这是一篇来自已证抗体库的有关人类 细胞角蛋白18 (cytokeratin 18) 的综述,是根据187篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合细胞角蛋白18 抗体。
细胞角蛋白18 同义词: CK-18; CYK18; K18

赛默飞世尔
小鼠 单克隆(DC10)
  • 免疫组化-石蜡切片; 人类; 图 5i
赛默飞世尔细胞角蛋白18抗体(Invitrogen, MA5-12104)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5i). Sci Adv (2022) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6b
赛默飞世尔细胞角蛋白18抗体(eBioscience, 53-9003-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6b). Commun Biol (2022) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2, 4a, 4b
赛默飞世尔细胞角蛋白18抗体(InVitrogen, MA5-13156)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2, 4a, 4b). Mol Oncol (2022) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2b
赛默飞世尔细胞角蛋白18抗体(Lab Vision, MS-343-P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2b). Sci Adv (2021) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
赛默飞世尔细胞角蛋白18抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上. Nat Commun (2021) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 4a
赛默飞世尔细胞角蛋白18抗体(eBioscience, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 猕猴; 0.2 ug/ml; 图 4g
赛默飞世尔细胞角蛋白18抗体(Thermo Fisher, 41-9003-82)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为0.2 ug/ml (图 4g). Science (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
赛默飞世尔细胞角蛋白18抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Nat Cell Biol (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 图 4, 5
赛默飞世尔细胞角蛋白18抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). Breast Cancer Res (2019) ncbi
小鼠 单克隆(LDK18)
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔细胞角蛋白18抗体(eBioscience, 53-9815-82)被用于被用于流式细胞仪在人类样本上 (图 s1a). Nephron (2019) ncbi
小鼠 单克隆(RGE53)
  • 免疫细胞化学; 斑马鱼; 图 1e
赛默飞世尔细胞角蛋白18抗体(Invitrogen, MA1-06326)被用于被用于免疫细胞化学在斑马鱼样本上 (图 1e). Cell (2019) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 人类; 图 s1b
赛默飞世尔细胞角蛋白18抗体(Thermo Fischer, MA5-13203)被用于被用于免疫细胞化学在人类样本上 (图 s1b). Sci Rep (2017) ncbi
小鼠 单克隆(5D3)
  • 其他; 人类; 图 s1
赛默飞世尔细胞角蛋白18抗体(Thermo Fisher, MA5-14088)被用于被用于其他在人类样本上 (图 s1). Cell Chem Biol (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔细胞角蛋白18抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 3d
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, AE1-AE3)被用于被用于免疫组化在人类样本上 (图 3d). Case Rep Pathol (2016) ncbi
小鼠 单克隆(DC-10)
  • 免疫组化-石蜡切片; 人类; 图 1b
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 2e
赛默飞世尔细胞角蛋白18抗体(Thermo Fisher, DC10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b), 被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2e). Sci Rep (2016) ncbi
小鼠 单克隆(DC10)
  • 免疫组化-石蜡切片; 人类; 图 1b
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 2e
赛默飞世尔细胞角蛋白18抗体(Thermo Fisher, DC10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b), 被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2e). Sci Rep (2016) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3d
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, MA5-13203)被用于被用于免疫细胞化学在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 5b
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5b). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(DC10)
  • 免疫细胞化学; 人类; 图 3g
  • 免疫印迹; 人类; 图 3h
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, DC10)被用于被用于免疫细胞化学在人类样本上 (图 3g) 和 被用于免疫印迹在人类样本上 (图 3h). Sci Rep (2016) ncbi
小鼠 单克隆(DC-10)
  • 免疫细胞化学; 人类; 图 3g
  • 免疫印迹; 人类; 图 3h
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, DC10)被用于被用于免疫细胞化学在人类样本上 (图 3g) 和 被用于免疫印迹在人类样本上 (图 3h). Sci Rep (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔细胞角蛋白18抗体(ThermoFisher Scientific, MA5-13156)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Future Oncol (2016) ncbi
小鼠 单克隆(DC-10)
  • 免疫印迹; 人类; 图 5
赛默飞世尔细胞角蛋白18抗体(Thermofisher, MS-142-P)被用于被用于免疫印迹在人类样本上 (图 5). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(DC10)
  • 免疫印迹; 人类; 图 5
赛默飞世尔细胞角蛋白18抗体(Thermofisher, MS-142-P)被用于被用于免疫印迹在人类样本上 (图 5). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 s3
赛默飞世尔细胞角蛋白18抗体(分子探针, 985542A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3). Microbiome (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, MA5-13203)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔细胞角蛋白18抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Pathol Res Pract (2015) ncbi
小鼠 单克隆(5D3)
  • 免疫细胞化学; 人类; 1:50; 图 5
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, MS-743-S)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 小鼠; 1:100; 表 2
赛默飞世尔细胞角蛋白18抗体(eBioscience, 41-9003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 2
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 2). Diagn Cytopathol (2015) ncbi
小鼠 单克隆(5D3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, 5D3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 鲤
赛默飞世尔细胞角蛋白18抗体(生活技术, MA5-13156)被用于被用于免疫细胞化学在鲤样本上. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 1 ul
赛默飞世尔细胞角蛋白18抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上浓度为1 ul. Nanomedicine (2015) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, 4545)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫印迹; 人类
赛默飞世尔细胞角蛋白18抗体(Thermo Fisher Scientific, MA5-13203)被用于被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(DC10)
  • 免疫细胞化学; 人类; 图 s10
赛默飞世尔细胞角蛋白18抗体(Neomarkers/Thermo, DC10)被用于被用于免疫细胞化学在人类样本上 (图 s10). Nat Commun (2015) ncbi
小鼠 单克隆(DC-10)
  • 免疫细胞化学; 人类; 图 s10
赛默飞世尔细胞角蛋白18抗体(Neomarkers/Thermo, DC10)被用于被用于免疫细胞化学在人类样本上 (图 s10). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
赛默飞世尔细胞角蛋白18抗体(Invitrogen, AE1/AE3)被用于. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 10-20 ug/ml
赛默飞世尔细胞角蛋白18抗体(Lab.Vision, Ab-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10-20 ug/ml. Asian Pac J Cancer Prev (2015) ncbi
小鼠 单克隆(5D3)
  • 免疫组化; 人类; 1:100
赛默飞世尔细胞角蛋白18抗体(Neomarkers, MS 743-S)被用于被用于免疫组化在人类样本上浓度为1:100. Histopathology (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔细胞角蛋白18抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔细胞角蛋白18抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛默飞世尔细胞角蛋白18抗体(ThermoFisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Development (2015) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(DC-10)
