这是一篇来自已证抗体库的有关人类 周期一 (cyclin A) 的综述,是根据77篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合周期一 抗体。
周期一 同义词: CCN1; CCNA

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR17351)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司周期一抗体(abcam, ab181591)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EPR17351)
  • 免疫印迹; 大鼠; 图 5e
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab181591)被用于被用于免疫印迹在大鼠样本上 (图 5e). J Cell Biol (2021) ncbi
domestic rabbit 单克隆(EPR17351)
  • 免疫印迹; 人类; 图 5f
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab181591)被用于被用于免疫印迹在人类样本上 (图 5f). J Cell Biol (2021) ncbi
domestic rabbit 单克隆(EPR17351)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab181591)被用于被用于免疫印迹在人类样本上浓度为1:2000. Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 人类; 1:1000; 图 s5-1b
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab217731)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s5-1b). elife (2020) ncbi
小鼠 单克隆(E23.1)
  • 免疫印迹; 牛; 1:500; 图 6a
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab38)被用于被用于免疫印迹在牛样本上浓度为1:500 (图 6a). Anim Reprod Sci (2020) ncbi
domestic rabbit 单克隆(E399)
  • 免疫印迹; 人类; 1:2000; 图 5c
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab32498)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5c). Cell Rep (2019) ncbi
domestic rabbit 单克隆(EPR17351)
  • 免疫印迹; 小鼠; 1:1000; 图 10c
  • 免疫印迹; 人类; 1:1000; 图 3e
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab181591)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 10c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Oncogene (2019) ncbi
domestic rabbit 单克隆(EPR17351)
  • 免疫印迹; 小鼠; 图 s6a
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab181591)被用于被用于免疫印迹在小鼠样本上 (图 s6a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(EPR17351)
  • 免疫组化; 人类; 图 s4b
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab181591)被用于被用于免疫组化在人类样本上 (图 s4b). Oncogene (2017) ncbi
小鼠 单克隆(E23.1)
  • 免疫印迹; 小鼠; 1:400; 图 s4h
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab38)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 s4h). EMBO Mol Med (2017) ncbi
小鼠 单克隆(E23.1)
  • 免疫沉淀; 小鼠; 图 s19c
  • 免疫印迹; 小鼠; 1:10,000; 图 s2c
  • 免疫沉淀; 人类; 图 s12d
  • 免疫印迹; 人类; 1:10,000; 图 s12e
艾博抗(上海)贸易有限公司周期一抗体(Abcam, E23.1)被用于被用于免疫沉淀在小鼠样本上 (图 s19c), 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s2c), 被用于免疫沉淀在人类样本上 (图 s12d) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 s12e). Science (2016) ncbi
小鼠 单克隆(E23.1)
  • 免疫印迹; 人类; 图 9
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab38)被用于被用于免疫印迹在人类样本上 (图 9). Sci Rep (2016) ncbi
domestic rabbit 单克隆(E399)
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab32498)被用于被用于免疫印迹在人类样本上 (图 6e). Nat Genet (2016) ncbi
小鼠 单克隆(E67.1)
  • 流式细胞仪; 人类; 1:200; 图 7f
  • 免疫组化; 人类; 1:100; 图 7d
艾博抗(上海)贸易有限公司周期一抗体(Abcam, 3.9)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 7f) 和 被用于免疫组化在人类样本上浓度为1:100 (图 7d). Nat Commun (2016) ncbi
小鼠 单克隆(E23.1)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab38)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Hematol Oncol (2015) ncbi
小鼠 单克隆(E23.1)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab38)被用于被用于免疫印迹在人类样本上 (图 5). Cell Prolif (2015) ncbi
domestic rabbit 单克隆(E399)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司周期一抗体(Abcam, ab32498)被用于被用于免疫印迹在人类样本上. J Exp Clin Cancer Res (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(BF683)
  • 免疫印迹; 小鼠; 1:100; 图 s2k
  • 免疫印迹; 人类; 1:100; 图 s2a, 7a
圣克鲁斯生物技术周期一抗体(Santa Cruz, sc-239)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 s2k) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 s2a, 7a). Nat Commun (2021) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 小鼠; 图 2g
