这是一篇来自已证抗体库的有关人类 细胞周期蛋白B1 (cyclin B1) 的综述,是根据221篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合细胞周期蛋白B1 抗体。
细胞周期蛋白B1 同义词: CCNB

圣克鲁斯生物技术
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, sc-245)被用于被用于免疫印迹在人类样本上 (图 3c). Cell Cycle (2020) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:800; 图 4
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology Inc, sc--245)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 4). Sci Rep (2019) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术细胞周期蛋白B1抗体(SantaCruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2018) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 1:25; 图 5a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 5a). EMBO J (2018) ncbi
  • 免疫细胞化学; 人类; 图 5c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology Inc, H-433)被用于被用于免疫细胞化学在人类样本上 (图 5c). J Cell Biol (2018) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术细胞周期蛋白B1抗体(SantaCruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 1a). Nature (2018) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:300; 图 s4j
圣克鲁斯生物技术细胞周期蛋白B1抗体(SantaCruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 s4j). Sci Adv (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, sc-166152)被用于被用于免疫印迹在人类样本上 (图 2c). Clin Cancer Res (2018) ncbi
小鼠 单克隆(GNS1)
  • 免疫沉淀; 人类; 图 2c
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术细胞周期蛋白B1抗体(santa, GNS1)被用于被用于免疫沉淀在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 2a). Oncogene (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:2000; 图 s6d
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s6d). Nat Commun (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 2d
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). J Biol Chem (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, SC245)被用于被用于免疫印迹在人类样本上 (图 2e). Mol Cell (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500; 图 3c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3c). Sci Rep (2017) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 人类; 1:1000; 图 6b
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-7393)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Exp Ther Med (2017) ncbi
小鼠 单克隆(G-11)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-166757)被用于被用于免疫印迹在人类样本上 (图 5f). Sci Rep (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500; 图 6e; S6i
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6e; S6i). Nat Commun (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 1:400; 图 4b
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, SC-245)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 4b). J Cell Sci (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在小鼠样本上 (图 2a). PLoS ONE (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 图 ms1
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫细胞化学在人类样本上 (图 ms1). Sci Rep (2017) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 人类; 1:1000; 图 4a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-7393)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Exp Ther Med (2016) ncbi
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-752)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 图 5c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫细胞化学在人类样本上 (图 5c). Sci Rep (2016) ncbi
小鼠 单克隆(D-11)
  • 免疫细胞化学; 小鼠; 1:150; 图 s1c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc7393)被用于被用于免疫细胞化学在小鼠样本上浓度为1:150 (图 s1c). Sci Rep (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 大鼠; 图 6a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫细胞化学在大鼠样本上 (图 6a). PLoS ONE (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 2e). Oncogene (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500; 图 2c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2c). Toxicol Appl Pharmacol (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 1:500; 图 1
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(D-11)
  • 免疫沉淀; 人类; 图 2a
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-7393)被用于被用于免疫沉淀在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 3). Viruses (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 2b). Exp Mol Med (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 s2a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, SC-245)被用于被用于免疫印迹在人类样本上 (图 s2a). Cell Death Dis (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2j
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 2j). J Biol Chem (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠; 1:200; 图 2c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2c). Nat Med (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:200; 图 3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(GNS1)
  • 流式细胞仪; 人类; 图 2
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于流式细胞仪在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Mol Oncol (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 5c
圣克鲁斯生物技术细胞周期蛋白B1抗体(santa cruz, SC-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Biol Open (2015) ncbi
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc752)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 s6
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6). FASEB J (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2015) ncbi
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-752)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上 (图 1). PLoS Genet (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 s3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). PLoS ONE (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠; 图 5c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, sc-245)被用于被用于免疫印迹在小鼠样本上 (图 5c). Front Pharmacol (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 s2
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 s2). Sci Rep (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500; 图 7d
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-s45)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7d). Angiogenesis (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 2). Genetics (2015) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 人类; 1:5000; 图 1
圣克鲁斯生物技术细胞周期蛋白B1抗体(santa Cruz, sc-7393)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). J Cancer (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, GNS1)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
小鼠 单克隆(D-11)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-7393)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Viruses (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术细胞周期蛋白B1抗体(santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 图 3b
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc- 245)被用于被用于免疫细胞化学在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 3a). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:200; 图 3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3). Cell Cycle (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500; 图 1e
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1e). Oncotarget (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Biol Open (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, D-11)被用于被用于免疫印迹在人类样本上浓度为1:100. Cancer Lett (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, v-152)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, Sc-245)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Biochem (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:500. Chembiochem (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, GNS1)被用于被用于免疫印迹在小鼠样本上. Oncotarget (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:200; 图 8
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 大鼠; 1:1000; 图 9
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9). J Appl Toxicol (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上. DNA Repair (Amst) (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, Sc-245)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nat Commun (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, GNS1)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, SC-245)被用于被用于免疫印迹在人类样本上 (图 3b). Int J Oncol (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:2000; 图 2d