  • 免疫组化; 人类; 1:100
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, DC10)被用于被用于免疫组化在人类样本上浓度为1:100. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(DC10)
  • 免疫组化; 人类; 1:100
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, DC10)被用于被用于免疫组化在人类样本上浓度为1:100. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔细胞角蛋白18抗体(Neo Markers, MS343)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Comp Med (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔细胞角蛋白18抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔细胞角蛋白18抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(DC10)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔细胞角蛋白18抗体(NeoMarker, MS-142R7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Digestion (2014) ncbi
小鼠 单克隆(DC-10)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔细胞角蛋白18抗体(NeoMarker, MS-142R7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Digestion (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔细胞角蛋白18抗体(Thermo Fisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔细胞角蛋白18抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Histopathology (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类
赛默飞世尔细胞角蛋白18抗体(Thermo, AE1/AE3)被用于被用于免疫组化在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔细胞角蛋白18抗体(Thermo Fisher, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Biomed Mater (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔细胞角蛋白18抗体(Thermoelectron, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔细胞角蛋白18抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
domestic rabbit 单克隆(E431-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5d
赛默飞世尔细胞角蛋白18抗体(Thermo, E431-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5d). Oncogene (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔细胞角蛋白18抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 1
赛默飞世尔细胞角蛋白18抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 1). Head Face Med (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔细胞角蛋白18抗体(Zymed, AE1-AE3)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Surg Neurol Int (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 2
赛默飞世尔细胞角蛋白18抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 大西洋鲑鱼; 1:50; 图 2
赛默飞世尔细胞角蛋白18抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在大西洋鲑鱼样本上浓度为1:50 (图 2). Virol J (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔细胞角蛋白18抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Med Sci Monit (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔细胞角蛋白18抗体(Thermo Scientific, MS-343)被用于被用于免疫组化-石蜡切片在小鼠样本上. Anat Cell Biol (2011) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔细胞角蛋白18抗体(Labvision, MS-149)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Br J Cancer (2012) ncbi
小鼠 单克隆(5D3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔细胞角蛋白18抗体(Neomarkers, MS 743-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. PLoS ONE (2011) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔细胞角蛋白18抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔细胞角蛋白18抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔细胞角蛋白18抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔细胞角蛋白18抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔细胞角蛋白18抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cancer (2008) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 图 5
赛默飞世尔细胞角蛋白18抗体(Lab Vision, MS-343-P)被用于被用于免疫印迹在人类样本上 (图 5). Int J Cancer (2005) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔细胞角蛋白18抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔细胞角蛋白18抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:80; 表 1
赛默飞世尔细胞角蛋白18抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (表 1). Pathol Int (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔细胞角蛋白18抗体(Zymed, AE1/AE3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Gynecol Oncol (2003) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab133263)被用于被用于免疫印迹在人类样本上. iScience (2022) ncbi
小鼠 单克隆(C-04)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). Burns Trauma (2022) ncbi
小鼠 单克隆(C-04)
  • 流式细胞仪; pigs ; 图 4b
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab52459)被用于被用于流式细胞仪在pigs 样本上 (图 4b). Animals (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR17347)
  • 流式细胞仪; 小鼠; 图 5a
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab181597)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; 小鼠; 图 s2b
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫细胞化学在小鼠样本上 (图 s2b). Front Immunol (2021) ncbi
domestic rabbit 单克隆(EPR17347)
  • 免疫组化; 小鼠; 1:500; 图 2b
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(abcam, ab181597)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2b). Cell Transplant (2021) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; 小鼠; 图 s1b
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, Ab668)被用于被用于免疫细胞化学在小鼠样本上 (图 s1b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 图 5e, 6g
  • 免疫印迹; 人类; 1:1000; 图 2a, 2c
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab133263)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5e, 6g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 2c). Oncogenesis (2021) ncbi
小鼠 单克隆(C-04)
  • 免疫组化-石蜡切片; 人类; 图 2d
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2d) 和 被用于免疫印迹在人类样本上 (图 3a). Front Cell Dev Biol (2020) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; 牛; 1:1000; 图 1a
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫细胞化学在牛样本上浓度为1:1000 (图 1a). Anim Reprod Sci (2020) ncbi
小鼠 单克隆(C-04)
  • 免疫组化; 小鼠; 1:1000; 图 s4g
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s4g). Nat Commun (2020) ncbi
小鼠 单克隆(C-04)
  • 免疫组化-石蜡切片; 小鼠; 图 6g
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6g). Dev Cell (2019) ncbi
domestic rabbit 单克隆(SP69)
  • 免疫组化; 人类; 1:200; 图 1b