圣克鲁斯生物技术周期一抗体(Santa Cruz Biotechnology, sc-271,645)被用于被用于免疫印迹在小鼠样本上 (图 2g). BMC Cancer (2020) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术周期一抗体(Santa, sc-271645)被用于被用于免疫印迹在人类样本上 (图 3c). Cell Cycle (2020) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术周期一抗体(Santa Cruz Biotechnology, B-8)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Adv (2019) ncbi
小鼠 单克隆(B-8)
  • 免疫细胞化学; 人类; 1:100; 图 4a
圣克鲁斯生物技术周期一抗体(Santa, sc271682)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4a). elife (2019) ncbi
小鼠 单克隆(E23.1)
  • 免疫印迹; 人类; 1:1000; 图 5a, 5h
圣克鲁斯生物技术周期一抗体(Santa Cruz, sc-53228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a, 5h). Biosci Rep (2019) ncbi
小鼠 单克隆(E70.1)
  • 免疫印迹; 人类; 图 4e
圣克鲁斯生物技术周期一抗体(Santa Cruz Biotechnology, sc-53231)被用于被用于免疫印迹在人类样本上 (图 4e). Cancer Lett (2019) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术周期一抗体(Santa Cruz Biotechnology Inc., sc-271682)被用于被用于免疫印迹在人类样本上 (图 6). Drug Des Devel Ther (2016) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术周期一抗体(Santa Cruz, sc-271645)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2016) ncbi
小鼠 单克隆(E23.1)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术周期一抗体(Santa Cruz, E23.1)被用于被用于免疫印迹在人类样本上 (图 6a). PLoS ONE (2016) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术周期一抗体(SantaCruz, sc-239)被用于被用于免疫印迹在小鼠样本上 (图 3). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术周期一抗体(Santa Cruz, sc-239)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2016) ncbi
小鼠 单克隆(B-8)
  • 免疫细胞化学; 人类; 1:100; 图 1
圣克鲁斯生物技术周期一抗体(Santa Cruz Biotechnology, sc-271682)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Cell Cycle (2016) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术周期一抗体(Santa Cruz, sc-239)被用于被用于免疫印迹在人类样本上 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(E67.1)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术周期一抗体(Santa Cruz, sc-53230)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术周期一抗体(Santa Cruz, sc-271682)被用于被用于免疫印迹在人类样本上 (图 3). Cell Div (2015) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 图 s9d
圣克鲁斯生物技术周期一抗体(Santa, Sc-239)被用于被用于免疫印迹在人类样本上 (图 s9d). Nat Med (2015) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术周期一抗体(Santa Cruz, sc-271645)被用于被用于免疫印迹在人类样本上. Exp Cell Res (2014) ncbi
小鼠 单克隆(E67.1)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术周期一抗体(Santa Cruz Biotechnology, SC-53230)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Dev Biol (2014) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类
  • 免疫印迹; 大鼠
圣克鲁斯生物技术周期一抗体(Santa Cruz Biotechnology, sc-239)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类
圣克鲁斯生物技术周期一抗体(Santa Cruz Biotechnology, BF683)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2005) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 st1
赛默飞世尔周期一抗体(Invitrogen, PA5-34682)被用于被用于免疫印迹在人类样本上 (图 st1). Arterioscler Thromb Vasc Biol (2016) ncbi
小鼠 单克隆(E23.1)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 3
赛默飞世尔周期一抗体(Lab Vision, E23)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Mol Cancer Ther (2007) ncbi
小鼠 单克隆(E23.1)
  • 免疫印迹; 人类
赛默飞世尔周期一抗体(Biosource, E 23)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2007) ncbi
BioLegend
小鼠 单克隆(E23.1)
  • 免疫印迹; 人类; 图 4
