, et al. Occludin is involved in adhesion, apoptosis, differentiation and Ca2+-homeostasis of human keratinocytes: implications for tumorigenesis. PLoS ONE. 2013;8:e55116 pubmed 出版商
  99. Kim S, Ishida H, Yamane D, Yi M, Swinney D, Foung S, et al. Contrasting roles of mitogen-activated protein kinases in cellular entry and replication of hepatitis C virus: MKNK1 facilitates cell entry. J Virol. 2013;87:4214-24 pubmed 出版商
  100. Liu B, Liu Y, Du Y, Mardaryev A, Yang W, Chen H, et al. Cbx4 regulates the proliferation of thymic epithelial cells and thymus function. Development. 2013;140:780-8 pubmed 出版商
  101. Takasawa A, Kojima T, Ninomiya T, Tsujiwaki M, Murata M, Tanaka S, et al. Behavior of tricellulin during destruction and formation of tight junctions under various extracellular calcium conditions. Cell Tissue Res. 2013;351:73-84 pubmed 出版商
  102. D Amato N, OSTRANDER J, Bowie M, Sistrunk C, Borowsky A, Cardiff R, et al. Evidence for phenotypic plasticity in aggressive triple-negative breast cancer: human biology is recapitulated by a novel model system. PLoS ONE. 2012;7:e45684 pubmed 出版商
  103. Leung C, Shaheen F, Bernatchez P, Hackett T. Expression of myoferlin in human airway epithelium and its role in cell adhesion and zonula occludens-1 expression. PLoS ONE. 2012;7:e40478 pubmed 出版商
  104. Dao Thi V, Granier C, Zeisel M, Guerin M, Mancip J, Granio O, et al. Characterization of hepatitis C virus particle subpopulations reveals multiple usage of the scavenger receptor BI for entry steps. J Biol Chem. 2012;287:31242-57 pubmed 出版商
  105. Raiko L, Siljamäki E, Mahoney M, Putaala H, Suominen E, Peltonen J, et al. Hailey-Hailey disease and tight junctions: Claudins 1 and 4 are regulated by ATP2C1 gene encoding Ca(2+) /Mn(2+) ATPase SPCA1 in cultured keratinocytes. Exp Dermatol. 2012;21:586-91 pubmed 出版商
  106. Rittner H, Amasheh S, Moshourab R, Hackel D, Yamdeu R, Mousa S, et al. Modulation of tight junction proteins in the perineurium to facilitate peripheral opioid analgesia. Anesthesiology. 2012;116:1323-34 pubmed 出版商
  107. Ritchie J, Rui H, Zhou X, Iida T, Kodoma T, Ito S, et al. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea. PLoS Pathog. 2012;8:e1002593 pubmed 出版商
  108. Van den Bossche J, Laoui D, Morias Y, Movahedi K, Raes G, De Baetselier P, et al. Claudin-1, claudin-2 and claudin-11 genes differentially associate with distinct types of anti-inflammatory macrophages in vitro and with parasite- and tumour-elicited macrophages in vivo. Scand J Immunol. 2012;75:588-98 pubmed 出版商
  109. Chang H, Zhang C, Cao Y. Expression and distribution of symplekin regulates the assembly and function of the epithelial tight junction. Histochem Cell Biol. 2012;137:319-27 pubmed 出版商
  110. Kyuno D, Kojima T, Ito T, Yamaguchi H, Tsujiwaki M, Takasawa A, et al. Protein kinase C? inhibitor enhances the sensitivity of human pancreatic cancer HPAC cells to Clostridium perfringens enterotoxin via claudin-4. Cell Tissue Res. 2011;346:369-81 pubmed 出版商
  111. Fujita T, Firth J, Kittaka M, Ekuni D, Kurihara H, Putnins E. Loss of claudin-1 in lipopolysaccharide-treated periodontal epithelium. J Periodontal Res. 2012;47:222-7 pubmed 出版商
  112. Wu C, Jhingory S, Taneyhill L. The tight junction scaffolding protein cingulin regulates neural crest cell migration. Dev Dyn. 2011;240:2309-23 pubmed 出版商
