这是一篇来自已证抗体库的有关人类 细胞角蛋白14 (cytokeratin 14) 的综述,是根据189篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合细胞角蛋白14 抗体。
细胞角蛋白14 同义词: CK14; EBS3; EBS4; K14; NFJ

赛默飞世尔
小鼠 单克隆(LL002)
  • 免疫印迹; 小鼠; 1:2000; 图 4d
赛默飞世尔细胞角蛋白14抗体(Invitrogen, MA511599)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4d). Invest Ophthalmol Vis Sci (2022) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6b
赛默飞世尔细胞角蛋白14抗体(eBioscience, 53-9003-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6b). Commun Biol (2022) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2, 4a, 4b
赛默飞世尔细胞角蛋白14抗体(InVitrogen, MA5-13156)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2, 4a, 4b). Mol Oncol (2022) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 1c
赛默飞世尔细胞角蛋白14抗体(Invitrogen,, MA5-11599)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 1c). Nat Commun (2021) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 1:1600; 图 3b
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher, MA5-11599)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1600 (图 3b). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2b
赛默飞世尔细胞角蛋白14抗体(Lab Vision, MS-343-P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2b). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6k
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher, PA5-16722)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6k). Sci Rep (2021) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
赛默飞世尔细胞角蛋白14抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上. Nat Commun (2021) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 4a
赛默飞世尔细胞角蛋白14抗体(eBioscience, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 猕猴; 0.2 ug/ml; 图 4g
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher, 41-9003-82)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为0.2 ug/ml (图 4g). Science (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
赛默飞世尔细胞角蛋白14抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Nat Cell Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1h
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher Scientific, PA5-28002)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1h). Sci Adv (2020) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 小鼠; 1:800; 图 2c
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher, MA5-C11599)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 2c). Cell Stem Cell (2019) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 图 4, 5
赛默飞世尔细胞角蛋白14抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • mass cytometry; 人类; 图 3a
赛默飞世尔细胞角蛋白14抗体(ThermoFisher, PA5-16722)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 犬; 图 5a
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher, LL002)被用于被用于免疫组化在犬样本上 (图 5a). J Histochem Cytochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7a
赛默飞世尔细胞角蛋白14抗体(ThermoFisher, PA5-16722)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). Invest Ophthalmol Vis Sci (2017) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 人类; 图 s1b
赛默飞世尔细胞角蛋白14抗体(Thermo Fischer, MA5-13203)被用于被用于免疫细胞化学在人类样本上 (图 s1b). Sci Rep (2017) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 小鼠; 图 4e
赛默飞世尔细胞角蛋白14抗体(Thermo, LL002)被用于被用于免疫组化在小鼠样本上 (图 4e). Genes Dev (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔细胞角蛋白14抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3n
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher Scientific, MA5-11599)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3n). Am J Respir Cell Mol Biol (2017) ncbi
小鼠 单克隆(LL002)
  • 免疫细胞化学; 人类; 1:25; 图 2
赛默飞世尔细胞角蛋白14抗体(NeoMarkers, LL002)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 2). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:4000; 图 1c, ED1g
  • 免疫印迹; 人类; 1:2000; 图 2c, ED4b
  • 免疫细胞化学; 小鼠; 1:500
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, RB-9020)被用于被用于免疫细胞化学在人类样本上浓度为1:4000 (图 1c, ED1g), 被用于免疫印迹在人类样本上浓度为1:2000 (图 2c, ED4b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500. Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 3b
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher, PA5-28002)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 3b). J Am Acad Dermatol (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 3d
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, AE1-AE3)被用于被用于免疫组化在人类样本上 (图 3d). Case Rep Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1h
赛默飞世尔细胞角蛋白14抗体(Pierce, PA-5-13672)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1h). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔细胞角蛋白14抗体(Neomarkers, MS-115)被用于被用于免疫组化在小鼠样本上 (图 1). Nature (2016) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher, MA5-11599)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1b
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, RB-9020)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). Oncogenesis (2016) ncbi
小鼠 单克隆(34betaE12)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, 34betaE12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3d
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, MA5-13203)被用于被用于免疫细胞化学在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2017) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 8
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, LL002)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 8). Dev Biol (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 5b
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5b). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(LL002)
  • 免疫细胞化学; 人类; 图 2d
  • 免疫印迹; 人类
  • 免疫组化; 小鼠; 图 1a
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, LL002)被用于被用于免疫细胞化学在人类样本上 (图 2d), 被用于免疫印迹在人类样本上 和 被用于免疫组化在小鼠样本上 (图 1a). Sci Rep (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔细胞角蛋白14抗体(ThermoFisher Scientific, MA5-13156)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Future Oncol (2016) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1
赛默飞世尔细胞角蛋白14抗体(Neomarkers, CL002)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔细胞角蛋白14抗体(ThermoFisher Scientific, LL002)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 s3
赛默飞世尔细胞角蛋白14抗体(分子探针, 985542A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3). Microbiome (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, MA5-13203)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(LL002)
  • 免疫细胞化学; 人类; 1:25; 图 2a
赛默飞世尔细胞角蛋白14抗体(NeoMarkers, MS-115-P)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 2a). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔细胞角蛋白14抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Pathol Res Pract (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 小鼠; 1:100; 表 2
赛默飞世尔细胞角蛋白14抗体(eBioscience, 41-9003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher Scientific, Ms-115-P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 1b
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, LL002)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 1b). J Histochem Cytochem (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔细胞角蛋白14抗体(Thermo, RB-9020-P)被用于. Nat Methods (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, Rb9020)被用于. Nature (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 2
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 2). Diagn Cytopathol (2015) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 人类
赛默飞世尔细胞角蛋白14抗体(NeoMarkers, LL002)被用于被用于免疫组化在人类样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 鲤
赛默飞世尔细胞角蛋白14抗体(生活技术, MA5-13156)被用于被用于免疫细胞化学在鲤样本上. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 1 ul
赛默飞世尔细胞角蛋白14抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上浓度为1 ul. Nanomedicine (2015) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, 4545)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫印迹; 人类