BioLegend周期一抗体(Biolegend, 644001)被用于被用于免疫印迹在人类样本上 (图 4). Drug Des Devel Ther (2015) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, 4656)被用于被用于免疫印迹在人类样本上 (图 2c). Mol Ther Oncolytics (2022) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling Technology, 4656)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Clin Transl Med (2021) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling Technology, 4656)被用于被用于免疫印迹在人类样本上 (图 5e). Oncogene (2021) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, BF683)被用于被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2020) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司周期一抗体(CST, 4656)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Int J Mol Med (2020) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司周期一抗体(CST, 4656)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Genes Cancer (2019) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, 4656)被用于被用于免疫印迹在小鼠样本上 (图 s4b). Gastroenterology (2018) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, 4656)被用于被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2017) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司周期一抗体(Cell signaling, 4656)被用于被用于免疫印迹在人类样本上 (图 s3b). Nat Commun (2017) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹基因敲除验证; 小鼠; 图 3b
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, 4656)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 5b). Mol Pharmacol (2017) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 1:1000; 图 3C
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, 4656)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3C). PLoS ONE (2016) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling Technology, 4656)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Cancer Chemother Pharmacol (2016) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling Technology, 4656)被用于被用于免疫印迹在人类样本上 (图 5c). FEBS Open Bio (2016) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司周期一抗体(Cell signaling, 4656)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, 4656)被用于被用于免疫印迹在人类样本上 (图 5b). PLoS ONE (2016) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, 4656)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, BF683)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Nat Chem Biol (2016) ncbi
小鼠 单克隆(BF683)
  • 免疫组化-石蜡切片; 人类; 图 1a
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, BF683)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). BMC Cancer (2015) ncbi
小鼠 单克隆(BF683)
  • 免疫沉淀; 人类; 图 5
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling Tech, cst-4656)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司周期一抗体(Cell signaling, 4656S)被用于被用于免疫印迹在人类样本上 (图 5). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling Technology, 4656)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, BF683)被用于被用于免疫印迹在人类样本上. Leukemia (2015) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, BF683)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, 4656)被用于被用于免疫印迹在人类样本上浓度为1:1000. Toxicol Sci (2014) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling, 4656S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(BF683)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司周期一抗体(Cell Signaling Technology, BF683)被用于被用于免疫印迹在人类样本上 (图 4). Biochem J (2013) ncbi
碧迪BD
小鼠 单克隆(25/Cyclin A)
  • 免疫印迹; 人类; 1:5000; 图 5d
碧迪BD周期一抗体(BD Biosciences, 611268)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5d). NPJ Precis Oncol (2021) ncbi
小鼠 单克隆(25/Cyclin A)
  • 免疫印迹; 人类; 1:1000; 图 1b, 2e
碧迪BD周期一抗体(BD Transduction, 611269)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b, 2e). EMBO J (2018) ncbi
小鼠 单克隆(25/Cyclin A)
  • 免疫印迹; 人类; 图 1a
碧迪BD周期一抗体(BD, 611268)被用于被用于免疫印迹在人类样本上 (图 1a). Oncogene (2016) ncbi
小鼠 单克隆(25/Cyclin A)
  • 免疫印迹; 人类; 1:500
碧迪BD周期一抗体(BD Biosciences, 611268)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2015) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆
  • 免疫组化; 人类; 1:100
徕卡显微系统(上海)贸易有限公司周期一抗体(Novocastra (Leica Biosystems), NCL-CYCLIN A)被用于被用于免疫组化在人类样本上浓度为1:100. Dev Cell (2020) ncbi
