这是一篇来自已证抗体库的有关人类 周期蛋白E (cyclin E) 的综述,是根据138篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合周期蛋白E 抗体。
周期蛋白E 同义词: CCNE; pCCNE1

圣克鲁斯生物技术
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500; 图 2c
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Biotechnology, sc-377100)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2c). Nat Commun (2022) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:200; 图 1d
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1d). Int J Mol Sci (2022) ncbi
小鼠 单克隆(HE12)
  • 免疫细胞化学; 人类; 图 2b
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Biotechnology, sc-247)被用于被用于免疫细胞化学在人类样本上 (图 2b). iScience (2022) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). EMBO J (2022) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc247)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Rep (2021) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 s1
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Biotechnology, sc-247)被用于被用于免疫印迹在人类样本上 (图 s1). BMC Cancer (2021) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 图 4d
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在小鼠样本上 (图 4d). Biol Open (2021) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 6g
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在人类样本上 (图 6g). elife (2020) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术周期蛋白E抗体(Santa, sc-377100)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Biosci Rep (2019) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 5l
圣克鲁斯生物技术周期蛋白E抗体(Santa, sc-377100)被用于被用于免疫印迹在小鼠样本上 (图 5l). Aging Cell (2019) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 1e
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在人类样本上 (图 1e). Cell Rep (2019) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术周期蛋白E抗体(Santa, HE12)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2019) ncbi
小鼠 单克隆(HE12)
  • 其他; 人类; 图 4c
圣克鲁斯生物技术周期蛋白E抗体(SantaCruz, sc-247)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(HE111)
  • 免疫沉淀; 人类; 图 4a
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-248AC)被用于被用于免疫沉淀在人类样本上 (图 4a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹基因敲除验证; 小鼠; 图 s2b
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术周期蛋白E抗体(SantaCruz, SC-247)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s2b) 和 被用于免疫印迹在人类样本上 (图 1a). Nature (2018) ncbi
小鼠 单克隆(HE12)
  • reverse phase protein lysate microarray; 人类; 图 st6
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, SC-247)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 7c
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Biotechnology, HE12)被用于被用于免疫印迹在人类样本上 (图 7c). J Biol Chem (2017) ncbi
小鼠 单克隆(HE12)
  • reverse phase protein lysate microarray; 人类; 图 3a
圣克鲁斯生物技术周期蛋白E抗体(SantaCruz, SC-247)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在人类样本上 (图 3d). Sci Signal (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-48420)被用于被用于免疫印迹在小鼠样本上 (图 6a). Nat Commun (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-377100)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Mol Med Rep (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, HE12)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS Genet (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫细胞化学; 人类; 1:50; 图 2
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). Lipids Health Dis (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样本上 (图 3). Viruses (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样本上 (图 3). Viruses (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, HE12)被用于被用于免疫印迹在人类样本上 (图 6a). PLoS ONE (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在人类样本上 (图 1). elife (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:200; 图 2a
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc247)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫沉淀; 人类; 图 5
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术周期蛋白E抗体(santa Cruz, sc-247)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(HE111)
  • 免疫印迹; 人类; 1:2000; 图 4f
圣克鲁斯生物技术周期蛋白E抗体(Santa, sc-248)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4f). J Pathol (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:2000; 图 7a,d
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Biotechnology, sc-247)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a,d). PLoS ONE (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:500; 图 7d
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7d). Angiogenesis (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 6e
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Biotechnology, sc-247)被用于被用于免疫印迹在人类样本上 (图 6e). BMC Cancer (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫细胞化学; 人类; 1:150; 图 4b
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Biotechnology, sc-247)被用于被用于免疫细胞化学在人类样本上浓度为1:150 (图 4b). Cell Cycle (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在人类样本上 (图 1). J Biomed Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 9a
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-377100)被用于被用于免疫印迹在小鼠样本上 (图 9a). J Cell Biol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Biotechnology, sc-377100)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Biotechnology, sc-247)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Biotechnology, HE12)被用于被用于免疫印迹在人类样本上 (图 5). Biol Open (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, SC-247)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Int J Oncol (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, HE12)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 图 1,2,3,4,5,6