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher Scientific, MA5-13203)被用于被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔细胞角蛋白14抗体(Neomarkers/Thermo, Rb-9020)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
赛默飞世尔细胞角蛋白14抗体(Invitrogen, AE1/AE3)被用于. In Vitro Cell Dev Biol Anim (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, RB-9021)被用于. Lab Invest (2015) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 人类; 1:100
赛默飞世尔细胞角蛋白14抗体(NeoMarkers, MS115P0)被用于被用于免疫组化在人类样本上浓度为1:100. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 10-20 ug/ml
赛默飞世尔细胞角蛋白14抗体(Lab.Vision, Ab-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10-20 ug/ml. Asian Pac J Cancer Prev (2015) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 犬; 1:300
  • 免疫组化-石蜡切片; 猫; 1:300
赛默飞世尔细胞角蛋白14抗体(NeoMarkers, LL002)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:300 和 被用于免疫组化-石蜡切片在猫样本上浓度为1:300. J Comp Pathol (2015) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔细胞角蛋白14抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔细胞角蛋白14抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛默飞世尔细胞角蛋白14抗体(ThermoFisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Development (2015) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔细胞角蛋白14抗体(Neo Markers, MS343)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Comp Med (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔细胞角蛋白14抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔细胞角蛋白14抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(34betaE12)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher Scientific, 34betaE12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔细胞角蛋白14抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Histopathology (2015) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 人类; 图 1
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher Scientific, MS115B0)被用于被用于免疫组化在人类样本上 (图 1). Nature (2014) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛默飞世尔细胞角蛋白14抗体(Thermo/Neomarkers, MS-115-P0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔细胞角蛋白14抗体(Thermoscientific, MS115)被用于被用于免疫组化-石蜡切片在小鼠样本上. EMBO Mol Med (2014) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, MS-115-P)被用于被用于免疫组化-石蜡切片在人类样本上. Differentiation (2014) ncbi
小鼠 单克隆(LL002)
  • 免疫细胞化学; 人类; 1:25
  • 免疫组化; 人类; 1:25
赛默飞世尔细胞角蛋白14抗体(NeoMarkers, LL002)被用于被用于免疫细胞化学在人类样本上浓度为1:25 和 被用于免疫组化在人类样本上浓度为1:25. Am J Pathol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类
赛默飞世尔细胞角蛋白14抗体(Thermo, AE1/AE3)被用于被用于免疫组化在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔细胞角蛋白14抗体(Thermo Fisher, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Biomed Mater (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔细胞角蛋白14抗体(Thermoelectron, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔细胞角蛋白14抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(LL002)
  • 免疫细胞化学; 人类; 1:400; 图 s1
赛默飞世尔细胞角蛋白14抗体(Neomarkers, MS-115-P)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s1). Cell Oncol (Dordr) (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔细胞角蛋白14抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
赛默飞世尔细胞角蛋白14抗体(Lab Vision, MS-115)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Am J Pathol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 1
赛默飞世尔细胞角蛋白14抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 1). Head Face Med (2013) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 小鼠
赛默飞世尔细胞角蛋白14抗体(Lab Vision, MS-115)被用于被用于免疫组化在小鼠样本上. J Invest Dermatol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔细胞角蛋白14抗体(Zymed, AE1-AE3)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Surg Neurol Int (2013) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 表 2
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, MS-115-P0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (表 2). PLoS ONE (2013) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 图 1c
赛默飞世尔细胞角蛋白14抗体(Neomarkers, LL002)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c). J Invest Dermatol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 2
赛默飞世尔细胞角蛋白14抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 大西洋鲑鱼; 1:50; 图 2
赛默飞世尔细胞角蛋白14抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在大西洋鲑鱼样本上浓度为1:50 (图 2). Virol J (2013) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 犬; 1:300
赛默飞世尔细胞角蛋白14抗体(NeoMarkers, Ab-1 (LL002))被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:300. BMC Vet Res (2012) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 犬; 1:300; 表 2
赛默飞世尔细胞角蛋白14抗体(NeoMarkers, Ab-1 (LL002))被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:300 (表 2). ScientificWorldJournal (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔细胞角蛋白14抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Med Sci Monit (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔细胞角蛋白14抗体(Thermo Scientific, MS-343)被用于被用于免疫组化-石蜡切片在小鼠样本上. Anat Cell Biol (2011) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔细胞角蛋白14抗体(Labvision, MS-149)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Br J Cancer (2012) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:100
赛默飞世尔细胞角蛋白14抗体(Neomarkers, LL002)被用于被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:100. PLoS ONE (2009) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔细胞角蛋白14抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔细胞角蛋白14抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔细胞角蛋白14抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔细胞角蛋白14抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔细胞角蛋白14抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cancer (2008) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 人类; 1:400
  • 免疫组化; 人类; 1:400
赛默飞世尔细胞角蛋白14抗体(Neomarkers, LL002)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 和 被用于免疫组化在人类样本上浓度为1:400. Virchows Arch (2008) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 人类; 1:1000; 表 3
赛默飞世尔细胞角蛋白14抗体(Lab Vision/Neomarkers, LL002)被用于被用于免疫组化在人类样本上浓度为1:1000 (表 3). Cancer (2007) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 图 5
赛默飞世尔细胞角蛋白14抗体(Lab Vision, MS-343-P)被用于被用于免疫印迹在人类样本上 (图 5). Int J Cancer (2005) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔细胞角蛋白14抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔细胞角蛋白14抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:80; 表 1
赛默飞世尔细胞角蛋白14抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (表 1). Pathol Int (2004) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 人类; 1:500
赛默飞世尔细胞角蛋白14抗体(NeoMarkers, MS-115-P1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Cancer Cell (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔细胞角蛋白14抗体(Zymed, AE1/AE3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Gynecol Oncol (2003) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab119695)被用于被用于免疫印迹在人类样本上. iScience (2022) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). Burns Trauma (2022) ncbi
小鼠 单克隆(RCK107)
  • 免疫组化-石蜡切片; pigs ; 1:400; 图 s3a
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab9220)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:400 (图 s3a). Cell Rep Med (2022) ncbi
domestic rabbit 单克隆(EPR17350)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, EPR17350)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). Stem Cell Res Ther (2022) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 小鼠; 图 s4d
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫组化在小鼠样本上 (图 s4d). Sci Adv (2022) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4c, 5c
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, LL002)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4c, 5c). Front Genet (2021) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2d