单克隆
  • 免疫细胞化学; 人类; 1:100; 图 11
  • 免疫印迹; 人类; 1:250; 图 5
徕卡显微系统(上海)贸易有限公司周期一抗体(Novocastra, NCL-CYCLIN A)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 11) 和 被用于免疫印迹在人类样本上浓度为1:250 (图 5). elife (2016) ncbi
单克隆
  • 免疫细胞化学; 人类; 图 2
徕卡显微系统(上海)贸易有限公司周期一抗体(Leica, NCL-CYCLINA)被用于被用于免疫细胞化学在人类样本上 (图 2). J Cell Biol (2016) ncbi
单克隆
  • 免疫细胞化学; 人类; 1:50; 图 s1
徕卡显微系统(上海)贸易有限公司周期一抗体(Leica-Novocastra, NCL-CYCLIN A)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s1). Mol Oncol (2015) ncbi
文章列表
  1. Bahn M, Yu D, Lee M, Jo S, Lee J, Kim H, et al. Central role of Prominin-1 in lipid rafts during liver regeneration. Nat Commun. 2022;13:6219 pubmed 出版商
  2. Fei X, Wu X, Dou Y, Sun K, Guo Q, Zhang L, et al. TRIM22 orchestrates the proliferation of GBMs and the benefits of TMZ by coordinating the modification and degradation of RIG-I. Mol Ther Oncolytics. 2022;26:413-428 pubmed 出版商
  3. Sánchez Fdez A, Re Louhau M, Rodríguez Núñez P, Ludeña D, Matilla Almazán S, Pandiella A, et al. Clinical, genetic and pharmacological data support targeting the MEK5/ERK5 module in lung cancer. NPJ Precis Oncol. 2021;5:78 pubmed 出版商
  4. Song L, Tian X, Schekman R. Extracellular vesicles from neurons promote neural induction of stem cells through cyclin D1. J Cell Biol. 2021;220: pubmed 出版商
  5. Sakai H, Kawakami H, Teramura T, Onodera Y, Somers E, Furuuchi K, et al. Folate receptor α increases chemotherapy resistance through stabilizing MDM2 in cooperation with PHB2 that is overcome by MORAb-202 in gastric cancer. Clin Transl Med. 2021;11:e454 pubmed 出版商
  6. Leon K, Buj R, Lesko E, Dahl E, Chen C, Tangudu N, et al. DOT1L modulates the senescence-associated secretory phenotype through epigenetic regulation of IL1A. J Cell Biol. 2021;220: pubmed 出版商
  7. Fischietti M, Eckerdt F, Blyth G, Arslan A, Mati W, Oku C, et al. Schlafen 5 as a novel therapeutic target in pancreatic ductal adenocarcinoma. Oncogene. 2021;40:3273-3286 pubmed 出版商
  8. Buj R, Leon K, Anguelov M, Aird K. Suppression of p16 alleviates the senescence-associated secretory phenotype. Aging (Albany NY). 2021;13:3290-3312 pubmed 出版商
  9. Vaughan C, Singh S, Subler M, Windle J, Inoue K, Fry E, et al. The oncogenicity of tumor-derived mutant p53 is enhanced by the recruitment of PLK3. Nat Commun. 2021;12:704 pubmed 出版商
  10. Chen A, Santana A, Doudican N, Roudiani N, Laursen K, Therrien J, et al. MAGE-A3 is a prognostic biomarker for poor clinical outcome in cutaneous squamous cell carcinoma with perineural invasion via modulation of cell proliferation. PLoS ONE. 2020;15:e0241551 pubmed 出版商
  11. Watts L, Natsume T, Saito Y, Garzón J, Dong Q, Boteva L, et al. The RIF1-long splice variant promotes G1 phase 53BP1 nuclear bodies to protect against replication stress. elife. 2020;9: pubmed 出版商
  12. Dabelsteen S, Pallesen E, Marinova I, Nielsen M, Adamopoulou M, Rømer T, et al. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell. 2020;54:669-684.e7 pubmed 出版商
  13. Kuo I, Lee J, Wang Y, Chiang H, Huang C, Hsieh P, et al. Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electro- hyperthermia. BMC Cancer. 2020;20:603 pubmed 出版商
  14. Fu C, Mao W, Gao R, Deng Y, Gao L, Wu J, et al. Prostaglandin F2α-PTGFR signaling promotes proliferation of endometrial epithelial cells of cattle through cell cycle regulation. Anim Reprod Sci. 2020;213:106276 pubmed 出版商
  15. Mlyczynska E, Kurowska P, Drwal E, Opydo Chanek M, Tworzydło W, Kotula Balak M, et al. Apelin and apelin receptor in human placenta: Expression, signalling pathway and regulation of trophoblast JEG‑3 and BeWo cells proliferation and cell cycle. Int J Mol Med. 2020;45:691-702 pubmed 出版商