圣克鲁斯生物技术周期蛋白E抗体(santa cruz, sc-247)被用于被用于免疫印迹在小鼠样本上 (图 1,2,3,4,5,6). Breast Cancer Res (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:200; 图 2d
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2d). Mol Oncol (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Biotechnology, sc-247)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术周期蛋白E抗体(Santa, Sc-247)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Technology, sc-247)被用于被用于免疫印迹在人类样本上. Mol Cancer (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术周期蛋白E抗体(SCBT, sc-247)被用于被用于免疫印迹在小鼠样本上. Leukemia (2014) ncbi
小鼠 单克隆(HE12)
  • 流式细胞仪; 人类
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, HE12)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Biotechnology, sc-247)被用于被用于免疫印迹在小鼠样本上. Mol Pharmacol (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在人类样本上. Cancer Lett (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz Biotechnology, HE-12)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术周期蛋白E抗体(Santa Cruz, sc-247)被用于被用于免疫印迹在人类样本上 (图 3). Clin Cancer Res (2010) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(CCNE1/2460)
  • 免疫组化-石蜡切片; 人类; 图 1a, 1b
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, CCNE1/2460)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a, 1b). Curr Oncol (2022) ncbi
domestic rabbit 单克隆(EP435E)
  • 免疫印迹; 人类; 1:250; 图 3e
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab33911)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 3e). Cancer Res Treat (2021) ncbi
domestic rabbit 单克隆(EP435E)
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 9b
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, Ab33911)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (图 9b). Mol Ther Nucleic Acids (2020) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:500; 图 5a
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab3927)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(EP435E)
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab33911)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Biol Res (2019) ncbi
domestic rabbit 单克隆(EP435E)
  • 免疫印迹; 人类; 图 3d
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab33911)被用于被用于免疫印迹在人类样本上 (图 3d). Biosci Rep (2019) ncbi
小鼠 单克隆(HE12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a, 1b
  • 免疫印迹; 人类; 1:1000; 图 3a, 3c
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab3927)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a, 1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a, 3c). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EP435E)
  • 免疫印迹; 大鼠; 图 2d
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab33911)被用于被用于免疫印迹在大鼠样本上 (图 2d). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR194)
  • 免疫印迹; 人类; 1:1000; 图 6b
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab133266)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Cancer Sci (2019) ncbi
domestic rabbit 单克隆(EP435E)
  • 免疫印迹; pigs ; 1:2000; 图 1d
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab33911)被用于被用于免疫印迹在pigs 样本上浓度为1:2000 (图 1d). Cell Physiol Biochem (2018) ncbi
domestic rabbit 单克隆(EP435E)
  • 免疫印迹; 人类; 图 s1c
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab33911)被用于被用于免疫印迹在人类样本上 (图 s1c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 s2c
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab71535)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s2c). Science (2016) ncbi
domestic rabbit 单克隆(EP435E)
  • 免疫印迹; 人类; 1:2000; 图 4a
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab33911)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Oncotarget (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫组化-石蜡切片; 人类; 图 5a
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, Ab3927)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab3927)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Hematol Oncol (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab3927)被用于被用于免疫印迹在人类样本上 (图 2). Genetics (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 鸡
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, H-12)被用于被用于免疫印迹在鸡样本上 和 被用于免疫印迹在人类样本上. PLoS Pathog (2014) ncbi
domestic rabbit 单克隆(SP146)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司周期蛋白E抗体(Abcam, ab135380)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Lett (2014) ncbi
赛默飞世尔
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 4b
赛默飞世尔周期蛋白E抗体(ThermoFisher Scientific, MA5-14336)被用于被用于免疫印迹在人类样本上 (图 4b). J Biol Chem (2016) ncbi
小鼠 单克隆(HE172)
  • 免疫印迹; 人类; 图 4
赛默飞世尔周期蛋白E抗体(Invitrogen, 32-1500)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
赛默飞世尔周期蛋白E抗体(Thermo Scientific, HE12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(HE12)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔周期蛋白E抗体(Invitrogen, 32-1600)被用于被用于流式细胞仪在人类样本上 (图 3). Cancer Res (2011) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 9
赛默飞世尔周期蛋白E抗体(Invitrogen, 32-1600)被用于被用于免疫印迹在人类样本上 (图 9). PLoS ONE (2011) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 0.5 ug/ml; 图 s2
赛默飞世尔周期蛋白E抗体(Zymed, HE-12)被用于被用于免疫印迹在人类样本上浓度为0.5 ug/ml (图 s2). PLoS ONE (2011) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:200; 图 6e