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, Ab7800)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2d). Nat Commun (2021) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 图 3g, 4e
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g, 4e). Oncogene (2021) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 1j
  • 免疫细胞化学; 小鼠; 图 s6d
  • 免疫印迹; 小鼠; 1:1000; 图 4d, 4f
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 1j), 被用于免疫细胞化学在小鼠样本上 (图 s6d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d, 4f). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab119695)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5a). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(LL002)
  • 免疫细胞化学; 人类; 1:500; 图 1a
  • 免疫印迹; 人类; 1:5000; 图 1h
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, LL002)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 1h). Sci Adv (2021) ncbi
domestic rabbit 单克隆(EP1612Y)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6c, 6i
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, 51054)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6c, 6i). PLoS Genet (2021) ncbi
小鼠 单克隆(LL002)
  • 免疫细胞化学; 人类; 1:25; 图 s4c
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, Ab7800)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 s4c). Cell Rep (2021) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 小鼠; 1:1000; 图 s4g
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s4g). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR17350)
  • 流式细胞仪; 人类; 图 1d
  • 免疫细胞化学; 人类; 图 3e
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab181595)被用于被用于流式细胞仪在人类样本上 (图 1d) 和 被用于免疫细胞化学在人类样本上 (图 3e). Cell Stem Cell (2020) ncbi
domestic rabbit 单克隆(EPR17350)
  • 免疫组化-石蜡切片; 小鼠; 1:4000; 图 3b
  • 免疫印迹; 小鼠; 1:4000; 图 4a
  • 免疫印迹; 人类; 1:4000; 图 4b
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab1851595)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:4000 (图 3b), 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:4000 (图 4b). Biomol Ther (Seoul) (2019) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-冰冻切片; 小鼠; 图 4g
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). Cell Rep (2019) ncbi
domestic rabbit 单克隆(EPR17350)
  • 免疫组化-石蜡切片; 小鼠; 1:6000; 图 1b
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(ABCAM, ab181595)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:6000 (图 1b). Nat Commun (2019) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(EP1612Y)
  • 免疫组化-石蜡切片; 人类; 图 1b
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab51054)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). Ann Rheum Dis (2018) ncbi
小鼠 单克隆(LL002)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫印迹在人类样本上 (图 1b). Front Immunol (2018) ncbi
domestic rabbit 单克隆(EPR17350)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1c
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab181595)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1c). Sci Rep (2018) ncbi
小鼠 单克隆(LL002)
  • 免疫细胞化学; 小鼠; 图 2b
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫细胞化学在小鼠样本上 (图 2b). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; domestic rabbit; 图 4
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab77684)被用于被用于免疫组化在domestic rabbit样本上 (图 4). Int J Mol Med (2017) ncbi
小鼠 单克隆(LL002)
  • 免疫细胞化学; 人类; 图 s1e
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, LL002)被用于被用于免疫细胞化学在人类样本上 (图 s1e). Nature (2017) ncbi
小鼠 单克隆(LL002)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
  • 免疫细胞化学; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Respir Res (2016) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 1
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1500 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(LL002)
  • 免疫细胞化学; 人类; 1:50; 表 2
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (表 2). J Cell Physiol (2017) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
  • 免疫印迹; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5). Int J Mol Med (2016) ncbi
小鼠 单克隆(LL002)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, LL002)被用于被用于免疫印迹在人类样本上 (图 2d). Cell Cycle (2016) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). J Cell Biol (2016) ncbi
小鼠 单克隆(LL002)
  • 流式细胞仪; 人类; 图 3
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于流式细胞仪在人类样本上 (图 3). BMC Res Notes (2015) ncbi
小鼠 单克隆(RCK107)
  • 免疫细胞化学; 小鼠; 1:100; 图 1B
  • 免疫印迹; 小鼠; 图 1C
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab9220)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1B) 和 被用于免疫印迹在小鼠样本上 (图 1C). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EP1612Y)
  • 其他; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab51054)被用于被用于其他在人类样本上浓度为1:100 (图 6). Cancer Cell Int (2015) ncbi
小鼠 单克隆(LL002)
  • 免疫细胞化学; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, Ab7800)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 5
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, LL002)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 5). PLoS ONE (2014) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS Genet (2014) ncbi
小鼠 单克隆(LL002)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, Ab7800)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab7800)被用于被用于免疫组化-石蜡切片在小鼠样本上. Hum Mol Genet (2015) ncbi
小鼠 单克隆(RCK107)
  • 免疫组化-冰冻切片; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司细胞角蛋白14抗体(Abcam, ab9220)被用于被用于免疫组化-冰冻切片在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
BioLegend
domestic rabbit 多克隆(Poly19053)
  • 免疫组化; 小鼠; 图 4b
  • 免疫印迹; 小鼠; 图 5a
BioLegend细胞角蛋白14抗体(Biolegend, 905301)被用于被用于免疫组化在小鼠样本上 (图 4b) 和 被用于免疫印迹在小鼠样本上 (图 5a). Cells (2022) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7a
BioLegend细胞角蛋白14抗体(BioLegend, 905301)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7a). Mol Ther Nucleic Acids (2022) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化-石蜡切片; 小鼠; 1:3000; 图 2b
BioLegend细胞角蛋白14抗体(BioLegend, 905301)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3000 (图 2b). Cancer Res (2021) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫细胞化学; 犬; 图 s12g
BioLegend细胞角蛋白14抗体(Covance, PRB-155P)被用于被用于免疫细胞化学在犬样本上 (图 s12g). Life Sci Alliance (2021) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化; 小鼠; 1:250
BioLegend细胞角蛋白14抗体(Biolegend, 905301)被用于被用于免疫组化在小鼠样本上浓度为1:250. Nature (2019) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化; 小鼠; 图 6d
BioLegend细胞角蛋白14抗体(Covance, PRB155P)被用于被用于免疫组化在小鼠样本上 (图 6d). Cell (2019) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化; 人类; 1:100; 图 5s1a
BioLegend细胞角蛋白14抗体(Covance, PRB-155P)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5s1a). elife (2019) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫印迹; 人类; 图 3a
BioLegend细胞角蛋白14抗体(BioLegend, 905304)被用于被用于免疫印迹在人类样本上 (图 3a). elife (2019) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化; 小鼠; 1:1000; 图 4a
BioLegend细胞角蛋白14抗体(Biolegend, 905304)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4a). Breast Cancer Res (2018) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
BioLegend细胞角蛋白14抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). J Clin Invest (2018) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
BioLegend细胞角蛋白14抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). Invest Ophthalmol Vis Sci (2017) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
BioLegend细胞角蛋白14抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). J Invest Dermatol (2017) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4b
BioLegend细胞角蛋白14抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4b). Nat Commun (2017) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化; 小鼠; 1:700; 图 s6b
BioLegend细胞角蛋白14抗体(Covance, PRB155P)被用于被用于免疫组化在小鼠样本上浓度为1:700 (图 s6b). Nature (2017) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
BioLegend细胞角蛋白14抗体(Covance, PRB-155P)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Oncogene (2017) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化; 小鼠; 图 1b