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2d). Mol Oncol (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. EMBO J (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上 (图 6). J Pathol (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, SC-245)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000. Chromosoma (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, GNS1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Rep (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫组化; 小鼠; 1:100
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Lett (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, GNS1)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Sci (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 8
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, GNS1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Oncogene (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2013) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-53236)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-53236)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2011) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, GNS1)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2005) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫细胞化学; 小鼠; 图 4b
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab215945)被用于被用于免疫细胞化学在小鼠样本上 (图 4b). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR17060)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1e
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, EPR17060)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1e). Sci Rep (2019) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫印迹在人类样本上 (图 2d). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(CCNB1/1098)
  • 免疫印迹; 猪; 1:2000; 图 1d
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab212977)被用于被用于免疫印迹在猪样本上浓度为1:2000 (图 1d). Cell Physiol Biochem (2018) ncbi
domestic rabbit 单克隆(EPR17060)
  • 免疫印迹; 人类; 图 5c, 5d
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(abcam, ab181593)被用于被用于免疫印迹在人类样本上 (图 5c, 5d). Oncotarget (2017) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000; 图 6a
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(V152)
  • 免疫组化; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6a). Stem Cell Reports (2017) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, V152)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(Y106)
  • 免疫印迹; 人类; 1:5000; 图 st2
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab32053)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 st2). Transl Res (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2016) ncbi
domestic rabbit 单克隆(Y106)
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab32053)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(Y106)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab32053)被用于被用于免疫组化在小鼠样本上浓度为1:200. Oncotarget (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1500; 图 s11
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(abcam, ab72)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 s11). PLoS Genet (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Biomed Res Int (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Development (2011) ncbi
赛默飞世尔
小鼠 单克隆(GNS11)
  • 免疫沉淀; 人类; 图 2a
  • 免疫印迹; 人类; 图 3
赛默飞世尔细胞周期蛋白B1抗体(Thermo Fisher, GNS11)被用于被用于免疫沉淀在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 3). Viruses (2016) ncbi
小鼠 单克隆(GNS11)
  • 免疫印迹; 人类; 图 6a
赛默飞世尔细胞周期蛋白B1抗体(Thermo Fisher, GNS11)被用于被用于免疫印迹在人类样本上 (图 6a). PLoS ONE (2016) ncbi
小鼠 单克隆(GNS1)
赛默飞世尔细胞周期蛋白B1抗体(Thermo Scientific, MS-868-PABX)被用于. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔细胞周期蛋白B1抗体(Thermo Scientific, MA5-14319)被用于被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(V152)
  • 免疫细胞化学; African green monkey; 1:200
  • 免疫细胞化学; 大鼠; 1:200
赛默飞世尔细胞周期蛋白B1抗体(Thermo Fisher, MA1-155)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:200 和 被用于免疫细胞化学在大鼠样本上浓度为1:200. FASEB J (2016) ncbi
小鼠 单克隆(GNS11)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔细胞周期蛋白B1抗体(Thermo Fisher Scientific, GNS11)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Viruses (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:10000
赛默飞世尔细胞周期蛋白B1抗体(Thermo Fisher Scientific, clone GNS1)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:10000. Exp Cell Res (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 猪; 图 1
赛默飞世尔细胞周期蛋白B1抗体(Thermo Scientific, MS-338)被用于被用于免疫印迹在猪样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔细胞周期蛋白B1抗体(Thermo Fisher Scientific, GNS1)被用于被用于免疫印迹在小鼠样本上 (图 1). Int J Endocrinol (2012) ncbi
小鼠 单克隆(GNS11)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类; 1:50
赛默飞世尔细胞周期蛋白B1抗体(NeoMarkers, GNS11)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上浓度为1:50. J Korean Med Sci (2007) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
武汉三鹰细胞周期蛋白B1抗体(Proteintech, 55004-1-AP)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
武汉三鹰细胞周期蛋白B1抗体(Proteintech, 55004-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
武汉三鹰细胞周期蛋白B1抗体(proteintech, 55004-1-AP)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3a
GeneTex细胞周期蛋白B1抗体(GENETEX, GTX100911)被用于被用于免疫印迹在人类样本上 (图 s3a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
GeneTex细胞周期蛋白B1抗体(GeneTex, GTX100911)被用于被用于免疫印迹在人类样本上 (图 5a). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
GeneTex细胞周期蛋白B1抗体(GeneTex, GTX100911)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2016) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(1C8)
  • 免疫印迹; 人类; 1:500; 图 3a
亚诺法生技股份有限公司细胞周期蛋白B1抗体(Abnova, H00000891-M01)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Clin Exp Ophthalmol (2017) ncbi
BioLegend
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:500; 图 5
BioLegend细胞周期蛋白B1抗体(BioLegend, 647901)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Int J Mol Sci (2016) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5a
  • 免疫组化; 小鼠; 1:500; 图 5a
西格玛奥德里奇细胞周期蛋白B1抗体(Sigma-Aldrich, SAB4503501)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5a) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Proc Natl Acad Sci U S A (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在人类样本上 (图 4e). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Lab Invest (2019) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, D5C10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). J Virol (2019) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:5000; 图 3d
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, V152)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫细胞化学; 人类; 1:200; 图 s4i
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s4i). Science (2018) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫细胞化学; 人类; 1:800; 图 s4b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 s4b). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上 (图 5b). Cell Signal (2018) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:2000; 图 4d
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135s)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4d). Nat Commun (2018) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在小鼠样本上 (图 s4b). Gastroenterology (2018) ncbi
小鼠 单克隆(V152)
  • 流式细胞仪; 人类; 图 s2a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于流式细胞仪在人类样本上 (图 s2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在人类样本上 (图 3b). Gynecol Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上 (图 5). Exp Neurol (2018) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 1:1000; 图 6B; 6D; 6F