  113. Ciesek S, Westhaus S, Wicht M, Wappler I, Henschen S, Sarrazin C, et al. Impact of intra- and interspecies variation of occludin on its function as coreceptor for authentic hepatitis C virus particles. J Virol. 2011;85:7613-21 pubmed 出版商
  114. Gladden A, Hebert A, Schneeberger E, McClatchey A. The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell. 2010;19:727-39 pubmed 出版商
  115. Xu H, Wang X, Pahar B, Moroney Rasmussen T, Alvarez X, Lackner A, et al. Increased B7-H1 expression on dendritic cells correlates with programmed death 1 expression on T cells in simian immunodeficiency virus-infected macaques and may contribute to T cell dysfunction and disease progression. J Immunol. 2010;185:7340-8 pubmed 出版商
  116. Liu S, Kuo W, Yang W, Liu W, Gibson G, Dorko K, et al. The second extracellular loop dictates Occludin-mediated HCV entry. Virology. 2010;407:160-70 pubmed 出版商
  117. Lasagni L, Ballerini L, Angelotti M, Parente E, Sagrinati C, Mazzinghi B, et al. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells. 2010;28:1674-85 pubmed 出版商
  118. Burgel B, Friesland M, Koch A, Manns M, Wedemeyer H, Weissenborn K, et al. Hepatitis C virus enters human peripheral neuroblastoma cells - evidence for extra-hepatic cells sustaining hepatitis C virus penetration. J Viral Hepat. 2011;18:562-70 pubmed 出版商
  119. Kojima T, Fuchimoto J, Yamaguchi H, Ito T, Takasawa A, Ninomiya T, et al. c-Jun N-terminal kinase is largely involved in the regulation of tricellular tight junctions via tricellulin in human pancreatic duct epithelial cells. J Cell Physiol. 2010;225:720-33 pubmed 出版商
  120. Ciesek S, Steinmann E, Iken M, Ott M, Helfritz F, Wappler I, et al. Glucocorticosteroids increase cell entry by hepatitis C virus. Gastroenterology. 2010;138:1875-84 pubmed 出版商
  121. Karim M, Biswas S, Bhattacherjee P, Paterson C. Comparison of tight junction protein expression in the ciliary epithelia of mouse, rabbit, cat and human eyes. Biotech Histochem. 2011;86:161-7 pubmed 出版商
  122. Ohkuni T, Kojima T, Ogasawara N, Masaki T, Ninomiya T, Kikuchi S, et al. Expression and localization of tricellulin in human nasal epithelial cells in vivo and in vitro. Med Mol Morphol. 2009;42:204-11 pubmed 出版商
  123. Owen D, Huang H, Ye J, Gale M. Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor. Virology. 2009;394:99-108 pubmed 出版商
  124. McLaughlin J, Lambert D, Padfield P, Burt J, O Neill C. The mycotoxin patulin, modulates tight junctions in caco-2 cells. Toxicol In Vitro. 2009;23:83-9 pubmed 出版商
  125. Yang W, Hood B, Chadwick S, Liu S, Watkins S, Luo G, et al. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology. 2008;48:1396-403 pubmed 出版商
  126. Neuhaus W, Wirth M, Plattner V, Germann B, Gabor F, Noe C. Expression of Claudin-1, Claudin-3 and Claudin-5 in human blood-brain barrier mimicking cell line ECV304 is inducible by glioma-conditioned media. Neurosci Lett. 2008;446:59-64 pubmed 出版商
  127. Bouschbacher M, Bomsel M, Verronèse E, Gofflo S, Ganor Y, Dezutter Dambuyant C, et al. Early events in HIV transmission through a human reconstructed vaginal mucosa. AIDS. 2008;22:1257-66 pubmed 出版商
  128. Yang W, Qiu C, Biswas N, Jin J, Watkins S, Montelaro R, et al. Correlation of the tight junction-like distribution of Claudin-1 to the cellular tropism of hepatitis C virus. J Biol Chem. 2008;283:8643-53 pubmed 出版商