这是一篇来自已证抗体库的有关人类 细胞周期蛋白B1 (cyclin B1) 的综述,是根据224篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合细胞周期蛋白B1 抗体。
细胞周期蛋白B1 同义词: CCNB

圣克鲁斯生物技术
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, H-433)被用于被用于免疫印迹在人类样本上 (图 4). Dev Reprod (2020) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 人类; 图 2a, 4a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, 7393)被用于被用于免疫印迹在人类样本上 (图 2a, 4a). Mol Cell Biol (2020) ncbi
小鼠 单克隆(D-1)
  • 免疫印迹; 大鼠; 1:200; 图 5b
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-166210)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5b). Int J Nanomedicine (2020) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上. Nature (2020) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, sc-245)被用于被用于免疫印迹在人类样本上 (图 3c). Cell Cycle (2020) ncbi
小鼠 单克隆(GNS1)
  • 免疫沉淀; 人类; 图 4a
  • 免疫细胞化学; 人类; 图 4b
  • 免疫组化; 人类; 图 1g, 1h
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫沉淀在人类样本上 (图 4a), 被用于免疫细胞化学在人类样本上 (图 4b), 被用于免疫组化在人类样本上 (图 1g, 1h) 和 被用于免疫印迹在人类样本上 (图 3a). Cancers (Basel) (2020) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 大鼠; 图 6a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-7393)被用于被用于免疫印迹在大鼠样本上 (图 6a). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:800; 图 4
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology Inc, sc--245)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 4). Sci Rep (2019) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术细胞周期蛋白B1抗体(SantaCruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2018) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 1:25; 图 5a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 5a). EMBO J (2018) ncbi
  • 免疫细胞化学; 人类; 图 5c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology Inc, H-433)被用于被用于免疫细胞化学在人类样本上 (图 5c). J Cell Biol (2018) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术细胞周期蛋白B1抗体(SantaCruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 1a). Nature (2018) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:300; 图 s4j
圣克鲁斯生物技术细胞周期蛋白B1抗体(SantaCruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 s4j). Sci Adv (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, sc-166152)被用于被用于免疫印迹在人类样本上 (图 2c). Clin Cancer Res (2018) ncbi
小鼠 单克隆(GNS1)
  • 免疫沉淀; 人类; 图 2c
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术细胞周期蛋白B1抗体(santa, GNS1)被用于被用于免疫沉淀在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 2a). Oncogene (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:2000; 图 s6d
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s6d). Nat Commun (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 2d
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). J Biol Chem (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, SC245)被用于被用于免疫印迹在人类样本上 (图 2e). Mol Cell (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500; 图 3c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3c). Sci Rep (2017) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 人类; 1:1000; 图 6b
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-7393)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Exp Ther Med (2017) ncbi
小鼠 单克隆(G-11)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-166757)被用于被用于免疫印迹在人类样本上 (图 5f). Sci Rep (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500; 图 6e; S6i
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6e; S6i). Nat Commun (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 1:400; 图 4b
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, SC-245)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 4b). J Cell Sci (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在小鼠样本上 (图 2a). PLoS ONE (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 图 ms1
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫细胞化学在人类样本上 (图 ms1). Sci Rep (2017) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 人类; 1:1000; 图 4a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-7393)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Exp Ther Med (2016) ncbi
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-752)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 图 5c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫细胞化学在人类样本上 (图 5c). Sci Rep (2016) ncbi
小鼠 单克隆(D-11)
  • 免疫细胞化学; 小鼠; 1:150; 图 s1c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc7393)被用于被用于免疫细胞化学在小鼠样本上浓度为1:150 (图 s1c). Sci Rep (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 大鼠; 图 6a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫细胞化学在大鼠样本上 (图 6a). PLoS ONE (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 2e). Oncogene (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500; 图 2c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2c). Toxicol Appl Pharmacol (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 1:500; 图 1
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(D-11)
  • 免疫沉淀; 人类; 图 2a
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-7393)被用于被用于免疫沉淀在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 3). Viruses (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 2b). Exp Mol Med (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 s2a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, SC-245)被用于被用于免疫印迹在人类样本上 (图 s2a). Cell Death Dis (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2j
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 2j). J Biol Chem (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠; 1:200; 图 2c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2c). Nat Med (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:200; 图 3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(GNS1)
  • 流式细胞仪; 人类; 图 2
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于流式细胞仪在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Mol Oncol (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 5c
圣克鲁斯生物技术细胞周期蛋白B1抗体(santa cruz, SC-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Biol Open (2015) ncbi
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc752)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 s6
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6). FASEB J (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2015) ncbi
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-752)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2017) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上 (图 1). PLoS Genet (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 s3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). PLoS ONE (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠; 图 5c
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, sc-245)被用于被用于免疫印迹在小鼠样本上 (图 5c). Front Pharmacol (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 s2
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 s2). Sci Rep (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500; 图 7d
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-s45)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7d). Angiogenesis (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 2). Genetics (2015) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 人类; 1:5000; 图 1
圣克鲁斯生物技术细胞周期蛋白B1抗体(santa Cruz, sc-7393)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). J Cancer (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, GNS1)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
小鼠 单克隆(D-11)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-7393)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Viruses (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术细胞周期蛋白B1抗体(santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 图 3b
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc- 245)被用于被用于免疫细胞化学在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 3a). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:200; 图 3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3). Cell Cycle (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500; 图 1e
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1e). Oncotarget (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Biol Open (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, D-11)被用于被用于免疫印迹在人类样本上浓度为1:100. Cancer Lett (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, v-152)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, Sc-245)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Biochem (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:500. Chembiochem (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, GNS1)被用于被用于免疫印迹在小鼠样本上. Oncotarget (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:200; 图 8