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6B; 6D; 6F). Onco Targets Ther (2017) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫印迹在人类样本上. Neoplasia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). PLoS ONE (2017) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在人类样本上 (图 4a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135S)被用于被用于免疫印迹在人类样本上 (图 6h). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b; 5a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上 (图 1b; 5a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在人类样本上 (图 2). Neuroendocrinology (2018) ncbi
小鼠 单克隆(V152)
  • 免疫组化; 小鼠; 图 s5a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, AS4135)被用于被用于免疫组化在小鼠样本上 (图 s5a). Stem Cell Reports (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上 (图 4e). DNA Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2c
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2c). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上 (图 1g). Sci Rep (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:100; 图 st1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(9E3)
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4133)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 小鼠; 图 s6
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在小鼠样本上 (图 s6). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 2h
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(CST, 12231)被用于被用于免疫印迹在人类样本上 (图 2h). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4138S)被用于被用于免疫印迹在人类样本上 (图 2). Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). EMBO Mol Med (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4138)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上 (图 s3). Nat Cell Biol (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell signaling, 4135s)被用于被用于免疫印迹在人类样本上 (图 5). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上 (图 5a). Oncol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在人类样本上 (图 3f). Oncotarget (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在人类样本上 (图 5d). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Chem Biol (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 s3e
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(CST, 12,231)被用于被用于免疫印迹在人类样本上 (图 s3e). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上 (图 1b). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, V152)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell signaling, 12231)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(CST, 4138S)被用于被用于免疫印迹在小鼠样本上 (图 5a). J Clin Invest (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell signaling, V152)被用于被用于免疫印迹在人类样本上 (图 2b). Immunol Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫印迹在人类样本上 (图 8). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Mol Med Rep (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nat Genet (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫印迹在大鼠样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:800; 图 5
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138P)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(V152)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135;)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在人类样本上 (图 6b). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 小鼠; 1:500; 图 5e
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5e). J Biol Chem (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:2500; 图 6
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135S)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上 (图 4). Mol Biol Cell (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Infect Immun (2015) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 1c, 1d
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signalling, 12231)被用于被用于免疫印迹在人类样本上 (图 1c, 1d). Mol Cell Proteomics (2015) ncbi
domestic rabbit 单克隆(9E3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4133S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(CST, 4135)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Int J Oncol (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:2000; 图 4A
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4A). Mol Med Rep (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, D5C10)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 1i
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在人类样本上 (图 1i). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(9E3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4133)被用于被用于免疫印迹在人类样本上浓度为1:1000. Virology (2013) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Acta Pharmacol Sin (2013) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, V152)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Tech, 4135)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2012) ncbi
碧迪BD
小鼠 单克隆(GNS-11)
  • mass cytometry; 人类; 图 3a
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554179)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类; 图 3c
碧迪BD细胞周期蛋白B1抗体(BD Pharmingen, 554177)被用于被用于免疫印迹在人类样本上 (图 3c). Nat Cell Biol (2017) ncbi
小鼠 单克隆(GNS-11)
  • 免疫印迹; 人类; 图 3a
碧迪BD细胞周期蛋白B1抗体(BD Bioscience, 554179)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS Pathog (2017) ncbi
小鼠 单克隆(GNS-11)
  • 免疫细胞化学; 人类; 1:250; 图 ms1
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554178)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 ms1). Sci Rep (2017) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类; 1:1000; 图 5
碧迪BD细胞周期蛋白B1抗体(BD Pharmingen, 554177)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(GNS-11)
  • 免疫印迹; 人类; 1:500; 图 3
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554178)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类; 图 1
碧迪BD细胞周期蛋白B1抗体(BD Pharminge, 554176)被用于被用于免疫印迹在人类样本上 (图 1). Cell Rep (2016) ncbi
小鼠 单克隆(GNS-1)
  • 其他; 人类; 图 st1
碧迪BD细胞周期蛋白B1抗体(BD, GNS-1)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, GNS-1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Sci (2015) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类; 图 3
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554177)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(18/Cyclin B)
  • 免疫印迹; 人类; 图 7
碧迪BD细胞周期蛋白B1抗体(BD, 61029)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(18/Cyclin B)
  • 免疫印迹; 人类; 图 2
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 61029)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(GNS-11)
  • 免疫印迹; 人类; 图 3
碧迪BD细胞周期蛋白B1抗体(BD PharMingen, 554179)被用于被用于免疫印迹在人类样本上 (图 3). Cell Cycle (2015) ncbi
小鼠 单克隆(GNS-11)
  • 免疫印迹; 人类
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554178)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类
碧迪BD细胞周期蛋白B1抗体(BD Pharmigen, GNS-1)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(GNS-11)
  • 免疫印迹; 人类
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554179)被用于被用于免疫印迹在人类样本上. Life Sci (2014) ncbi
小鼠 单克隆(GNS-11)
  • 免疫细胞化学; 人类; 图 6a
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554179)被用于被用于免疫细胞化学在人类样本上 (图 6a). elife (2014) ncbi
小鼠 单克隆(18/Cyclin B)
  • 免疫印迹; 人类; 图 1c
碧迪BD细胞周期蛋白B1抗体(BD, 610219)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Biol Cell (2014) ncbi
小鼠 单克隆(18/Cyclin B)
  • 免疫印迹; 人类; 1:1000; 图 5
碧迪BD细胞周期蛋白B1抗体(BD Transduction Laboratories, 610219)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Virology (2013) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类
碧迪BD细胞周期蛋白B1抗体(Pharmingen, 554177)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2013) ncbi
小鼠 单克隆(18/Cyclin B)
  • 免疫细胞化学; 人类; 1:200
碧迪BD细胞周期蛋白B1抗体(BD Bioscience, 610220)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2012) ncbi
默克密理博中国
小鼠 单克隆(GNS3)
  • 免疫印迹; 人类; 图 3c
默克密理博中国细胞周期蛋白B1抗体(Millipore, 05-373)被用于被用于免疫印迹在人类样本上 (图 3c). Cells (2019) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 小鼠; 1:500; 图 5b
默克密理博中国细胞周期蛋白B1抗体(Millipore, MAB3684)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(GNS3)
  • 免疫印迹; 人类; 图 s1a
默克密理博中国细胞周期蛋白B1抗体(EMD Millipore, 05-373)被用于被用于免疫印迹在人类样本上 (图 s1a). J Cell Biol (2016) ncbi
小鼠 单克隆(GNS3)
  • 免疫沉淀; 人类; 图 2b
  • 免疫印迹; 人类; 图 1b
默克密理博中国细胞周期蛋白B1抗体(Millipore, 05-373)被用于被用于免疫沉淀在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 1b). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(GNS3)
  • 免疫印迹; 人类; 1:1000; 图 1