赛默飞世尔周期蛋白E抗体(Thermo Scientific, HE12)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6e). BMC Biol (2010) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1 ug/ml; 图 2
赛默飞世尔周期蛋白E抗体(Biosource, HE12)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 2). Int J Cancer (2009) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛默飞世尔周期蛋白E抗体(Biosource, HE 12)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2007) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 2.6 ug/ml; 图 4
赛默飞世尔周期蛋白E抗体(Zymed, HE12)被用于被用于免疫印迹在人类样本上浓度为2.6 ug/ml (图 4). FASEB J (2007) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:200
赛默飞世尔周期蛋白E抗体(Neomarkers, MS-870)被用于被用于免疫印迹在人类样本上浓度为1:200. BMC Cell Biol (2002) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D7T3U)
  • 免疫印迹; 人类; 1:2000; 图 3e
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 20808)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3e). iScience (2022) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 5b). Pharmaceutics (2022) ncbi
domestic rabbit 单克隆(D7T3U)
  • 其他; 小鼠; 图 6j, 7j
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 20808)被用于被用于其他在小鼠样本上 (图 6j, 7j). Autophagy (2022) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signal, 4129)被用于被用于免疫印迹在人类样本上 (图 3e). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(D7T3U)
  • 免疫印迹; 大鼠; 图 5e
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technology, 20808S)被用于被用于免疫印迹在大鼠样本上 (图 5e). J Cell Biol (2021) ncbi
domestic rabbit 单克隆(D7T3U)
  • 免疫印迹; 人类; 1:1000; 图 s3f
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technology, 20808)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3f). Oncogene (2021) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technology, 4129)被用于被用于免疫印迹在人类样本上 (图 5e). Oncogene (2021) ncbi
domestic rabbit 单克隆(D7T3U)
  • 免疫印迹; 小鼠; 图 s2c
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 20808)被用于被用于免疫印迹在小鼠样本上 (图 s2c). Blood (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司周期蛋白E抗体(cell signaling technology, 4136)被用于被用于免疫印迹在人类样本上 (图 4c). Front Oncol (2020) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司周期蛋白E抗体(CST, 4129)被用于被用于免疫印迹在人类样本上 (图 5a). Breast Cancer Res (2021) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, HE12)被用于被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5d
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technology, 4136)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5d). Oncol Rep (2020) ncbi
domestic rabbit 单克隆(D7T3U)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 20808S)被用于被用于免疫印迹在小鼠样本上 (图 4c). Drug Metab Dispos (2020) ncbi
domestic rabbit 单克隆(D7T3U)
  • 免疫印迹; 大鼠; 图 7a
  • 免疫印迹; 人类; 图 10a
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 20808)被用于被用于免疫印迹在大鼠样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 10a). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 单克隆(D7T3U)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 20808)被用于被用于免疫印迹在人类样本上 (图 1a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(D7T3U)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 20808)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D7T3U)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technology, 20808)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Res (2019) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 1:1000; 图 s12f
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technology, 4129)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s12f). Science (2019) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:1000; 图 s1f
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1f). EMBO J (2018) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在小鼠样本上 (图 2h). Cancer Res (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 5). Exp Neurol (2018) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technology, 4129s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Am J Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4136)被用于被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 S1A
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, HE12)被用于被用于免疫印迹在人类样本上 (图 S1A). Mol Cell (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 s3b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D7T3U)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 20808)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncol Lett (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 1d). Autophagy (2017) ncbi
domestic rabbit 单克隆(D7T3U)
  • 免疫印迹基因敲除验证; 小鼠; 图 3b
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 20808)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 5b). Mol Pharmacol (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Tech, 4129)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Oncogene (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signal, 4129)被用于被用于免疫印迹在小鼠样本上 (图 s1). Cell Rep (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell signaling, 4129S)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technology, 4136)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 1b). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 1:1000; 图 s2d
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, HE12)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2d). Nat Commun (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫组化-石蜡切片; 人类; 图 1a