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 大鼠; 1:1000; 图 9
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9). J Appl Toxicol (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上. DNA Repair (Amst) (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, Sc-245)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nat Commun (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, GNS1)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, SC-245)被用于被用于免疫印迹在人类样本上 (图 3b). Int J Oncol (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:2000; 图 2d
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2d). Mol Oncol (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. EMBO J (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上 (图 6). J Pathol (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, SC-245)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, sc-245)被用于被用于免疫印迹在人类样本上浓度为1:1000. Chromosoma (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, GNS1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Rep (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫组化; 小鼠; 1:100
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, sc-245)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Lett (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, GNS1)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Sci (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 1:1000; 图 8
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa, GNS1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Oncogene (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2013) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-53236)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-245)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz, sc-53236)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2011) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白B1抗体(Santa Cruz Biotechnology, GNS1)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2005) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(Y106)
  • 免疫印迹; 人类; 1:10,000; 图 2b
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab32053)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2b). Oncol Lett (2020) ncbi
domestic rabbit 单克隆(EPR17060)
  • 免疫印迹; 人类; 1:2000; 图 3c
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab181593)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(Y106)
  • 免疫印迹; 人类; 1:3000; 图 3b
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab32053)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3b). Med Sci Monit (2019) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 小鼠; 1:500; 图 s2a
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2a). Development (2019) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 小鼠; 图 4b
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab215945)被用于被用于免疫细胞化学在小鼠样本上 (图 4b). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR17060)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1e
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, EPR17060)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1e). Sci Rep (2019) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫印迹在人类样本上 (图 2d). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(CCNB1/1098)
  • 免疫印迹; pigs ; 1:2000; 图 1d
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab212977)被用于被用于免疫印迹在pigs 样本上浓度为1:2000 (图 1d). Cell Physiol Biochem (2018) ncbi
domestic rabbit 单克隆(EPR17060)
  • 免疫印迹; 人类; 图 5c, 5d
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(abcam, ab181593)被用于被用于免疫印迹在人类样本上 (图 5c, 5d). Oncotarget (2017) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000; 图 6a
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(V152)
  • 免疫组化; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6a). Stem Cell Reports (2017) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, V152)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(Y106)
  • 免疫印迹; 人类; 1:5000; 图 st2
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab32053)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 st2). Transl Res (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2016) ncbi
domestic rabbit 单克隆(Y106)
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab32053)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(Y106)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab32053)被用于被用于免疫组化在小鼠样本上浓度为1:200. Oncotarget (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1500; 图 s11
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(abcam, ab72)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 s11). PLoS Genet (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Biomed Res Int (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司细胞周期蛋白B1抗体(Abcam, ab72)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Development (2011) ncbi
赛默飞世尔
小鼠 单克隆(GNS11)
  • 免疫沉淀; 人类; 图 2a
  • 免疫印迹; 人类; 图 3
赛默飞世尔细胞周期蛋白B1抗体(Thermo Fisher, GNS11)被用于被用于免疫沉淀在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 3). Viruses (2016) ncbi
小鼠 单克隆(GNS11)
  • 免疫印迹; 人类; 图 6a
赛默飞世尔细胞周期蛋白B1抗体(Thermo Fisher, GNS11)被用于被用于免疫印迹在人类样本上 (图 6a). PLoS ONE (2016) ncbi
小鼠 单克隆(GNS1)
赛默飞世尔细胞周期蛋白B1抗体(Thermo Scientific, MS-868-PABX)被用于. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔细胞周期蛋白B1抗体(Thermo Scientific, MA5-14319)被用于被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(V152)
  • 免疫细胞化学; African green monkey; 1:200
  • 免疫细胞化学; 大鼠; 1:200
赛默飞世尔细胞周期蛋白B1抗体(Thermo Fisher, MA1-155)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:200 和 被用于免疫细胞化学在大鼠样本上浓度为1:200. FASEB J (2016) ncbi
小鼠 单克隆(GNS11)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔细胞周期蛋白B1抗体(Thermo Fisher Scientific, GNS11)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Viruses (2015) ncbi
小鼠 单克隆(GNS1)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:10000
赛默飞世尔细胞周期蛋白B1抗体(Thermo Fisher Scientific, clone GNS1)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:10000. Exp Cell Res (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; pigs ; 图 1
赛默飞世尔细胞周期蛋白B1抗体(Thermo Scientific, MS-338)被用于被用于免疫印迹在pigs 样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(GNS1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔细胞周期蛋白B1抗体(Thermo Fisher Scientific, GNS1)被用于被用于免疫印迹在小鼠样本上 (图 1). Int J Endocrinol (2012) ncbi
小鼠 单克隆(GNS11)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类; 1:50
赛默飞世尔细胞周期蛋白B1抗体(NeoMarkers, GNS11)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上浓度为1:50. J Korean Med Sci (2007) ncbi
BioLegend
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:500; 图 5
BioLegend细胞周期蛋白B1抗体(BioLegend, 647901)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Int J Mol Sci (2016) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(1C8)
  • 免疫印迹; 人类; 1:500; 图 3a
亚诺法生技股份有限公司细胞周期蛋白B1抗体(Abnova, H00000891-M01)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Clin Exp Ophthalmol (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2020) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:2000; 图 7e, 8e, 6e
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, Inc., #4135)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7e, 8e, 6e). Chem Biol Drug Des (2020) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; axolotl; 1:1000; 图 3s2b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231S)被用于被用于免疫印迹在axolotl样本上浓度为1:1000 (图 3s2b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(CST, 4138)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 5e, s3b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在人类样本上 (图 5e, s3b). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2b
  • 免疫印迹; 人类; 1:1500; 图 2b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4138)被用于被用于免疫印迹在大鼠样本上 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:1500 (图 2b). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在人类样本上 (图 4e). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Lab Invest (2019) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, D5C10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). J Virol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138S)被用于被用于免疫印迹在人类样本上 (图 5a). Mol Biol Cell (2019) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:5000; 图 3d
