这是一篇来自已证抗体库的有关人类 细胞周期蛋白D3 (cyclin D3) 的综述,是根据39篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合细胞周期蛋白D3 抗体。
细胞周期蛋白D3 同义词: G1/S-specific cyclin-D3; D3-type cyclin

圣克鲁斯生物技术
小鼠 单克隆(DCS-22)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术细胞周期蛋白D3抗体(SCBT, DCS-22)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(D-7)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术细胞周期蛋白D3抗体(Santa Cruz Biotechnology, sc-6283)被用于被用于免疫印迹在小鼠样本上 (图 1). J Clin Invest (2016) ncbi
小鼠 单克隆(DCS-22)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术细胞周期蛋白D3抗体(Santa Cruz, sc-56307)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(D-7)
  • 免疫印迹; 人类; 图 7c
圣克鲁斯生物技术细胞周期蛋白D3抗体(SantaCruz, sc-6283)被用于被用于免疫印迹在人类样本上 (图 7c). BMC Cancer (2014) ncbi
小鼠 单克隆(1)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞周期蛋白D3抗体(Santa Cruz, sc-135875)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
赛默飞世尔
小鼠 单克隆(DCS-22)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔细胞周期蛋白D3抗体(Thermo Scientific, DCS-22)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Cell Proteomics (2017) ncbi
小鼠 单克隆(DCS-22)
  • 免疫印迹; 人类
赛默飞世尔细胞周期蛋白D3抗体(BioSource, DCS-22)被用于被用于免疫印迹在人类样本上. Blood (2009) ncbi
小鼠 单克隆(DCS-22)
  • 免疫印迹; 人类
赛默飞世尔细胞周期蛋白D3抗体(Neomarkers, DCS-22)被用于被用于免疫印迹在人类样本上. Blood (2006) ncbi
小鼠 单克隆(DCS-22)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔细胞周期蛋白D3抗体(NeoMarkers, DCS-22)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Pathol (2002) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(DCS2.2)
  • 免疫印迹; 人类; 图 s1a
艾博抗(上海)贸易有限公司细胞周期蛋白D3抗体(Abcam, ab28283)被用于被用于免疫印迹在人类样本上 (图 s1a). Nature (2017) ncbi
小鼠 单克隆(DCS2.2)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司细胞周期蛋白D3抗体(Abcam, ab28283)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Hematol Oncol (2015) ncbi
小鼠 单克隆(DCS2.2)
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司细胞周期蛋白D3抗体(Abcam, AB28283)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Cell Cycle (2013) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling Technology, 2936)被用于被用于免疫印迹在小鼠样本上 (图 7d). elife (2019) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(CST, 2936)被用于被用于免疫印迹在人类样本上 (图 1e). Cell Rep (2019) ncbi
小鼠 单克隆(DCS22)
  • 免疫组化-石蜡切片; 人类; 图 5d
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5d). Cancer Cell (2018) ncbi
小鼠 单克隆(DCS22)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 2g). Oncogene (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 3d). Science (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). PLoS ONE (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫组化-冰冻切片; 小鼠; 1:700; 图 11h
  • 免疫印迹; 小鼠; 1:700; 图 11a
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:700 (图 11h) 和 被用于免疫印迹在小鼠样本上浓度为1:700 (图 11a). J Neurosci (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹基因敲除验证; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3c). Mol Pharmacol (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 2). Neuroendocrinology (2018) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Oncogene (2017) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell signaling, 2936)被用于被用于免疫印迹在小鼠样本上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(DCS22)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell signaling, DCS22)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4). Mod Pathol (2016) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 1:2000; 图 6
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling Tech, 2936)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 8). Oncogenesis (2016) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 1:1000; 图 s2d
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, DCS22)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2d). Nat Commun (2016) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). FEBS Open Bio (2015) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 6b). Neuroendocrinology (2016) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling Technology, DCS22)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2015) ncbi