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, HE12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). BMC Cancer (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 5). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technology, 4129)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS ONE (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, HE12)被用于被用于免疫印迹在人类样本上 (图 4c). J Cell Sci (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Tech, 4129)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:750; 图 2
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 5). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technology, 4129S)被用于被用于免疫印迹在人类样本上浓度为1:500. Br J Pharmacol (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technology, 4129)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Sci (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, HE12)被用于被用于免疫印迹在人类样本上. Leukemia (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technologies, 4129)被用于被用于免疫印迹在人类样本上 (图 6e). Mol Cell (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上. J Natl Cancer Inst (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上. Pigment Cell Melanoma Res (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 6e). Mol Endocrinol (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technology, 4129)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling Technology, 4129)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:3000
赛信通(上海)生物试剂有限公司周期蛋白E抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上浓度为1:3000. Exp Hematol (2012) ncbi
碧迪BD
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
碧迪BD周期蛋白E抗体(BD, 551159)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
碧迪BD周期蛋白E抗体(BD Biosciences, 551159)被用于被用于免疫印迹在人类样本上. Biol Pharm Bull (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
碧迪BD周期蛋白E抗体(BD Pharmingen, 551159)被用于被用于免疫印迹在人类样本上. J Cell Sci (2013) ncbi
文章列表
  1. Bahn M, Yu D, Lee M, Jo S, Lee J, Kim H, et al. Central role of Prominin-1 in lipid rafts during liver regeneration. Nat Commun. 2022;13:6219 pubmed 出版商
  2. Aboouf M, Armbruster J, Thiersch M, Guscetti F, Kristiansen G, Schraml P, et al. Pro-Apoptotic and Anti-Invasive Properties Underscore the Tumor-Suppressing Impact of Myoglobin on a Subset of Human Breast Cancer Cells. Int J Mol Sci. 2022;23: pubmed 出版商
  3. Pan R, Yu Y, Zhu H, Zhang W, Qin Y, Ye L, et al. RSPO2 promotes progression of ovarian cancer through dual receptor-mediated FAK/Src signaling activation. iScience. 2022;25:105184 pubmed 出版商
  4. Cai S, Hu T, Venkatesan M, Allam M, Schneider F, Ramalingam S, et al. Multiplexed protein profiling reveals spatial subcellular signaling networks. iScience. 2022;25:104980 pubmed 出版商
  5. Paulmann C, Spallek R, Karpiuk O, Heider M, Sch xe4 ffer I, Zecha J, et al. The OTUD6B-LIN28B-MYC axis determines the proliferative state in multiple myeloma. EMBO J. 2022;41:e110871 pubmed 出版商
  6. Deshmukh D, Xu J, Yang X, Shimelis H, Fang S, Qiu Y. Regulation of p27 (Kip1) by Ubiquitin E3 Ligase RNF6. Pharmaceutics. 2022;14: pubmed 出版商
  7. Tamura S, Hayashi T, Ichimura T, Yaegashi N, Abiko K, Konishi I. Characteristic of Uterine Rhabdomyosarcoma by Algorithm of Potential Biomarkers for Uterine Mesenchymal Tumor. Curr Oncol. 2022;29:2350-2363 pubmed 出版商
  8. Vessey K, Jobling A, Tran M, Wang A, Greferath U, Fletcher E. Treatments targeting autophagy ameliorate the age-related macular degeneration phenotype in mice lacking APOE (apolipoprotein E). Autophagy. 2022;18:2368-2384 pubmed 出版商
  9. Chiang C, Hong Y. In situ delivery of biobutyrate by probiotic Escherichia coli for cancer therapy. Sci Rep. 2021;11:18172 pubmed 出版商
  10. Zhang Y, He L, Huang L, Yao S, Lin N, Li P, et al. Oncogenic PAX6 elicits CDK4/6 inhibitor resistance by epigenetically inactivating the LATS2-Hippo signaling pathway. Clin Transl Med. 2021;11:e503 pubmed 出版商
  11. Moon S, Lee H, Kim S, Hong J, Chun S, Lee H, et al. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer. 2021;21:931 pubmed 出版商
  12. Song L, Tian X, Schekman R. Extracellular vesicles from neurons promote neural induction of stem cells through cyclin D1. J Cell Biol. 2021;220: pubmed 出版商
  13. Wu Y, Guo Q, Ju X, Hu Z, Xia L, Deng Y, et al. HNRNPH1-stabilized LINC00662 promotes ovarian cancer progression by activating the GRP78/p38 pathway. Oncogene. 2021;40:4770-4782 pubmed 出版商
  14. Fischietti M, Eckerdt F, Blyth G, Arslan A, Mati W, Oku C, et al. Schlafen 5 as a novel therapeutic target in pancreatic ductal adenocarcinoma. Oncogene. 2021;40:3273-3286 pubmed 出版商
  15. Sewastianik T, Straubhaar J, Zhao J, Samur M, Adler K, Tanton H, et al. miR-15a/16-1 deletion in activated B cells promotes plasma cell and mature B-cell neoplasms. Blood. 2021;137:1905-1919 pubmed 出版商
  16. Su S, Li Q, Zhang M, Zhang P, Shen H, Zhang C. An E2F1/DDX11/EZH2 Positive Feedback Loop Promotes Cell Proliferation in Hepatocellular Carcinoma. Front Oncol. 2020;10:593293 pubmed 出版商
  17. Kaminska K, Akrap N, Staaf J, Alves C, Ehinger A, Ebbesson A, et al. Distinct mechanisms of resistance to fulvestrant treatment dictate level of ER independence and selective response to CDK inhibitors in metastatic breast cancer. Breast Cancer Res. 2021;23:26 pubmed 出版商
  18. Qiao F, Law H, Krieger K, Clement E, Xiao Y, Buckley S, et al. Ctdp1 deficiency leads to early embryonic lethality in mice and defects in cell cycle progression in MEFs. Biol Open. 2021;10: pubmed 出版商