默克密理博中国细胞周期蛋白B1抗体(Millipore, 05-373)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(GNS3)
  • 免疫印迹; 人类; 图 5
默克密理博中国细胞周期蛋白B1抗体(Merck Millipore, 05-373)被用于被用于免疫印迹在人类样本上 (图 5). Biochem Pharmacol (2016) ncbi
domestic rabbit 单克隆(Y106)
  • 免疫印迹; 人类; 表 s3
默克密理博中国细胞周期蛋白B1抗体(Millipore, Y106)被用于被用于免疫印迹在人类样本上 (表 s3). Cell Death Dis (2015) ncbi
小鼠 单克隆(GNS3)
  • 免疫印迹; 人类
默克密理博中国细胞周期蛋白B1抗体(EMD Millipore, GNS3)被用于被用于免疫印迹在人类样本上. J Cell Biol (2014) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 小鼠; 图 s3
默克密理博中国细胞周期蛋白B1抗体(Chemicon, MAB3684)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cell Cycle (2014) ncbi
小鼠 单克隆(V152)
  • 免疫细胞化学; 小鼠
默克密理博中国细胞周期蛋白B1抗体(Millipore, MAB3684)被用于被用于免疫细胞化学在小鼠样本上. Cell Cycle (2013) ncbi
MBL International
单克隆
  • 免疫印迹; 人类; 图 1c
MBL International细胞周期蛋白B1抗体(MBL, K0128-3)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Biol Cell (2014) ncbi
文章列表
  1. Singh V, Khalil M, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle. 2020;19:363-375 pubmed 出版商
  2. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  3. Choi Y, Kang M, Hong K, Kim J. Tubastatin A inhibits HDAC and Sirtuin activity rather than being a HDAC6-specific inhibitor in mouse oocytes. Aging (Albany NY). 2019;11:1759-1777 pubmed 出版商
  4. Walton C, Zhang W, Patiño Parrado I, Barrio Alonso E, Garrido J, Frade J. Primary neurons can enter M-phase. Sci Rep. 2019;9:4594 pubmed 出版商
  5. Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, et al. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int. 2019;19:32 pubmed 出版商
  6. Lee J, Sung J, Choi E, Yoon H, Kang B, Hong E, et al. C/EBPβ Is a Transcriptional Regulator of Wee1 at the G₂/M Phase of the Cell Cycle. Cells. 2019;8: pubmed 出版商
  7. Horton A, Brooker J, Streitfeld W, Flessa M, Pillai B, Simpson R, et al. Nkx2-5 Second Heart Field Target Gene Ccdc117 Regulates DNA Metabolism and Proliferation. Sci Rep. 2019;9:1738 pubmed 出版商
  8. Dai L, Hu W, Yang Z, Chen D, He B, Chen Y, et al. Upregulated expression of HOXB7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis. Lab Invest. 2019;99:736-748 pubmed 出版商
  9. Bressy C, Droby G, Maldonado B, Steuerwald N, Grdzelishvili V. Cell Cycle Arrest in G2/M Phase Enhances Replication of Interferon-Sensitive Cytoplasmic RNA Viruses via Inhibition of Antiviral Gene Expression. J Virol. 2019;93: pubmed 出版商
  10. Paul S, Dansithong W, Figueroa K, Scoles D, Pulst S. Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat Commun. 2018;9:3648 pubmed 出版商
  11. Wang L, Wang J, Jin T, Zhou Y, Chen Q. FoxG1 facilitates proliferation and inhibits differentiation by downregulating FoxO/Smad signaling in glioblastoma. Biochem Biophys Res Commun. 2018;504:46-53 pubmed 出版商
  12. Gut G, Herrmann M, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science. 2018;361: pubmed 出版商
  13. Rai A, Chen J, Selbach M, Pelkmans L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature. 2018;559:211-216 pubmed 出版商
  14. Lei T, Zhang P, Zhang X, Xiao X, Zhang J, Qiu T, et al. Cyclin K regulates prereplicative complex assembly to promote mammalian cell proliferation. Nat Commun. 2018;9:1876 pubmed 出版商
  15. Hou L, Xu J, Jiao Y, Li H, Pan Z, Duan J, et al. MiR-27b Promotes Muscle Development by Inhibiting MDFI Expression. Cell Physiol Biochem. 2018;46:2271-2283 pubmed 出版商
  16. Lee C, Hsieh T. Wuho/WDR4 deficiency inhibits cell proliferation and induces apoptosis via DNA damage in mouse embryonic fibroblasts. Cell Signal. 2018;47:16-26 pubmed 出版商
  17. Lin C, Kitagawa M, Tang X, Hou M, Wu J, Qu D, et al. CoA synthase regulates mitotic fidelity via CBP-mediated acetylation. Nat Commun. 2018;9:1039 pubmed 出版商
  18. Ruppert J, Samejima K, Platani M, Molina O, Kimura H, Jeyaprakash A, et al. HP1α targets the chromosomal passenger complex for activation at heterochromatin before mitotic entry. EMBO J. 2018;37: pubmed 出版商
  19. Petsalaki E, Dandoulaki M, Zachos G. The ESCRT protein Chmp4c regulates mitotic spindle checkpoint signaling. J Cell Biol. 2018;217:861-876 pubmed 出版商
  20. He P, Yang J, Yang V, Bialkowska A. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice. Gastroenterology. 2018;154:1494-1508.e13 pubmed 出版商
  21. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  22. Sorokina I, Denisenko T, Imreh G, Tyurin Kuzmin P, Kaminskyy V, Gogvadze V, et al. Involvement of autophagy in the outcome of mitotic catastrophe. Sci Rep. 2017;7:14571 pubmed 出版商
  23. Hein J, Hertz E, Garvanska D, Kruse T, Nilsson J. Distinct kinetics of serine and threonine dephosphorylation are essential for mitosis. Nat Cell Biol. 2017;19:1433-1440 pubmed 出版商
  24. Huang C, Wu S, Ji H, Yan X, Xie Y, Murai S, et al. Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library. Sci Adv. 2017;3:e1701383 pubmed 出版商
  25. Zhao Z, Jia Q, Wu M, Xie X, Wang Y, Song G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res. 2018;24:130-144 pubmed 出版商
  26. Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H, et al. Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget. 2017;8:58231-58246 pubmed 出版商
  27. Otto T, Candido S, Pilarz M, Sicinska E, Bronson R, Bowden M, et al. Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A. 2017;114:10660-10665 pubmed 出版商
  28. Zhu Z, Lou C, Zheng Z, Zhu R, Tian S, Xie C, et al. ZFP403, a novel tumor suppressor, inhibits the proliferation and metastasis in ovarian cancer. Gynecol Oncol. 2017;147:418-425 pubmed 出版商
  29. Giono L, Resnick Silverman L, Carvajal L, St Clair S, Manfredi J. Mdm2 promotes Cdc25C protein degradation and delays cell cycle progression through the G2/M phase. Oncogene. 2017;36:6762-6773 pubmed 出版商
  30. Takaki T, Montagner M, Serres M, Le Berre M, Russell M, Collinson L, et al. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat Commun. 2017;8:16013 pubmed 出版商
  31. Li Z, Li D, Choi E, Lapidus R, Zhang L, Huang S, et al. Silencing of solute carrier family 13 member 5 disrupts energy homeostasis and inhibits proliferation of human hepatocarcinoma cells. J Biol Chem. 2017;292:13890-13901 pubmed 出版商
  32. Oblinger J, Burns S, Huang J, Pan L, Ren Y, Shen R, et al. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol. 2018;299:299-307 pubmed 出版商
  33. Paul A, Wang B. RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage. Mol Cell. 2017;66:458-472.e5 pubmed 出版商
  34. Aviner R, Hofmann S, Elman T, Shenoy A, Geiger T, Elkon R, et al. Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis. Nucleic Acids Res. 2017;45:5945-5957 pubmed 出版商
  35. Sandén E, Dyberg C, Krona C, Gallo Oller G, Olsen T, Enríquez Pérez J, et al. Establishment and characterization of an orthotopic patient-derived Group 3 medulloblastoma model for preclinical drug evaluation. Sci Rep. 2017;7:46366 pubmed 出版商
  36. Yurugi H, Marini F, Weber C, David K, Zhao Q, Binder H, et al. Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours. Oncogene. 2017;36:4778-4789 pubmed 出版商
  37. Yuan X, Sun X, Shi X, Jiang C, Yu D, Zhang W, et al. USP39 regulates the growth of SMMC-7721 cells via FoxM1. Exp Ther Med. 2017;13:1506-1513 pubmed 出版商
  38. Xiang Q, Tan G, Jiang X, Wu K, Tan W, Tan Y. Suppression of FOXM1 Transcriptional Activities via a Single-Stranded DNA Aptamer Generated by SELEX. Sci Rep. 2017;7:45377 pubmed 出版商
  39. Xu P, Zhou Z, Xiong M, Zou W, Deng X, Ganaie S, et al. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway. PLoS Pathog. 2017;13:e1006266 pubmed 出版商
  40. Yamada M, Egli D. Genome Transfer Prevents Fragmentation and Restores Developmental Potential of Developmentally Compromised Postovulatory Aged Mouse Oocytes. Stem Cell Reports. 2017;8:576-588 pubmed 出版商
  41. Li J, Liu Y, Yin Y. ARHGAP1 overexpression inhibits proliferation, migration and invasion of C-33A and SiHa cell lines. Onco Targets Ther. 2017;10:691-701 pubmed 出版商
  42. Vallejo A, Perurena N, Guruceaga E, Mazur P, Martínez Canarias S, Zandueta C, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun. 2017;8:14294 pubmed 出版商