  16. Singh V, Khalil M, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle. 2020;19:363-375 pubmed 出版商
  17. Santos Barriopedro I, Li Y, Bahl S, Seto E. HDAC8 affects MGMT levels in glioblastoma cell lines via interaction with the proteasome receptor ADRM1. Genes Cancer. 2019;10:119-133 pubmed 出版商
  18. Yoshida A, Bu Y, Qie S, Wrangle J, Camp E, Hazard E, et al. SLC36A1-mTORC1 signaling drives acquired resistance to CDK4/6 inhibitors. Sci Adv. 2019;5:eaax6352 pubmed 出版商
  19. Lopez Martinez D, Kupculak M, Yang D, Yoshikawa Y, Liang C, Wu R, et al. Phosphorylation of FANCD2 Inhibits the FANCD2/FANCI Complex and Suppresses the Fanconi Anemia Pathway in the Absence of DNA Damage. Cell Rep. 2019;27:2990-3005.e5 pubmed 出版商
  20. Bigot N, Day M, Baldock R, Watts F, Oliver A, Pearl L. Phosphorylation-mediated interactions with TOPBP1 couple 53BP1 and 9-1-1 to control the G1 DNA damage checkpoint. elife. 2019;8: pubmed 出版商
  21. Zhang C, Zhu Q, Gu J, Chen S, Li Q, Ying L. Down-regulation of CCNE1 expression suppresses cell proliferation and sensitizes gastric carcinoma cells to Cisplatin. Biosci Rep. 2019;39: pubmed 出版商
  22. Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu K, et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene. 2019;38:2844-2859 pubmed 出版商
  23. Izumi T, Imai J, Yamamoto J, Kawana Y, Endo A, Sugawara H, et al. Vagus-macrophage-hepatocyte link promotes post-injury liver regeneration and whole-body survival through hepatic FoxM1 activation. Nat Commun. 2018;9:5300 pubmed 出版商
  24. Song X, Chen H, Zhang C, Yu Y, Chen Z, Liang H, et al. SRC-3 inhibition blocks tumor growth of pancreatic ductal adenocarcinoma. Cancer Lett. 2019;442:310-319 pubmed 出版商
  25. Allan L, Skowyra A, Rogers K, Zeller D, Clarke P. Atypical APC/C-dependent degradation of Mcl-1 provides an apoptotic timer during mitotic arrest. EMBO J. 2018;37: pubmed 出版商
  26. He P, Yang J, Yang V, Bialkowska A. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice. Gastroenterology. 2018;154:1494-1508.e13 pubmed 出版商
  27. Read M, Fong J, Modasia B, Fletcher A, Imruetaicharoenchoke W, Thompson R, et al. Elevated PTTG and PBF predicts poor patient outcome and modulates DNA damage response genes in thyroid cancer. Oncogene. 2017;36:5296-5308 pubmed 出版商
  28. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  29. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  30. Malek Mohammadi M, Kattih B, Grund A, Froese N, Korf Klingebiel M, Gigina A, et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 2017;9:265-279 pubmed 出版商
  31. Choiniere J, Wu J, Wang L. Pyruvate Dehydrogenase Kinase 4 Deficiency Results in Expedited Cellular Proliferation through E2F1-Mediated Increase of Cyclins. Mol Pharmacol. 2017;91:189-196 pubmed 出版商
  32. Lv M, Li Y, Tian X, Dai S, Sun J, Jin G, et al. Lentivirus-mediated knockdown of NLK inhibits small-cell lung cancer growth and metastasis. Drug Des Devel Ther. 2016;10:3737-3746 pubmed
  33. Hrgovic I, Doll M, Kleemann J, Wang X, Zoeller N, Pinter A, et al. The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer. 2016;16:763 pubmed
  34. Kanakkanthara A, Jeganathan K, Limzerwala J, Baker D, Hamada M, Nam H, et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353:1549-1552 pubmed
  35. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  36. Kang M, Park K, Yang J, Lee C, Oh S, Yun J, et al. miR-6734 Up-Regulates p21 Gene Expression and Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Cells. PLoS ONE. 2016;11:e0160961 pubmed 出版商
