这是一篇来自已证抗体库的有关人类 细胞周期蛋白D3 (cyclin D3) 的综述,是根据53篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合细胞周期蛋白D3 抗体。
圣克鲁斯生物技术
小鼠 单克隆(D-7)
  • 免疫印迹; 大鼠; 图 5a
圣克鲁斯生物技术细胞周期蛋白D3抗体(Santa Cruz Biotechnology, sc-6283)被用于被用于免疫印迹在大鼠样本上 (图 5a). J Cell Biol (2021) ncbi
小鼠 单克隆(DCS-22)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术细胞周期蛋白D3抗体(SCBT, DCS-22)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(D-7)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术细胞周期蛋白D3抗体(Santa Cruz Biotechnology, sc-6283)被用于被用于免疫印迹在小鼠样本上 (图 1). J Clin Invest (2016) ncbi
小鼠 单克隆(DCS-22)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术细胞周期蛋白D3抗体(Santa Cruz, sc-56307)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(D-7)
  • 免疫印迹; 人类; 图 7c
圣克鲁斯生物技术细胞周期蛋白D3抗体(SantaCruz, sc-6283)被用于被用于免疫印迹在人类样本上 (图 7c). BMC Cancer (2014) ncbi
小鼠 单克隆(1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白D3抗体(Santa Cruz, sc-135875)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(DCS2.2)
  • 免疫印迹; 牛; 1:1000; 图 4b
艾博抗(上海)贸易有限公司细胞周期蛋白D3抗体(Abcam, ab28283)被用于被用于免疫印迹在牛样本上浓度为1:1000 (图 4b). Anim Reprod Sci (2020) ncbi
小鼠 单克隆(DCS2.2)
  • 免疫印迹; 人类; 图 s1a
艾博抗(上海)贸易有限公司细胞周期蛋白D3抗体(Abcam, ab28283)被用于被用于免疫印迹在人类样本上 (图 s1a). Nature (2017) ncbi
小鼠 单克隆(DCS2.2)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司细胞周期蛋白D3抗体(Abcam, ab28283)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Hematol Oncol (2015) ncbi
小鼠 单克隆(DCS2.2)
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司细胞周期蛋白D3抗体(Abcam, AB28283)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Cell Cycle (2013) ncbi
赛默飞世尔
小鼠 单克隆(DCS-22)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔细胞周期蛋白D3抗体(Thermo Scientific, DCS-22)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Cell Proteomics (2017) ncbi
小鼠 单克隆(DCS-22)
  • 免疫印迹; 人类
赛默飞世尔细胞周期蛋白D3抗体(BioSource, DCS-22)被用于被用于免疫印迹在人类样本上. Blood (2009) ncbi
小鼠 单克隆(DCS-22)
  • 免疫印迹; 人类
赛默飞世尔细胞周期蛋白D3抗体(Neomarkers, DCS-22)被用于被用于免疫印迹在人类样本上. Blood (2006) ncbi
小鼠 单克隆(DCS-22)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔细胞周期蛋白D3抗体(NeoMarkers, DCS-22)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Pathol (2002) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signal, 2936)被用于被用于免疫印迹在人类样本上 (图 3e). Clin Transl Med (2021) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling Technology, 2936)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Clin Transl Med (2021) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, DCS22)被用于被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2020) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(CST, 2936)被用于被用于免疫印迹在小鼠样本上 (图 5e). Sci Rep (2020) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling Technology, 2936)被用于被用于免疫印迹在人类样本上 (图 4). Dev Reprod (2020) ncbi
小鼠 单克隆(DCS22)
  • 免疫组化; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫组化在小鼠样本上 (图 5f). J Clin Invest (2020) ncbi
小鼠 单克隆(DCS22)
  • 免疫组化; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫组化在小鼠样本上 (图 5f). Adv Sci (Weinh) (2020) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 1:2000; 图 4g
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4g). elife (2020) ncbi
小鼠 单克隆(DCS22)
  • 免疫组化; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫组化在小鼠样本上 (图 5f). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(CST, 2936)被用于被用于免疫印迹在人类样本上 (图 4c). Front Cell Dev Biol (2020) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling Technology, 2936)被用于被用于免疫印迹在小鼠样本上 (图 7d). elife (2019) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(CST, 2936)被用于被用于免疫印迹在人类样本上 (图 1e). Cell Rep (2019) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Sigma, 2936)被用于被用于免疫印迹在小鼠样本上 (图 4d). Cell Rep (2019) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling Technology, 2936)被用于被用于免疫印迹在人类样本上 (图 4e). Cancer Lett (2019) ncbi
小鼠 单克隆(DCS22)
  • 免疫组化-石蜡切片; 人类; 图 5d
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5d). Cancer Cell (2018) ncbi
小鼠 单克隆(DCS22)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 2g). Oncogene (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 3d). Science (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). PLoS ONE (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫组化-冰冻切片; 小鼠; 1:700; 图 11h