  43. Shin S, Song J, Hwang B, Noh D, Park S, Kim W, et al. HSPA6 augments garlic extract-induced inhibition of proliferation, migration, and invasion of bladder cancer EJ cells; Implication for cell cycle dysregulation, signaling pathway alteration, and transcription factor-associated MMP-9 regulation. PLoS ONE. 2017;12:e0171860 pubmed 出版商
  44. Bot C, Pfeiffer A, Giordano F, Manjeera D, Dantuma N, Ström L. Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage. J Cell Sci. 2017;130:1134-1146 pubmed 出版商
  45. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  46. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  47. Li J, Dang N, Wood D, Huang J. The kinetochore-dependent and -independent formation of the CDC20-MAD2 complex and its functions in HeLa cells. Sci Rep. 2017;7:41072 pubmed 出版商
  48. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  49. Major J, Dewan A, Salih M, Leddy J, Tuana B. E2F6 Impairs Glycolysis and Activates BDH1 Expression Prior to Dilated Cardiomyopathy. PLoS ONE. 2017;12:e0170066 pubmed 出版商
  50. Ramos P, Guerra A, Guerreiro O, Santos S, Oliveira H, Freire C, et al. Antiproliferative Effects of Cynara cardunculus L. var. altilis (DC) Lipophilic Extracts. Int J Mol Sci. 2016;18: pubmed 出版商
  51. Ren H, Liu F, Huang G, Liu Y, Shen J, Zhou P, et al. Positive feedback loop of IL-1β/Akt/RARα/Akt signaling mediates oncogenic property of RARα in gastric carcinoma. Oncotarget. 2017;8:6718-6729 pubmed 出版商
  52. Sierra Potchanant E, Cerabona D, Sater Z, He Y, Sun Z, Gehlhausen J, et al. INPP5E Preserves Genomic Stability through Regulation of Mitosis. Mol Cell Biol. 2017;37: pubmed 出版商
  53. Huang Z, Zhou X, He Y, Ke X, Wen Y, Zou F, et al. Hyperthermia enhances 17-DMAG efficacy in hepatocellular carcinoma cells with aggravated DNA damage and impaired G2/M transition. Sci Rep. 2016;6:38072 pubmed 出版商
  54. Kung Y, Hung C, Chien K, Shih S. Control of the negative IRES trans-acting factor KHSRP by ubiquitination. Nucleic Acids Res. 2017;45:271-287 pubmed 出版商
  55. Zhu X, Wang K, Zhang K, Zhang T, Yin Y, Xu F. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis. Int J Mol Sci. 2016;17: pubmed
  56. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  57. Zhou J, Ge L, Jia C, Zheng X, Cui H, Zong R, et al. ROS-mediated Different Homeostasis of Murine Corneal Epithelial Progenitor Cell Line under Oxidative Stress. Sci Rep. 2016;6:36481 pubmed 出版商
  58. Dubey A, Copeland P. The Selenocysteine-Specific Elongation Factor Contains Unique Sequences That Are Required for Both Nuclear Export and Selenocysteine Incorporation. PLoS ONE. 2016;11:e0165642 pubmed 出版商
  59. Zheng X, Yang P, Lackford B, Bennett B, Wang L, Li H, et al. CNOT3-Dependent mRNA Deadenylation Safeguards the Pluripotent State. Stem Cell Reports. 2016;7:897-910 pubmed 出版商
  60. Li H, Wang R, Jiang H, Zhang E, Tan J, Xu H, et al. Mitochondrial Ribosomal Protein L10 Associates with Cyclin B1/Cdk1 Activity and Mitochondrial Function. DNA Cell Biol. 2016;35:680-690 pubmed
  61. Kotsantis P, Silva L, Irmscher S, Jones R, Folkes L, Gromak N, et al. Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun. 2016;7:13087 pubmed 出版商
  62. Matsuura K, Huang N, Cocce K, Zhang L, Kornbluth S. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin. Oncogene. 2017;36:1698-1706 pubmed 出版商
  63. Kanakkanthara A, Jeganathan K, Limzerwala J, Baker D, Hamada M, Nam H, et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353:1549-1552 pubmed
  64. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  65. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  66. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  67. Schwermer M, Dreesmann S, Eggert A, Althoff K, Steenpass L, Schramm A, et al. Pharmaceutically inhibiting polo-like kinase 1 exerts a broad anti-tumour activity in retinoblastoma cell lines. Clin Exp Ophthalmol. 2017;45:288-296 pubmed 出版商
  68. Diril M, Bisteau X, Kitagawa M, Caldez M, Wee S, Gunaratne J, et al. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genet. 2016;12:e1006310 pubmed 出版商
  69. Feringa F, Krenning L, Koch A, van den Berg J, van den Broek B, Jalink K, et al. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat Commun. 2016;7:12618 pubmed 出版商
  70. Cundell M, Hutter L, Nunes Bastos R, Poser E, Holder J, Mohammed S, et al. A PP2A-B55 recognition signal controls substrate dephosphorylation kinetics during mitotic exit. J Cell Biol. 2016;214:539-54 pubmed 出版商
  71. Steingruber M, Kraut A, Socher E, Sticht H, Reichel A, Stamminger T, et al. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins. Viruses. 2016;8: pubmed 出版商
  72. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  73. Park Y, Nam H, Do M, Lee J. The p90 ribosomal S6 kinase 2 specifically affects mitotic progression by regulating the basal level, distribution and stability of mitotic spindles. Exp Mol Med. 2016;48:e250 pubmed 出版商
  74. Mukherjee S, Chakraborty P, Saha P. Phosphorylation of Ku70 subunit by cell cycle kinases modulates the replication related function of Ku heterodimer. Nucleic Acids Res. 2016;44:7755-65 pubmed 出版商
  75. Zhang X, Ling Y, Guo Y, Bai Y, Shi X, Gong F, et al. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria. Cell Death Dis. 2016;7:e2292 pubmed 出版商
  76. Gholkar A, Cheung K, Williams K, Lo Y, Hamideh S, Nnebe C, et al. Fatostatin Inhibits Cancer Cell Proliferation by Affecting Mitotic Microtubule Spindle Assembly and Cell Division. J Biol Chem. 2016;291:17001-8 pubmed 出版商
  77. Wu D, Chen C, Wu Z, Liu B, Gao L, Yang Q, et al. ATF2 predicts poor prognosis and promotes malignant phenotypes in renal cell carcinoma. J Exp Clin Cancer Res. 2016;35:108 pubmed 出版商
  78. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  79. Chung H, Park J, Lee N, Kim H, Jang C. Phosphorylation of Astrin Regulates Its Kinetochore Function. J Biol Chem. 2016;291:17579-92 pubmed 出版商
  80. Helmke C, Raab M, Rodel F, Matthess Y, Oellerich T, Mandal R, et al. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res. 2016;26:914-34 pubmed 出版商
  81. Engel K, Rudelius M, Slawska J, Jacobs L, Ahangarian Abhari B, Altmann B, et al. USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma. EMBO Mol Med. 2016;8:851-62 pubmed 出版商
  82. Sun Y, Zheng W, Guo Z, Ju Q, Zhu L, Gao J, et al. A novel TP53 pathway influences the HGS-mediated exosome formation in colorectal cancer. Sci Rep. 2016;6:28083 pubmed 出版商
  83. Eichner R, Heider M, Fernández Sáiz V, van Bebber F, Garz A, Lemeer S, et al. Immunomodulatory drugs disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and teratogenicity. Nat Med. 2016;22:735-43 pubmed 出版商
  84. van Ree J, Nam H, Jeganathan K, Kanakkanthara A, van Deursen J. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes. Nat Cell Biol. 2016;18:814-21 pubmed 出版商
  85. Al Nakouzi N, Wang C, Beraldi E, Jäger W, Ettinger S, Fazli L, et al. Clusterin knockdown sensitizes prostate cancer cells to taxane by modulating mitosis. EMBO Mol Med. 2016;8:761-78 pubmed 出版商
  86. Yang Y, Lu Y, Wang L, Mizokami A, Keller E, Zhang J, et al. Skp2 is associated with paclitaxel resistance in prostate cancer cells. Oncol Rep. 2016;36:559-66 pubmed 出版商
  87. Tsai L, Chang Y, Lee M, Chang Y, Hwang P, Huang Y, et al. Biphasic and Stage-Associated Expression of CPEB4 in Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0155025 pubmed 出版商
  88. Moshfegh C, Aires L, Kisielow M, Vogel V. A gonogenic stimulated transition of mouse embryonic stem cells with enhanced control of diverse differentiation pathways. Sci Rep. 2016;6:25104 pubmed 出版商
  89. Matsushima H, Mori T, Ito F, Yamamoto T, Akiyama M, Kokabu T, et al. Anti-tumor effect of estrogen-related receptor alpha knockdown on uterine endometrial cancer. Oncotarget. 2016;7:34131-48 pubmed 出版商
  90. Dai Y, Hung L, Chen R, Lai C, Chang K. ON 01910.Na inhibits growth of diffuse large B-cell lymphoma by cytoplasmic sequestration of sumoylated C-MYB/TRAF6 complex. Transl Res. 2016;175:129-143.e13 pubmed 出版商