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, V152)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫细胞化学; 人类; 1:200; 图 s4i
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s4i). Science (2018) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫细胞化学; 人类; 1:800; 图 s4b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 s4b). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上 (图 5b). Cell Signal (2018) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:2000; 图 4d
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135s)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4d). Nat Commun (2018) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在小鼠样本上 (图 s4b). Gastroenterology (2018) ncbi
小鼠 单克隆(V152)
  • 流式细胞仪; 人类; 图 s2a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于流式细胞仪在人类样本上 (图 s2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在人类样本上 (图 3b). Gynecol Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上 (图 5). Exp Neurol (2018) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 1:1000; 图 6B; 6D; 6F
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6B; 6D; 6F). Onco Targets Ther (2017) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫印迹在人类样本上. Neoplasia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). PLoS ONE (2017) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在人类样本上 (图 4a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135S)被用于被用于免疫印迹在人类样本上 (图 6h). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b; 5a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上 (图 1b; 5a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在人类样本上 (图 2). Neuroendocrinology (2018) ncbi
小鼠 单克隆(V152)
  • 免疫组化; 小鼠; 图 s5a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, AS4135)被用于被用于免疫组化在小鼠样本上 (图 s5a). Stem Cell Reports (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上 (图 4e). DNA Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2c
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2c). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上 (图 1g). Sci Rep (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:100; 图 st1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(9E3)
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4133)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 小鼠; 图 s6
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在小鼠样本上 (图 s6). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 2h
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(CST, 12231)被用于被用于免疫印迹在人类样本上 (图 2h). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4138S)被用于被用于免疫印迹在人类样本上 (图 2). Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). EMBO Mol Med (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4138)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上 (图 s3). Nat Cell Biol (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell signaling, 4135s)被用于被用于免疫印迹在人类样本上 (图 5). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上 (图 5a). Oncol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在人类样本上 (图 3f). Oncotarget (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在人类样本上 (图 5d). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Chem Biol (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 s3e
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(CST, 12,231)被用于被用于免疫印迹在人类样本上 (图 s3e). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上 (图 1b). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, V152)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell signaling, 12231)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(CST, 4138S)被用于被用于免疫印迹在小鼠样本上 (图 5a). J Clin Invest (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell signaling, V152)被用于被用于免疫印迹在人类样本上 (图 2b). Immunol Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫印迹在人类样本上 (图 8). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Mol Med Rep (2016) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nat Genet (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 12231)被用于被用于免疫印迹在大鼠样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:800; 图 5
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4138P)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(V152)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135;)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在人类样本上 (图 6b). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 小鼠; 1:500; 图 5e
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 12231)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5e). J Biol Chem (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:2500; 图 6
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135S)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上 (图 4). Mol Biol Cell (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Infect Immun (2015) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫印迹; 人类; 图 1c, 1d
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signalling, 12231)被用于被用于免疫印迹在人类样本上 (图 1c, 1d). Mol Cell Proteomics (2015) ncbi
domestic rabbit 单克隆(9E3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4133S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(CST, 4135)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Int J Oncol (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:2000; 图 4A
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4A). Mol Med Rep (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(D5C10)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, D5C10)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 图 1i
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Technology, 4135)被用于被用于免疫印迹在人类样本上 (图 1i). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(9E3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4133)被用于被用于免疫印迹在人类样本上浓度为1:1000. Virology (2013) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, 4135S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Acta Pharmacol Sin (2013) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling, V152)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(V152)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司细胞周期蛋白B1抗体(Cell Signaling Tech, 4135)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2012) ncbi
碧迪BD
小鼠 单克隆(GNS-1)
  • 其他; 人类; 1:100
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, GNS-1)被用于被用于其他在人类样本上浓度为1:100. elife (2020) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 犬; 1:1000; 图 4c
碧迪BD细胞周期蛋白B1抗体(BD, 554177)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 4c). Cells (2020) ncbi
小鼠 单克隆(GNS-11)
  • mass cytometry; 人类; 图 3a
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554179)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类; 图 3c
碧迪BD细胞周期蛋白B1抗体(BD Pharmingen, 554177)被用于被用于免疫印迹在人类样本上 (图 3c). Nat Cell Biol (2017) ncbi
小鼠 单克隆(GNS-11)
  • 免疫印迹; 人类; 图 3a
碧迪BD细胞周期蛋白B1抗体(BD Bioscience, 554179)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS Pathog (2017) ncbi
小鼠 单克隆(GNS-11)
  • 免疫细胞化学; 人类; 1:250; 图 ms1
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554178)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 ms1). Sci Rep (2017) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类; 1:1000; 图 5
碧迪BD细胞周期蛋白B1抗体(BD Pharmingen, 554177)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(GNS-11)
  • 免疫印迹; 人类; 1:500; 图 3
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554178)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类; 图 1
碧迪BD细胞周期蛋白B1抗体(BD Pharminge, 554176)被用于被用于免疫印迹在人类样本上 (图 1). Cell Rep (2016) ncbi
小鼠 单克隆(GNS-1)
  • 其他; 人类; 图 st1
碧迪BD细胞周期蛋白B1抗体(BD, GNS-1)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, GNS-1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Sci (2015) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类; 图 3
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554177)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(18/Cyclin B)
  • 免疫印迹; 人类; 图 7
碧迪BD细胞周期蛋白B1抗体(BD, 61029)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(18/Cyclin B)
  • 免疫印迹; 人类; 图 2
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 61029)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(GNS-11)
  • 免疫印迹; 人类; 图 3
碧迪BD细胞周期蛋白B1抗体(BD PharMingen, 554179)被用于被用于免疫印迹在人类样本上 (图 3). Cell Cycle (2015) ncbi
小鼠 单克隆(GNS-11)