  19. Chen A, Santana A, Doudican N, Roudiani N, Laursen K, Therrien J, et al. MAGE-A3 is a prognostic biomarker for poor clinical outcome in cutaneous squamous cell carcinoma with perineural invasion via modulation of cell proliferation. PLoS ONE. 2020;15:e0241551 pubmed 出版商
  20. Zhang Y, Zhang L, Lu S, Xiang Y, Zeng C, He T, et al. Long Non-coding RNA CASC15 Promotes Intrahepatic Cholangiocarcinoma Possibly through Inducing PRDX2/PI3K/AKT Axis. Cancer Res Treat. 2021;53:184-198 pubmed 出版商
  21. Brunner A, Suryo Rahmanto A, Johansson H, Franco M, Viiliäinen J, Gazi M, et al. PTEN and DNA-PK determine sensitivity and recovery in response to WEE1 inhibition in human breast cancer. elife. 2020;9: pubmed 出版商
  22. Wang W, Wang H, Xiang L, Ni T, Jin F, Deng J, et al. DJ‑1 is a new prognostic marker and predicts chemotherapy efficacy in colorectal cancer. Oncol Rep. 2020;44:77-90 pubmed 出版商
  23. Jiao T, Yao X, Zhao Y, Zhou Y, Gao Y, Fan S, et al. Dexamethasone-Induced Liver Enlargement Is Related to PXR/YAP Activation and Lipid Accumulation but Not Hepatocyte Proliferation. Drug Metab Dispos. 2020;48:830-839 pubmed 出版商
  24. Zhang Y, Mao X, Chen W, Guo X, Yu L, Jiang F, et al. A Discovery of Clinically Approved Formula FBRP for Repositioning to Treat HCC by Inhibiting PI3K/AKT/NF-κB Activation. Mol Ther Nucleic Acids. 2020;19:890-904 pubmed 出版商
  25. Mlyczynska E, Kurowska P, Drwal E, Opydo Chanek M, Tworzydło W, Kotula Balak M, et al. Apelin and apelin receptor in human placenta: Expression, signalling pathway and regulation of trophoblast JEG‑3 and BeWo cells proliferation and cell cycle. Int J Mol Med. 2020;45:691-702 pubmed 出版商
  26. Patel H, Tao N, Lee K, Huerta M, Arlt H, Mullarkey T, et al. Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Res. 2019;21:146 pubmed 出版商
  27. Liu G, Zhang Q, Xia L, Shi M, Cai J, Zhang H, et al. RNA-binding protein CELF6 is cell cycle regulated and controls cancer cell proliferation by stabilizing p21. Cell Death Dis. 2019;10:688 pubmed 出版商
  28. Ji M, Wang Z, Chen J, Gu L, Chen M, Ding Y, et al. Up-regulated ENO1 promotes the bladder cancer cell growth and proliferation via regulating β-catenin. Biosci Rep. 2019;39: pubmed 出版商
  29. Wang X, Peng P, Pan Z, Fang Z, Lu W, Liu X. Psoralen inhibits malignant proliferation and induces apoptosis through triggering endoplasmic reticulum stress in human SMMC7721 hepatoma cells. Biol Res. 2019;52:34 pubmed 出版商
  30. Fang D, Wang H, Li M, Wei W. α-bisabolol enhances radiotherapy-induced apoptosis in endometrial cancer cells by reducing the effect of XIAP on inhibiting caspase-3. Biosci Rep. 2019;39: pubmed 出版商
  31. Zhang C, Zhu Q, Gu J, Chen S, Li Q, Ying L. Down-regulation of CCNE1 expression suppresses cell proliferation and sensitizes gastric carcinoma cells to Cisplatin. Biosci Rep. 2019;39: pubmed 出版商
  32. Chen L, Yang R, Qiao W, Zhang W, Chen J, Mao L, et al. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell. 2019;18:e12951 pubmed 出版商
  33. Wang Z, Feng X, Molinolo A, Martin D, Vitale Cross L, Nohata N, et al. 4E-BP1 Is a Tumor Suppressor Protein Reactivated by mTOR Inhibition in Head and Neck Cancer. Cancer Res. 2019;: pubmed 出版商
  34. Chakraborty A, Laukka T, Myllykoski M, Ringel A, Booker M, Tolstorukov M, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217-1222 pubmed 出版商
  35. Cornell L, Wander S, Visal T, Wagle N, Shapiro G. MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. Cell Rep. 2019;26:2667-2680.e7 pubmed 出版商
  36. SCHADE A, Oser M, Nicholson H, DeCaprio J. Cyclin D-CDK4 relieves cooperative repression of proliferation and cell cycle gene expression by DREAM and RB. Oncogene. 2019;38:4962-4976 pubmed 出版商
  37. Fang G, Qi J, Huang L, Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. Biosci Rep. 2019;: pubmed 出版商
  38. Liang C, Ma Y, Yong L, Yang C, Wang P, Liu X, et al. Y-box binding protein-1 promotes tumorigenesis and progression via the epidermal growth factor receptor/AKT pathway in spinal chordoma. Cancer Sci. 2019;110:166-179 pubmed 出版商
  39. Allan L, Skowyra A, Rogers K, Zeller D, Clarke P. Atypical APC/C-dependent degradation of Mcl-1 provides an apoptotic timer during mitotic arrest. EMBO J. 2018;37: pubmed 出版商
  40. Hou L, Xu J, Jiao Y, Li H, Pan Z, Duan J, et al. MiR-27b Promotes Muscle Development by Inhibiting MDFI Expression. Cell Physiol Biochem. 2018;46:2271-2283 pubmed 出版商
  41. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  42. Geng Y, Michowski W, Chick J, Wang Y, Jecrois M, Sweeney K, et al. Kinase-independent function of E-type cyclins in liver cancer. Proc Natl Acad Sci U S A. 2018;115:1015-1020 pubmed 出版商
  43. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  44. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  45. Oblinger J, Burns S, Huang J, Pan L, Ren Y, Shen R, et al. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol. 2018;299:299-307 pubmed 出版商
  46. Ferraiuolo R, Tubman J, Sinha I, Hamm C, Porter L. The cyclin-like protein, SPY1, regulates the ER? and ERK1/2 pathways promoting tamoxifen resistance. Oncotarget. 2017;8:23337-23352 pubmed 出版商
  47. Jiang J, Chen X, Liu H, Shao J, Xie R, Gu P, et al. Polypyrimidine Tract-Binding Protein 1 promotes proliferation, migration and invasion in clear-cell renal cell carcinoma by regulating alternative splicing of PKM. Am J Cancer Res. 2017;7:245-259 pubmed