BioLegend细胞角蛋白14抗体(Covance, PRB.155P)被用于被用于免疫组化在小鼠样本上 (图 1b). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 S5B
BioLegend细胞角蛋白14抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 S5B). J Clin Invest (2016) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化-冰冻切片; 小鼠; 图 6e
BioLegend细胞角蛋白14抗体(BioLegend, poly19053)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6e). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
  • 免疫细胞化学; 小鼠; 图 2C
  • 免疫印迹; 小鼠; 图 2D
BioLegend细胞角蛋白14抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000, 被用于免疫细胞化学在小鼠样本上 (图 2C) 和 被用于免疫印迹在小鼠样本上 (图 2D). Stem Cell Res Ther (2016) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化; 小鼠; 1:5000; 图 3
BioLegend细胞角蛋白14抗体(Covance, PRB-155P)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫细胞化学; 人类; 1:300; 图 2b
BioLegend细胞角蛋白14抗体(BioLegend, Poly19053)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2b). Cell Cycle (2016) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫组化-石蜡切片; 小鼠; 1 ug/ml; 图 3
BioLegend细胞角蛋白14抗体(Covance, PRB-155 P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1 ug/ml (图 3). Lab Invest (2016) ncbi
domestic rabbit 多克隆(Poly19053)
  • 免疫细胞化学; 小鼠; 图 3
BioLegend细胞角蛋白14抗体(Covance, PRB-155p)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Dev Dyn (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(LL001)
  • 免疫组化; 大鼠; 1:200; 图 3e
圣克鲁斯生物技术细胞角蛋白14抗体(Santa Cruz Biotechnology, sc53253)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 3e). Mol Pain (2020) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 猫; 1:150; 图 3l
圣克鲁斯生物技术细胞角蛋白14抗体(Santa Cruz, sc-58,724)被用于被用于免疫组化在猫样本上浓度为1:150 (图 3l). BMC Cancer (2019) ncbi
小鼠 单克隆(LL001)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
  • 免疫印迹; 小鼠; 1:1000; 图 s5c
圣克鲁斯生物技术细胞角蛋白14抗体(Santa, SC-53253)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5c). Nat Med (2018) ncbi
小鼠 单克隆(LL001)
  • 免疫细胞化学; 小鼠; 1:100; 图 2a
圣克鲁斯生物技术细胞角蛋白14抗体(Santacruz, sc-53253)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(LL001)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2
圣克鲁斯生物技术细胞角蛋白14抗体(Santa Cruz, sc-53253)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2). Mol Endocrinol (2016) ncbi
小鼠 单克隆(RCK107)
  • 免疫细胞化学; 人类; 1:1000; 图 4
圣克鲁斯生物技术细胞角蛋白14抗体(Santa Cruz, SC23878)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(LL001)
  • 免疫组化-石蜡切片; 小鼠; 图 4
圣克鲁斯生物技术细胞角蛋白14抗体(Santa Cruz, sc-53253)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(LL001)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞角蛋白14抗体(Santa Cruz, sc-53253)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
小鼠 单克隆(LL001)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3
圣克鲁斯生物技术细胞角蛋白14抗体(Santa Cruz, LL001)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3). Development (2015) ncbi
小鼠 单克隆(LL002)
  • 免疫细胞化学; 小鼠; 图 3
圣克鲁斯生物技术细胞角蛋白14抗体(Santa Cruz, sc 58724)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Methods Mol Biol (2014) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(LL002)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 3a
伯乐(Bio-Rad)公司细胞角蛋白14抗体(Serotec, LL002)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 3a). J Vet Med Sci (2019) ncbi
小鼠 单克隆(LL002)
  • 免疫组化; 犬; 1:100
伯乐(Bio-Rad)公司细胞角蛋白14抗体(Serotec, LL002)被用于被用于免疫组化在犬样本上浓度为1:100. J Comp Pathol (2014) ncbi
亚诺法生技股份有限公司
domestic rabbit 单克隆(D19-N)
  • 免疫组化; pigs ; 图 3
亚诺法生技股份有限公司细胞角蛋白14抗体(Abnova Corporation, MAB9766)被用于被用于免疫组化在pigs 样本上 (图 3). Gastrointest Endosc (2015) ncbi
Vector Laboratories
  • 免疫细胞化学; 人类; 图 2f
载体实验室细胞角蛋白14抗体(载体实验室, VPC410)被用于被用于免疫细胞化学在人类样本上 (图 2f). Oncogene (2019) ncbi
  • 免疫细胞化学; 人类; 图 4
载体实验室细胞角蛋白14抗体(载体实验室, VP-C410)被用于被用于免疫细胞化学在人类样本上 (图 4). elife (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠
载体实验室细胞角蛋白14抗体(载体, VP-C410)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Comp Neurol (2013) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫组化; 小鼠; 图 2i
徕卡显微系统(上海)贸易有限公司细胞角蛋白14抗体(Novocastra, NCL-L-LL002)被用于被用于免疫组化在小鼠样本上 (图 2i). J Dent Res (2017) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:50; 图 1c
徕卡显微系统(上海)贸易有限公司细胞角蛋白14抗体(Leica Biosystems, NCL-L-LL002)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1c). BMC Cancer (2017) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:20; 表 2
徕卡显微系统(上海)贸易有限公司细胞角蛋白14抗体(Leica Novocastra, NCL-L-LL002)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (表 2). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:20
徕卡显微系统(上海)贸易有限公司细胞角蛋白14抗体(Leica Novocastra, NCL-L-LL002)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. Breast Cancer Res Treat (2015) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 表 2
徕卡显微系统(上海)贸易有限公司细胞角蛋白14抗体(Leica, LL002)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:20
徕卡显微系统(上海)贸易有限公司细胞角蛋白14抗体(Novocastra, NCL-L-LL002)被用于被用于免疫组化在人类样本上浓度为1:20. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司细胞角蛋白14抗体(Novocastra, LL002)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:20
徕卡显微系统(上海)贸易有限公司细胞角蛋白14抗体(Novocastra Laboratories, LL002)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. Malays J Pathol (2014) ncbi
碧迪BD
  • 流式细胞仪; 人类; 图 1b
碧迪BD细胞角蛋白14抗体(BD Pharmingen, 550953)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Cycle (2017) ncbi
小鼠 单克隆(KA4)
  • 免疫组化; 小鼠; 图 6
碧迪BD细胞角蛋白14抗体(BD pharmingen, 550951)被用于被用于免疫组化在小鼠样本上 (图 6). Sci Rep (2015) ncbi
文章列表
  1. Gonzalez M, Naimo G, Anwar T, Paol xec A, Tekula S, Kim S, et al. EZH2 T367 phosphorylation activates p38 signaling through lysine methylation to promote breast cancer progression. iScience. 2022;25:104827 pubmed 出版商
  2. Yuan X, Duan X, Li Z, Yao B, Enhejirigala -, Song W, et al. Collagen triple helix repeat containing-1 promotes functional recovery of sweat glands by inducing adjacent microvascular network reconstruction in vivo. Burns Trauma. 2022;10:tkac035 pubmed 出版商
  3. Bhattacharya N, INDRA A, Ganguli Indra G. Selective Ablation of BCL11A in Epidermal Keratinocytes Alters Skin Homeostasis and Accelerates Excisional Wound Healing In Vivo. Cells. 2022;11: pubmed 出版商
  4. Bach M, de Vries C, Khosravi A, Sweere J, Popescu M, Chen Q, et al. Filamentous bacteriophage delays healing of Pseudomonas-infected wounds. Cell Rep Med. 2022;3:100656 pubmed 出版商
  5. Fernandes H, Zonnari A, Abreu R, Aday S, Bar xe3 o M, Albino I, et al. Extracellular vesicles enriched with an endothelial cell pro-survival microRNA affects skin tissue regeneration. Mol Ther Nucleic Acids. 2022;28:307-327 pubmed 出版商
  6. Liu M, Liu Z, Chen Y, Peng S, Yang J, Chen C, et al. Dendritic epidermal T cells secreting exosomes promote the proliferation of epidermal stem cells to enhance wound re-epithelialization. Stem Cell Res Ther. 2022;13:121 pubmed 出版商
  7. Portal C, Wang Z, Scott D, Wolosin J, Iomini C. The c-Myc Oncogene Maintains Corneal Epithelial Architecture at Homeostasis, Modulates p63 Expression, and Enhances Proliferation During Tissue Repair. Invest Ophthalmol Vis Sci. 2022;63:3 pubmed 出版商
  8. Kumar B, Adebayo A, Prasad M, Capitano M, Wang R, Bhat Nakshatri P, et al. Tumor collection/processing under physioxia uncovers highly relevant signaling networks and drug sensitivity. Sci Adv. 2022;8:eabh3375 pubmed 出版商
  9. Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol. 2022;5:41 pubmed 出版商
  10. Naruse M, Ishigamori R, Imai T. The Unique Genetic and Histological Characteristics of DMBA-Induced Mammary Tumors in an Organoid-Based Carcinogenesis Model. Front Genet. 2021;12:765131 pubmed 出版商
  11. Bruun J, Eide P, Bergsland C, Brück O, Svindland A, Arjama M, et al. E-cadherin is a robust prognostic biomarker in colorectal cancer and low expression is associated with sensitivity to inhibitors of topoisomerase, aurora, and HSP90 in preclinical models. Mol Oncol. 2022;16:2312-2329 pubmed 出版商
