这是一篇来自已证抗体库的有关人类 结缔组织生长因子 (connective tissue growth factor) 的综述,是根据31篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合结缔组织生长因子 抗体。
结缔组织生长因子 同义词: CTGF; HCS24; IGFBP8; NOV2

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫印迹在小鼠样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 4b). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
  • 免疫组化; 人类; 1:100; 图 7c
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, 227180)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a) 和 被用于免疫组化在人类样本上浓度为1:100 (图 7c). J Clin Invest (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(abcam, ab6992)被用于被用于免疫组化在小鼠样本上. Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2f
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫细胞化学在人类样本上 (图 2f). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2l
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2l). Mol Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫印迹在小鼠样本上 (图 6d). JACC Basic Transl Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:150; 图 7a
  • 免疫细胞化学; 人类; 1:200; 图 4b
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫组化在斑马鱼样本上浓度为1:150 (图 7a), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4b). Nat Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Invest Ophthalmol Vis Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6d
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫印迹在人类样本上 (图 2c). Cancer Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1e
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1e). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1g
  • 免疫印迹; 人类; 1:500; 图 1a,s3a
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1g) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1a,s3a). Gastroenterology (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2h
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫印迹在人类样本上 (图 2h). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3b
  • 免疫印迹; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, 5097)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3b) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 6d
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2b
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于被用于免疫印迹在大鼠样本上 (图 2b). Drug Des Devel Ther (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司结缔组织生长因子抗体(Abcam, ab6992)被用于. Biomed Res Int (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术结缔组织生长因子抗体(Santa Cruz Biotechnology, sc-373936)被用于被用于免疫印迹在小鼠样本上 (图 7a). Sci Rep (2021) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 图 3d
圣克鲁斯生物技术结缔组织生长因子抗体(Santa Cruz, sc-365970)被用于被用于免疫印迹在小鼠样本上 (图 3d). Mol Brain (2021) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 0.2 ug/ml; 图 4b
圣克鲁斯生物技术结缔组织生长因子抗体(Santa Cruz, sc-373936)被用于被用于免疫印迹在小鼠样本上浓度为0.2 ug/ml (图 4b). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:100; 图 4c
圣克鲁斯生物技术结缔组织生长因子抗体(Santa Cruz, sc-365970)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 4c). elife (2020) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 1:50; 图 4c32
圣克鲁斯生物技术结缔组织生长因子抗体(Santa Cruz Biotechnology, sc-365970)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4c32). Ocul Surf (2019) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 大鼠; 1:1000; 图 2b
圣克鲁斯生物技术结缔组织生长因子抗体(Santa Cruz, sc-373936)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). BMC Nephrol (2019) ncbi
小鼠 单克隆(6B13)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术结缔组织生长因子抗体(Santa Cruz, sc-101586)被用于被用于免疫印迹在人类样本上 (图 1). Onco Targets Ther (2016) ncbi
小鼠 单克隆(6B13)
  • 免疫印迹; 人类; 1:300; 图 8
圣克鲁斯生物技术结缔组织生长因子抗体(santa Cruz, Sc-101586)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 8). Oncotarget (2015) ncbi
北京傲锐东源
小鼠 单克隆(OTI5H7)
  • 免疫印迹; 人类; 图 6h
北京傲锐东源结缔组织生长因子抗体(Origene, TA806803)被用于被用于免疫印迹在人类样本上 (图 6h). Cells (2020) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
赛默飞世尔结缔组织生长因子抗体(Thermo Scientific, PA1-22376)被用于被用于免疫印迹在小鼠样本上 (图 3d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
赛默飞世尔结缔组织生长因子抗体(Thermo Scientific, PA5-32193)被用于. Int J Radiat Oncol Biol Phys (2015) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化; 小鼠
安迪生物R&D结缔组织生长因子抗体(R&D, AF660)被用于被用于免疫组化在小鼠样本上. Nat Commun (2021) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D8Z8U)
  • 免疫组化; 小鼠; 1:200; 图 4d
赛信通(上海)生物试剂有限公司结缔组织生长因子抗体(CST, 86641S)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4d). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(D8Z8U)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司结缔组织生长因子抗体(CST, 86641)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Adv (2020) ncbi
文章列表
  1. Fang L, Wang W, Chen J, Zuo A, Gao H, Yan T, et al. Osthole Attenuates Bleomycin-Induced Pulmonary Fibrosis by Modulating NADPH Oxidase 4-Derived Oxidative Stress in Mice. Oxid Med Cell Longev. 2021;2021:3309944 pubmed 出版商
  2. Chen Q, Fan K, Chen X, Xie X, Huang L, Song G, et al. Ezrin regulates synovial angiogenesis in rheumatoid arthritis through YAP and Akt signalling. J Cell Mol Med. 2021;25:9378-9389 pubmed 出版商
  3. Bansod S, Saifi M, Godugu C. Inhibition of discoidin domain receptors by imatinib prevented pancreatic fibrosis demonstrated in experimental chronic pancreatitis model. Sci Rep. 2021;11:12894 pubmed 出版商