  48. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  49. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  50. Wyatt H, Laister R, Martin S, Arrowsmith C, West S. The SMX DNA Repair Tri-nuclease. Mol Cell. 2017;65:848-860.e11 pubmed 出版商
  51. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  52. Fan Y, Mok C, Chan M, Zhang Y, Nal B, Kien F, et al. Cell Cycle-independent Role of Cyclin D3 in Host Restriction of Influenza Virus Infection. J Biol Chem. 2017;292:5070-5088 pubmed 出版商
  53. Cai L, Wang H, Yang Q. CRKL overexpression promotes cell proliferation and inhibits apoptosis in endometrial carcinoma. Oncol Lett. 2017;13:51-56 pubmed 出版商
  54. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  55. Ruf S, Heberle A, Langelaar Makkinje M, Gelino S, Wilkinson D, Gerbeth C, et al. PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy. Autophagy. 2017;13:486-505 pubmed 出版商
  56. Shimizu K, Fukushima H, Ogura K, Lien E, Nihira N, Zhang J, et al. The SCF?-TRCP E3 ubiquitin ligase complex targets Lipin1 for ubiquitination and degradation to promote hepatic lipogenesis. Sci Signal. 2017;10: pubmed 出版商
  57. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  58. Choiniere J, Wu J, Wang L. Pyruvate Dehydrogenase Kinase 4 Deficiency Results in Expedited Cellular Proliferation through E2F1-Mediated Increase of Cyclins. Mol Pharmacol. 2017;91:189-196 pubmed 出版商
  59. Jablonska B, Gierdalski M, Chew L, Hawley T, Catron M, Lichauco A, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun. 2016;7:13866 pubmed 出版商
  60. Yu G, Dou Z, Jia Z. 5?bromo?3?(3?hydroxyprop?1?ynyl)?2H?pyran?2?one induces apoptosis in T24 human bladder cancer cells through mitochondria-dependent signaling pathways. Mol Med Rep. 2017;15:153-159 pubmed 出版商
  61. Jo U, Cai W, Wang J, Kwon Y, D Andrea A, Kim H. PCNA-Dependent Cleavage and Degradation of SDE2 Regulates Response to Replication Stress. PLoS Genet. 2016;12:e1006465 pubmed 出版商
  62. Kanakkanthara A, Jeganathan K, Limzerwala J, Baker D, Hamada M, Nam H, et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353:1549-1552 pubmed
  63. Zhang Y, Zhang Y, Zhong C, Xiao F. Cr(VI) induces premature senescence through ROS-mediated p53 pathway in L-02 hepatocytes. Sci Rep. 2016;6:34578 pubmed 出版商
  64. Pozner A, Terooatea T, Buck Koehntop B. Cell-specific Kaiso (ZBTB33) Regulation of Cell Cycle through Cyclin D1 and Cyclin E1. J Biol Chem. 2016;291:24538-24550 pubmed
  65. Cizkova K, Steigerova J, Gursky J, Ehrmann J. Stimulating effect of normal-dosing of fibrates on cell proliferation: word of warning. Lipids Health Dis. 2016;15:164 pubmed
  66. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  67. Steingruber M, Kraut A, Socher E, Sticht H, Reichel A, Stamminger T, et al. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins. Viruses. 2016;8: pubmed 出版商
  68. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  69. Shen H, Zhao L, Feng X, Xu C, Li C, Niu Y. Lin28A activates androgen receptor via regulation of c-myc and promotes malignancy of ER-/Her2+ breast cancer. Oncotarget. 2016;7:60407-60418 pubmed 出版商
  70. Hossain M, Stillman B. Opposing roles for DNA replication initiator proteins ORC1 and CDC6 in control of Cyclin E gene transcription. elife. 2016;5: pubmed 出版商
  71. Mansouri S, Singh S, Alamsahebpour A, Burrell K, Li M, Karabork M, et al. DICER governs characteristics of glioma stem cells and the resulting tumors in xenograft mouse models of glioblastoma. Oncotarget. 2016;7:56431-56446 pubmed 出版商
  72. Zhang Y, Lai J, Du Z, Gao J, Yang S, Gorityala S, et al. Targeting radioresistant breast cancer cells by single agent CHK1 inhibitor via enhancing replication stress. Oncotarget. 2016;7:34688-702 pubmed 出版商
  73. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  74. Mitxelena J, Apraiz A, Vallejo Rodríguez J, Malumbres M, Zubiaga A. E2F7 regulates transcription and maturation of multiple microRNAs to restrain cell proliferation. Nucleic Acids Res. 2016;: pubmed
  75. Tang Y, Huang L, Lin W, Wang L, Tian Y, Shi D, et al. Butein inhibits cell proliferation and induces cell cycle arrest in acute lymphoblastic leukemia via FOXO3a/p27kip1 pathway. Oncotarget. 2016;7:18651-64 pubmed 出版商
  76. Kan H, Huang Y, Li X, Liu D, Chen J, Shu M. Zinc finger protein ZBTB20 is an independent prognostic marker and promotes tumor growth of human hepatocellular carcinoma by repressing FoxO1. Oncotarget. 2016;7:14336-49 pubmed 出版商
  77. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed 出版商
  78. Podmirseg S, Jäkel H, Ranches G, Kullmann M, Sohm B, Villunger A, et al. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene. 2016;35:4580-90 pubmed 出版商
  79. Guo Z, Kong Q, Liu C, Zhang S, Zou L, Yan F, et al. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nat Commun. 2016;7:10307 pubmed 出版商
  80. Lee E, Jin D, Lee B, Kim Y, Han J, Shim Y, et al. Negative effect of cyclin D1 overexpression on recurrence-free survival in stage II-IIIA lung adenocarcinoma and its expression modulation by vorinostat in vitro. BMC Cancer. 2015;15:982 pubmed 出版商
  81. Ortmann B, Bensaddek D, Carvalhal S, Moser S, Mudie S, Griffis E, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191-205 pubmed 出版商