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab93741)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1b). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(E431-1)
  • 免疫印迹; 人类; 1:1000; 图 4c
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab32118)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Cell Rep (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 3
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab133263)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 3). Biosci Rep (2019) ncbi
小鼠 单克隆(C-04)
  • 免疫组化; 小鼠; 1:200; 图 2b
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, C-04)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2b). Science (2018) ncbi
小鼠 单克隆(C-04)
  • 免疫组化; 人类; 图 6i
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫组化在人类样本上 (图 6i) 和 被用于免疫印迹在人类样本上. J Biol Chem (2017) ncbi
小鼠 单克隆(C-04)
  • 免疫组化; 小鼠; 1:100; 图 3E
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3E). elife (2017) ncbi
小鼠 单克隆(C-04)
  • 免疫组化-石蜡切片; 猫; 1:100; 图 st6
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:100 (图 st6). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(C-04)
  • 免疫组化; 小鼠; 1:250
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫组化在小鼠样本上浓度为1:250. Nat Commun (2016) ncbi
小鼠 单克隆(C-04)
  • 流式细胞仪; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab52459)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). elife (2016) ncbi
小鼠 单克隆(DC 10)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab7797)被用于被用于免疫细胞化学在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Stem Cell Reports (2016) ncbi
小鼠 单克隆(C-04)
  • 免疫组化-冰冻切片; 大鼠; 图 4
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(C-04)
  • 其他; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于其他在人类样本上浓度为1:100 (图 6). Cancer Cell Int (2015) ncbi
小鼠 单克隆(C-04)
  • 流式细胞仪; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1). Prostate (2015) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; pigs ; 1:200
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(C-04)
  • 免疫组化-石蜡切片; 大鼠
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫组化-石蜡切片在大鼠样本上. Hum Reprod (2015) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; 大鼠; 1:200; 图 3d
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, Ab668)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3d). Am J Pathol (2015) ncbi
小鼠 单克隆(C-04)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3a
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3a). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(E431-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab32118)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2015) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab668)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. Sci Rep (2014) ncbi
domestic rabbit 单克隆(SP69)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab93741)被用于被用于免疫细胞化学在人类样本上. Stem Cells Dev (2014) ncbi
domestic rabbit 单克隆(E431-1)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司细胞角蛋白18抗体(Abcam, ab32118)被用于被用于免疫印迹在小鼠样本上. BMC Gastroenterol (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(0.N.352)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz, sc-70939)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Sci Rep (2021) ncbi
小鼠 单克隆(C-04)
  • 免疫组化; 小鼠; 1:200; 图 6b
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz, sc-51582)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6b). Nat Commun (2021) ncbi
小鼠 单克隆(NCL-5D3)
  • 免疫组化; 人类; 图 7e
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz, sc-52325)被用于被用于免疫组化在人类样本上 (图 7e). EMBO J (2021) ncbi
小鼠 单克隆(C-04)
  • 免疫印迹; 小鼠; 1:500; 图 1e
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz Mouse, sc-51582)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1e). Nat Commun (2020) ncbi
小鼠 单克隆(RGE53)
  • 免疫细胞化学; 人类; 1:100; 图 3d
圣克鲁斯生物技术细胞角蛋白18抗体(Santa-Cruz, sc-32329)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3d). EBioMedicine (2019) ncbi
小鼠 单克隆(C-04)
  • 免疫组化; 牛; 1:200; 图 1a
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz, sc-51582)被用于被用于免疫组化在牛样本上浓度为1:200 (图 1a). Cell Biol Int (2018) ncbi
小鼠 单克隆(DC-10)
  • 免疫组化-石蜡切片; 人类; 图 2a
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz, 6259)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(C-04)
  • 免疫组化-石蜡切片; 大鼠; 1:100
  • 免疫组化; 大鼠; 图 92
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz, sc-51582)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 和 被用于免疫组化在大鼠样本上 (图 92). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(RGE53)
  • 流式细胞仪; domestic rabbit; 1:100; 图 2
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz, sc-32329)被用于被用于流式细胞仪在domestic rabbit样本上浓度为1:100 (图 2). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(C-04)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz Biotechnologies, C-04)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Adh Migr (2017) ncbi
小鼠 单克隆(RGE53)
  • 免疫印迹; 人类; 1:100; 图 2d
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz, sc-32329)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2d). Oncotarget (2016) ncbi
小鼠 单克隆(DC-10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz Biotechnology, sc-6259)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(RGE53)
  • 免疫细胞化学; 人类; 1:400; 图 1
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz, sc-32329)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; domestic goat; 图 6
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz, sc-51582)被用于被用于免疫细胞化学在domestic goat样本上 (图 6). Anim Sci J (2016) ncbi
小鼠 单克隆(DC-10)
  • 免疫细胞化学; 人类; 1:50; 图 1
圣克鲁斯生物技术细胞角蛋白18抗体(santa Cruz, sc-6259)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(DC-10)
  • 免疫组化; 人类; 1:100; 图 3
圣克鲁斯生物技术细胞角蛋白18抗体(santa Cruz, sc-6259)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(C-04)
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz Biotechnology, sc-51582)被用于. Int J Mol Sci (2015) ncbi
小鼠 单克隆(DC-10)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 4
  • 免疫印迹; 人类; 1:2000; 图 4