  • 免疫印迹; 人类
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554178)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类
碧迪BD细胞周期蛋白B1抗体(BD Pharmigen, GNS-1)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(GNS-11)
  • 免疫印迹; 人类
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554179)被用于被用于免疫印迹在人类样本上. Life Sci (2014) ncbi
小鼠 单克隆(GNS-11)
  • 免疫细胞化学; 人类; 图 6a
碧迪BD细胞周期蛋白B1抗体(BD Biosciences, 554179)被用于被用于免疫细胞化学在人类样本上 (图 6a). elife (2014) ncbi
小鼠 单克隆(18/Cyclin B)
  • 免疫印迹; 人类; 图 1c
碧迪BD细胞周期蛋白B1抗体(BD, 610219)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Biol Cell (2014) ncbi
小鼠 单克隆(18/Cyclin B)
  • 免疫印迹; 人类; 1:1000; 图 5
碧迪BD细胞周期蛋白B1抗体(BD Transduction Laboratories, 610219)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Virology (2013) ncbi
小鼠 单克隆(GNS-1)
  • 免疫印迹; 人类
碧迪BD细胞周期蛋白B1抗体(Pharmingen, 554177)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2013) ncbi
小鼠 单克隆(18/Cyclin B)
  • 免疫细胞化学; 人类; 1:200
碧迪BD细胞周期蛋白B1抗体(BD Bioscience, 610220)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2012) ncbi
MBL International
单克隆
  • 免疫印迹; 人类; 图 1c
MBL International细胞周期蛋白B1抗体(MBL, K0128-3)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Biol Cell (2014) ncbi
文章列表
  1. Chen A, Santana A, Doudican N, Roudiani N, Laursen K, Therrien J, et al. MAGE-A3 is a prognostic biomarker for poor clinical outcome in cutaneous squamous cell carcinoma with perineural invasion via modulation of cell proliferation. PLoS ONE. 2020;15:e0241551 pubmed 出版商
  2. Liu W, Li J, Zhang D, Chen B, Wang X, Zhang X, et al. Trefoil factor 1 and gastrokine 2 inhibit Helicobacter pylori-induced proliferation and inflammation in gastric cardia and distal carcinogenesis. Oncol Lett. 2020;20:318 pubmed 出版商
  3. Lee S, Hong K, Seong Y, Kwak S. Ectopic Overexpression of Coiled-Coil Domain Containing 110 Delays G2/M Entry in U2-OS Cells. Dev Reprod. 2020;24:101-111 pubmed 出版商
  4. Leelatian N, Sinnaeve J, Mistry A, Barone S, Brockman A, Diggins K, et al. Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells. elife. 2020;9: pubmed 出版商
  5. Liu H, Guo D, Sha Y, Zhang C, Jiang Y, Hong L, et al. ANXA7 promotes the cell cycle, proliferation and cell adhesion-mediated drug resistance of multiple myeloma cells by up-regulating CDC5L. Aging (Albany NY). 2020;12:11100-11115 pubmed 出版商
  6. Shinada M, Kato D, Kamoto S, Yoshimoto S, Tsuboi M, Yoshitake R, et al. PDPN Is Expressed in Various Types of Canine Tumors and Its Silencing Induces Apoptosis and Cell Cycle Arrest in Canine Malignant Melanoma. Cells. 2020;9: pubmed 出版商
  7. Xu W, Wu H, Chen S, Wang X, Tanaka S, Sugiyama K, et al. Cytotoxic effects of vitamins K1, K2 and K3 against human T lymphoblastoid leukemia cells through apoptosis induction and cell cycle arrest. Chem Biol Drug Des. 2020;: pubmed 出版商
  8. Douglas P, Ye R, Radhamani S, Cobban A, Jenkins N, Bartlett E, et al. Nocodazole-Induced Expression and Phosphorylation of Anillin and Other Mitotic Proteins Are Decreased in DNA-Dependent Protein Kinase Catalytic Subunit-Deficient Cells and Rescued by Inhibition of the Anaphase-Promoting Complex/Cyclosome with proTAME. Mol Cell Biol. 2020;40: pubmed 出版商
  9. Sousounis K, Bryant D, Martínez Fernández J, Eddy S, Tsai S, Gundberg G, et al. Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration. elife. 2020;9: pubmed 出版商
  10. Lin Y, Huang X, Chang K, Liao K, Tsai N. Encapsulated n-Butylidenephthalide Efficiently Crosses the Blood-Brain Barrier and Suppresses Growth of Glioblastoma. Int J Nanomedicine. 2020;15:749-760 pubmed 出版商
  11. Mlyczynska E, Kurowska P, Drwal E, Opydo Chanek M, Tworzydło W, Kotula Balak M, et al. Apelin and apelin receptor in human placenta: Expression, signalling pathway and regulation of trophoblast JEG‑3 and BeWo cells proliferation and cell cycle. Int J Mol Med. 2020;45:691-702 pubmed 出版商
  12. Xue J, Zhao Y, Aronowitz J, Mai T, Vides A, Qeriqi B, et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature. 2020;577:421-425 pubmed 出版商
  13. Singh V, Khalil M, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle. 2020;19:363-375 pubmed 出版商
  14. Kwan S, Au Yeung C, Yeung T, Rynne Vidal A, Wong K, Risinger J, et al. Ubiquitin Carboxyl-Terminal Hydrolase L1 (UCHL1) Promotes Uterine Serous Cancer Cell Proliferation and Cell Cycle Progression. Cancers (Basel). 2020;12: pubmed 出版商
  15. Li R, Guo M, Song L. PAS Domain Containing Repressor 1 (PASD1) Promotes Glioma Cell Proliferation Through Inhibiting Apoptosis In Vitro. Med Sci Monit. 2019;25:6955-6964 pubmed 出版商
  16. Liu G, Zhang Q, Xia L, Shi M, Cai J, Zhang H, et al. RNA-binding protein CELF6 is cell cycle regulated and controls cancer cell proliferation by stabilizing p21. Cell Death Dis. 2019;10:688 pubmed 出版商
  17. Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, et al. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res. 2019;38:184 pubmed 出版商
  18. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  19. Daldello E, Luong X, Yang C, Kuhn J, Conti M. Cyclin B2 is required for progression through meiosis in mouse oocytes. Development. 2019;146: pubmed 出版商
  20. Choi Y, Kang M, Hong K, Kim J. Tubastatin A inhibits HDAC and Sirtuin activity rather than being a HDAC6-specific inhibitor in mouse oocytes. Aging (Albany NY). 2019;11:1759-1777 pubmed 出版商
  21. Fuziwara C, Saito K, Leoni S, Waitzberg A, Kimura E. The Highly Expressed FAM83F Protein in Papillary Thyroid Cancer Exerts a Pro-Oncogenic Role in Thyroid Follicular Cells. Front Endocrinol (Lausanne). 2019;10:134 pubmed 出版商
  22. Walton C, Zhang W, Patiño Parrado I, Barrio Alonso E, Garrido J, Frade J. Primary neurons can enter M-phase. Sci Rep. 2019;9:4594 pubmed 出版商
  23. Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, et al. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int. 2019;19:32 pubmed 出版商
  24. Horton A, Brooker J, Streitfeld W, Flessa M, Pillai B, Simpson R, et al. Nkx2-5 Second Heart Field Target Gene Ccdc117 Regulates DNA Metabolism and Proliferation. Sci Rep. 2019;9:1738 pubmed 出版商
  25. Dai L, Hu W, Yang Z, Chen D, He B, Chen Y, et al. Upregulated expression of HOXB7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis. Lab Invest. 2019;99:736-748 pubmed 出版商
  26. Bressy C, Droby G, Maldonado B, Steuerwald N, Grdzelishvili V. Cell Cycle Arrest in G2/M Phase Enhances Replication of Interferon-Sensitive Cytoplasmic RNA Viruses via Inhibition of Antiviral Gene Expression. J Virol. 2019;93: pubmed 出版商
  27. Tan Z, Chan Y, Chua Y, Rutledge S, Pavelka N, Cimini D, et al. Environmental stresses induce karyotypic instability in colorectal cancer cells. Mol Biol Cell. 2019;30:42-55 pubmed 出版商
  28. Paul S, Dansithong W, Figueroa K, Scoles D, Pulst S. Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat Commun. 2018;9:3648 pubmed 出版商
  29. Wang L, Wang J, Jin T, Zhou Y, Chen Q. FoxG1 facilitates proliferation and inhibits differentiation by downregulating FoxO/Smad signaling in glioblastoma. Biochem Biophys Res Commun. 2018;504:46-53 pubmed 出版商
  30. Gut G, Herrmann M, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science. 2018;361: pubmed 出版商
  31. Rai A, Chen J, Selbach M, Pelkmans L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature. 2018;559:211-216 pubmed 出版商
  32. Lei T, Zhang P, Zhang X, Xiao X, Zhang J, Qiu T, et al. Cyclin K regulates prereplicative complex assembly to promote mammalian cell proliferation. Nat Commun. 2018;9:1876 pubmed 出版商
  33. Hou L, Xu J, Jiao Y, Li H, Pan Z, Duan J, et al. MiR-27b Promotes Muscle Development by Inhibiting MDFI Expression. Cell Physiol Biochem. 2018;46:2271-2283 pubmed 出版商
  34. Lee C, Hsieh T. Wuho/WDR4 deficiency inhibits cell proliferation and induces apoptosis via DNA damage in mouse embryonic fibroblasts. Cell Signal. 2018;47:16-26 pubmed 出版商
  35. Lin C, Kitagawa M, Tang X, Hou M, Wu J, Qu D, et al. CoA synthase regulates mitotic fidelity via CBP-mediated acetylation. Nat Commun. 2018;9:1039 pubmed 出版商
  36. Ruppert J, Samejima K, Platani M, Molina O, Kimura H, Jeyaprakash A, et al. HP1α targets the chromosomal passenger complex for activation at heterochromatin before mitotic entry. EMBO J. 2018;37: pubmed 出版商
  37. Petsalaki E, Dandoulaki M, Zachos G. The ESCRT protein Chmp4c regulates mitotic spindle checkpoint signaling. J Cell Biol. 2018;217:861-876 pubmed 出版商