  12. Schünke H, Göbel U, Dikic I, Pasparakis M. OTULIN inhibits RIPK1-mediated keratinocyte necroptosis to prevent skin inflammation in mice. Nat Commun. 2021;12:5912 pubmed 出版商
  13. Hoste E, Lecomte K, Annusver K, Vandamme N, Roels J, Maschalidi S, et al. OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity. Nat Commun. 2021;12:5913 pubmed 出版商
  14. Yuan S, Zhang P, Wen L, Jia S, Wu Y, Zhang Z, et al. miR-22 promotes stem cell traits via activating Wnt/β-catenin signaling in cutaneous squamous cell carcinoma. Oncogene. 2021;40:5799-5813 pubmed 出版商
  15. Shao C, Lou P, Liu R, Bi X, Li G, Yang X, et al. Hormone-Responsive BMP Signaling Expands Myoepithelial Cell Lineages and Prevents Alveolar Precocity in Mammary Gland. Front Cell Dev Biol. 2021;9:691050 pubmed 出版商
  16. Laine A, Nagelli S, Farrington C, Butt U, Cvrljevic A, Vainonen J, et al. CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis. Cancer Res. 2021;81:4319-4331 pubmed 出版商
  17. DeLaForest A, Kohlnhofer B, Franklin O, Stavniichuk R, Thompson C, Pulakanti K, et al. GATA4 Controls Epithelial Morphogenesis in the Developing Stomach to Promote Establishment of Glandular Columnar Epithelium. Cell Mol Gastroenterol Hepatol. 2021;12:1391-1413 pubmed 出版商
  18. Barthet V, Brucoli M, Ladds M, Nössing C, Kiourtis C, Baudot A, et al. Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Sci Adv. 2021;7: pubmed 出版商
  19. Ni N, Fang X, Li Q. Functional similarity between TGF-beta type 2 and type 1 receptors in the female reproductive tract. Sci Rep. 2021;11:9294 pubmed 出版商
  20. Gao H, Liu Y, Zheng M, Zhao F, Wang H, Yu J, et al. Characterization of murine mammary stem/progenitor cells in a D-galactose-induced aging model. Aging (Albany NY). 2021;13:11762-11773 pubmed 出版商
  21. Rodriguez E, Boelaars K, Brown K, Eveline Li R, Kruijssen L, Bruijns S, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun. 2021;12:1270 pubmed 出版商
  22. Kajiwara K, Yamano S, Aoki K, Okuzaki D, Matsumoto K, Okada M. CDCP1 promotes compensatory renal growth by integrating Src and Met signaling. Life Sci Alliance. 2021;4: pubmed 出版商
  23. Laly A, Sliogeryte K, Pundel O, Ross R, Keeling M, Avisetti D, et al. The keratin network of intermediate filaments regulates keratinocyte rigidity sensing and nuclear mechanotransduction. Sci Adv. 2021;7: pubmed 出版商
  24. Xu L, Zu T, Li T, Li M, Mi J, Bai F, et al. ATF3 downmodulates its new targets IFI6 and IFI27 to suppress the growth and migration of tongue squamous cell carcinoma cells. PLoS Genet. 2021;17:e1009283 pubmed 出版商
  25. Simpson C, Tokito M, Uppala R, Sarkar M, Gudjonsson J, Holzbaur E. NIX initiates mitochondrial fragmentation via DRP1 to drive epidermal differentiation. Cell Rep. 2021;34:108689 pubmed 出版商
  26. Biasci D, Smoragiewicz M, Connell C, Wang Z, Gao Y, Thaventhiran J, et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc Natl Acad Sci U S A. 2020;117:28960-28970 pubmed 出版商
  27. Shin S, Itson Zoske B, Cai Y, Qiu C, Pan B, Stucky C, et al. Satellite glial cells in sensory ganglia express functional transient receptor potential ankyrin 1 that is sensitized in neuropathic and inflammatory pain. Mol Pain. 2020;16:1744806920925425 pubmed 出版商
  28. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  29. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  30. Zhao L, Ke H, Xu H, Wang G, Zhang H, Zou L, et al. TDP-43 facilitates milk lipid secretion by post-transcriptional regulation of Btn1a1 and Xdh. Nat Commun. 2020;11:341 pubmed 出版商
  31. Benhadou F, Glitzner E, Brisebarre A, Swedlund B, Song Y, Dubois C, et al. Epidermal autonomous VEGFA/Flt1/Nrp1 functions mediate psoriasis-like disease. Sci Adv. 2020;6:eaax5849 pubmed 出版商
  32. Dagher E, Royer V, Buchet P, Abadie J, Loussouarn D, Campone M, et al. Androgen receptor and FOXA1 coexpression define a "luminal-AR" subtype of feline mammary carcinomas, spontaneous models of breast cancer. BMC Cancer. 2019;19:1267 pubmed 出版商
  33. Vaidyanathan S, Salahudeen A, Sellers Z, Bravo D, Choi S, Batish A, et al. High-Efficiency, Selection-free Gene Repair in Airway Stem Cells from Cystic Fibrosis Patients Rescues CFTR Function in Differentiated Epithelia. Cell Stem Cell. 2020;26:161-171.e4 pubmed 出版商
  34. Jeong H, Lim K, Goldenring J, Nam K. Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice. Biomol Ther (Seoul). 2019;27:553-561 pubmed 出版商
  35. Chen M, Reed R, Lane A. Chronic Inflammation Directs an Olfactory Stem Cell Functional Switch from Neuroregeneration to Immune Defense. Cell Stem Cell. 2019;25:501-513.e5 pubmed 出版商
  36. Padmanaban V, Krol I, Suhail Y, Szczerba B, Aceto N, Bader J, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573:439-444 pubmed 出版商
  37. Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed 出版商
  38. Wang H, Xiang D, Liu B, He A, Randle H, Zhang K, et al. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell. 2019;178:135-151.e19 pubmed 出版商
  39. Bayer S, Grither W, Brenot A, Hwang P, Barcus C, Ernst M, et al. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. elife. 2019;8: pubmed 出版商
  40. Yin M, Zhou H, Lin C, Long L, Yang X, Zhang H, et al. CD34+KLF4+ Stromal Stem Cells Contribute to Endometrial Regeneration and Repair. Cell Rep. 2019;27:2709-2724.e3 pubmed 出版商
  41. Adams C, Htwe H, Marsh T, Wang A, Montoya M, Subbaraj L, et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. elife. 2019;8: pubmed 出版商
  42. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  43. Krimpenfort P, Snoek M, Lambooij J, Song J, van der Weide R, Bhaskaran R, et al. A natural WNT signaling variant potently synergizes with Cdkn2ab loss in skin carcinogenesis. Nat Commun. 2019;10:1425 pubmed 出版商
  44. Domenici G, Aurrekoetxea Rodríguez I, Simões B, Rábano M, Lee S, Millán J, et al. A Sox2-Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells. Oncogene. 2019;38:3151-3169 pubmed 出版商
  45. Lee S, Ji H, Baek S, Lee A, Kim M, Park S, et al. Feline-type cystic basal cell tumor filled with abundant melanin pigment-rich fluid in a dog. J Vet Med Sci. 2019;81:269-273 pubmed 出版商
  46. Mao S, Park M, Cabrera R, Christin J, Karagiannis G, Oktay M, et al. Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth. Breast Cancer Res. 2018;20:131 pubmed 出版商
  47. Goldie S, Cottle D, Tan F, Roslan S, Srivastava S, Brady R, et al. Loss of GRHL3 leads to TARC/CCL17-mediated keratinocyte proliferation in the epidermis. Cell Death Dis. 2018;9:1072 pubmed 出版商
  48. Li L, Guturi K, Gautreau B, Patel P, Saad A, Morii M, et al. Ubiquitin ligase RNF8 suppresses Notch signaling to regulate mammary development and tumorigenesis. J Clin Invest. 2018;128:4525-4542 pubmed 出版商
  49. Pin D, Pendaries V, Keita Alassane S, Froment C, Amalric N, Cadiergues M, et al. Refined Immunochemical Characterization in Healthy Dog Skin of the Epidermal Cornification Proteins, Filaggrin, and Corneodesmosin. J Histochem Cytochem. 2019;67:85-97 pubmed 出版商
  50. Sarkar M, Hile G, Tsoi L, Xing X, Liu J, Liang Y, et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis. 2018;77:1653-1664 pubmed 出版商
  51. Schlögl E, Radeva M, Vielmuth F, Schinner C, Waschke J, Spindler V. Keratin Retraction and Desmoglein3 Internalization Independently Contribute to Autoantibody-Induced Cell Dissociation in Pemphigus Vulgaris. Front Immunol. 2018;9:858 pubmed 出版商
  52. Zhang Z, Zi Z, Lee E, Zhao J, Contreras D, South A, et al. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat Med. 2018;24:617-627 pubmed 出版商
  53. Komori T, Ono M, Hara E, Ueda J, Nguyen H, Nguyen H, et al. Type IV collagen α6 chain is a regulator of keratin 10 in keratinization of oral mucosal epithelium. Sci Rep. 2018;8:2612 pubmed 出版商
  54. Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1609-1621 pubmed 出版商