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz Biotechnology, sc-6259)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Genes Cancer (2015) ncbi
小鼠 单克隆(RGE53)
  • 免疫细胞化学; 小鼠; 1:200; 图 s12
  • 免疫组化; 小鼠; 1:200; 图 6
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz Biotechnology, sc-32329)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s12) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 6). Stem Cells (2016) ncbi
小鼠 单克隆(DC-10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1
圣克鲁斯生物技术细胞角蛋白18抗体(SantaCruz, DC-10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1). Clin Cancer Res (2016) ncbi
小鼠 单克隆(DC-10)
  • 免疫组化-石蜡切片; 人类; 图 s1
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz Biotechnology, sc-6259)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(DC-10)
  • 免疫印迹; 人类; 图 2b, s1c
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz Biotechnology, sc-6259)被用于被用于免疫印迹在人类样本上 (图 2b, s1c). Endocr Relat Cancer (2015) ncbi
小鼠 单克隆(RGE53)
  • 免疫细胞化学; domestic water buffalo; 1:200; 图 6
圣克鲁斯生物技术细胞角蛋白18抗体(santa Cruz, sc-32329)被用于被用于免疫细胞化学在domestic water buffalo样本上浓度为1:200 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(RGE53)
  • 免疫印迹; 人类
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz Biotechnology, RGE53)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; 小鼠; 1:100
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz, sc-51582)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(DC-10)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术细胞角蛋白18抗体(SantaCruz, sc6259)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(DC-10)
  • 免疫细胞化学; 小鼠; 图 3
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz, sc-6259)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Methods Mol Biol (2014) ncbi
小鼠 单克隆(5F295)
  • 免疫组化-石蜡切片; 小鼠; 图 3
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz, sc-70928)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
小鼠 单克隆(DC-10)
  • 免疫印迹; 人类; 图 s4
圣克鲁斯生物技术细胞角蛋白18抗体(Santa Cruz Biotechnology, SC-6259)被用于被用于免疫印迹在人类样本上 (图 s4). PLoS ONE (2013) ncbi
BioLegend
小鼠 单克隆(C-11)
  • 免疫组化; 小鼠; 图 3a
BioLegend细胞角蛋白18抗体(Biolegend, 628602)被用于被用于免疫组化在小鼠样本上 (图 3a). Cancer Cell (2021) ncbi
小鼠 单克隆(C-11)
  • 流式细胞仪; 人类; 图 s1
BioLegend细胞角蛋白18抗体(BioLegend, 628601)被用于被用于流式细胞仪在人类样本上 (图 s1). Cytometry B Clin Cytom (2017) ncbi
小鼠 单克隆(DA-7)
  • 免疫印迹; 人类; 图 1
BioLegend细胞角蛋白18抗体(BioLegend, DA-7)被用于被用于免疫印迹在人类样本上 (图 1). Mol Biol Cell (2016) ncbi
美天旎
小鼠 单克隆(CK3-6H5)
  • 流式细胞仪; 人类
美天旎细胞角蛋白18抗体(Miltenyi Biotec, 130-118-964)被用于被用于流式细胞仪在人类样本上. Front Immunol (2022) ncbi
北京傲锐东源
小鼠 单克隆(UMAB50)
  • 免疫组化; 人类; 表 1
北京傲锐东源细胞角蛋白18抗体(OriGene, UMAB50)被用于被用于免疫组化在人类样本上 (表 1). Int J Clin Exp Pathol (2015) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(DC 10)
  • 免疫组化; 人类; 1:50; 图 2d
丹科医疗器械技术服务(上海)有限公司细胞角蛋白18抗体(Dako, M7010)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2d). PLoS ONE (2017) ncbi
小鼠 单克隆(DC 10)
  • 免疫印迹; 人类; 图 2a
丹科医疗器械技术服务(上海)有限公司细胞角蛋白18抗体(Dako, DC10)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(DC 10)
  • 免疫细胞化学; 人类; 1:100; 图 9
丹科医疗器械技术服务(上海)有限公司细胞角蛋白18抗体(Dako, M7010)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 9). Stem Cells Int (2016) ncbi
小鼠 单克隆(DC 10)
  • 免疫组化-石蜡切片; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司细胞角蛋白18抗体(DakoCytomation, M7010)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Orthop Res (2016) ncbi
小鼠 单克隆(DC 10)
  • 免疫组化; 人类; 1:200; 图 e5
丹科医疗器械技术服务(上海)有限公司细胞角蛋白18抗体(Dako, M7010)被用于被用于免疫组化在人类样本上浓度为1:200 (图 e5). Nature (2016) ncbi
小鼠 单克隆(DC 10)
  • 免疫组化-石蜡切片; 人类; 1,000 ug/ml; 图 s1
丹科医疗器械技术服务(上海)有限公司细胞角蛋白18抗体(Dako, DC-10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1,000 ug/ml (图 s1). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(DC 10)
  • 免疫印迹; 人类
丹科医疗器械技术服务(上海)有限公司细胞角蛋白18抗体(DAKO, M7010)被用于被用于免疫印迹在人类样本上. BMC Cancer (2015) ncbi
小鼠 单克隆(DC 10)
  • 免疫组化; 小鼠; 1:4000
丹科医疗器械技术服务(上海)有限公司细胞角蛋白18抗体(Dako, DC10)被用于被用于免疫组化在小鼠样本上浓度为1:4000. J Clin Invest (2015) ncbi
小鼠 单克隆(DC 10)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
丹科医疗器械技术服务(上海)有限公司细胞角蛋白18抗体(Dako, M7010)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). PLoS ONE (2014) ncbi
小鼠 单克隆(DC 10)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司细胞角蛋白18抗体(DAKO, DC 10)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(DC 10)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司细胞角蛋白18抗体(Dako, M7010)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. FASEB J (2014) ncbi
小鼠 单克隆(DC 10)
  • 免疫细胞化学; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司细胞角蛋白18抗体(DakoCytomation, DC10)被用于被用于免疫细胞化学在人类样本上浓度为1:100. BMC Cancer (2013) ncbi
Progen
小鼠 单克隆(Ks18.04)
  • 免疫组化; 小鼠; 1:10; 图 2a, 2c
Progen细胞角蛋白18抗体(Progen, 61028)被用于被用于免疫组化在小鼠样本上浓度为1:10 (图 2a, 2c). Mol Metab (2021) ncbi
小鼠 单克隆(Ks18.04)
  • 免疫细胞化学; 小鼠; 1:50; 图 1
Progen细胞角蛋白18抗体(Progen Biotechnik, 61028)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1). Mol Cell Endocrinol (2017) ncbi
小鼠 单克隆(Ks18.04)
  • 免疫印迹; 小鼠; 图 s4b
Progen细胞角蛋白18抗体(Progen Biotechnik, 61028)被用于被用于免疫印迹在小鼠样本上 (图 s4b). J Clin Invest (2016) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(DC10)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司细胞角蛋白18抗体(CST, 4548)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Commun Signal (2019) ncbi
小鼠 单克隆(DC10)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司细胞角蛋白18抗体(Cell Signaling, 4548)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
小鼠 单克隆(DC10)
  • 免疫沉淀; 人类; 1:2000; 图 6
赛信通(上海)生物试剂有限公司细胞角蛋白18抗体(Cell Signaling Technology, DC10)被用于被用于免疫沉淀在人类样本上浓度为1:2000 (图 6). Nat Commun (2015) ncbi
Exbio
小鼠 单克隆(DC-10)
  • 免疫组化; 人类; 图 6b
Exbio细胞角蛋白18抗体(Exbio, 11-107-C100)被用于被用于免疫组化在人类样本上 (图 6b). J Clin Invest (2019) ncbi
Fitzgerald Industries
单克隆(M78672)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
Fitzgerald Industries细胞角蛋白18抗体(Fitzgerald, 10R-10302)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). J Clin Invest (2018) ncbi
Vector Laboratories
  • 免疫组化; 人类; 图 s6
载体实验室细胞角蛋白18抗体(载体实验室, VP-C414)被用于被用于免疫组化在人类样本上 (图 s6). Nat Biotechnol (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2h