  38. He P, Yang J, Yang V, Bialkowska A. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice. Gastroenterology. 2018;154:1494-1508.e13 pubmed 出版商
  39. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  40. Sorokina I, Denisenko T, Imreh G, Tyurin Kuzmin P, Kaminskyy V, Gogvadze V, et al. Involvement of autophagy in the outcome of mitotic catastrophe. Sci Rep. 2017;7:14571 pubmed 出版商
  41. Hein J, Hertz E, Garvanska D, Kruse T, Nilsson J. Distinct kinetics of serine and threonine dephosphorylation are essential for mitosis. Nat Cell Biol. 2017;19:1433-1440 pubmed 出版商
  42. Huang C, Wu S, Ji H, Yan X, Xie Y, Murai S, et al. Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library. Sci Adv. 2017;3:e1701383 pubmed 出版商
  43. Zhao Z, Jia Q, Wu M, Xie X, Wang Y, Song G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res. 2018;24:130-144 pubmed 出版商
  44. Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H, et al. Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget. 2017;8:58231-58246 pubmed 出版商
  45. Zhu Z, Lou C, Zheng Z, Zhu R, Tian S, Xie C, et al. ZFP403, a novel tumor suppressor, inhibits the proliferation and metastasis in ovarian cancer. Gynecol Oncol. 2017;147:418-425 pubmed 出版商
  46. Giono L, Resnick Silverman L, Carvajal L, St Clair S, Manfredi J. Mdm2 promotes Cdc25C protein degradation and delays cell cycle progression through the G2/M phase. Oncogene. 2017;36:6762-6773 pubmed 出版商
  47. Takaki T, Montagner M, Serres M, Le Berre M, Russell M, Collinson L, et al. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat Commun. 2017;8:16013 pubmed 出版商
  48. Li Z, Li D, Choi E, Lapidus R, Zhang L, Huang S, et al. Silencing of solute carrier family 13 member 5 disrupts energy homeostasis and inhibits proliferation of human hepatocarcinoma cells. J Biol Chem. 2017;292:13890-13901 pubmed 出版商
  49. Oblinger J, Burns S, Huang J, Pan L, Ren Y, Shen R, et al. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol. 2018;299:299-307 pubmed 出版商
  50. Paul A, Wang B. RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage. Mol Cell. 2017;66:458-472.e5 pubmed 出版商
  51. Aviner R, Hofmann S, Elman T, Shenoy A, Geiger T, Elkon R, et al. Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis. Nucleic Acids Res. 2017;45:5945-5957 pubmed 出版商
  52. Sandén E, Dyberg C, Krona C, Gallo Oller G, Olsen T, Enríquez Pérez J, et al. Establishment and characterization of an orthotopic patient-derived Group 3 medulloblastoma model for preclinical drug evaluation. Sci Rep. 2017;7:46366 pubmed 出版商
  53. Yuan X, Sun X, Shi X, Jiang C, Yu D, Zhang W, et al. USP39 regulates the growth of SMMC-7721 cells via FoxM1. Exp Ther Med. 2017;13:1506-1513 pubmed 出版商
  54. Xiang Q, Tan G, Jiang X, Wu K, Tan W, Tan Y. Suppression of FOXM1 Transcriptional Activities via a Single-Stranded DNA Aptamer Generated by SELEX. Sci Rep. 2017;7:45377 pubmed 出版商
  55. Xu P, Zhou Z, Xiong M, Zou W, Deng X, Ganaie S, et al. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway. PLoS Pathog. 2017;13:e1006266 pubmed 出版商
  56. Yamada M, Egli D. Genome Transfer Prevents Fragmentation and Restores Developmental Potential of Developmentally Compromised Postovulatory Aged Mouse Oocytes. Stem Cell Reports. 2017;8:576-588 pubmed 出版商
  57. Li J, Liu Y, Yin Y. ARHGAP1 overexpression inhibits proliferation, migration and invasion of C-33A and SiHa cell lines. Onco Targets Ther. 2017;10:691-701 pubmed 出版商
  58. Vallejo A, Perurena N, Guruceaga E, Mazur P, Martínez Canarias S, Zandueta C, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun. 2017;8:14294 pubmed 出版商
  59. Shin S, Song J, Hwang B, Noh D, Park S, Kim W, et al. HSPA6 augments garlic extract-induced inhibition of proliferation, migration, and invasion of bladder cancer EJ cells; Implication for cell cycle dysregulation, signaling pathway alteration, and transcription factor-associated MMP-9 regulation. PLoS ONE. 2017;12:e0171860 pubmed 出版商
  60. Bot C, Pfeiffer A, Giordano F, Manjeera D, Dantuma N, Ström L. Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage. J Cell Sci. 2017;130:1134-1146 pubmed 出版商
  61. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  62. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  63. Li J, Dang N, Wood D, Huang J. The kinetochore-dependent and -independent formation of the CDC20-MAD2 complex and its functions in HeLa cells. Sci Rep. 2017;7:41072 pubmed 出版商
  64. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  65. Major J, Dewan A, Salih M, Leddy J, Tuana B. E2F6 Impairs Glycolysis and Activates BDH1 Expression Prior to Dilated Cardiomyopathy. PLoS ONE. 2017;12:e0170066 pubmed 出版商
  66. Ramos P, Guerra A, Guerreiro O, Santos S, Oliveira H, Freire C, et al. Antiproliferative Effects of Cynara cardunculus L. var. altilis (DC) Lipophilic Extracts. Int J Mol Sci. 2016;18: pubmed 出版商
  67. Ren H, Liu F, Huang G, Liu Y, Shen J, Zhou P, et al. Positive feedback loop of IL-1β/Akt/RARα/Akt signaling mediates oncogenic property of RARα in gastric carcinoma. Oncotarget. 2017;8:6718-6729 pubmed 出版商
  68. Sierra Potchanant E, Cerabona D, Sater Z, He Y, Sun Z, Gehlhausen J, et al. INPP5E Preserves Genomic Stability through Regulation of Mitosis. Mol Cell Biol. 2017;37: pubmed 出版商
  69. Huang Z, Zhou X, He Y, Ke X, Wen Y, Zou F, et al. Hyperthermia enhances 17-DMAG efficacy in hepatocellular carcinoma cells with aggravated DNA damage and impaired G2/M transition. Sci Rep. 2016;6:38072 pubmed 出版商
  70. Zhu X, Wang K, Zhang K, Zhang T, Yin Y, Xu F. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis. Int J Mol Sci. 2016;17: pubmed
  71. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  72. Zhou J, Ge L, Jia C, Zheng X, Cui H, Zong R, et al. ROS-mediated Different Homeostasis of Murine Corneal Epithelial Progenitor Cell Line under Oxidative Stress. Sci Rep. 2016;6:36481 pubmed 出版商
  73. Dubey A, Copeland P. The Selenocysteine-Specific Elongation Factor Contains Unique Sequences That Are Required for Both Nuclear Export and Selenocysteine Incorporation. PLoS ONE. 2016;11:e0165642 pubmed 出版商
  74. Zheng X, Yang P, Lackford B, Bennett B, Wang L, Li H, et al. CNOT3-Dependent mRNA Deadenylation Safeguards the Pluripotent State. Stem Cell Reports. 2016;7:897-910 pubmed 出版商
  75. Li H, Wang R, Jiang H, Zhang E, Tan J, Xu H, et al. Mitochondrial Ribosomal Protein L10 Associates with Cyclin B1/Cdk1 Activity and Mitochondrial Function. DNA Cell Biol. 2016;35:680-690 pubmed
  76. Kotsantis P, Silva L, Irmscher S, Jones R, Folkes L, Gromak N, et al. Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun. 2016;7:13087 pubmed 出版商
  77. Matsuura K, Huang N, Cocce K, Zhang L, Kornbluth S. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin. Oncogene. 2017;36:1698-1706 pubmed 出版商
  78. Kanakkanthara A, Jeganathan K, Limzerwala J, Baker D, Hamada M, Nam H, et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353:1549-1552 pubmed
  79. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  80. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  81. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  82. Schwermer M, Dreesmann S, Eggert A, Althoff K, Steenpass L, Schramm A, et al. Pharmaceutically inhibiting polo-like kinase 1 exerts a broad anti-tumour activity in retinoblastoma cell lines. Clin Exp Ophthalmol. 2017;45:288-296 pubmed 出版商
  83. Diril M, Bisteau X, Kitagawa M, Caldez M, Wee S, Gunaratne J, et al. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genet. 2016;12:e1006310 pubmed 出版商
  84. Feringa F, Krenning L, Koch A, van den Berg J, van den Broek B, Jalink K, et al. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat Commun. 2016;7:12618 pubmed 出版商
  85. Steingruber M, Kraut A, Socher E, Sticht H, Reichel A, Stamminger T, et al. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins. Viruses. 2016;8: pubmed 出版商
  86. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  87. Park Y, Nam H, Do M, Lee J. The p90 ribosomal S6 kinase 2 specifically affects mitotic progression by regulating the basal level, distribution and stability of mitotic spindles. Exp Mol Med. 2016;48:e250 pubmed 出版商
  88. Zhang X, Ling Y, Guo Y, Bai Y, Shi X, Gong F, et al. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria. Cell Death Dis. 2016;7:e2292 pubmed 出版商