  37. Fiedor E, Gregoraszczuk E. The molecular mechanism of action of superactive human leptin antagonist (SHLA) and quadruple leptin mutein Lan-2 on human ovarian epithelial cell lines. Cancer Chemother Pharmacol. 2016;78:611-22 pubmed 出版商
  38. Song S, Kim K, Jo E, Kim Y, Kwon J, Bae S, et al. Fibroblast Growth Factor 12 Is a Novel Regulator of Vascular Smooth Muscle Cell Plasticity and Fate. Arterioscler Thromb Vasc Biol. 2016;36:1928-36 pubmed 出版商
  39. Zhang Z, Zhao G, Zhuang C, Shen Y, Zhao W, Xu J, et al. Long non-coding RNA LINC00628 functions as a gastric cancer suppressor via long-range modulating the expression of cell cycle related genes. Sci Rep. 2016;6:27435 pubmed 出版商
  40. Qi J, Li T, Bian H, Li F, Ju Y, Gao S, et al. SNAI1 promotes the development of HCC through the enhancement of proliferation and inhibition of apoptosis. FEBS Open Bio. 2016;6:326-37 pubmed 出版商
  41. Rao V, Ow J, Shankar S, Bharathy N, Manikandan J, Wang Y, et al. G9a promotes proliferation and inhibits cell cycle exit during myogenic differentiation. Nucleic Acids Res. 2016;44:8129-43 pubmed 出版商
  42. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  43. Zheng J, Huang X, Tan W, Yu D, Du Z, Chang J, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet. 2016;48:747-57 pubmed 出版商
  44. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  45. Park S, Lee J, Herbst R, Koo J. GSK-3? Is a Novel Target of CREB and CREB-GSK-3? Signaling Participates in Cell Viability in Lung Cancer. PLoS ONE. 2016;11:e0153075 pubmed 出版商
  46. Jung Y, Decker A, Wang J, Lee E, Kana L, Yumoto K, et al. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget. 2016;7:25698-711 pubmed 出版商
  47. Sobecki M, Mrouj K, Camasses A, Parisis N, Nicolas E, Llères D, et al. The cell proliferation antigen Ki-67 organises heterochromatin. elife. 2016;5:e13722 pubmed 出版商
  48. Nim S, Jeon J, Corbi Verge C, Seo M, Ivarsson Y, Moffat J, et al. Pooled screening for antiproliferative inhibitors of protein-protein interactions. Nat Chem Biol. 2016;12:275-81 pubmed 出版商
  49. Moudry P, Watanabe K, Wolanin K, Bartkova J, Wassing I, Watanabe S, et al. TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity. J Cell Biol. 2016;212:281-8 pubmed 出版商
  50. Heo J, Kim W, Choi K, Bae S, Jeong J, Kim K. XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. Oncotarget. 2016;7:5118-30 pubmed 出版商
  51. Kuo C, Li X, Stark J, Shih H, Ann D. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner. Cell Cycle. 2016;15:787-98 pubmed 出版商
  52. Lee E, Jin D, Lee B, Kim Y, Han J, Shim Y, et al. Negative effect of cyclin D1 overexpression on recurrence-free survival in stage II-IIIA lung adenocarcinoma and its expression modulation by vorinostat in vitro. BMC Cancer. 2015;15:982 pubmed 出版商
  53. Sakurikar N, Thompson R, Montano R, Eastman A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget. 2016;7:1380-94 pubmed 出版商
  54. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  55. Suwei D, Liang Z, Zhimin L, Ruilei L, Yingying Z, Zhen L, et al. NLK functions to maintain proliferation and stemness of NSCLC and is a target of metformin. J Hematol Oncol. 2015;8:120 pubmed 出版商
  56. Greil C, Krohs J, Schnerch D, Follo M, Felthaus J, Engelhardt M, et al. The role of APC/C(Cdh1) in replication stress and origin of genomic instability. Oncogene. 2016;35:3062-70 pubmed 出版商
  57. Chiang K, Chen H, Hsu S, Pang J, Wang S, Hsu J, et al. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo. Drug Des Devel Ther. 2015;9:4631-8 pubmed 出版商
  58. Kim J, Sato M, Choi J, Kim H, Yeh B, Larsen J, et al. Nuclear Receptor Expression and Function in Human Lung Cancer Pathogenesis. PLoS ONE. 2015;10:e0134842 pubmed 出版商