  • 免疫印迹; 小鼠; 1:700; 图 11a
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:700 (图 11h) 和 被用于免疫印迹在小鼠样本上浓度为1:700 (图 11a). J Neurosci (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹基因敲除验证; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3c). Mol Pharmacol (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 2). Neuroendocrinology (2018) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Oncogene (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell signaling, 2936)被用于被用于免疫印迹在小鼠样本上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(DCS22)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell signaling, DCS22)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4). Mod Pathol (2016) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 1:2000; 图 6
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling Tech, 2936)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 8). Oncogenesis (2016) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 1:1000; 图 s2d
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, DCS22)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2d). Nat Commun (2016) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). FEBS Open Bio (2015) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 6b). Neuroendocrinology (2016) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling Technology, DCS22)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2015) ncbi
小鼠 单克隆(DCS22)
  • 免疫组化; 小鼠; 图 3
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫组化在小鼠样本上 (图 3). Cell Death Differ (2015) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling Technology, 2936)被用于被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
碧迪BD
小鼠 单克隆(1/Cyclin D3)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD细胞周期蛋白D3抗体(BD, 1/Cyclin D3)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2016) ncbi
小鼠 单克隆(1/Cyclin D3)
  • 免疫印迹; 人类; 图 4h
碧迪BD细胞周期蛋白D3抗体(BD, 1/Cyclin D3)被用于被用于免疫印迹在人类样本上 (图 4h). Science (2016) ncbi
小鼠 单克隆(G107-565)
  • 其他; 人类; 图 st1
碧迪BD细胞周期蛋白D3抗体(BD, G107-565)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(1/Cyclin D3)
  • 其他; 人类; 图 st1
碧迪BD细胞周期蛋白D3抗体(BD, 1)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(1/Cyclin D3)
  • 免疫印迹; 人类; 1:1000; 图 5
碧迪BD细胞周期蛋白D3抗体(BD Biosciences, 610279)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Front Microbiol (2015) ncbi
小鼠 单克隆(1/Cyclin D3)
  • 免疫印迹; 人类; 1:700
碧迪BD细胞周期蛋白D3抗体(BD Biosciences, 610279)被用于被用于免疫印迹在人类样本上浓度为1:700. Am J Pathol (2013) ncbi
文章列表
  1. Zhang Y, He L, Huang L, Yao S, Lin N, Li P, et al. Oncogenic PAX6 elicits CDK4/6 inhibitor resistance by epigenetically inactivating the LATS2-Hippo signaling pathway. Clin Transl Med. 2021;11:e503 pubmed 出版商
  2. Song L, Tian X, Schekman R. Extracellular vesicles from neurons promote neural induction of stem cells through cyclin D1. J Cell Biol. 2021;220: pubmed 出版商
  3. Sakai H, Kawakami H, Teramura T, Onodera Y, Somers E, Furuuchi K, et al. Folate receptor α increases chemotherapy resistance through stabilizing MDM2 in cooperation with PHB2 that is overcome by MORAb-202 in gastric cancer. Clin Transl Med. 2021;11:e454 pubmed 出版商
  4. Chen A, Santana A, Doudican N, Roudiani N, Laursen K, Therrien J, et al. MAGE-A3 is a prognostic biomarker for poor clinical outcome in cutaneous squamous cell carcinoma with perineural invasion via modulation of cell proliferation. PLoS ONE. 2020;15:e0241551 pubmed 出版商
  5. Tan Y, Sementino E, Liu Z, Cai K, Testa J. Wnt signaling mediates oncogenic synergy between Akt and Dlx5 in T-cell lymphomagenesis by enhancing cholesterol synthesis. Sci Rep. 2020;10:15837 pubmed 出版商
  6. Lee S, Hong K, Seong Y, Kwak S. Ectopic Overexpression of Coiled-Coil Domain Containing 110 Delays G2/M Entry in U2-OS Cells. Dev Reprod. 2020;24:101-111 pubmed 出版商
  7. Muller A, Dickmanns A, Resch C, Schakel K, Hailfinger S, Dobbelstein M, et al. The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis. J Clin Invest. 2020;: pubmed 出版商