  89. Gholkar A, Cheung K, Williams K, Lo Y, Hamideh S, Nnebe C, et al. Fatostatin Inhibits Cancer Cell Proliferation by Affecting Mitotic Microtubule Spindle Assembly and Cell Division. J Biol Chem. 2016;291:17001-8 pubmed 出版商
  90. Wu D, Chen C, Wu Z, Liu B, Gao L, Yang Q, et al. ATF2 predicts poor prognosis and promotes malignant phenotypes in renal cell carcinoma. J Exp Clin Cancer Res. 2016;35:108 pubmed 出版商
  91. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  92. Chung H, Park J, Lee N, Kim H, Jang C. Phosphorylation of Astrin Regulates Its Kinetochore Function. J Biol Chem. 2016;291:17579-92 pubmed 出版商
  93. Helmke C, Raab M, Rodel F, Matthess Y, Oellerich T, Mandal R, et al. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res. 2016;26:914-34 pubmed 出版商
  94. Engel K, Rudelius M, Slawska J, Jacobs L, Ahangarian Abhari B, Altmann B, et al. USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma. EMBO Mol Med. 2016;8:851-62 pubmed 出版商
  95. Sun Y, Zheng W, Guo Z, Ju Q, Zhu L, Gao J, et al. A novel TP53 pathway influences the HGS-mediated exosome formation in colorectal cancer. Sci Rep. 2016;6:28083 pubmed 出版商
  96. Eichner R, Heider M, Fernández Sáiz V, van Bebber F, Garz A, Lemeer S, et al. Immunomodulatory drugs disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and teratogenicity. Nat Med. 2016;22:735-43 pubmed 出版商
  97. van Ree J, Nam H, Jeganathan K, Kanakkanthara A, van Deursen J. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes. Nat Cell Biol. 2016;18:814-21 pubmed 出版商
  98. Al Nakouzi N, Wang C, Beraldi E, Jäger W, Ettinger S, Fazli L, et al. Clusterin knockdown sensitizes prostate cancer cells to taxane by modulating mitosis. EMBO Mol Med. 2016;8:761-78 pubmed 出版商
  99. Yang Y, Lu Y, Wang L, Mizokami A, Keller E, Zhang J, et al. Skp2 is associated with paclitaxel resistance in prostate cancer cells. Oncol Rep. 2016;36:559-66 pubmed 出版商
  100. Tsai L, Chang Y, Lee M, Chang Y, Hwang P, Huang Y, et al. Biphasic and Stage-Associated Expression of CPEB4 in Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0155025 pubmed 出版商
  101. Moshfegh C, Aires L, Kisielow M, Vogel V. A gonogenic stimulated transition of mouse embryonic stem cells with enhanced control of diverse differentiation pathways. Sci Rep. 2016;6:25104 pubmed 出版商
  102. Matsushima H, Mori T, Ito F, Yamamoto T, Akiyama M, Kokabu T, et al. Anti-tumor effect of estrogen-related receptor alpha knockdown on uterine endometrial cancer. Oncotarget. 2016;7:34131-48 pubmed 出版商
  103. Dai Y, Hung L, Chen R, Lai C, Chang K. ON 01910.Na inhibits growth of diffuse large B-cell lymphoma by cytoplasmic sequestration of sumoylated C-MYB/TRAF6 complex. Transl Res. 2016;175:129-143.e13 pubmed 出版商
  104. Marthandan S, Baumgart M, Priebe S, Groth M, Schaer J, Kaether C, et al. Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS ONE. 2016;11:e0154531 pubmed 出版商
  105. Qiao R, Weissmann F, Yamaguchi M, Brown N, VanderLinden R, Imre R, et al. Mechanism of APC/CCDC20 activation by mitotic phosphorylation. Proc Natl Acad Sci U S A. 2016;113:E2570-8 pubmed 出版商
  106. Salsi V, Fantini S, Zappavigna V. NUP98 fusion oncoproteins interact with the APC/C(Cdc20) as a pseudosubstrate and prevent mitotic checkpoint complex binding. Cell Cycle. 2016;15:2275-87 pubmed 出版商
  107. Huang C, Lee C, Yang S, Chien C, Huang C, Yang R, et al. Upregulation of the growth arrest-specific-2 in recurrent colorectal cancers, and its susceptibility to chemotherapy in a model cell system. Biochim Biophys Acta. 2016;1862:1345-53 pubmed 出版商
  108. Hein J, Nilsson J. Interphase APC/C-Cdc20 inhibition by cyclin A2-Cdk2 ensures efficient mitotic entry. Nat Commun. 2016;7:10975 pubmed 出版商
  109. Tambe M, Pruikkonen S, Mäki Jouppila J, Chen P, Elgaaen B, Straume A, et al. Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells' sensitivity to paclitaxel. Oncotarget. 2016;7:12267-85 pubmed 出版商
  110. Ercilla A, Llopis A, Feu S, Aranda S, Ernfors P, Freire R, et al. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res. 2016;44:4745-62 pubmed 出版商
  111. Wild T, Larsen M, Narita T, Schou J, Nilsson J, Choudhary C. The Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity. Cell Rep. 2016;14:1829-40 pubmed 出版商
  112. Nim S, Jeon J, Corbi Verge C, Seo M, Ivarsson Y, Moffat J, et al. Pooled screening for antiproliferative inhibitors of protein-protein interactions. Nat Chem Biol. 2016;12:275-81 pubmed 出版商
  113. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  114. Cott C, Thuenauer R, Landi A, Kühn K, Juillot S, Imberty A, et al. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation. Biochim Biophys Acta. 2016;1863:1106-18 pubmed 出版商
  115. Liu Y, Liu C, Chang Z, Wadas B, Brower C, Song Z, et al. Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway. J Biol Chem. 2016;291:7426-38 pubmed 出版商
  116. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed 出版商
  117. Sharma A, Lyashchenko A, Lu L, Nasrabady S, Elmaleh M, Mendelsohn M, et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun. 2016;7:10465 pubmed 出版商
  118. Chen N, Chyau C, Lee Y, Tseng H, Chou F. Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells. Sci Rep. 2016;6:20417 pubmed 出版商
  119. Podmirseg S, Jäkel H, Ranches G, Kullmann M, Sohm B, Villunger A, et al. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene. 2016;35:4580-90 pubmed 出版商
  120. Hasvold G, Lund Andersen C, Lando M, Patzke S, Hauge S, Suo Z, et al. Hypoxia-induced alterations of G2 checkpoint regulators. Mol Oncol. 2016;10:764-73 pubmed 出版商
  121. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  122. Zhou H, Wang T, Zheng T, Teng J, Chen J. Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1-Mad2. Nat Commun. 2016;7:10151 pubmed 出版商
  123. Naylor R, Jeganathan K, Cao X, van Deursen J. Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy. J Clin Invest. 2016;126:543-59 pubmed 出版商
  124. Berges C, Chatterjee M, Topp M, Einsele H. Targeting polo-like kinase 1 suppresses essential functions of alloreactive T cells. Immunol Res. 2016;64:687-98 pubmed 出版商
  125. Lub S, Maes A, Maes K, De Veirman K, De Bruyne E, Menu E, et al. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget. 2016;7:4062-76 pubmed 出版商
  126. Li R, Liao G, Nirujogi R, Pinto S, Shaw P, Huang T, et al. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling. PLoS Pathog. 2015;11:e1005346 pubmed 出版商
  127. Ferré C, Davezac N, Thouard A, Peyrin J, Belenguer P, Miquel M, et al. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential. FASEB J. 2016;30:1523-33 pubmed 出版商
  128. O Connor A, Maffini S, Rainey M, Kaczmarczyk A, Gaboriau D, Musacchio A, et al. Requirement for PLK1 kinase activity in the maintenance of a robust spindle assembly checkpoint. Biol Open. 2015;5:11-9 pubmed 出版商
  129. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18:202-12 pubmed 出版商
  130. Ohashi A, Ohori M, Iwai K, Nambu T, Miyamoto M, Kawamoto T, et al. A Novel Time-Dependent CENP-E Inhibitor with Potent Antitumor Activity. PLoS ONE. 2015;10:e0144675 pubmed 出版商
  131. Chen X, Dong X, Gao H, Jiang Y, Jin Y, Chang Y, et al. Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells. Mol Med Rep. 2016;13:689-96 pubmed 出版商
  132. Harley M, Murina O, Leitch A, Higgs M, Bicknell L, Yigit G, et al. TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism. Nat Genet. 2016;48:36-43 pubmed 出版商
  133. Zhang Y, Yu J, Lee C, Xu B, Sartor M, Koenig R. Genomic binding and regulation of gene expression by the thyroid carcinoma-associated PAX8-PPARG fusion protein. Oncotarget. 2015;6:40418-32 pubmed 出版商
  134. Lyu L, Whitcomb E, Jiang S, Chang M, Gu Y, Duncan M, et al. Unfolded-protein response-associated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract. FASEB J. 2016;30:1087-95 pubmed 出版商
  135. Tan X, Fu Y, Chen L, Lee W, Lai Y, Rezaei K, et al. miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer. Oncotarget. 2016;7:293-307 pubmed 出版商
  136. Lohberger B, Leithner A, Stuendl N, Kaltenegger H, Kullich W, Steinecker Frohnwieser B. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer. 2015;15:891 pubmed 出版商
  137. Xu S, Huang J, Chen M, Zeng M, Zou F, Chen D, et al. Amplification of ACK1 promotes gastric tumorigenesis via ECD-dependent p53 ubiquitination degradation. Oncotarget. 2017;8:12705-12716 pubmed 出版商