  55. Gesteira T, Sun M, Coulson Thomas Y, Yamaguchi Y, Yeh L, Hascall V, et al. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation. Invest Ophthalmol Vis Sci. 2017;58:4407-4421 pubmed 出版商
  56. Aprile F, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C. The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep. 2017;7:9039 pubmed 出版商
  57. Kousa Y, Roushangar R, Patel N, Walter A, Marangoni P, Krumlauf R, et al. IRF6 and SPRY4 Signaling Interact in Periderm Development. J Dent Res. 2017;96:1306-1313 pubmed 出版商
  58. Young C, Eckert R, Adhikary G, Crumrine D, Elias P, Blumenberg M, et al. Embryonic AP1 Transcription Factor Deficiency Causes a Collodion Baby-Like Phenotype. J Invest Dermatol. 2017;137:1868-1877 pubmed 出版商
  59. Liao C, Booker R, Morrison S, Le L. Identification of hair shaft progenitors that create a niche for hair pigmentation. Genes Dev. 2017;31:744-756 pubmed 出版商
  60. Shin J, Choi D, Sohn K, Kim J, Im M, Lee Y, et al. Targeted deletion of Crif1 in mouse epidermis impairs skin homeostasis and hair morphogenesis. Sci Rep. 2017;7:44828 pubmed 出版商
  61. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed 出版商
  62. Liu J, Hu F, Tang J, Tang S, Xia K, Wu S, et al. Homemade-device-induced negative pressure promotes wound healing more efficiently than VSD-induced positive pressure by regulating inflammation, proliferation and remodeling. Int J Mol Med. 2017;39:879-888 pubmed 出版商
  63. Tao L, Xiang D, Xie Y, Bronson R, Li Z. Induced p53 loss in mouse luminal cells causes clonal expansion and development of mammary tumours. Nat Commun. 2017;8:14431 pubmed 出版商
  64. Scheele C, Hannezo E, Muraro M, Zomer A, Langedijk N, van Oudenaarden A, et al. Identity and dynamics of mammary stem cells during branching morphogenesis. Nature. 2017;542:313-317 pubmed 出版商
  65. Anderson P, Lynch T, Engelhardt J. Multipotent Myoepithelial Progenitor Cells Are Born Early during Airway Submucosal Gland Development. Am J Respir Cell Mol Biol. 2017;56:716-726 pubmed 出版商
  66. Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed 出版商
  67. Hopkinson B, Klitgaard M, Petersen O, Villadsen R, Rønnov Jessen L, Kim J. Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype. Oncotarget. 2017;8:10580-10593 pubmed 出版商
  68. Britschgi A, Duss S, Kim S, Couto J, Brinkhaus H, Koren S, et al. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 2017;541:541-545 pubmed 出版商
  69. Sørensen K, Meldgaard T, Melchjorsen C, Fridriksdottir A, Pedersen H, Petersen O, et al. Upregulation of Mrps18a in breast cancer identified by selecting phage antibody libraries on breast tissue sections. BMC Cancer. 2017;17:19 pubmed 出版商
  70. Nguyen K, Lee E, Yue Y, Stork J, Pock L, North J, et al. Human polyomavirus 6 and 7 are associated with pruritic and dyskeratotic dermatoses. J Am Acad Dermatol. 2017;76:932-940.e3 pubmed 出版商
  71. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  72. Goreczny G, Ouderkirk Pecone J, Olson E, Krendel M, Turner C. Hic-5 remodeling of the stromal matrix promotes breast tumor progression. Oncogene. 2017;36:2693-2703 pubmed 出版商
  73. Shatirishvili M, Burk A, Franz C, Pace G, Kastilan T, Breuhahn K, et al. Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress. Cell Death Dis. 2016;7:e2461 pubmed 出版商
  74. Liu B, Tai Y, Achanta S, Kaelberer M, Caceres A, Shao X, et al. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy. Proc Natl Acad Sci U S A. 2016;113:E7572-E7579 pubmed
  75. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  76. Lin J, Kumari S, Kim C, Van T, Wachsmuth L, Polykratis A, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature. 2016;540:124-128 pubmed 出版商
  77. Pamarthy S, Mao L, Katara G, Fleetwood S, Kulshreshta A, Gilman Sachs A, et al. The V-ATPase a2 isoform controls mammary gland development through Notch and TGF-β signaling. Cell Death Dis. 2016;7:e2443 pubmed 出版商
  78. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  79. Hsieh M, Wang H, Lee Y, Ko J, Chang Y. Reevaluation of MAML2 fusion-negative mucoepidermoid carcinoma: a subgroup being actually hyalinizing clear cell carcinoma of the salivary gland with EWSR1 translocation. Hum Pathol. 2017;61:9-18 pubmed 出版商
  80. Zhang X, Hou W, Epperly M, Rigatti L, Wang H, Franicola D, et al. Evolution of malignant plasmacytoma cell lines from K14E7 Fancd2-/- mouse long-term bone marrow cultures. Oncotarget. 2016;7:68449-68472 pubmed 出版商
  81. Altmeier S, Toska A, Sparber F, Teijeira A, Halin C, LeibundGut Landmann S. IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa. PLoS Pathog. 2016;12:e1005882 pubmed 出版商
  82. Iacovides D, Rizki G, Lapathitis G, Strati K. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes. Stem Cell Res Ther. 2016;7:98 pubmed 出版商
  83. Smirnova N, Schamberger A, Nayakanti S, Hatz R, Behr J, Eickelberg O. Detection and quantification of epithelial progenitor cell populations in human healthy and IPF lungs. Respir Res. 2016;17:83 pubmed 出版商
  84. Berens E, Sharif G, Schmidt M, Yan G, Shuptrine C, Weiner L, et al. Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene. 2017;36:593-605 pubmed 出版商
  85. Dai Y, Miao Y, Wu W, Li Y, D Errico F, Su W, et al. Ablation of Liver X receptors ? and ? leads to spontaneous peripheral squamous cell lung cancer in mice. Proc Natl Acad Sci U S A. 2016;113:7614-9 pubmed 出版商
  86. Dianati E, Poiraud J, Weber Ouellette A, Plante I. Connexins, E-cadherin, Claudin-7 and ?-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol. 2016;416:52-68 pubmed 出版商
  87. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  88. Kuga T, Sasaki M, Mikami T, Miake Y, Adachi J, Shimizu M, et al. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci Rep. 2016;6:26557 pubmed 出版商
  89. Ni T, Kuperwasser C. Premature polyadenylation of MAGI3 produces a dominantly-acting oncogene in human breast cancer. elife. 2016;5: pubmed 出版商
  90. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  91. Terakawa J, Rocchi A, Serna V, Bottinger E, Graff J, Kurita T. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol. 2016;30:783-95 pubmed 出版商
  92. Stewart M, Plante I, Penuela S, Laird D. Loss of Panx1 Impairs Mammary Gland Development at Lactation: Implications for Breast Tumorigenesis. PLoS ONE. 2016;11:e0154162 pubmed 出版商
  93. Wierzbicka J, Zmijewski M, Antoniewicz J, Sobjanek M, Slominski A. Differentiation of Keratinocytes Modulates Skin HPA Analog. J Cell Physiol. 2017;232:154-66 pubmed 出版商
  94. Yang S, Sun Y, Geng Z, Ma K, Sun X, Fu X. Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype. Int J Mol Med. 2016;37:1263-73 pubmed 出版商
  95. Nair S, Zhang X, Chiang H, Jahid M, Wang Y, Garza P, et al. Genetic suppression reveals DNA repair-independent antagonism between BRCA1 and COBRA1 in mammary gland development. Nat Commun. 2016;7:10913 pubmed 出版商
  96. Haikala H, Klefström J, Eilers M, Wiese K. MYC-induced apoptosis in mammary epithelial cells is associated with repression of lineage-specific gene signatures. Cell Cycle. 2016;15:316-23 pubmed 出版商
  97. Crompton R, Williams H, Ansell D, Campbell L, Holden K, Cruickshank S, et al. Oestrogen promotes healing in a bacterial LPS model of delayed cutaneous wound repair. Lab Invest. 2016;96:439-49 pubmed 出版商
  98. Mardaryev A, Liu B, Rapisarda V, Poterlowicz K, Malashchuk I, Rudolf J, et al. Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium. J Cell Biol. 2016;212:77-89 pubmed 出版商
  99. Mandasari M, Sawangarun W, Katsube K, Kayamori K, Yamaguchi A, Sakamoto K. A facile one-step strategy for the generation of conditional knockout mice to explore the role of Notch1 in oroesophageal tumorigenesis. Biochem Biophys Res Commun. 2016;469:761-7 pubmed 出版商