  8. Zhuo Z, Wan Y, Guan D, Ni S, Wang L, Zhang Z, et al. A Loop-Based and AGO-Incorporated Virtual Screening Model Targeting AGO-Mediated miRNA-mRNA Interactions for Drug Discovery to Rescue Bone Phenotype in Genetically Modified Mice. Adv Sci (Weinh). 2020;7:1903451 pubmed 出版商
  9. Au C, Furness J, Britt K, Oshchepkova S, Ladumor H, Soo K, et al. Three-dimensional growth of breast cancer cells potentiates the anti-tumor effects of unacylated ghrelin and AZP-531. elife. 2020;9: pubmed 出版商
  10. Zhang Y, Liu C, Gao J, Shao S, Cui Y, Yin S, et al. IL-22 promotes tumor growth of breast cancer cells in mice. Aging (Albany NY). 2020;12:13354-13364 pubmed 出版商
  11. Yin S, Song M, Zhao R, Liu X, Kang W, Lee J, et al. Xanthohumol Inhibits the Growth of Keratin 18-Overexpressed Esophageal Squamous Cell Carcinoma in vitro and in vivo. Front Cell Dev Biol. 2020;8:366 pubmed 出版商
  12. Fu C, Mao W, Gao R, Deng Y, Gao L, Wu J, et al. Prostaglandin F2α-PTGFR signaling promotes proliferation of endometrial epithelial cells of cattle through cell cycle regulation. Anim Reprod Sci. 2020;213:106276 pubmed 出版商
  13. Zhang S, Macias Garcia A, Ulirsch J, Velazquez J, Butty V, Levine S, et al. HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis. elife. 2019;8: pubmed 出版商
  14. Cornell L, Wander S, Visal T, Wagle N, Shapiro G. MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. Cell Rep. 2019;26:2667-2680.e7 pubmed 出版商
  15. Lin K, Qiang W, Zhu M, Ding Y, Shi Q, Chen X, et al. Mammalian Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor Cdkn1b. Cell Rep. 2019;26:2434-2450.e6 pubmed 出版商
  16. Song X, Chen H, Zhang C, Yu Y, Chen Z, Liang H, et al. SRC-3 inhibition blocks tumor growth of pancreatic ductal adenocarcinoma. Cancer Lett. 2019;442:310-319 pubmed 出版商
  17. Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, et al. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell. 2018;34:411-426.e19 pubmed 出版商
  18. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  19. Zhou Y, Huang T, Zhang J, Wong C, Zhang B, Dong Y, et al. TEAD1/4 exerts oncogenic role and is negatively regulated by miR-4269 in gastric tumorigenesis. Oncogene. 2017;36:6518-6530 pubmed 出版商
  20. Wang H, Nicolay B, Chick J, Gao X, Geng Y, Ren H, et al. The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature. 2017;546:426-430 pubmed 出版商
  21. Chavali P, Stojic L, Meredith L, Joseph N, Nahorski M, Sanford T, et al. Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science. 2017;357:83-88 pubmed 出版商
  22. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  23. Major J, Dewan A, Salih M, Leddy J, Tuana B. E2F6 Impairs Glycolysis and Activates BDH1 Expression Prior to Dilated Cardiomyopathy. PLoS ONE. 2017;12:e0170066 pubmed 出版商
  24. Hussain R, Macklin W. Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci. 2017;37:397-412 pubmed 出版商
  25. Choiniere J, Wu J, Wang L. Pyruvate Dehydrogenase Kinase 4 Deficiency Results in Expedited Cellular Proliferation through E2F1-Mediated Increase of Cyclins. Mol Pharmacol. 2017;91:189-196 pubmed 出版商
  26. Van Puyenbroeck V, Claeys E, Schols D, Bell T, Vermeire K. A Proteomic Survey Indicates Sortilin as a Secondary Substrate of the ER Translocation Inhibitor Cyclotriazadisulfonamide (CADA). Mol Cell Proteomics. 2017;16:157-167 pubmed 出版商
  27. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  28. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  29. Vogel K, Bell L, Galloway A, Ahlfors H, Turner M. The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic ?-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression. J Immunol. 2016;197:2673-2685 pubmed 出版商
  30. Ramazzotti G, Billi A, Manzoli L, Mazzetti C, Ruggeri A, Erneux C, et al. IPMK and β-catenin mediate PLC-β1-dependent signaling in myogenic differentiation. Oncotarget. 2016;7:84118-84127 pubmed 出版商
  31. Song J, Song L, Herrera A, Venkataraman G, Murata Collins J, Bedell V, et al. Cyclin D1 expression in peripheral T-cell lymphomas. Mod Pathol. 2016;29:1306-1312 pubmed 出版商