西格玛奥德里奇细胞角蛋白18抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2h). J Clin Invest (2021) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 1:200; 图 7f, s4
  • 免疫组化; 大鼠; 1:200; 图 2d
西格玛奥德里奇细胞角蛋白18抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化在人类样本上浓度为1:200 (图 7f, s4) 和 被用于免疫组化在大鼠样本上浓度为1:200 (图 2d). Nat Commun (2021) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Cancer Immunol Immunother (2020) ncbi
小鼠 单克隆(C-11)
  • 免疫组化; 人类; 图 7a
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2931)被用于被用于免疫组化在人类样本上 (图 7a). Cell Rep (2018) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). PLoS ONE (2018) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:50; 图 3a
西格玛奥德里奇细胞角蛋白18抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3a). Science (2018) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4a
西格玛奥德里奇细胞角蛋白18抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4a). Am J Respir Cell Mol Biol (2017) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 人类; 1:100; 图 6a
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C-11)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6a). Nat Commun (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 小鼠; 图 6
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Am J Pathol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2a
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(CY-90)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇细胞角蛋白18抗体(Sigma-Aldrich, C8541)被用于被用于免疫印迹在人类样本上 (图 1b). Proteomics (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 图 s5a
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5a). Nature (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 5h
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 5h). Biotechnol J (2017) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 图 2b
西格玛奥德里奇细胞角蛋白18抗体(Sigma, c2562)被用于被用于免疫组化在人类样本上 (图 2b). Nat Biotechnol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 人类; 1:200; 图 5
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). BMC Biol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 1:4000; 表 2
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫组化在人类样本上浓度为1:4000 (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C-2931)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(CY-90)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C8541)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(CY-90)
  • 流式细胞仪; 人类; 1:100; 图 2a
  • 免疫组化; 人类; 1:100; 图 1
西格玛奥德里奇细胞角蛋白18抗体(Sigma-Aldrich, CY90)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2a) 和 被用于免疫组化在人类样本上浓度为1:100 (图 1). J Ovarian Res (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Fluids Barriers CNS (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2). Clin Cancer Res (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:800; 图 5
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 5). Dis Model Mech (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 大鼠
西格玛奥德里奇细胞角蛋白18抗体(Sigma-Aldrich, clone C-11)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 家羊; 10 ug/ml
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2931)被用于被用于免疫细胞化学在家羊样本上浓度为10 ug/ml. Cell Reprogram (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 非洲爪蛙
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2931)被用于被用于免疫细胞化学在非洲爪蛙样本上. Zygote (2015) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:2000
西格玛奥德里奇细胞角蛋白18抗体(Sigma-Aldrich, #C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Am J Pathol (2014) ncbi
小鼠 单克隆(CY-90)
  • 免疫细胞化学; 人类; 图 S1
西格玛奥德里奇细胞角蛋白18抗体(Sigma, clone CY-90)被用于被用于免疫细胞化学在人类样本上 (图 S1). Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; 大鼠
西格玛奥德里奇细胞角蛋白18抗体(Sigma, C2562)被用于被用于免疫印迹在大鼠样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(CY-90)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
西格玛奥德里奇细胞角蛋白18抗体(Sigma-Aldrich, CY-90)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100. Biomaterials (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
西格玛奥德里奇细胞角蛋白18抗体(Sigma-Aldrich, C-11)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100. Biomaterials (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; pigs
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇细胞角蛋白18抗体(Sigma-Aldrich, C 2562)被用于被用于免疫印迹在pigs 样本上 和 被用于免疫印迹在人类样本上浓度为1:10,000. Mol Oncol (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; Gallot's lizard; 1:400
西格玛奥德里奇细胞角蛋白18抗体(Sigma-Aldrich, C2931)被用于被用于免疫组化-石蜡切片在Gallot's lizard样本上浓度为1:400. J Comp Neurol (2012) ncbi
文章列表
  1. Gonzalez M, Naimo G, Anwar T, Paol xec A, Tekula S, Kim S, et al. EZH2 T367 phosphorylation activates p38 signaling through lysine methylation to promote breast cancer progression. iScience. 2022;25:104827 pubmed 出版商
  2. Yuan X, Duan X, Li Z, Yao B, Enhejirigala -, Song W, et al. Collagen triple helix repeat containing-1 promotes functional recovery of sweat glands by inducing adjacent microvascular network reconstruction in vivo. Burns Trauma. 2022;10:tkac035 pubmed 出版商
  3. Werder R, Liu T, Abo K, Lindstrom Vautrin J, Villacorta Martin C, Huang J, et al. CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. Sci Adv. 2022;8:eabo6566 pubmed 出版商
  4. Eikmans M, van der Keur C, Anholts J, Drabbels J, van Beelen E, de Sousa Lopes S, et al. Primary Trophoblast Cultures: Characterization of HLA Profiles and Immune Cell Interactions. Front Immunol. 2022;13:814019 pubmed 出版商
  5. Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol. 2022;5:41 pubmed 出版商
  6. Bruun J, Eide P, Bergsland C, Brück O, Svindland A, Arjama M, et al. E-cadherin is a robust prognostic biomarker in colorectal cancer and low expression is associated with sensitivity to inhibitors of topoisomerase, aurora, and HSP90 in preclinical models. Mol Oncol. 2022;16:2312-2329 pubmed 出版商
  7. Jung S, Kim D, Choi Y, Kim S, Park H, Lee H, et al. Contribution of p53 in sensitivity to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Sci Rep. 2021;11:19667 pubmed 出版商