  91. Marthandan S, Baumgart M, Priebe S, Groth M, Schaer J, Kaether C, et al. Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS ONE. 2016;11:e0154531 pubmed 出版商
  92. Qiao R, Weissmann F, Yamaguchi M, Brown N, VanderLinden R, Imre R, et al. Mechanism of APC/CCDC20 activation by mitotic phosphorylation. Proc Natl Acad Sci U S A. 2016;113:E2570-8 pubmed 出版商
  93. Salsi V, Fantini S, Zappavigna V. NUP98 fusion oncoproteins interact with the APC/C(Cdc20) as a pseudosubstrate and prevent mitotic checkpoint complex binding. Cell Cycle. 2016;15:2275-87 pubmed 出版商
  94. Huang C, Lee C, Yang S, Chien C, Huang C, Yang R, et al. Upregulation of the growth arrest-specific-2 in recurrent colorectal cancers, and its susceptibility to chemotherapy in a model cell system. Biochim Biophys Acta. 2016;1862:1345-53 pubmed 出版商
  95. Iimori M, Watanabe S, Kiyonari S, Matsuoka K, Sakasai R, Saeki H, et al. Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun. 2016;7:11117 pubmed 出版商
  96. Dai Y, Wang L, Tang J, Cao P, Luo Z, Sun J, et al. Activation of anaphase-promoting complex by p53 induces a state of dormancy in cancer cells against chemotherapeutic stress. Oncotarget. 2016;7:25478-92 pubmed 出版商
  97. Hein J, Nilsson J. Interphase APC/C-Cdc20 inhibition by cyclin A2-Cdk2 ensures efficient mitotic entry. Nat Commun. 2016;7:10975 pubmed 出版商
  98. Tambe M, Pruikkonen S, Mäki Jouppila J, Chen P, Elgaaen B, Straume A, et al. Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells' sensitivity to paclitaxel. Oncotarget. 2016;7:12267-85 pubmed 出版商
  99. Ercilla A, Llopis A, Feu S, Aranda S, Ernfors P, Freire R, et al. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res. 2016;44:4745-62 pubmed 出版商
  100. Jing H, Sun W, Fan J, Zhang Y, Yang J, Jia J, et al. Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways. Mol Med Rep. 2016;13:3009-16 pubmed 出版商
  101. Zhang M, Linghu E, Zhan Q, He T, Cao B, Brock M, et al. Methylation of DACT2 accelerates esophageal cancer development by activating Wnt signaling. Oncotarget. 2016;7:17957-69 pubmed 出版商
  102. Wild T, Larsen M, Narita T, Schou J, Nilsson J, Choudhary C. The Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity. Cell Rep. 2016;14:1829-40 pubmed 出版商
  103. Nim S, Jeon J, Corbi Verge C, Seo M, Ivarsson Y, Moffat J, et al. Pooled screening for antiproliferative inhibitors of protein-protein interactions. Nat Chem Biol. 2016;12:275-81 pubmed 出版商
  104. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  105. Cott C, Thuenauer R, Landi A, Kühn K, Juillot S, Imberty A, et al. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation. Biochim Biophys Acta. 2016;1863:1106-18 pubmed 出版商
  106. Liu Y, Liu C, Chang Z, Wadas B, Brower C, Song Z, et al. Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway. J Biol Chem. 2016;291:7426-38 pubmed 出版商
  107. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed 出版商
  108. Sharma A, Lyashchenko A, Lu L, Nasrabady S, Elmaleh M, Mendelsohn M, et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun. 2016;7:10465 pubmed 出版商
  109. Chen N, Chyau C, Lee Y, Tseng H, Chou F. Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells. Sci Rep. 2016;6:20417 pubmed 出版商
  110. Podmirseg S, Jäkel H, Ranches G, Kullmann M, Sohm B, Villunger A, et al. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene. 2016;35:4580-90 pubmed 出版商
  111. Hasvold G, Lund Andersen C, Lando M, Patzke S, Hauge S, Suo Z, et al. Hypoxia-induced alterations of G2 checkpoint regulators. Mol Oncol. 2016;10:764-73 pubmed 出版商
  112. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  113. Kuo C, Li X, Stark J, Shih H, Ann D. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner. Cell Cycle. 2016;15:787-98 pubmed 出版商
  114. Zhou H, Wang T, Zheng T, Teng J, Chen J. Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1-Mad2. Nat Commun. 2016;7:10151 pubmed 出版商
  115. Naylor R, Jeganathan K, Cao X, van Deursen J. Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy. J Clin Invest. 2016;126:543-59 pubmed 出版商
  116. Berges C, Chatterjee M, Topp M, Einsele H. Targeting polo-like kinase 1 suppresses essential functions of alloreactive T cells. Immunol Res. 2016;64:687-98 pubmed 出版商
  117. Lub S, Maes A, Maes K, De Veirman K, De Bruyne E, Menu E, et al. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget. 2016;7:4062-76 pubmed 出版商
  118. Li R, Liao G, Nirujogi R, Pinto S, Shaw P, Huang T, et al. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling. PLoS Pathog. 2015;11:e1005346 pubmed 出版商
  119. Ferré C, Davezac N, Thouard A, Peyrin J, Belenguer P, Miquel M, et al. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential. FASEB J. 2016;30:1523-33 pubmed 出版商
  120. O Connor A, Maffini S, Rainey M, Kaczmarczyk A, Gaboriau D, Musacchio A, et al. Requirement for PLK1 kinase activity in the maintenance of a robust spindle assembly checkpoint. Biol Open. 2015;5:11-9 pubmed 出版商
  121. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18:202-12 pubmed 出版商
  122. Ohashi A, Ohori M, Iwai K, Nambu T, Miyamoto M, Kawamoto T, et al. A Novel Time-Dependent CENP-E Inhibitor with Potent Antitumor Activity. PLoS ONE. 2015;10:e0144675 pubmed 出版商
  123. Chen X, Dong X, Gao H, Jiang Y, Jin Y, Chang Y, et al. Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells. Mol Med Rep. 2016;13:689-96 pubmed 出版商
  124. Harley M, Murina O, Leitch A, Higgs M, Bicknell L, Yigit G, et al. TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism. Nat Genet. 2016;48:36-43 pubmed 出版商
  125. Zhang Y, Yu J, Lee C, Xu B, Sartor M, Koenig R. Genomic binding and regulation of gene expression by the thyroid carcinoma-associated PAX8-PPARG fusion protein. Oncotarget. 2015;6:40418-32 pubmed 出版商
  126. Lyu L, Whitcomb E, Jiang S, Chang M, Gu Y, Duncan M, et al. Unfolded-protein response-associated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract. FASEB J. 2016;30:1087-95 pubmed 出版商
  127. Tan X, Fu Y, Chen L, Lee W, Lai Y, Rezaei K, et al. miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer. Oncotarget. 2016;7:293-307 pubmed 出版商
  128. Lohberger B, Leithner A, Stuendl N, Kaltenegger H, Kullich W, Steinecker Frohnwieser B. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer. 2015;15:891 pubmed 出版商
  129. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  130. Xu S, Huang J, Chen M, Zeng M, Zou F, Chen D, et al. Amplification of ACK1 promotes gastric tumorigenesis via ECD-dependent p53 ubiquitination degradation. Oncotarget. 2017;8:12705-12716 pubmed 出版商
  131. Fuchs M, Luthold C, Guilbert S, Varlet A, Lambert H, Jetté A, et al. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis. PLoS Genet. 2015;11:e1005582 pubmed 出版商
  132. Lauková J, Kozubík A, Hofmanová J, Nekvindová J, Sova P, Moyer M, et al. Loss of PTEN Facilitates Rosiglitazone-Mediated Enhancement of Platinum(IV) Complex LA-12-Induced Apoptosis in Colon Cancer Cells. PLoS ONE. 2015;10:e0141020 pubmed 出版商
  133. Gao L, Tang H, He H, Liu J, Mao J, Ji H, et al. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats. Front Pharmacol. 2015;6:215 pubmed 出版商
  134. Strizzi L, Sandomenico A, Margaryan N, Focà A, Sanguigno L, Bodenstine T, et al. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget. 2015;6:34071-86 pubmed 出版商
  135. Aviner R, Shenoy A, Elroy Stein O, Geiger T. Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis. PLoS Genet. 2015;11:e1005554 pubmed 出版商
  136. Voets E, Marsman J, Demmers J, Beijersbergen R, Wolthuis R. The lethal response to Cdk1 inhibition depends on sister chromatid alignment errors generated by KIF4 and isoform 1 of PRC1. Sci Rep. 2015;5:14798 pubmed 出版商
  137. Maleszewska M, Vanchin B, Harmsen M, Krenning G. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence. Angiogenesis. 2016;19:9-24 pubmed 出版商
  138. Seo M, Jang W, Rhee K. Integrity of the Pericentriolar Material Is Essential for Maintaining Centriole Association during M Phase. PLoS ONE. 2015;10:e0138905 pubmed 出版商