  100. Gopal K, Gowtham M, Sachin S, Ravishankar Ram M, Shankar E, Kamarul T. Attrition of Hepatic Damage Inflicted by Angiotensin II with α-Tocopherol and β-Carotene in Experimental Apolipoprotein E Knock-out Mice. Sci Rep. 2015;5:18300 pubmed 出版商
  101. Schosserer M, Reynoso R, Wally V, Jug B, Kantner V, Weilner S, et al. Urine is a novel source of autologous mesenchymal stem cells for patients with epidermolysis bullosa. BMC Res Notes. 2015;8:767 pubmed 出版商
  102. Ou L, Fang L, Tang H, Qiao H, Zhang X, Wang Z. Dickkopf Wnt signaling pathway inhibitor 1 regulates the differentiation of mouse embryonic stem cells in vitro and in vivo. Mol Med Rep. 2016;13:720-30 pubmed 出版商
  103. Shin H, Pei Z, Martinez K, Rivera Viñas J, Méndez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59 pubmed 出版商
  104. Stempin S, Engel A, Winkler N, Buhrke T, Lampen A. Morphological and molecular characterization of the human breast epithelial cell line M13SV1 and its tumorigenic derivatives M13SV1-R2-2 and M13SV1-R2-N1. Cancer Cell Int. 2015;15:110 pubmed 出版商
  105. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  106. Fridriksdottir A, Kim J, Villadsen R, Klitgaard M, Hopkinson B, Petersen O, et al. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun. 2015;6:8786 pubmed 出版商
  107. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  108. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  109. Pajoohesh Ganji A, Pal Ghosh S, Tadvalkar G, Stepp M. K14 + compound niches are present on the mouse cornea early after birth and expand after debridement wounds. Dev Dyn. 2016;245:132-43 pubmed 出版商
  110. Stewart M, Bechberger J, Welch I, Naus C, Laird D. Cx26 knockout predisposes the mammary gland to primary mammary tumors in a DMBA-induced mouse model of breast cancer. Oncotarget. 2015;6:37185-99 pubmed 出版商
  111. Abou Kheir W, Eid A, El Merahbi R, Assaf R, Daoud G. A Unique Expression of Keratin 14 in a Subset of Trophoblast Cells. PLoS ONE. 2015;10:e0139939 pubmed 出版商
  112. Kajimura J, Ito R, Manley N, Hale L. Optimization of Single- and Dual-Color Immunofluorescence Protocols for Formalin-Fixed, Paraffin-Embedded Archival Tissues. J Histochem Cytochem. 2016;64:112-24 pubmed 出版商
  113. Todhunter M, Jee N, Hughes A, Coyle M, Cerchiari A, Farlow J, et al. Programmed synthesis of three-dimensional tissues. Nat Methods. 2015;12:975-81 pubmed 出版商
  114. Koren S, Reavie L, Couto J, De Silva D, Stadler M, Roloff T, et al. PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature. 2015;525:114-8 pubmed 出版商
  115. Wu Y, Feng G, Song J, Zhang Y, Yu Y, Huang L, et al. TrAmplification of Human Dental Follicle Cells by piggyBac Transposon - Mediated Reversible Immortalization System. PLoS ONE. 2015;10:e0130937 pubmed 出版商
  116. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed 出版商
  117. Cheung S, Boey Y, Koh V, Thike A, Lim J, Iqbal J, et al. Role of epithelial-mesenchymal transition markers in triple-negative breast cancer. Breast Cancer Res Treat. 2015;152:489-98 pubmed 出版商
  118. Joshi P, Waterhouse P, Kannan N, Narala S, Fang H, Di Grappa M, et al. RANK Signaling Amplifies WNT-Responsive Mammary Progenitors through R-SPONDIN1. Stem Cell Reports. 2015;5:31-44 pubmed 出版商
  119. Koh V, Lim J, Thike A, Cheok P, Thu M, Tan V, et al. Characteristics and behaviour of screen-detected ductal carcinoma in situ of the breast: comparison with symptomatic patients. Breast Cancer Res Treat. 2015;152:293-304 pubmed 出版商
  120. Gromova I, Gromov P, Honma N, Kumar S, Rimm D, Talman M, et al. High level PHGDH expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy. Mol Oncol. 2015;9:1636-54 pubmed 出版商
  121. Swaminathan T, Basheer V, Kumar R, Kathirvelpandian A, Sood N, Jena J. Establishment and characterization of fin-derived cell line from ornamental carp, Cyprinus carpio koi, for virus isolation in India. In Vitro Cell Dev Biol Anim. 2015;51:705-13 pubmed 出版商
  122. Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed 出版商
  123. Kershaw S, Cummings J, Morris K, Tugwood J, Dive C. Optimisation of immunofluorescence methods to determine MCT1 and MCT4 expression in circulating tumour cells. BMC Cancer. 2015;15:387 pubmed 出版商
  124. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  125. Hines W, Yaswen P, Bissell M. Modelling breast cancer requires identification and correction of a critical cell lineage-dependent transduction bias. Nat Commun. 2015;6:6927 pubmed 出版商
  126. Maeda M, Kanai N, Kobayashi S, Hosoi T, Takagi R, Ohki T, et al. Endoscopic cell sheet transplantation device developed by using a 3-dimensional printer and its feasibility evaluation in a porcine model. Gastrointest Endosc. 2015;82:147-52 pubmed 出版商
  127. Sood N, Chaudhary D, Pradhan P, Verma D, Raja Swaminathan T, Kushwaha B, et al. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim. 2015;51:787-96 pubmed 出版商
  128. Maity G, De A, Das A, Banerjee S, Sarkar S, Banerjee S. Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition. Lab Invest. 2015;95:702-17 pubmed 出版商
  129. Matsusaki M, Fujimoto K, Shirakata Y, Hirakawa S, Hashimoto K, Akashi M. Development of full-thickness human skin equivalents with blood and lymph-like capillary networks by cell coating technology. J Biomed Mater Res A. 2015;103:3386-96 pubmed 出版商
  130. Savci Heijink C, Halfwerk H, Hooijer G, Horlings H, Wesseling J, van de Vijver M. Retrospective analysis of metastatic behaviour of breast cancer subtypes. Breast Cancer Res Treat. 2015;150:547-57 pubmed 出版商
  131. Islam S, Mokhtari R, Noman A, Uddin M, Rahman M, Azadi M, et al. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer. Mol Carcinog. 2016;55:537-51 pubmed 出版商
  132. Ahmed H, Abdul Gader Suliman R, Abd El Aziz M, Alshammari F. Immunohistochemical expression of cytokeratins and epithelial membrane protein 2 in nasopharyngeal carcinoma and its potential implications. Asian Pac J Cancer Prev. 2015;16:653-6 pubmed
  133. Oon M, Thike A, Tan S, Tan P. Cancer stem cell and epithelial-mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast. Breast Cancer Res Treat. 2015;150:31-41 pubmed 出版商
  134. Muscatello L, Sarli G, Beha G, Asproni P, Millanta F, Poli A, et al. Validation of tissue microarray for molecular profiling of canine and feline mammary tumours. J Comp Pathol. 2015;152:153-60 pubmed 出版商
  135. Zheng L, Cardaci S, Jerby L, MacKenzie E, Sciacovelli M, Johnson T, et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat Commun. 2015;6:6001 pubmed 出版商
  136. Green A, Caracappa D, Benhasouna A, Alshareeda A, Nolan C, Macmillan R, et al. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res Treat. 2015;149:353-62 pubmed 出版商
  137. Tozbikian G, Brogi E, Kadota K, Catalano J, Akram M, Patil S, et al. Mesothelin expression in triple negative breast carcinomas correlates significantly with basal-like phenotype, distant metastases and decreased survival. PLoS ONE. 2014;9:e114900 pubmed 出版商
  138. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed 出版商
  139. BaÅŸak K, KiroÄŸlu K. Multiple oncocytic cystadenoma with intraluminal crystalloids in parotid gland: case report. Medicine (Baltimore). 2014;93:e246 pubmed 出版商
  140. DiTommaso T, Cottle D, Pearson H, Schlüter H, Kaur P, Humbert P, et al. Keratin 76 is required for tight junction function and maintenance of the skin barrier. PLoS Genet. 2014;10:e1004706 pubmed 出版商
  141. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  142. Pattabiraman C, Hong S, Gunasekharan V, Pranatharthi A, Bajaj J, Srivastava S, et al. CD66+ cells in cervical precancers are partially differentiated progenitors with neoplastic traits. Cancer Res. 2014;74:6682-92 pubmed 出版商
  143. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  144. Contreras Jurado C, García Serrano L, Martínez Fernández M, Ruiz Llorente L, Paramio J, Aranda A. Impaired hair growth and wound healing in mice lacking thyroid hormone receptors. PLoS ONE. 2014;9:e108137 pubmed 出版商