  8. Bernardini C, La Mantia D, Salaroli R, Zannoni A, Nauwelaerts N, Deferm N, et al. Development of a Pig Mammary Epithelial Cell Culture Model as a Non-Clinical Tool for Studying Epithelial Barrier-A Contribution from the IMI-ConcePTION Project. Animals (Basel). 2021;11: pubmed 出版商
  9. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  10. Ying L, Zhang M, Ma X, Si Y, Li X, Su J, et al. Macrophage LAMTOR1 Deficiency Prevents Dietary Obesity and Insulin Resistance Through Inflammation-Induced Energy Expenditure. Front Cell Dev Biol. 2021;9:672032 pubmed 出版商
  11. Barthet V, Brucoli M, Ladds M, Nössing C, Kiourtis C, Baudot A, et al. Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Sci Adv. 2021;7: pubmed 出版商
  12. Carter P, Schnell U, Chaney C, TONG B, Pan X, ye J, et al. Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. J Clin Invest. 2021;131: pubmed 出版商
  13. Chen L, Luo S, Dupre A, Vasoya R, Parthasarathy A, Aita R, et al. The nuclear receptor HNF4 drives a brush border gene program conserved across murine intestine, kidney, and embryonic yolk sac. Nat Commun. 2021;12:2886 pubmed 出版商
  14. Repenning A, Happel D, Bouchard C, Meixner M, Verel Yilmaz Y, Raifer H, et al. PRMT1 promotes the tumor suppressor function of p14ARF and is indicative for pancreatic cancer prognosis. EMBO J. 2021;40:e106777 pubmed 出版商
  15. Zheng H, Zhang Y, He J, Yang Z, Zhang R, Li L, et al. Hydroxychloroquine Inhibits Macrophage Activation and Attenuates Renal Fibrosis After Ischemia-Reperfusion Injury. Front Immunol. 2021;12:645100 pubmed 出版商
  16. Shibuya K, Watanabe M, Goto R, Zaitsu M, Ganchiku Y, Taketomi A. The Efficacy of the Hepatocyte Spheroids for Hepatocyte Transplantation. Cell Transplant. 2021;30:9636897211000014 pubmed 出版商
  17. Grunddal K, Tonack S, Egerod K, Thompson J, Petersen N, Engelstoft M, et al. Adhesion receptor ADGRG2/GPR64 is in the GI-tract selectively expressed in mature intestinal tuft cells. Mol Metab. 2021;51:101231 pubmed 出版商
  18. Zheng H, Zhang Y, Li L, Zhang R, Luo Z, Yang Z, et al. Depletion of Toll-Like Receptor-9 Attenuates Renal Tubulointerstitial Fibrosis After Ischemia-Reperfusion Injury. Front Cell Dev Biol. 2021;9:641527 pubmed 出版商
  19. Rodriguez E, Boelaars K, Brown K, Eveline Li R, Kruijssen L, Bruijns S, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun. 2021;12:1270 pubmed 出版商
  20. McGuire J, Frieling J, Lo C, Li T, Muhammad A, Lawrence H, et al. Mesenchymal stem cell-derived interleukin-28 drives the selection of apoptosis resistant bone metastatic prostate cancer. Nat Commun. 2021;12:723 pubmed 出版商
  21. Shams A, Binothman N, Boudreault J, Wang N, Shams F, Hamam D, et al. Prolactin receptor-driven combined luminal and epithelial differentiation in breast cancer restricts plasticity, stemness, tumorigenesis and metastasis. Oncogenesis. 2021;10:10 pubmed 出版商
  22. Song M, YEKU O, Rafiq S, Purdon T, Dong X, Zhu L, et al. Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat Commun. 2020;11:6298 pubmed 出版商
  23. Biasci D, Smoragiewicz M, Connell C, Wang Z, Gao Y, Thaventhiran J, et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc Natl Acad Sci U S A. 2020;117:28960-28970 pubmed 出版商
  24. Yin S, Song M, Zhao R, Liu X, Kang W, Lee J, et al. Xanthohumol Inhibits the Growth of Keratin 18-Overexpressed Esophageal Squamous Cell Carcinoma in vitro and in vivo. Front Cell Dev Biol. 2020;8:366 pubmed 出版商
  25. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  26. Costanzo Garvey D, Keeley T, Case A, Watson G, Alsamraae M, Yu Y, et al. Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer Immunol Immunother. 2020;69:1113-1130 pubmed 出版商
  27. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  28. Fu C, Mao W, Gao R, Deng Y, Gao L, Wu J, et al. Prostaglandin F2α-PTGFR signaling promotes proliferation of endometrial epithelial cells of cattle through cell cycle regulation. Anim Reprod Sci. 2020;213:106276 pubmed 出版商
  29. Zhao L, Ke H, Xu H, Wang G, Zhang H, Zou L, et al. TDP-43 facilitates milk lipid secretion by post-transcriptional regulation of Btn1a1 and Xdh. Nat Commun. 2020;11:341 pubmed 出版商
  30. Sozen B, Cox A, De Jonghe J, Bao M, Hollfelder F, Glover D, et al. Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Dev Cell. 2019;51:698-712.e8 pubmed 出版商
  31. Davaadelger B, Choi M, Singhal H, Clare S, Khan S, Kim J. BRCA1 mutation influences progesterone response in human benign mammary organoids. Breast Cancer Res. 2019;21:124 pubmed 出版商
  32. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  33. Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed 出版商
  34. Chen Y, Gonzalez M, Burman B, Zhao X, Anwar T, Tran M, et al. Mesenchymal Stem/Stromal Cell Engulfment Reveals Metastatic Advantage in Breast Cancer. Cell Rep. 2019;27:3916-3926.e5 pubmed 出版商
  35. Moamer A, Hachim I, Binothman N, Wang N, Lebrun J, Ali S. A role for kinesin-1 subunits KIF5B/KLC1 in regulating epithelial mesenchymal plasticity in breast tumorigenesis. EBioMedicine. 2019;: pubmed 出版商
  36. Bon H, Hales P, Lumb S, Holdsworth G, Johnson T, Qureshi O, et al. Spontaneous Extracellular Matrix Accumulation in a Human in vitro Model of Renal Fibrosis Is Mediated by αV Integrins. Nephron. 2019;:1-23 pubmed 出版商
  37. Wisskirchen K, Kah J, Malo A, Asen T, Volz T, Allweiss L, et al. T cell receptor grafting allows virological control of Hepatitis B virus infection. J Clin Invest. 2019;129:2932-2945 pubmed 出版商
  38. Xia P, Gütl D, Zheden V, Heisenberg C. Lateral Inhibition in Cell Specification Mediated by Mechanical Signals Modulating TAZ Activity. Cell. 2019;176:1379-1392.e14 pubmed 出版商
  39. Chen X, He Y, Xu A, Deng Z, Feng J, Lu F, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep. 2019;39: pubmed 出版商
  40. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  41. Li L, Guturi K, Gautreau B, Patel P, Saad A, Morii M, et al. Ubiquitin ligase RNF8 suppresses Notch signaling to regulate mammary development and tumorigenesis. J Clin Invest. 2018;128:4525-4542 pubmed 出版商