  138. Fuchs M, Luthold C, Guilbert S, Varlet A, Lambert H, Jetté A, et al. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis. PLoS Genet. 2015;11:e1005582 pubmed 出版商
  139. Lauková J, Kozubík A, Hofmanová J, Nekvindová J, Sova P, Moyer M, et al. Loss of PTEN Facilitates Rosiglitazone-Mediated Enhancement of Platinum(IV) Complex LA-12-Induced Apoptosis in Colon Cancer Cells. PLoS ONE. 2015;10:e0141020 pubmed 出版商
  140. Gao L, Tang H, He H, Liu J, Mao J, Ji H, et al. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats. Front Pharmacol. 2015;6:215 pubmed 出版商
  141. Strizzi L, Sandomenico A, Margaryan N, Focà A, Sanguigno L, Bodenstine T, et al. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget. 2015;6:34071-86 pubmed 出版商
  142. Aviner R, Shenoy A, Elroy Stein O, Geiger T. Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis. PLoS Genet. 2015;11:e1005554 pubmed 出版商
  143. Voets E, Marsman J, Demmers J, Beijersbergen R, Wolthuis R. The lethal response to Cdk1 inhibition depends on sister chromatid alignment errors generated by KIF4 and isoform 1 of PRC1. Sci Rep. 2015;5:14798 pubmed 出版商
  144. Maleszewska M, Vanchin B, Harmsen M, Krenning G. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence. Angiogenesis. 2016;19:9-24 pubmed 出版商
  145. Seo M, Jang W, Rhee K. Integrity of the Pericentriolar Material Is Essential for Maintaining Centriole Association during M Phase. PLoS ONE. 2015;10:e0138905 pubmed 出版商
  146. Martinez R, Blasina A, Hallin J, Hu W, Rymer I, Fan J, et al. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility. PLoS ONE. 2015;10:e0138616 pubmed 出版商
  147. Bailey M, Singh T, Mero P, Moffat J, Hieter P. Dependence of Human Colorectal Cells Lacking the FBW7 Tumor Suppressor on the Spindle Assembly Checkpoint. Genetics. 2015;201:885-95 pubmed 出版商
  148. Marthandan S, Priebe S, Baumgart M, Groth M, Cellerino A, Guthke R, et al. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts. Biomed Res Int. 2015;2015:731938 pubmed 出版商
  149. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  150. Quijada P, Hariharan N, Cubillo J, Bala K, Emathinger J, Wang B, et al. Nuclear Calcium/Calmodulin-dependent Protein Kinase II Signaling Enhances Cardiac Progenitor Cell Survival and Cardiac Lineage Commitment. J Biol Chem. 2015;290:25411-26 pubmed 出版商
  151. Shukla A, Kong D, Sharma M, Magidson V, Loncarek J. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation. Nat Commun. 2015;6:8077 pubmed 出版商
  152. Zhang G, Xiong K, Ma W, Xu W, Zeng H. Initiate Tumors with Single Cell Spheres Formed in Serum-Containing Medium. J Cancer. 2015;6:901-12 pubmed 出版商
  153. Kruiswijk F, Hasenfuss S, Sivapatham R, Baar M, Putavet D, Naipal K, et al. Targeted inhibition of metastatic melanoma through interference with Pin1-FOXM1 signaling. Oncogene. 2016;35:2166-77 pubmed 出版商
  154. Steingruber M, Socher E, Hutterer C, Webel R, Bergbrede T, Lenac T, et al. The Interaction between Cyclin B1 and Cytomegalovirus Protein Kinase pUL97 is Determined by an Active Kinase Domain. Viruses. 2015;7:4582-601 pubmed 出版商
  155. Chen C, Tian F, Lu L, Wang Y, Xiao Z, Yu C, et al. Characterization of Cep85 - a new antagonist of Nek2A that is involved in the regulation of centrosome disjunction. J Cell Sci. 2015;128:3290-303 pubmed 出版商
  156. Wu C, Huang K, Yang T, Li Y, Wen C, Hsu S, et al. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS ONE. 2015;10:e0132052 pubmed 出版商
  157. Liu R, Fan M, Candas D, Qin L, Zhang X, Eldridge A, et al. CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Mol Cancer Ther. 2015;14:2090-102 pubmed 出版商
  158. Sadaie M, Dillon C, Narita M, Young A, Cairney C, Godwin L, et al. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol Biol Cell. 2015;26:2971-85 pubmed 出版商
  159. Yan M, Chu L, Qin B, Wang Z, Liu X, Jin C, et al. Regulation of NDR1 activity by PLK1 ensures proper spindle orientation in mitosis. Sci Rep. 2015;5:10449 pubmed 出版商
  160. Dille S, Kleinschnitz E, Kontchou C, Nölke T, Häcker G. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport. Infect Immun. 2015;83:3268-80 pubmed 出版商
  161. McCloy R, Parker B, Rogers S, Chaudhuri R, Gayevskiy V, Hoffman N, et al. Global Phosphoproteomic Mapping of Early Mitotic Exit in Human Cells Identifies Novel Substrate Dephosphorylation Motifs. Mol Cell Proteomics. 2015;14:2194-212 pubmed 出版商
  162. Moiseeva O, Lessard F, Acevedo Aquino M, Vernier M, Tsantrizos Y, Ferbeyre G. Mutant lamin A links prophase to a p53 independent senescence program. Cell Cycle. 2015;14:2408-21 pubmed 出版商
  163. Ohira M, Iwasaki Y, Tanaka C, Kuroki M, Matsuo N, Kitamura T, et al. A novel anti-microtubule agent with carbazole and benzohydrazide structures suppresses tumor cell growth in vivo. Biochim Biophys Acta. 2015;1850:1676-84 pubmed 出版商
  164. Li C, Wu W, Wu W, Liao Y, Chen L, Huang C, et al. The cAMP responsive element binding protein 1 transactivates epithelial membrane protein 2, a potential tumor suppressor in the urinary bladder urothelial carcinoma. Oncotarget. 2015;6:9220-39 pubmed
  165. Guha G, Lu W, Li S, Liang X, Kulesz Martin M, Mahmud T, et al. Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Head and Neck Squamous Cell Carcinoma (HNSCC) Cells. PLoS ONE. 2015;10:e0125322 pubmed 出版商
  166. Qiu J, Zhang Y, Li Y, Zhao J, Zhang W, Jiang Q, et al. Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter. Oncotarget. 2015;6:15494-509 pubmed
  167. Pozo K, Hillmann A, Augustyn A, Plattner F, Hai T, Singh T, et al. Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis. Oncotarget. 2015;6:12080-93 pubmed
  168. Voets E, Wolthuis R. MASTL promotes cyclin B1 destruction by enforcing Cdc20-independent binding of cyclin B1 to the APC/C. Biol Open. 2015;4:484-95 pubmed 出版商
  169. Masuda K, Chiyoda T, Sugiyama N, Segura Cabrera A, Kabe Y, Ueki A, et al. LATS1 and LATS2 phosphorylate CDC26 to modulate assembly of the tetratricopeptide repeat subcomplex of APC/C. PLoS ONE. 2015;10:e0118662 pubmed 出版商
  170. Lee J, Chung L, Chen Y, Feng T, Chen W, Juang H. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells. Cancer Lett. 2015;360:310-8 pubmed 出版商
  171. Susanto J, Colvin E, Pinese M, Chang D, Pajic M, Mawson A, et al. The epigenetic agents suberoylanilide hydroxamic acid and 5‑AZA‑2' deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo. Int J Oncol. 2015;46:2223-30 pubmed 出版商
  172. Nakajima T, Kitagawa K, Ohhata T, Sakai S, Uchida C, Shibata K, et al. Regulation of GATA-binding protein 2 levels via ubiquitin-dependent degradation by Fbw7: involvement of cyclin B-cyclin-dependent kinase 1-mediated phosphorylation of THR176 in GATA-binding protein 2. J Biol Chem. 2015;290:10368-81 pubmed 出版商
  173. Jeong H, Gil N, Lee H, Cho S, Kim K, Chun K, et al. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression. J Cell Biochem. 2015;116:1602-12 pubmed 出版商
  174. Hamdi A, Lesnard A, Suzanne P, Robert T, Miteva M, Pellerano M, et al. Tampering with cell division by using small-molecule inhibitors of CDK-CKS protein interactions. Chembiochem. 2015;16:432-9 pubmed 出版商
  175. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  176. Rizkallah R, Batsomboon P, Dudley G, Hurt M. Identification of the oncogenic kinase TOPK/PBK as a master mitotic regulator of C2H2 zinc finger proteins. Oncotarget. 2015;6:1446-61 pubmed
  177. Xia J, Chen S, Lv Y, Lu L, Hu W, Zhou Y. ZGDHu-1 induces Gâ‚‚/M phase arrest and apoptosis in Kasumi-1 cells. Mol Med Rep. 2015;11:3398-404 pubmed 出版商
  178. Pérès E, Gérault A, Valable S, Roussel S, Toutain J, Divoux D, et al. Silencing erythropoietin receptor on glioma cells reinforces efficacy of temozolomide and X-rays through senescence and mitotic catastrophe. Oncotarget. 2015;6:2101-19 pubmed
  179. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  180. Pino M, Verstraeten S. Tl(I) and Tl(III) alter the expression of EGF-dependent signals and cyclins required for pheochromocytoma (PC12) cell-cycle resumption and progression. J Appl Toxicol. 2015;35:952-69 pubmed 出版商
  181. Xue L, Furusawa Y, Okayasu R, Miura M, Cui X, Liu C, et al. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function. DNA Repair (Amst). 2015;25:72-83 pubmed 出版商
  182. Brownlow N, Pike T, Zicha D, Collinson L, Parker P. Mitotic catenation is monitored and resolved by a PKCε-regulated pathway. Nat Commun. 2014;5:5685 pubmed 出版商