  145. Cottle D, Ursino G, Ip S, Jones L, DiTommaso T, Hacking D, et al. Fetal inhibition of inflammation improves disease phenotypes in harlequin ichthyosis. Hum Mol Genet. 2015;24:436-49 pubmed 出版商
  146. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed 出版商
  147. Kuroda N, Fujishima N, Hayes M, Moritani S, Ichihara S. Encapsulated papillary carcinoma, apocrine type, of the breast. Malays J Pathol. 2014;36:139-43 pubmed
  148. Sajin M, Luchian M, Hodorogea Prisăcaru A, Dumitru A, Pătraşcu O, Costache D, et al. Trichilemmal carcinoma - a rare cutaneous malignancy: report of two cases. Rom J Morphol Embryol. 2014;55:687-91 pubmed
  149. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  150. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  151. Ouyang H, Xue Y, Lin Y, Zhang X, Xi L, Patel S, et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature. 2014;511:358-61 pubmed 出版商
  152. Kutten J, McGovern D, Hobson C, Luffy S, Nieponice A, Tobita K, et al. Decellularized tracheal extracellular matrix supports epithelial migration, differentiation, and function. Tissue Eng Part A. 2015;21:75-84 pubmed 出版商
  153. Kim C, Pasparakis M. Epidermal p65/NF-?B signalling is essential for skin carcinogenesis. EMBO Mol Med. 2014;6:970-83 pubmed 出版商
  154. Kaisani A, Delgado O, Fasciani G, Kim S, Wright W, Minna J, et al. Branching morphogenesis of immortalized human bronchial epithelial cells in three-dimensional culture. Differentiation. 2014;87:119-26 pubmed 出版商
  155. Balk Møller E, Kim J, Hopkinson B, Timmermans Wielenga V, Petersen O, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol. 2014;184:1198-208 pubmed 出版商
  156. Motomura K, Sumino H, Noguchi A, Horinouchi T, Nakanishi K. Sentinel nodes identified by computed tomography-lymphography accurately stage the axilla in patients with breast cancer. BMC Med Imaging. 2013;13:42 pubmed 出版商
  157. Kidwai F, Cao T, Lu K. Differentiation of epidermal keratinocytes from human embryonic stem cells. Methods Mol Biol. 2014;1195:13-22 pubmed 出版商
  158. Yasuno K, Nishiyama S, Kobayashi R, Yoshimura H, Takahashi K, Omachi T, et al. Proliferative lesions of intra-epidermal cytokeratin CAM5.2-positive cells in canine nipples. J Comp Pathol. 2014;150:18-26 pubmed 出版商
  159. Bulysheva A, Bowlin G, Petrova S, Yeudall W. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater. 2013;8:055009 pubmed 出版商
  160. Motomura K, Izumi T, Tateishi S, Sumino H, Noguchi A, Horinouchi T, et al. Correlation between the area of high-signal intensity on SPIO-enhanced MR imaging and the pathologic size of sentinel node metastases in breast cancer patients with positive sentinel nodes. BMC Med Imaging. 2013;13:32 pubmed 出版商
  161. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  162. Vlug E, van de Ven R, Vermeulen J, Bult P, van Diest P, Derksen P. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer. Cell Oncol (Dordr). 2013;36:375-84 pubmed 出版商
  163. Dai J, Brooks Y, Lefort K, Getsios S, Dotto G. The retinoid-related orphan receptor ROR? promotes keratinocyte differentiation via FOXN1. PLoS ONE. 2013;8:e70392 pubmed 出版商
  164. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed 出版商
  165. Sjödahl G, Lövgren K, Lauss M, Patschan O, Gudjonsson S, Chebil G, et al. Toward a molecular pathologic classification of urothelial carcinoma. Am J Pathol. 2013;183:681-91 pubmed 出版商
  166. Ohta K, Taki M, Ogawa I, Ono S, Mizuta K, Fujimoto S, et al. Malignant ossifying fibromyxoid tumor of the tongue: case report and review of the literature. Head Face Med. 2013;9:16 pubmed 出版商
  167. Hughes M, Jiang T, Lin S, Leung Y, Kobielak K, Widelitz R, et al. Disrupted ectodermal organ morphogenesis in mice with a conditional histone deacetylase 1, 2 deletion in the epidermis. J Invest Dermatol. 2014;134:24-32 pubmed 出版商
  168. Nassiri F, Scheithauer B, Corwin D, Kaplan H, Mayberg M, Cusimano M, et al. Invasive thymoma metastatic to the cavernous sinus. Surg Neurol Int. 2013;4:74 pubmed 出版商
  169. Xing C, Fu X, Sun X, Guo P, Li M, Dong J. Different expression patterns and functions of acetylated and unacetylated Klf5 in the proliferation and differentiation of prostatic epithelial cells. PLoS ONE. 2013;8:e65538 pubmed 出版商
  170. Yockey L, Demehri S, Turkoz M, Turkoz A, Ahern P, Jassim O, et al. The absence of a microbiota enhances TSLP expression in mice with defective skin barrier but does not affect the severity of their allergic inflammation. J Invest Dermatol. 2013;133:2714-2721 pubmed 出版商
  171. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  172. Weli S, Aamelfot M, Dale O, Koppang E, Falk K. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells. Virol J. 2013;10:5 pubmed 出版商
  173. Beha G, Brunetti B, Asproni P, Muscatello L, Millanta F, Poli A, et al. Molecular portrait-based correlation between primary canine mammary tumor and its lymph node metastasis: possible prognostic-predictive models and/or stronghold for specific treatments?. BMC Vet Res. 2012;8:219 pubmed 出版商
  174. Beha G, Sarli G, Brunetti B, Sassi F, Ferrara D, Benazzi C. Morphology of the myoepithelial cell: immunohistochemical characterization from resting to motile phase. ScientificWorldJournal. 2012;2012:252034 pubmed 出版商
  175. Krolewski R, Packard A, Schwob J. Global expression profiling of globose basal cells and neurogenic progression within the olfactory epithelium. J Comp Neurol. 2013;521:833-59 pubmed 出版商
  176. Lv S, Song Y, Xu J, Shu H, Zhou Z, An N, et al. A novel TP53 somatic mutation involved in the pathogenesis of pediatric choroid plexus carcinoma. Med Sci Monit. 2012;18:CS37-41 pubmed
  177. Sohn W, Gwon G, An C, Moon C, Bae Y, Yamamoto H, et al. Morphological evidences in circumvallate papilla and von Ebners' gland development in mice. Anat Cell Biol. 2011;44:274-83 pubmed 出版商
  178. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106:508-16 pubmed 出版商
  179. Tompkins D, Besnard V, Lange A, Wert S, Keiser A, Smith A, et al. Sox2 is required for maintenance and differentiation of bronchiolar Clara, ciliated, and goblet cells. PLoS ONE. 2009;4:e8248 pubmed 出版商
  180. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed 出版商
  181. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed 出版商
  182. Rodriguez F, Scheithauer B, Giannini C, Bryant S, Jenkins R. Epithelial and pseudoepithelial differentiation in glioblastoma and gliosarcoma: a comparative morphologic and molecular genetic study. Cancer. 2008;113:2779-89 pubmed 出版商
  183. Boone J, van Hillegersberg R, van Diest P, Offerhaus G, Rinkes I, Kate F. Validation of tissue microarray technology in squamous cell carcinoma of the esophagus. Virchows Arch. 2008;452:507-14 pubmed 出版商
  184. Goldstein N, Decker D, Severson D, Schell S, Vicini F, Margolis J, et al. Molecular classification system identifies invasive breast carcinoma patients who are most likely and those who are least likely to achieve a complete pathologic response after neoadjuvant chemotherapy. Cancer. 2007;110:1687-96 pubmed
  185. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed
  186. Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol. 2004;24:7072-81 pubmed
  187. Song S, Park S, Kim S, Suh Y. Oncocytic adrenocortical carcinomas: a pathological and immunohistochemical study of four cases in comparison with conventional adrenocortical carcinomas. Pathol Int. 2004;54:603-10 pubmed
  188. Chung C, Parker J, Karaca G, Wu J, Funkhouser W, Moore D, et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell. 2004;5:489-500 pubmed
  189. Kokenyesi R, Murray K, Benshushan A, Huntley E, Kao M. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol. 2003;89:60-72 pubmed