  42. Thyagarajan H, Lancaster J, Lira S, Ehrlich L. CCR8 is expressed by post-positive selection CD4-lineage thymocytes but is dispensable for central tolerance induction. PLoS ONE. 2018;13:e0200765 pubmed 出版商
  43. Wilen C, Lee S, Hsieh L, Orchard R, Desai C, Hykes B, et al. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science. 2018;360:204-208 pubmed 出版商
  44. Pereira E, Kedrin D, Seano G, Gautier O, Meijer E, Jones D, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018;359:1403-1407 pubmed 出版商
  45. Chen D, Yuan X, Liu L, Zhang M, Qu B, Zhen Z, et al. Mitochondrial ATAD3A regulates milk biosynthesis and proliferation of mammary epithelial cells from dairy cow via the mTOR pathway. Cell Biol Int. 2018;42:533-542 pubmed 出版商
  46. Blom S, Paavolainen L, Bychkov D, Turkki R, Mäki Teeri P, Hemmes A, et al. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci Rep. 2017;7:15580 pubmed 出版商
  47. Aprile F, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C. The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep. 2017;7:9039 pubmed 出版商
  48. Luo W, Tan P, Rodriguez M, He L, Tan K, Zeng L, et al. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J Biol Chem. 2017;292:15525-15537 pubmed 出版商
  49. Shah F, Stepan A, O Mahony A, Velichko S, Folias A, Houle C, et al. Mechanisms of Skin Toxicity Associated with Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. Cell Chem Biol. 2017;24:858-869.e5 pubmed 出版商
  50. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed 出版商
  51. Pósfai E, Petropoulos S, de Barros F, Schell J, Jurisica I, Sandberg R, et al. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. elife. 2017;6: pubmed 出版商
  52. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  53. Grzelak C, Sigglekow N, Tirnitz Parker J, Hamson E, Warren A, Maneck B, et al. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease. PLoS ONE. 2017;12:e0171480 pubmed 出版商
  54. Borghesi J, Mario L, Carreira A, Miglino M, Favaron P. Phenotype and multipotency of rabbit (Oryctolagus cuniculus) amniotic stem cells. Stem Cell Res Ther. 2017;8:27 pubmed 出版商
  55. Anderson P, Lynch T, Engelhardt J. Multipotent Myoepithelial Progenitor Cells Are Born Early during Airway Submucosal Gland Development. Am J Respir Cell Mol Biol. 2017;56:716-726 pubmed 出版商
  56. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  57. Kobayashi K, Oyama S, Kuki C, Tsugami Y, Matsunaga K, Suzuki T, et al. Distinct roles of prolactin, epidermal growth factor, and glucocorticoids in ?-casein secretion pathway in lactating mammary epithelial cells. Mol Cell Endocrinol. 2017;440:16-24 pubmed 出版商
  58. Bizzarro V, Belvedere R, Migliaro V, Romano E, Parente L, Petrella A. Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness. Cell Adh Migr. 2017;11:247-260 pubmed 出版商
  59. Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322 pubmed 出版商
  60. Yao Y, Welp T, Liu Q, Niu N, Wang X, Britto C, et al. Multiparameter Single Cell Profiling of Airway Inflammatory Cells. Cytometry B Clin Cytom. 2017;92:12-20 pubmed 出版商
  61. Ren S, Luo Y, Chen H, Warburton D, Lam H, Wang L, et al. Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization. Am J Pathol. 2016;186:3261-3272 pubmed 出版商
  62. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  63. Lamballe F, Toscano S, Conti F, Arechederra M, Baeza N, Figarella Branger D, et al. Coordination of signalling networks and tumorigenic properties by ABL in glioblastoma cells. Oncotarget. 2016;7:74747-74767 pubmed 出版商
  64. Mathieu A, Ohl Séguy E, Dubois M, Jean D, Jones C, Boudreau F, et al. Subcellular proteomics analysis of different stages of colorectal cancer cell lines. Proteomics. 2016;16:3009-3018 pubmed 出版商
  65. Kuga T, Kume H, Adachi J, Kawasaki N, Shimizu M, Hoshino I, et al. Casein kinase 1 is recruited to nuclear speckles by FAM83H and SON. Sci Rep. 2016;6:34472 pubmed 出版商
  66. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  67. Thienpont B, Steinbacher J, Zhao H, D Anna F, Kuchnio A, Ploumakis A, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537:63-68 pubmed 出版商
  68. Nakamichi R, Ito Y, Inui M, Onizuka N, Kayama T, Kataoka K, et al. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat Commun. 2016;7:12503 pubmed 出版商
  69. Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, et al. A versatile modular bioreactor platform for Tissue Engineering. Biotechnol J. 2017;12: pubmed 出版商
  70. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  71. Lesina M, Wörmann S, Morton J, Diakopoulos K, Korneeva O, Wimmer M, et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest. 2016;126:2919-32 pubmed 出版商
  72. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  73. Berens E, Sharif G, Schmidt M, Yan G, Shuptrine C, Weiner L, et al. Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene. 2017;36:593-605 pubmed 出版商
  74. Rando G, Tan C, Khaled N, Montagner A, Leuenberger N, Bertrand Michel J, et al. Glucocorticoid receptor-PPAR? axis in fetal mouse liver prepares neonates for milk lipid catabolism. elife. 2016;5: pubmed 出版商
  75. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  76. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  77. Rigden H, Alias A, Havelock T, O Donnell R, Djukanovic R, Davies D, et al. Squamous Metaplasia Is Increased in the Bronchial Epithelium of Smokers with Chronic Obstructive Pulmonary Disease. PLoS ONE. 2016;11:e0156009 pubmed 出版商
  78. Kuga T, Sasaki M, Mikami T, Miake Y, Adachi J, Shimizu M, et al. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci Rep. 2016;6:26557 pubmed 出版商
  79. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  80. Giovannini C, Minguzzi M, Genovese F, Baglioni M, Gualandi A, Ravaioli M, et al. Molecular and proteomic insight into Notch1 characterization in hepatocellular carcinoma. Oncotarget. 2016;7:39609-39626 pubmed 出版商
  81. Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS ONE. 2016;11:e0154323 pubmed 出版商