  82. Duchnowska R, Wysocki P, Korski K, Czartoryska ArÅ‚ukowicz B, NiwiÅ„ska A, Orlikowska M, et al. Immunohistochemical prediction of lapatinib efficacy in advanced HER2-positive breast cancer patients. Oncotarget. 2016;7:550-64 pubmed 出版商
  83. Sakurikar N, Thompson R, Montano R, Eastman A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget. 2016;7:1380-94 pubmed 出版商
  84. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  85. Yu D, Makkar G, Dong T, Strickland D, Sarkar R, Monahan T. MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism. PLoS ONE. 2015;10:e0141397 pubmed 出版商
  86. Suwei D, Liang Z, Zhimin L, Ruilei L, Yingying Z, Zhen L, et al. NLK functions to maintain proliferation and stemness of NSCLC and is a target of metformin. J Hematol Oncol. 2015;8:120 pubmed 出版商
  87. Abu Alainin W, Gana T, Liloglou T, Olayanju A, Barrera L, Ferguson R, et al. UHRF1 regulation of the Keap1-Nrf2 pathway in pancreatic cancer contributes to oncogenesis. J Pathol. 2016;238:423-33 pubmed 出版商
  88. Leve F, Peres Moreira R, Binato R, Abdelhay E, Morgado Díaz J. LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways. PLoS ONE. 2015;10:e0139094 pubmed 出版商
  89. Maleszewska M, Vanchin B, Harmsen M, Krenning G. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence. Angiogenesis. 2016;19:9-24 pubmed 出版商
  90. Bailey M, Singh T, Mero P, Moffat J, Hieter P. Dependence of Human Colorectal Cells Lacking the FBW7 Tumor Suppressor on the Spindle Assembly Checkpoint. Genetics. 2015;201:885-95 pubmed 出版商
  91. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed 出版商
  92. Restall I, Parolin D, Daneshmand M, Hanson J, Simard M, Fitzpatrick M, et al. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma. Cell Cycle. 2015;14:2938-48 pubmed 出版商
  93. Moniz S, Bandarra D, Biddlestone J, Campbell K, Komander D, Bremm A, et al. Cezanne regulates E2F1-dependent HIF2α expression. J Cell Sci. 2015;128:3082-93 pubmed 出版商
  94. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  95. Cardona M, López J, Serafín A, Rongvaux A, Inserte J, García Dorado D, et al. Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart. PLoS ONE. 2015;10:e0131411 pubmed 出版商
  96. Boros G, Miko E, Muramatsu H, Weissman D, Emri E, van der Horst G, et al. Identification of Cyclobutane Pyrimidine Dimer-Responsive Genes Using UVB-Irradiated Human Keratinocytes Transfected with In Vitro-Synthesized Photolyase mRNA. PLoS ONE. 2015;10:e0131141 pubmed 出版商
  97. Ahn J, Kim S, Na W, Baek S, Kim J, Min K, et al. SERBP1 affects homologous recombination-mediated DNA repair by regulation of CtIP translation during S phase. Nucleic Acids Res. 2015;43:6321-33 pubmed 出版商
  98. Xie C, Wei D, Zhao L, Marchetto S, Mei L, Borg J, et al. Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis. J Cell Biol. 2015;209:721-37 pubmed 出版商
  99. Kharat S, Tripathi V, Damodaran A, Priyadarshini R, Chandra S, Tikoo S, et al. Mitotic phosphorylation of Bloom helicase at Thr182 is required for its proteasomal degradation and maintenance of chromosomal stability. Oncogene. 2016;35:1025-38 pubmed 出版商
  100. Han Y, Lee J, Lee S. Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin pathways. Mol Med Rep. 2015;12:3446-3452 pubmed 出版商
  101. Morra F, Luise C, Merolla F, Poser I, Visconti R, Ilardi G, et al. FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC. Oncotarget. 2015;6:12697-709 pubmed
  102. Kratz A, Bärenz F, Richter K, Hoffmann I. Plk4-dependent phosphorylation of STIL is required for centriole duplication. Biol Open. 2015;4:370-7 pubmed 出版商
  103. Susanto J, Colvin E, Pinese M, Chang D, Pajic M, Mawson A, et al. The epigenetic agents suberoylanilide hydroxamic acid and 5‑AZA‑2' deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo. Int J Oncol. 2015;46:2223-30 pubmed 出版商
  104. Ishihara S, Yasuda M, Ishizu A, Ishikawa M, Shirato H, Haga H. Activating transcription factor 5 enhances radioresistance and malignancy in cancer cells. Oncotarget. 2015;6:4602-14 pubmed
  105. Barrichon M, Hadi T, Wendremaire M, Ptasinski C, Seigneuric R, Marcion G, et al. Dose-dependent biphasic leptin-induced proliferation is caused by non-specific IL-6/NF-κB pathway activation in human myometrial cells. Br J Pharmacol. 2015;172:2974-90 pubmed 出版商
  106. Su C, Zhang C, Tecle A, Fu X, He J, Song J, et al. Tudor staphylococcal nuclease (Tudor-SN), a novel regulator facilitating G1/S phase transition, acting as a co-activator of E2F-1 in cell cycle regulation. J Biol Chem. 2015;290:7208-20 pubmed 出版商
  107. Li Z, Xiao J, Hu K, Wang G, Li M, Zhang J, et al. FBXW7 acts as an independent prognostic marker and inhibits tumor growth in human osteosarcoma. Int J Mol Sci. 2015;16:2294-306 pubmed 出版商
  108. Vosper J, Masuccio A, Kullmann M, Ploner C, Geley S, Hengst L. Statin-induced depletion of geranylgeranyl pyrophosphate inhibits cell proliferation by a novel pathway of Skp2 degradation. Oncotarget. 2015;6:2889-902 pubmed
  109. Chae H, Mitton B, Lacayo N, Sakamoto K. Replication factor C3 is a CREB target gene that regulates cell cycle progression through the modulation of chromatin loading of PCNA. Leukemia. 2015;29:1379-89 pubmed 出版商
  110. Izzo F, Mercogliano F, Venturutti L, Tkach M, Inurrigarro G, Schillaci R, et al. Progesterone receptor activation downregulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Res. 2014;16:491 pubmed 出版商