  4. Chae S, Hong J, Kang K, Shin A, Kim D, Lee S, et al. Molecular laterality encodes stress susceptibility in the medial prefrontal cortex. Mol Brain. 2021;14:92 pubmed 出版商
  5. Wu X, Shu L, Zhang Z, Li J, Zong J, Cheong L, et al. Adipocyte Fatty Acid Binding Protein Promotes the Onset and Progression of Liver Fibrosis via Mediating the Crosstalk between Liver Sinusoidal Endothelial Cells and Hepatic Stellate Cells. Adv Sci (Weinh). 2021;8:e2003721 pubmed 出版商
  6. Tamura T, Kodama T, Sato K, Murai K, Yoshioka T, Shigekawa M, et al. Dysregulation of PI3K and Hippo signaling pathways synergistically induces chronic pancreatitis via CTGF upregulation. J Clin Invest. 2021;131: pubmed 出版商
  7. Tsutsui K, Machida H, Nakagawa A, Ahn K, Morita R, Sekiguchi K, et al. Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions. Nat Commun. 2021;12:2577 pubmed 出版商
  8. Hao Q, Zong X, Sun Q, Lin Y, Song Y, Hashemikhabir S, et al. The S-phase-induced lncRNA SUNO1 promotes cell proliferation by controlling YAP1/Hippo signaling pathway. elife. 2020;9: pubmed 出版商
  9. Stojanović S, Fuchs M, Fiedler J, Xiao K, Meinecke A, Just A, et al. Comprehensive Bioinformatics Identifies Key microRNA Players in ATG7-Deficient Lung Fibroblasts. Int J Mol Sci. 2020;21: pubmed 出版商
  10. Rigiracciolo D, Nohata N, Lappano R, Cirillo F, Talia M, Scordamaglia D, et al. IGF-1/IGF-1R/FAK/YAP Transduction Signaling Prompts Growth Effects in Triple-Negative Breast Cancer (TNBC) Cells. Cells. 2020;9: pubmed 出版商
  11. Jin D, Guo J, Wu Y, Yang L, Wang X, Du J, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020;19:40 pubmed 出版商
  12. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  13. Guo X, Kolpakov M, Hooshdaran B, Schappell W, Wang T, Eguchi S, et al. Cardiac Expression of Factor X Mediates Cardiac Hypertrophy and Fibrosis in Pressure Overload. JACC Basic Transl Sci. 2020;5:69-83 pubmed 出版商
  14. An S, Raju I, Surenkhuu B, Kwon J, Gulati S, Karaman M, et al. Neutrophil extracellular traps (NETs) contribute to pathological changes of ocular graft-vs.-host disease (oGVHD) dry eye: Implications for novel biomarkers and therapeutic strategies. Ocul Surf. 2019;: pubmed 出版商
  15. Lin P, Wu M, Qin J, Yang J, Ye C, Wang C. Magnesium lithospermate B improves renal hemodynamics and reduces renal oxygen consumption in 5/6th renal ablation/infarction rats. BMC Nephrol. 2019;20:49 pubmed 出版商
  16. Moro A, Driscoll T, Boraas L, Armero W, Kasper D, Baeyens N, et al. MicroRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis. Nat Cell Biol. 2019;21:348-358 pubmed 出版商
  17. Ho L, Skiba N, Ullmer C, Rao P. Lysophosphatidic Acid Induces ECM Production via Activation of the Mechanosensitive YAP/TAZ Transcriptional Pathway in Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci. 2018;59:1969-1984 pubmed 出版商
  18. Chowdhury A, Hasselbach L, Echtermeyer F, Jyotsana N, Theilmeier G, Herzog C. Fibulin-6 regulates pro-fibrotic TGF-β responses in neonatal mouse ventricular cardiac fibroblasts. Sci Rep. 2017;7:42725 pubmed 出版商
  19. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  20. Jin X, Wu N, Dai J, Li Q, Xiao X. TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4-phenylbutyrate treatment. Cancer Med. 2017;6:424-438 pubmed 出版商
  21. Wang L, Luo J, Li B, Tian X, Chen L, Huang Y, et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature. 2016;540:579-582 pubmed 出版商
  22. Kim H, Kim M, Park Y, Park I, Kim T, Yang S, et al. Prostaglandin E2 Activates YAP and a Positive-Signaling Loop to Promote Colon Regeneration After Colitis but Also Carcinogenesis in Mice. Gastroenterology. 2017;152:616-630 pubmed 出版商
  23. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  24. Matkar P, Singh K, Rudenko D, Kim Y, Kuliszewski M, Prud homme G, et al. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:69489-69506 pubmed 出版商
  25. Simile M, Latte G, Demartis M, Brozzetti S, Calvisi D, Porcu A, et al. Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease. Oncotarget. 2016;7:49194-49216 pubmed 出版商
  26. Li C, Zhen G, Chai Y, Xie L, Crane J, Farber E, et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat Commun. 2016;7:11455 pubmed 出版商
  27. Xiao L, Shi X, Zhang Y, Zhu Y, Zhu L, Tian W, et al. YAP induces cisplatin resistance through activation of autophagy in human ovarian carcinoma cells. Onco Targets Ther. 2016;9:1105-14 pubmed 出版商
  28. Niu H, Liu I, Niu C, Ku P, Hsu C, Cheng J. Eucommia bark (Du-Zhong) improves diabetic nephropathy without altering blood glucose in type 1-like diabetic rats. Drug Des Devel Ther. 2016;10:971-8 pubmed 出版商
  29. Lim T, Lee I, Kim J, Kang W. Synergistic Effect of Simvastatin Plus Radiation in Gastric Cancer and Colorectal Cancer: Implications of BIRC5 and Connective Tissue Growth Factor. Int J Radiat Oncol Biol Phys. 2015;93:316-25 pubmed 出版商
  30. Li X, Tao J, Cigliano A, Sini M, Calderaro J, Azoulay D, et al. Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver. Oncotarget. 2015;6:10102-15 pubmed
  31. Sereno J, Nunes S, Rodrigues Santos P, Vala H, Rocha Pereira P, Fernandes J, et al. Conversion to sirolimus ameliorates cyclosporine-induced nephropathy in the rat: focus on serum, urine, gene, and protein renal expression biomarkers. Biomed Res Int. 2014;2014:576929 pubmed 出版商