  139. Martinez R, Blasina A, Hallin J, Hu W, Rymer I, Fan J, et al. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility. PLoS ONE. 2015;10:e0138616 pubmed 出版商
  140. Bailey M, Singh T, Mero P, Moffat J, Hieter P. Dependence of Human Colorectal Cells Lacking the FBW7 Tumor Suppressor on the Spindle Assembly Checkpoint. Genetics. 2015;201:885-95 pubmed 出版商
  141. Marthandan S, Priebe S, Baumgart M, Groth M, Cellerino A, Guthke R, et al. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts. Biomed Res Int. 2015;2015:731938 pubmed 出版商
  142. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  143. Quijada P, Hariharan N, Cubillo J, Bala K, Emathinger J, Wang B, et al. Nuclear Calcium/Calmodulin-dependent Protein Kinase II Signaling Enhances Cardiac Progenitor Cell Survival and Cardiac Lineage Commitment. J Biol Chem. 2015;290:25411-26 pubmed 出版商
  144. Shukla A, Kong D, Sharma M, Magidson V, Loncarek J. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation. Nat Commun. 2015;6:8077 pubmed 出版商
  145. Zhang G, Xiong K, Ma W, Xu W, Zeng H. Initiate Tumors with Single Cell Spheres Formed in Serum-Containing Medium. J Cancer. 2015;6:901-12 pubmed 出版商
  146. Kruiswijk F, Hasenfuss S, Sivapatham R, Baar M, Putavet D, Naipal K, et al. Targeted inhibition of metastatic melanoma through interference with Pin1-FOXM1 signaling. Oncogene. 2016;35:2166-77 pubmed 出版商
  147. Steingruber M, Socher E, Hutterer C, Webel R, Bergbrede T, Lenac T, et al. The Interaction between Cyclin B1 and Cytomegalovirus Protein Kinase pUL97 is Determined by an Active Kinase Domain. Viruses. 2015;7:4582-601 pubmed 出版商
  148. Chen C, Tian F, Lu L, Wang Y, Xiao Z, Yu C, et al. Characterization of Cep85 - a new antagonist of Nek2A that is involved in the regulation of centrosome disjunction. J Cell Sci. 2015;128:3290-303 pubmed 出版商
  149. Wu C, Huang K, Yang T, Li Y, Wen C, Hsu S, et al. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS ONE. 2015;10:e0132052 pubmed 出版商
  150. Liu R, Fan M, Candas D, Qin L, Zhang X, Eldridge A, et al. CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Mol Cancer Ther. 2015;14:2090-102 pubmed 出版商
  151. Sadaie M, Dillon C, Narita M, Young A, Cairney C, Godwin L, et al. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol Biol Cell. 2015;26:2971-85 pubmed 出版商
  152. Yan M, Chu L, Qin B, Wang Z, Liu X, Jin C, et al. Regulation of NDR1 activity by PLK1 ensures proper spindle orientation in mitosis. Sci Rep. 2015;5:10449 pubmed 出版商
  153. Dille S, Kleinschnitz E, Kontchou C, Nölke T, Häcker G. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport. Infect Immun. 2015;83:3268-80 pubmed 出版商
  154. McCloy R, Parker B, Rogers S, Chaudhuri R, Gayevskiy V, Hoffman N, et al. Global Phosphoproteomic Mapping of Early Mitotic Exit in Human Cells Identifies Novel Substrate Dephosphorylation Motifs. Mol Cell Proteomics. 2015;14:2194-212 pubmed 出版商
  155. Moiseeva O, Lessard F, Acevedo Aquino M, Vernier M, Tsantrizos Y, Ferbeyre G. Mutant lamin A links prophase to a p53 independent senescence program. Cell Cycle. 2015;14:2408-21 pubmed 出版商
  156. Ohira M, Iwasaki Y, Tanaka C, Kuroki M, Matsuo N, Kitamura T, et al. A novel anti-microtubule agent with carbazole and benzohydrazide structures suppresses tumor cell growth in vivo. Biochim Biophys Acta. 2015;1850:1676-84 pubmed 出版商
  157. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  158. Li C, Wu W, Wu W, Liao Y, Chen L, Huang C, et al. The cAMP responsive element binding protein 1 transactivates epithelial membrane protein 2, a potential tumor suppressor in the urinary bladder urothelial carcinoma. Oncotarget. 2015;6:9220-39 pubmed
  159. Guha G, Lu W, Li S, Liang X, Kulesz Martin M, Mahmud T, et al. Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Head and Neck Squamous Cell Carcinoma (HNSCC) Cells. PLoS ONE. 2015;10:e0125322 pubmed 出版商
  160. Qiu J, Zhang Y, Li Y, Zhao J, Zhang W, Jiang Q, et al. Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter. Oncotarget. 2015;6:15494-509 pubmed
  161. Pozo K, Hillmann A, Augustyn A, Plattner F, Hai T, Singh T, et al. Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis. Oncotarget. 2015;6:12080-93 pubmed
  162. Voets E, Wolthuis R. MASTL promotes cyclin B1 destruction by enforcing Cdc20-independent binding of cyclin B1 to the APC/C. Biol Open. 2015;4:484-95 pubmed 出版商
  163. Masuda K, Chiyoda T, Sugiyama N, Segura Cabrera A, Kabe Y, Ueki A, et al. LATS1 and LATS2 phosphorylate CDC26 to modulate assembly of the tetratricopeptide repeat subcomplex of APC/C. PLoS ONE. 2015;10:e0118662 pubmed 出版商
  164. Lee J, Chung L, Chen Y, Feng T, Chen W, Juang H. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells. Cancer Lett. 2015;360:310-8 pubmed 出版商
  165. Susanto J, Colvin E, Pinese M, Chang D, Pajic M, Mawson A, et al. The epigenetic agents suberoylanilide hydroxamic acid and 5‑AZA‑2' deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo. Int J Oncol. 2015;46:2223-30 pubmed 出版商
  166. Nakajima T, Kitagawa K, Ohhata T, Sakai S, Uchida C, Shibata K, et al. Regulation of GATA-binding protein 2 levels via ubiquitin-dependent degradation by Fbw7: involvement of cyclin B-cyclin-dependent kinase 1-mediated phosphorylation of THR176 in GATA-binding protein 2. J Biol Chem. 2015;290:10368-81 pubmed 出版商
  167. Jeong H, Gil N, Lee H, Cho S, Kim K, Chun K, et al. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression. J Cell Biochem. 2015;116:1602-12 pubmed 出版商
  168. Hamdi A, Lesnard A, Suzanne P, Robert T, Miteva M, Pellerano M, et al. Tampering with cell division by using small-molecule inhibitors of CDK-CKS protein interactions. Chembiochem. 2015;16:432-9 pubmed 出版商
  169. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  170. Rizkallah R, Batsomboon P, Dudley G, Hurt M. Identification of the oncogenic kinase TOPK/PBK as a master mitotic regulator of C2H2 zinc finger proteins. Oncotarget. 2015;6:1446-61 pubmed
  171. Xia J, Chen S, Lv Y, Lu L, Hu W, Zhou Y. ZGDHu-1 induces Gâ‚‚/M phase arrest and apoptosis in Kasumi-1 cells. Mol Med Rep. 2015;11:3398-404 pubmed 出版商
  172. Pérès E, Gérault A, Valable S, Roussel S, Toutain J, Divoux D, et al. Silencing erythropoietin receptor on glioma cells reinforces efficacy of temozolomide and X-rays through senescence and mitotic catastrophe. Oncotarget. 2015;6:2101-19 pubmed
  173. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  174. Pino M, Verstraeten S. Tl(I) and Tl(III) alter the expression of EGF-dependent signals and cyclins required for pheochromocytoma (PC12) cell-cycle resumption and progression. J Appl Toxicol. 2015;35:952-69 pubmed 出版商
  175. Bastos R, Cundell M, Barr F. KIF4A and PP2A-B56 form a spatially restricted feedback loop opposing Aurora B at the anaphase central spindle. J Cell Biol. 2014;207:683-93 pubmed 出版商
  176. Xue L, Furusawa Y, Okayasu R, Miura M, Cui X, Liu C, et al. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function. DNA Repair (Amst). 2015;25:72-83 pubmed 出版商
  177. Brownlow N, Pike T, Zicha D, Collinson L, Parker P. Mitotic catenation is monitored and resolved by a PKCε-regulated pathway. Nat Commun. 2014;5:5685 pubmed 出版商
  178. Szeto S, Williams E, Rudner A, Lee J. Phosphorylation of filamin A by Cdk1 regulates filamin A localization and daughter cell separation. Exp Cell Res. 2015;330:248-66 pubmed 出版商
  179. Eifler M, Uecker R, Weisbach H, Bogdanow B, Richter E, König L, et al. PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry. PLoS Pathog. 2014;10:e1004514 pubmed 出版商
  180. Li Y, Kim B, Cho S, Bang M, Kim S, Park D. 6,7-di-O-acetylsinococuline (FK-3000) induces G2/M phase arrest in breast carcinomas through p38 MAPK phosphorylation and CDC25B dephosphorylation. Int J Oncol. 2015;46:578-86 pubmed 出版商
  181. Ohoka N, Nagai K, Hattori T, Okuhira K, Shibata N, Cho N, et al. Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis. 2014;5:e1513 pubmed 出版商