  111. Gasser J, Inuzuka H, Lau A, Wei W, Beroukhim R, Toker A. SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer. Mol Cell. 2014;56:595-607 pubmed 出版商
  112. Eifler M, Uecker R, Weisbach H, Bogdanow B, Richter E, König L, et al. PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry. PLoS Pathog. 2014;10:e1004514 pubmed 出版商
  113. Greve K, Lindgreen J, Terp M, Pedersen C, Schmidt S, Mollenhauer J, et al. Ectopic expression of cancer/testis antigen SSX2 induces DNA damage and promotes genomic instability. Mol Oncol. 2015;9:437-49 pubmed 出版商
  114. Caraballo J, Acosta J, Cortés M, Albajar M, Gomez Casares M, Batlle López A, et al. High p27 protein levels in chronic lymphocytic leukemia are associated to low Myc and Skp2 expression, confer resistance to apoptosis and antagonize Myc effects on cell cycle. Oncotarget. 2014;5:4694-708 pubmed
  115. Dai X, North B, Inuzuka H. Negative regulation of DAB2IP by Akt and SCFFbw7 pathways. Oncotarget. 2014;5:3307-15 pubmed
  116. Aydin I, Melamed R, Adams S, Castillo Martin M, Demir A, Bryk D, et al. FBXW7 mutations in melanoma and a new therapeutic paradigm. J Natl Cancer Inst. 2014;106:dju107 pubmed 出版商
  117. Kardos G, Dai M, Robertson G. Growth inhibitory effects of large subunit ribosomal proteins in melanoma. Pigment Cell Melanoma Res. 2014;27:801-12 pubmed 出版商
  118. Wang Y, Wang Z, Qi Z, Yin S, Zhang N, Liu Y, et al. The negative interplay between Aurora A/B and BRCA1/2 controls cancer cell growth and tumorigenesis via distinct regulation of cell cycle progression, cytokinesis, and tetraploidy. Mol Cancer. 2014;13:94 pubmed 出版商
  119. Wang Y, Zhou D, Chen S. SGK3 is an androgen-inducible kinase promoting prostate cancer cell proliferation through activation of p70 S6 kinase and up-regulation of cyclin D1. Mol Endocrinol. 2014;28:935-48 pubmed 出版商
  120. Ram R, Mendiratta S, Bodemann B, Torres M, Eskiocak U, White M. RASSF1A inactivation unleashes a tumor suppressor/oncogene cascade with context-dependent consequences on cell cycle progression. Mol Cell Biol. 2014;34:2350-8 pubmed 出版商
  121. Kumar V, Palermo R, Talora C, Campese A, Checquolo S, Bellavia D, et al. Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia. 2014;28:2324-35 pubmed 出版商
  122. Matsumoto T, Tabata K, Suzuki T. The GANT61, a GLI inhibitor, induces caspase-independent apoptosis of SK-N-LO cells. Biol Pharm Bull. 2014;37:633-41 pubmed
  123. Prinz P, Mendler A, Brech D, Masouris I, Oberneder R, Noessner E. NK-cell dysfunction in human renal carcinoma reveals diacylglycerol kinase as key regulator and target for therapeutic intervention. Int J Cancer. 2014;135:1832-41 pubmed 出版商
  124. Jackson D, Li H, Mitchell K, Joshi A, Elferink C. Ah receptor-mediated suppression of liver regeneration through NC-XRE-driven p21Cip1 expression. Mol Pharmacol. 2014;85:533-41 pubmed 出版商
  125. Lin Q, Aihara A, Chung W, Li Y, Huang Z, Chen X, et al. LRH1 as a driving factor in pancreatic cancer growth. Cancer Lett. 2014;345:85-90 pubmed 出版商
  126. Sengupta S, Jana S, Bhattacharyya A. TGF-?-Smad2 dependent activation of CDC 25A plays an important role in cell proliferation through NFAT activation in metastatic breast cancer cells. Cell Signal. 2014;26:240-52 pubmed 出版商
  127. Chandra S, Priyadarshini R, Madhavan V, Tikoo S, Hussain M, Mudgal R, et al. Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation. J Cell Sci. 2013;126:3782-95 pubmed 出版商
  128. Jullien L, Mestre M, Roux P, Gire V. Eroded human telomeres are more prone to remain uncapped and to trigger a G2 checkpoint response. Nucleic Acids Res. 2013;41:900-11 pubmed 出版商
  129. Valdez B, Nieto Y, Murray D, Li Y, Wang G, Champlin R, et al. Epigenetic modifiers enhance the synergistic cytotoxicity of combined nucleoside analog-DNA alkylating agents in lymphoma cell lines. Exp Hematol. 2012;40:800-10 pubmed 出版商
  130. Gagou M, Ganesh A, Thompson R, Phear G, Sanders C, Meuth M. Suppression of apoptosis by PIF1 helicase in human tumor cells. Cancer Res. 2011;71:4998-5008 pubmed 出版商
  131. Korfali N, Srsen V, Waterfall M, Batrakou D, Pekovic V, Hutchison C, et al. A flow cytometry-based screen of nuclear envelope transmembrane proteins identifies NET4/Tmem53 as involved in stress-dependent cell cycle withdrawal. PLoS ONE. 2011;6:e18762 pubmed 出版商
  132. Lofmark S, de Klerk N, Aro H. Neisseria gonorrhoeae infection induces altered amphiregulin processing and release. PLoS ONE. 2011;6:e16369 pubmed 出版商
  133. Rico Bautista E, Yang C, Lu L, Roth G, Wolf D. Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells. BMC Biol. 2010;8:153 pubmed 出版商
  134. Yang G, Chang B, Yang F, Guo X, Cai K, Xiao X, et al. Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clin Cancer Res. 2010;16:3171-81 pubmed 出版商
  135. Chimploy K, Díaz G, Li Q, Carter O, Dashwood W, Mathews C, et al. E2F4 and ribonucleotide reductase mediate S-phase arrest in colon cancer cells treated with chlorophyllin. Int J Cancer. 2009;125:2086-94 pubmed 出版商
  136. Al Ayyoubi S, Gali Muhtasib H. Differential apoptosis by gallotannin in human colon cancer cells with distinct p53 status. Mol Carcinog. 2007;46:176-86 pubmed
  137. Jones A, Jonsson A, Aro H. Neisseria gonorrhoeae infection causes a G1 arrest in human epithelial cells. FASEB J. 2007;21:345-55 pubmed
  138. Lu L, Schulz H, Wolf D. The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC Cell Biol. 2002;3:22 pubmed