小鼠 单克隆(DCS22)
  • 免疫组化; 小鼠; 图 3
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling, 2936)被用于被用于免疫组化在小鼠样本上 (图 3). Cell Death Differ (2015) ncbi
小鼠 单克隆(DCS22)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司细胞周期蛋白D3抗体(Cell Signaling Technology, 2936)被用于被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
碧迪BD
小鼠 单克隆(1/Cyclin D3)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD细胞周期蛋白D3抗体(BD, 1/Cyclin D3)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2016) ncbi
小鼠 单克隆(1/Cyclin D3)
  • 免疫印迹; 人类; 图 4h
碧迪BD细胞周期蛋白D3抗体(BD, 1/Cyclin D3)被用于被用于免疫印迹在人类样本上 (图 4h). Science (2016) ncbi
小鼠 单克隆(G107-565)
  • 其他; 人类; 图 st1
碧迪BD细胞周期蛋白D3抗体(BD, G107-565)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(1/Cyclin D3)
  • 其他; 人类; 图 st1
碧迪BD细胞周期蛋白D3抗体(BD, 1)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(1/Cyclin D3)
  • 免疫印迹; 人类; 1:1000; 图 5
碧迪BD细胞周期蛋白D3抗体(BD Biosciences, 610279)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Front Microbiol (2015) ncbi
小鼠 单克隆(1/Cyclin D3)
  • 免疫印迹; 人类; 1:700
碧迪BD细胞周期蛋白D3抗体(BD Biosciences, 610279)被用于被用于免疫印迹在人类样本上浓度为1:700. Am J Pathol (2013) ncbi
文章列表
  1. Zhang S, Macias Garcia A, Ulirsch J, Velazquez J, Butty V, Levine S, et al. HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis. elife. 2019;8: pubmed 出版商
  2. Cornell L, Wander S, Visal T, Wagle N, Shapiro G. MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. Cell Rep. 2019;26:2667-2680.e7 pubmed 出版商
  3. Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, et al. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell. 2018;34:411-426.e19 pubmed 出版商
  4. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  5. Zhou Y, Huang T, Zhang J, Wong C, Zhang B, Dong Y, et al. TEAD1/4 exerts oncogenic role and is negatively regulated by miR-4269 in gastric tumorigenesis. Oncogene. 2017;36:6518-6530 pubmed 出版商
  6. Wang H, Nicolay B, Chick J, Gao X, Geng Y, Ren H, et al. The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature. 2017;546:426-430 pubmed 出版商
  7. Chavali P, Stojic L, Meredith L, Joseph N, Nahorski M, Sanford T, et al. Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science. 2017;357:83-88 pubmed 出版商
  8. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  9. Major J, Dewan A, Salih M, Leddy J, Tuana B. E2F6 Impairs Glycolysis and Activates BDH1 Expression Prior to Dilated Cardiomyopathy. PLoS ONE. 2017;12:e0170066 pubmed 出版商
  10. Hussain R, Macklin W. Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci. 2017;37:397-412 pubmed 出版商
  11. Choiniere J, Wu J, Wang L. Pyruvate Dehydrogenase Kinase 4 Deficiency Results in Expedited Cellular Proliferation through E2F1-Mediated Increase of Cyclins. Mol Pharmacol. 2017;91:189-196 pubmed 出版商
  12. Van Puyenbroeck V, Claeys E, Schols D, Bell T, Vermeire K. A Proteomic Survey Indicates Sortilin as a Secondary Substrate of the ER Translocation Inhibitor Cyclotriazadisulfonamide (CADA). Mol Cell Proteomics. 2017;16:157-167 pubmed 出版商
  13. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  14. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  15. Vogel K, Bell L, Galloway A, Ahlfors H, Turner M. The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic ?-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression. J Immunol. 2016;197:2673-2685 pubmed 出版商
  16. Ramazzotti G, Billi A, Manzoli L, Mazzetti C, Ruggeri A, Erneux C, et al. IPMK and β-catenin mediate PLC-β1-dependent signaling in myogenic differentiation. Oncotarget. 2016;7:84118-84127 pubmed 出版商
  17. Song J, Song L, Herrera A, Venkataraman G, Murata Collins J, Bedell V, et al. Cyclin D1 expression in peripheral T-cell lymphomas. Mod Pathol. 2016;29:1306-1312 pubmed 出版商