  59. Whalley H, Porter A, Diamantopoulou Z, White G, Castañeda Saucedo E, Malliri A. Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation. Nat Commun. 2015;6:7437 pubmed 出版商
  60. Borges K, Arboleda V, Vilain E. Mutations in the PCNA-binding site of CDKN1C inhibit cell proliferation by impairing the entry into S phase. Cell Div. 2015;10:2 pubmed 出版商
  61. Wang P, Alvarez Perez J, Felsenfeld D, Liu H, Sivendran S, Bender A, et al. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med. 2015;21:383-8 pubmed 出版商
  62. Masuda K, Chiyoda T, Sugiyama N, Segura Cabrera A, Kabe Y, Ueki A, et al. LATS1 and LATS2 phosphorylate CDC26 to modulate assembly of the tetratricopeptide repeat subcomplex of APC/C. PLoS ONE. 2015;10:e0118662 pubmed 出版商
  63. Hsieh W, Huang Y, Wang T, Ming Y, Tsai C, Pang J. IFI27, a novel epidermal growth factor-stabilized protein, is functionally involved in proliferation and cell cycling of human epidermal keratinocytes. Cell Prolif. 2015;48:187-97 pubmed 出版商
  64. Su C, Zhang C, Tecle A, Fu X, He J, Song J, et al. Tudor staphylococcal nuclease (Tudor-SN), a novel regulator facilitating G1/S phase transition, acting as a co-activator of E2F-1 in cell cycle regulation. J Biol Chem. 2015;290:7208-20 pubmed 出版商
  65. Chae H, Mitton B, Lacayo N, Sakamoto K. Replication factor C3 is a CREB target gene that regulates cell cycle progression through the modulation of chromatin loading of PCNA. Leukemia. 2015;29:1379-89 pubmed 出版商
  66. Maya Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M, et al. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol. 2015;9:601-16 pubmed 出版商
  67. Zhang H, Zhang D, Zha Z, Hu C. Transcriptional activation of PRMT5 by NF-Y is required for cell growth and negatively regulated by the PKC/c-Fos signaling in prostate cancer cells. Biochim Biophys Acta. 2014;1839:1330-40 pubmed 出版商
  68. Machado Neto J, Lazarini M, Favaro P, Franchi G, Nowill A, Saad S, et al. ANKHD1, a novel component of the Hippo signaling pathway, promotes YAP1 activation and cell cycle progression in prostate cancer cells. Exp Cell Res. 2014;324:137-45 pubmed 出版商
  69. Muenyi C, Trivedi A, Helm C, States J. Cisplatin plus sodium arsenite and hyperthermia induces pseudo-G1 associated apoptotic cell death in ovarian cancer cells. Toxicol Sci. 2014;139:74-82 pubmed 出版商
  70. Baldo B, Soylu R, Petersen A. Maintenance of basal levels of autophagy in Huntington's disease mouse models displaying metabolic dysfunction. PLoS ONE. 2013;8:e83050 pubmed 出版商
  71. Wu Z, Huang X, Huang X, Zou Q, Guo Y. The inhibitory role of Mir-29 in growth of breast cancer cells. J Exp Clin Cancer Res. 2013;32:98 pubmed 出版商
  72. Otero J, Kalaszczynska I, Michowski W, Wong M, Gygli P, Gokozan H, et al. Cerebellar cortical lamination and foliation require cyclin A2. Dev Biol. 2014;385:328-39 pubmed 出版商
  73. Absalon S, Kochanek D, Raghavan V, Krichevsky A. MiR-26b, upregulated in Alzheimer's disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci. 2013;33:14645-59 pubmed 出版商
  74. Andrews P, He Z, Tzenov Y, Popadiuk C, Kao K. Evidence of a novel role for Pygopus in rRNA transcription. Biochem J. 2013;453:61-70 pubmed 出版商
  75. Ji P, Sun D, Wang H, Bauzon F, Zhu L. Disrupting Skp2-cyclin A interaction with a blocking peptide induces selective cancer cell killing. Mol Cancer Ther. 2007;6:684-91 pubmed
  76. Al Ayyoubi S, Gali Muhtasib H. Differential apoptosis by gallotannin in human colon cancer cells with distinct p53 status. Mol Carcinog. 2007;46:176-86 pubmed
  77. Bengoechea Alonso M, Punga T, Ericsson J. Hyperphosphorylation regulates the activity of SREBP1 during mitosis. Proc Natl Acad Sci U S A. 2005;102:11681-6 pubmed