  182. Greve K, Lindgreen J, Terp M, Pedersen C, Schmidt S, Mollenhauer J, et al. Ectopic expression of cancer/testis antigen SSX2 induces DNA damage and promotes genomic instability. Mol Oncol. 2015;9:437-49 pubmed 出版商
  183. Xu H, Zhou Y, Coughlan K, Ding Y, Wang S, Wu Y, et al. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. Biochim Biophys Acta. 2015;1853:65-73 pubmed 出版商
  184. van der Lelij P, Stocsits R, Ladurner R, Petzold G, Kreidl E, Koch B, et al. SNW1 enables sister chromatid cohesion by mediating the splicing of sororin and APC2 pre-mRNAs. EMBO J. 2014;33:2643-58 pubmed 出版商
  185. Shandilya J, Toska E, Richard D, Medler K, Roberts S. WT1 interacts with MAD2 and regulates mitotic checkpoint function. Nat Commun. 2014;5:4903 pubmed 出版商
  186. Alpay K, Farshchian M, Tuomela J, Sandholm J, Aittokallio K, Siljamäki E, et al. Inhibition of c-Abl kinase activity renders cancer cells highly sensitive to mitoxantrone. PLoS ONE. 2014;9:e105526 pubmed 出版商
  187. Izumi H, Kaneko Y. Trim32 facilitates degradation of MYCN on spindle poles and induces asymmetric cell division in human neuroblastoma cells. Cancer Res. 2014;74:5620-30 pubmed 出版商
  188. Jiao G, Lian H, Gao Y, Sun M, Gong S, Zheng L, et al. Carrying-over effects of GVBD blocking on post-blocking meiotic progression of oocytes: species difference and the signaling pathway leading to MPF activation. PLoS ONE. 2014;9:e103838 pubmed 出版商
  189. Carlessi L, Fusar Poli E, Bechi G, Mantegazza M, Pascucci B, Narciso L, et al. Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency. Cell Death Dis. 2014;5:e1342 pubmed 出版商
  190. Komrskova P, Susor A, Malik R, Procházková B, Liskova L, Supolikova J, et al. Aurora kinase A is not involved in CPEB1 phosphorylation and cyclin B1 mRNA polyadenylation during meiotic maturation of porcine oocytes. PLoS ONE. 2014;9:e101222 pubmed 出版商
  191. Otani K, Dong Y, Li X, Lu J, Zhang N, Xu L, et al. Odd-skipped related 1 is a novel tumour suppressor gene and a potential prognostic biomarker in gastric cancer. J Pathol. 2014;234:302-15 pubmed 出版商
  192. Hu K, Liao D, Wu W, Han A, Shi H, Wang F, et al. Targeting the anaphase-promoting complex/cyclosome (APC/C)- bromodomain containing 7 (BRD7) pathway for human osteosarcoma. Oncotarget. 2014;5:3088-100 pubmed
  193. Penas C, Ramachandran V, Simanski S, Lee C, Madoux F, Rahaim R, et al. Casein kinase 1?-dependent Wee1 protein degradation. J Biol Chem. 2014;289:18893-903 pubmed 出版商
  194. Vidi P, Liu J, Salles D, Jayaraman S, Dorfman G, Gray M, et al. NuMA promotes homologous recombination repair by regulating the accumulation of the ISWI ATPase SNF2h at DNA breaks. Nucleic Acids Res. 2014;42:6365-79 pubmed 出版商
  195. Yang X, Xu W, Hu Z, Zhang Y, Xu N. Chk1 is required for the metaphase-anaphase transition via regulating the expression and localization of Cdc20 and Mad2. Life Sci. 2014;106:12-8 pubmed 出版商
  196. Kuijt T, Omerzu M, Saurin A, Kops G. Conditional targeting of MAD1 to kinetochores is sufficient to reactivate the spindle assembly checkpoint in metaphase. Chromosoma. 2014;123:471-80 pubmed 出版商
  197. Kitagawa M, Fung S, Hameed U, Goto H, Inagaki M, Lee S. Cdk1 coordinates timely activation of MKlp2 kinesin with relocation of the chromosome passenger complex for cytokinesis. Cell Rep. 2014;7:166-79 pubmed 出版商
  198. Fukumoto Y, Morii M, Miura T, Kubota S, Ishibashi K, Honda T, et al. Src family kinases promote silencing of ATR-Chk1 signaling in termination of DNA damage checkpoint. J Biol Chem. 2014;289:12313-29 pubmed 出版商
  199. d Alcontres M, Palacios J, Mejias D, Blasco M. TopoII? prevents telomere fragility and formation of ultra thin DNA bridges during mitosis through TRF1-dependent binding to telomeres. Cell Cycle. 2014;13:1463-81 pubmed 出版商
  200. Hu J, Lu J, Lian G, Zhang J, Hecht J, Sheen V. Filamin B regulates chondrocyte proliferation and differentiation through Cdk1 signaling. PLoS ONE. 2014;9:e89352 pubmed 出版商
  201. Kaur S, Fielding A, Gassner G, Carter N, Royle S. An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis. elife. 2014;3:e00829 pubmed 出版商
  202. Matthess Y, Raab M, Knecht R, Becker S, Strebhardt K. Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol Oncol. 2014;8:596-608 pubmed 出版商
  203. Kim S, Park E, Joo H, Shen Y, Hong S, Kim C, et al. RRM1 maintains centrosomal integrity via CHK1 and CDK1 signaling during replication stress. Cancer Lett. 2014;346:249-56 pubmed 出版商
  204. Xu Q, Zhang Y, Xiong X, Huang Y, Salisbury J, Hu J, et al. PIPKI? targets to the centrosome and restrains centriole duplication. J Cell Sci. 2014;127:1293-305 pubmed 出版商
  205. Myatt S, Kongsema M, Man C, Kelly D, Gomes A, Khongkow P, et al. SUMOylation inhibits FOXM1 activity and delays mitotic transition. Oncogene. 2014;33:4316-29 pubmed 出版商
  206. Gallego Paez L, Tanaka H, Bando M, Takahashi M, Nozaki N, Nakato R, et al. Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol Biol Cell. 2014;25:302-17 pubmed 出版商
  207. Liu X, Xiao W, Wang X, Li Y, Han J, Li Y. The p38-interacting protein (p38IP) regulates G2/M progression by promoting ?-tubulin acetylation via inhibiting ubiquitination-induced degradation of the acetyltransferase GCN5. J Biol Chem. 2013;288:36648-61 pubmed 出版商
  208. Yu Y, Munger K. Human papillomavirus type 16 E7 oncoprotein inhibits the anaphase promoting complex/cyclosome activity by dysregulating EMI1 expression in mitosis. Virology. 2013;446:251-9 pubmed 出版商
  209. Lim H, Dimova N, Tan M, Sigoillot F, King R, Shi Y. The G2/M regulator histone demethylase PHF8 is targeted for degradation by the anaphase-promoting complex containing CDC20. Mol Cell Biol. 2013;33:4166-80 pubmed 出版商
  210. Maier B, Kirsch M, Anderhub S, Zentgraf H, Krämer A. The novel actin/focal adhesion-associated protein MISP is involved in mitotic spindle positioning in human cells. Cell Cycle. 2013;12:1457-71 pubmed 出版商
  211. Mo Q, Chen P, Jin X, Chen Q, Tang L, Wang B, et al. Inhibition of Hec1 expression enhances the sensitivity of human ovarian cancer cells to paclitaxel. Acta Pharmacol Sin. 2013;34:541-8 pubmed 出版商
  212. Trakala M, Fernández Miranda G, Perez de Castro I, Heeschen C, Malumbres M. Aurora B prevents delayed DNA replication and premature mitotic exit by repressing p21(Cip1). Cell Cycle. 2013;12:1030-41 pubmed 出版商
  213. Caldon C, Sergio C, Burgess A, Deans A, Sutherland R, Musgrove E. Cyclin E2 induces genomic instability by mechanisms distinct from cyclin E1. Cell Cycle. 2013;12:606-17 pubmed 出版商
  214. Balaburski G, Leu J, Beeharry N, Hayik S, Andrake M, Zhang G, et al. A modified HSP70 inhibitor shows broad activity as an anticancer agent. Mol Cancer Res. 2013;11:219-29 pubmed 出版商
  215. Gao M, Rendtlew Danielsen J, Wei L, Zhou D, Xu Q, Li M, et al. A novel role of human holliday junction resolvase GEN1 in the maintenance of centrosome integrity. PLoS ONE. 2012;7:e49687 pubmed 出版商
  216. Chen S, Fu S, Hsu S, Huang Y, Hsu B. Synergistic Effect of Hyperglycemia and p27(kip1) Suppression on Adult Mouse Islet Beta Cell Replication. Int J Endocrinol. 2012;2012:417390 pubmed 出版商
  217. Diril M, Ratnacaram C, Padmakumar V, Du T, Wasser M, Coppola V, et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A. 2012;109:3826-31 pubmed 出版商
  218. Tan M, Lim H, Harper J. SCF(FBXO22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. Mol Cell Biol. 2011;31:3687-99 pubmed 出版商
  219. Holt J, Tran S, Stewart J, Minahan K, Garcia Higuera I, Moreno S, et al. The APC/C activator FZR1 coordinates the timing of meiotic resumption during prophase I arrest in mammalian oocytes. Development. 2011;138:905-13 pubmed 出版商
  220. Yoo J, Jung J, Lee M, Seo K, Shim B, Kim S, et al. Immunohistochemical analysis of non-small cell lung cancer: correlation with clinical parameters and prognosis. J Korean Med Sci. 2007;22:318-25 pubmed
  221. Bengoechea Alonso M, Punga T, Ericsson J. Hyperphosphorylation regulates the activity of SREBP1 during mitosis. Proc Natl Acad Sci U S A. 2005;102:11681-6 pubmed