  18. O Santos A, Parrini M, Camonis J. RalGPS2 Is Essential for Survival and Cell Cycle Progression of Lung Cancer Cells Independently of Its Established Substrates Ral GTPases. PLoS ONE. 2016;11:e0154840 pubmed 出版商
  19. Galloway A, Saveliev A, Łukasiak S, Hodson D, Bolland D, Balmanno K, et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science. 2016;352:453-9 pubmed 出版商
  20. Chaudhary S, Madhukrishna B, Adhya A, Keshari S, Mishra S. Overexpression of caspase 7 is ER? dependent to affect proliferation and cell growth in breast cancer cells by targeting p21(Cip). Oncogenesis. 2016;5:e219 pubmed 出版商
  21. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  22. Guo Z, Kong Q, Liu C, Zhang S, Zou L, Yan F, et al. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nat Commun. 2016;7:10307 pubmed 出版商
  23. Lagarrigue S, Lopez Mejia I, Denechaud P, Escoté X, Castillo Armengol J, Jimenez V, et al. CDK4 is an essential insulin effector in adipocytes. J Clin Invest. 2016;126:335-48 pubmed 出版商
  24. Suwei D, Liang Z, Zhimin L, Ruilei L, Yingying Z, Zhen L, et al. NLK functions to maintain proliferation and stemness of NSCLC and is a target of metformin. J Hematol Oncol. 2015;8:120 pubmed 出版商
  25. Anderson K, Russell A, Foletta V. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide - But not palmitate-induced toxicity. FEBS Open Bio. 2015;5:668-81 pubmed 出版商
  26. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  27. Marzagalli M, Casati L, Moretti R, Montagnani Marelli M, Limonta P. Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines. PLoS ONE. 2015;10:e0134396 pubmed 出版商
  28. Yang S, Lin H, Chang V, Chen C, Liu Y, Wang J, et al. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget. 2015;6:23857-73 pubmed
  29. Suzuki M, Takeda T, Nakagawa H, Iwata S, Watanabe T, Siddiquey M, et al. The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Front Microbiol. 2015;6:280 pubmed 出版商
  30. Puzio Kuter A, Laddha S, Castillo Martin M, Sun Y, Cordon Cardo C, Chan C, et al. Involvement of tumor suppressors PTEN and p53 in the formation of multiple subtypes of liposarcoma. Cell Death Differ. 2015;22:1785-91 pubmed 出版商
  31. Wang Y, Han A, Chen E, Singh R, Chichester C, Moore R, et al. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int J Oncol. 2015;46:1924-34 pubmed 出版商
  32. Dong X, Lin Q, Aihara A, Li Y, Huang C, Chung W, et al. Aspartate β-Hydroxylase expression promotes a malignant pancreatic cellular phenotype. Oncotarget. 2015;6:1231-48 pubmed
  33. Zakaria M, Khan I, Mani P, Chattopadhyay P, Sarkar D, Sinha S. Combination of hepatocyte specific delivery and transformation dependent expression of shRNA inducing transcriptional gene silencing of c-Myc promoter in hepatocellular carcinoma cells. BMC Cancer. 2014;14:582 pubmed 出版商
  34. Garcia T, Hofmann M. NOTCH signaling in Sertoli cells regulates gonocyte fate. Cell Cycle. 2013;12:2538-45 pubmed 出版商
  35. Shan L, Li X, Liu L, Ding X, Wang Q, Zheng Y, et al. GATA3 cooperates with PARP1 to regulate CCND1 transcription through modulating histone H1 incorporation. Oncogene. 2014;33:3205-16 pubmed 出版商
  36. Kazmi S, Byer S, Eckert J, Turk A, Huijbregts R, Brossier N, et al. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. Am J Pathol. 2013;182:646-67 pubmed 出版商
  37. Tiedemann R, Schmidt J, Keats J, Shi C, Zhu Y, Palmer S, et al. Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NF-kappaB with antimyeloma activity in vitro and in vivo. Blood. 2009;113:4027-37 pubmed 出版商
  38. Piva R, Chiarle R, Manazza A, Taulli R, Simmons W, Ambrogio C, et al. Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood. 2006;107:689-97 pubmed
  39. Gloghini A, Gaidano G, Larocca L, Pierconti F, Cingolani A, Dal Maso L, et al. Expression of cyclin-dependent kinase inhibitor p27(Kip1) in AIDS-related diffuse large-cell lymphomas is associated with Epstein-Barr virus-encoded latent membrane protein 1. Am J Pathol. 2002;161:163-71 pubmed