  183. Szeto S, Williams E, Rudner A, Lee J. Phosphorylation of filamin A by Cdk1 regulates filamin A localization and daughter cell separation. Exp Cell Res. 2015;330:248-66 pubmed 出版商
  184. Eifler M, Uecker R, Weisbach H, Bogdanow B, Richter E, König L, et al. PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry. PLoS Pathog. 2014;10:e1004514 pubmed 出版商
  185. Li Y, Kim B, Cho S, Bang M, Kim S, Park D. 6,7-di-O-acetylsinococuline (FK-3000) induces G2/M phase arrest in breast carcinomas through p38 MAPK phosphorylation and CDC25B dephosphorylation. Int J Oncol. 2015;46:578-86 pubmed 出版商
  186. Ohoka N, Nagai K, Hattori T, Okuhira K, Shibata N, Cho N, et al. Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis. 2014;5:e1513 pubmed 出版商
  187. Greve K, Lindgreen J, Terp M, Pedersen C, Schmidt S, Mollenhauer J, et al. Ectopic expression of cancer/testis antigen SSX2 induces DNA damage and promotes genomic instability. Mol Oncol. 2015;9:437-49 pubmed 出版商
  188. Xu H, Zhou Y, Coughlan K, Ding Y, Wang S, Wu Y, et al. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. Biochim Biophys Acta. 2015;1853:65-73 pubmed 出版商
  189. van der Lelij P, Stocsits R, Ladurner R, Petzold G, Kreidl E, Koch B, et al. SNW1 enables sister chromatid cohesion by mediating the splicing of sororin and APC2 pre-mRNAs. EMBO J. 2014;33:2643-58 pubmed 出版商
  190. Shandilya J, Toska E, Richard D, Medler K, Roberts S. WT1 interacts with MAD2 and regulates mitotic checkpoint function. Nat Commun. 2014;5:4903 pubmed 出版商
  191. Alpay K, Farshchian M, Tuomela J, Sandholm J, Aittokallio K, Siljamäki E, et al. Inhibition of c-Abl kinase activity renders cancer cells highly sensitive to mitoxantrone. PLoS ONE. 2014;9:e105526 pubmed 出版商
  192. Izumi H, Kaneko Y. Trim32 facilitates degradation of MYCN on spindle poles and induces asymmetric cell division in human neuroblastoma cells. Cancer Res. 2014;74:5620-30 pubmed 出版商
  193. Jiao G, Lian H, Gao Y, Sun M, Gong S, Zheng L, et al. Carrying-over effects of GVBD blocking on post-blocking meiotic progression of oocytes: species difference and the signaling pathway leading to MPF activation. PLoS ONE. 2014;9:e103838 pubmed 出版商
  194. Carlessi L, Fusar Poli E, Bechi G, Mantegazza M, Pascucci B, Narciso L, et al. Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency. Cell Death Dis. 2014;5:e1342 pubmed 出版商
  195. Komrskova P, Susor A, Malik R, Procházková B, Liskova L, Supolikova J, et al. Aurora kinase A is not involved in CPEB1 phosphorylation and cyclin B1 mRNA polyadenylation during meiotic maturation of porcine oocytes. PLoS ONE. 2014;9:e101222 pubmed 出版商
  196. Otani K, Dong Y, Li X, Lu J, Zhang N, Xu L, et al. Odd-skipped related 1 is a novel tumour suppressor gene and a potential prognostic biomarker in gastric cancer. J Pathol. 2014;234:302-15 pubmed 出版商
  197. Hu K, Liao D, Wu W, Han A, Shi H, Wang F, et al. Targeting the anaphase-promoting complex/cyclosome (APC/C)- bromodomain containing 7 (BRD7) pathway for human osteosarcoma. Oncotarget. 2014;5:3088-100 pubmed
  198. Penas C, Ramachandran V, Simanski S, Lee C, Madoux F, Rahaim R, et al. Casein kinase 1?-dependent Wee1 protein degradation. J Biol Chem. 2014;289:18893-903 pubmed 出版商
  199. Vidi P, Liu J, Salles D, Jayaraman S, Dorfman G, Gray M, et al. NuMA promotes homologous recombination repair by regulating the accumulation of the ISWI ATPase SNF2h at DNA breaks. Nucleic Acids Res. 2014;42:6365-79 pubmed 出版商
  200. Yang X, Xu W, Hu Z, Zhang Y, Xu N. Chk1 is required for the metaphase-anaphase transition via regulating the expression and localization of Cdc20 and Mad2. Life Sci. 2014;106:12-8 pubmed 出版商
  201. Kuijt T, Omerzu M, Saurin A, Kops G. Conditional targeting of MAD1 to kinetochores is sufficient to reactivate the spindle assembly checkpoint in metaphase. Chromosoma. 2014;123:471-80 pubmed 出版商
  202. Kitagawa M, Fung S, Hameed U, Goto H, Inagaki M, Lee S. Cdk1 coordinates timely activation of MKlp2 kinesin with relocation of the chromosome passenger complex for cytokinesis. Cell Rep. 2014;7:166-79 pubmed 出版商
  203. Fukumoto Y, Morii M, Miura T, Kubota S, Ishibashi K, Honda T, et al. Src family kinases promote silencing of ATR-Chk1 signaling in termination of DNA damage checkpoint. J Biol Chem. 2014;289:12313-29 pubmed 出版商
  204. Hu J, Lu J, Lian G, Zhang J, Hecht J, Sheen V. Filamin B regulates chondrocyte proliferation and differentiation through Cdk1 signaling. PLoS ONE. 2014;9:e89352 pubmed 出版商
  205. Kaur S, Fielding A, Gassner G, Carter N, Royle S. An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis. elife. 2014;3:e00829 pubmed 出版商
  206. Matthess Y, Raab M, Knecht R, Becker S, Strebhardt K. Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol Oncol. 2014;8:596-608 pubmed 出版商
  207. Kim S, Park E, Joo H, Shen Y, Hong S, Kim C, et al. RRM1 maintains centrosomal integrity via CHK1 and CDK1 signaling during replication stress. Cancer Lett. 2014;346:249-56 pubmed 出版商
  208. Xu Q, Zhang Y, Xiong X, Huang Y, Salisbury J, Hu J, et al. PIPKI? targets to the centrosome and restrains centriole duplication. J Cell Sci. 2014;127:1293-305 pubmed 出版商
  209. Myatt S, Kongsema M, Man C, Kelly D, Gomes A, Khongkow P, et al. SUMOylation inhibits FOXM1 activity and delays mitotic transition. Oncogene. 2014;33:4316-29 pubmed 出版商
  210. Gallego Paez L, Tanaka H, Bando M, Takahashi M, Nozaki N, Nakato R, et al. Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol Biol Cell. 2014;25:302-17 pubmed 出版商
  211. Liu X, Xiao W, Wang X, Li Y, Han J, Li Y. The p38-interacting protein (p38IP) regulates G2/M progression by promoting ?-tubulin acetylation via inhibiting ubiquitination-induced degradation of the acetyltransferase GCN5. J Biol Chem. 2013;288:36648-61 pubmed 出版商
  212. Yu Y, Munger K. Human papillomavirus type 16 E7 oncoprotein inhibits the anaphase promoting complex/cyclosome activity by dysregulating EMI1 expression in mitosis. Virology. 2013;446:251-9 pubmed 出版商
  213. Lim H, Dimova N, Tan M, Sigoillot F, King R, Shi Y. The G2/M regulator histone demethylase PHF8 is targeted for degradation by the anaphase-promoting complex containing CDC20. Mol Cell Biol. 2013;33:4166-80 pubmed 出版商
  214. Maier B, Kirsch M, Anderhub S, Zentgraf H, Krämer A. The novel actin/focal adhesion-associated protein MISP is involved in mitotic spindle positioning in human cells. Cell Cycle. 2013;12:1457-71 pubmed 出版商
  215. Mo Q, Chen P, Jin X, Chen Q, Tang L, Wang B, et al. Inhibition of Hec1 expression enhances the sensitivity of human ovarian cancer cells to paclitaxel. Acta Pharmacol Sin. 2013;34:541-8 pubmed 出版商
  216. Caldon C, Sergio C, Burgess A, Deans A, Sutherland R, Musgrove E. Cyclin E2 induces genomic instability by mechanisms distinct from cyclin E1. Cell Cycle. 2013;12:606-17 pubmed 出版商
  217. Balaburski G, Leu J, Beeharry N, Hayik S, Andrake M, Zhang G, et al. A modified HSP70 inhibitor shows broad activity as an anticancer agent. Mol Cancer Res. 2013;11:219-29 pubmed 出版商
  218. Gao M, Rendtlew Danielsen J, Wei L, Zhou D, Xu Q, Li M, et al. A novel role of human holliday junction resolvase GEN1 in the maintenance of centrosome integrity. PLoS ONE. 2012;7:e49687 pubmed 出版商
  219. Chen S, Fu S, Hsu S, Huang Y, Hsu B. Synergistic Effect of Hyperglycemia and p27(kip1) Suppression on Adult Mouse Islet Beta Cell Replication. Int J Endocrinol. 2012;2012:417390 pubmed 出版商
  220. Diril M, Ratnacaram C, Padmakumar V, Du T, Wasser M, Coppola V, et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A. 2012;109:3826-31 pubmed 出版商
  221. Tan M, Lim H, Harper J. SCF(FBXO22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. Mol Cell Biol. 2011;31:3687-99 pubmed 出版商
  222. Holt J, Tran S, Stewart J, Minahan K, Garcia Higuera I, Moreno S, et al. The APC/C activator FZR1 coordinates the timing of meiotic resumption during prophase I arrest in mammalian oocytes. Development. 2011;138:905-13 pubmed 出版商
  223. Yoo J, Jung J, Lee M, Seo K, Shim B, Kim S, et al. Immunohistochemical analysis of non-small cell lung cancer: correlation with clinical parameters and prognosis. J Korean Med Sci. 2007;22:318-25 pubmed
  224. Bengoechea Alonso M, Punga T, Ericsson J. Hyperphosphorylation regulates the activity of SREBP1 during mitosis. Proc Natl Acad Sci U S A. 2005;102:11681-6 pubmed