  32. O Santos A, Parrini M, Camonis J. RalGPS2 Is Essential for Survival and Cell Cycle Progression of Lung Cancer Cells Independently of Its Established Substrates Ral GTPases. PLoS ONE. 2016;11:e0154840 pubmed 出版商
  33. Galloway A, Saveliev A, Łukasiak S, Hodson D, Bolland D, Balmanno K, et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science. 2016;352:453-9 pubmed 出版商
  34. Chaudhary S, Madhukrishna B, Adhya A, Keshari S, Mishra S. Overexpression of caspase 7 is ER? dependent to affect proliferation and cell growth in breast cancer cells by targeting p21(Cip). Oncogenesis. 2016;5:e219 pubmed 出版商
  35. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  36. Guo Z, Kong Q, Liu C, Zhang S, Zou L, Yan F, et al. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nat Commun. 2016;7:10307 pubmed 出版商
  37. Lagarrigue S, Lopez Mejia I, Denechaud P, Escoté X, Castillo Armengol J, Jimenez V, et al. CDK4 is an essential insulin effector in adipocytes. J Clin Invest. 2016;126:335-48 pubmed 出版商
  38. Suwei D, Liang Z, Zhimin L, Ruilei L, Yingying Z, Zhen L, et al. NLK functions to maintain proliferation and stemness of NSCLC and is a target of metformin. J Hematol Oncol. 2015;8:120 pubmed 出版商
  39. Anderson K, Russell A, Foletta V. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide - But not palmitate-induced toxicity. FEBS Open Bio. 2015;5:668-81 pubmed 出版商
  40. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  41. Marzagalli M, Casati L, Moretti R, Montagnani Marelli M, Limonta P. Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines. PLoS ONE. 2015;10:e0134396 pubmed 出版商
  42. Yang S, Lin H, Chang V, Chen C, Liu Y, Wang J, et al. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget. 2015;6:23857-73 pubmed
  43. Suzuki M, Takeda T, Nakagawa H, Iwata S, Watanabe T, Siddiquey M, et al. The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Front Microbiol. 2015;6:280 pubmed 出版商
  44. Puzio Kuter A, Laddha S, Castillo Martin M, Sun Y, Cordon Cardo C, Chan C, et al. Involvement of tumor suppressors PTEN and p53 in the formation of multiple subtypes of liposarcoma. Cell Death Differ. 2015;22:1785-91 pubmed 出版商
  45. Wang Y, Han A, Chen E, Singh R, Chichester C, Moore R, et al. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int J Oncol. 2015;46:1924-34 pubmed 出版商
  46. Dong X, Lin Q, Aihara A, Li Y, Huang C, Chung W, et al. Aspartate β-Hydroxylase expression promotes a malignant pancreatic cellular phenotype. Oncotarget. 2015;6:1231-48 pubmed
  47. Zakaria M, Khan I, Mani P, Chattopadhyay P, Sarkar D, Sinha S. Combination of hepatocyte specific delivery and transformation dependent expression of shRNA inducing transcriptional gene silencing of c-Myc promoter in hepatocellular carcinoma cells. BMC Cancer. 2014;14:582 pubmed 出版商
  48. Garcia T, Hofmann M. NOTCH signaling in Sertoli cells regulates gonocyte fate. Cell Cycle. 2013;12:2538-45 pubmed 出版商
  49. Shan L, Li X, Liu L, Ding X, Wang Q, Zheng Y, et al. GATA3 cooperates with PARP1 to regulate CCND1 transcription through modulating histone H1 incorporation. Oncogene. 2014;33:3205-16 pubmed 出版商
  50. Kazmi S, Byer S, Eckert J, Turk A, Huijbregts R, Brossier N, et al. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. Am J Pathol. 2013;182:646-67 pubmed 出版商
  51. Tiedemann R, Schmidt J, Keats J, Shi C, Zhu Y, Palmer S, et al. Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NF-kappaB with antimyeloma activity in vitro and in vivo. Blood. 2009;113:4027-37 pubmed 出版商
  52. Piva R, Chiarle R, Manazza A, Taulli R, Simmons W, Ambrogio C, et al. Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood. 2006;107:689-97 pubmed
  53. Gloghini A, Gaidano G, Larocca L, Pierconti F, Cingolani A, Dal Maso L, et al. Expression of cyclin-dependent kinase inhibitor p27(Kip1) in AIDS-related diffuse large-cell lymphomas is associated with Epstein-Barr virus-encoded latent membrane protein 1. Am J Pathol. 2002;161:163-71 pubmed