  82. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with ?-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863:2006-16 pubmed 出版商
  83. Thakkar A, Wang B, Picon Ruiz M, Buchwald P, Ince T. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157:77-90 pubmed 出版商
  84. Fujiwara M, Kanayama K, Hirokawa Y, Shiraishi T. ASF-4-1 fibroblast-rich culture increases chemoresistance and mTOR expression of pancreatic cancer BxPC-3 cells at the invasive front in vitro, and promotes tumor growth and invasion in vivo. Oncol Lett. 2016;11:2773-2779 pubmed
  85. Kakade P, Budnar S, Kalraiya R, Vaidya M. Functional Implications of O-GlcNAcylation-dependent Phosphorylation at a Proximal Site on Keratin 18. J Biol Chem. 2016;291:12003-13 pubmed 出版商
  86. Li J, Cen B, Chen S, He Y. MicroRNA-29b inhibits TGF-?1-induced fibrosis via regulation of the TGF-?1/Smad pathway in primary human endometrial stromal cells. Mol Med Rep. 2016;13:4229-37 pubmed 出版商
  87. Jung Y, Decker A, Wang J, Lee E, Kana L, Yumoto K, et al. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget. 2016;7:25698-711 pubmed 出版商
  88. Ogorevc J, Dovc P. Expression of estrogen receptor 1 and progesterone receptor in primary goat mammary epithelial cells. Anim Sci J. 2016;87:1464-1471 pubmed 出版商
  89. Ghosheh N, Olsson B, Edsbagge J, Küppers Munther B, van Giezen M, Asplund A, et al. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines. Stem Cells Int. 2016;2016:8648356 pubmed 出版商
  90. Jin F, Qiao C, Luan N, Li H. Lentivirus-mediated PHLDA2 overexpression inhibits trophoblast proliferation, migration and invasion, and induces apoptosis. Int J Mol Med. 2016;37:949-57 pubmed 出版商
  91. Trisdale S, Schwab N, Hou X, Davis J, Townson D. Molecular manipulation of keratin 8/18 intermediate filaments: modulators of FAS-mediated death signaling in human ovarian granulosa tumor cells. J Ovarian Res. 2016;9:8 pubmed 出版商
  92. Rodrigues Pinto R, Berry A, Piper Hanley K, Hanley N, Richardson S, Hoyland J. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development. J Orthop Res. 2016;34:1327-40 pubmed 出版商
  93. Hammam O, Elkhafif N, Attia Y, Mansour M, Elmazar M, Abdelsalam R, et al. Wharton's jelly-derived mesenchymal stem cells combined with praziquantel as a potential therapy for Schistosoma mansoni-induced liver fibrosis. Sci Rep. 2016;6:21005 pubmed 出版商
  94. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  95. Fujiwara S, Ohashi K, Mashiko T, Kondo H, Mizuno K. Interplay between Solo and keratin filaments is crucial for mechanical force-induced stress fiber reinforcement. Mol Biol Cell. 2016;27:954-66 pubmed 出版商
  96. Shu S, Lin C, He H, Witwicki R, Tabassum D, Roberts J, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529:413-417 pubmed 出版商
  97. Maimets M, Rocchi C, Bron R, Pringle S, Kuipers J, Giepmans B, et al. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals. Stem Cell Reports. 2016;6:150-62 pubmed 出版商
  98. Ao J, Wei C, Si Y, Luo C, Lv W, Lin Y, et al. Tudor-SN Regulates Milk Synthesis and Proliferation of Bovine Mammary Epithelial Cells. Int J Mol Sci. 2015;16:29936-47 pubmed 出版商
  99. Heller J, Kwok J, Vecino E, Martin K, Fawcett J. A Method for the Isolation and Culture of Adult Rat Retinal Pigment Epithelial (RPE) Cells to Study Retinal Diseases. Front Cell Neurosci. 2015;9:449 pubmed 出版商
  100. Fleury H, Communal L, Carmona E, Portelance L, Arcand S, Rahimi K, et al. Novel high-grade serous epithelial ovarian cancer cell lines that reflect the molecular diversity of both the sporadic and hereditary disease. Genes Cancer. 2015;6:378-398 pubmed
  101. Shin H, Pei Z, Martinez K, Rivera Viñas J, Méndez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59 pubmed 出版商
  102. Stempin S, Engel A, Winkler N, Buhrke T, Lampen A. Morphological and molecular characterization of the human breast epithelial cell line M13SV1 and its tumorigenic derivatives M13SV1-R2-2 and M13SV1-R2-N1. Cancer Cell Int. 2015;15:110 pubmed 出版商
  103. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  104. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  105. Boiko E, Maltsev D, Savicheva A, Shalepo K, Khusnutdinova T, Pozniak A, et al. Infection of Human Retinal Pigment Epithelium with Chlamydia trachomatis. PLoS ONE. 2015;10:e0141754 pubmed 出版商
  106. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  107. Hurley P, Sundi D, Shinder B, Simons B, Hughes R, Miller R, et al. Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clin Cancer Res. 2016;22:448-58 pubmed 出版商
  108. Baligar P, Mukherjee S, Kochat V, Rastogi A, Mukhopadhyay A. Molecular and Cellular Functions Distinguish Superior Therapeutic Efficiency of Bone Marrow CD45 Cells Over Mesenchymal Stem Cells in Liver Cirrhosis. Stem Cells. 2016;34:135-47 pubmed 出版商
  109. Leclerc B, Charlebois R, Chouinard G, Allard B, Pommey S, Saad F, et al. CD73 Expression Is an Independent Prognostic Factor in Prostate Cancer. Clin Cancer Res. 2016;22:158-66 pubmed 出版商
  110. Chavez J, Schweppe D, Eng J, Zheng C, Taipale A, Zhang Y, et al. Quantitative interactome analysis reveals a chemoresistant edgotype. Nat Commun. 2015;6:7928 pubmed 出版商
  111. Labouba I, Le Page C, Communal L, Kristessen T, You X, Péant B, et al. Potential Cross-Talk between Alternative and Classical NF-κB Pathways in Prostate Cancer Tissues as Measured by a Multi-Staining Immunofluorescence Co-Localization Assay. PLoS ONE. 2015;10:e0131024 pubmed 出版商
  112. Wang H, Wang L, Jerde T, Chan B, Savran C, Burcham G, et al. Characterization of autoimmune inflammation induced prostate stem cell expansion. Prostate. 2015;75:1620-31 pubmed 出版商
  113. Wardell S, Nelson E, Chao C, Alley H, McDonnell D. Evaluation of the pharmacological activities of RAD1901, a selective estrogen receptor degrader. Endocr Relat Cancer. 2015;22:713-24 pubmed 出版商
  114. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed 出版商
  115. Yuri S, Nishikawa M, Yanagawa N, Jo O, Yanagawa N. Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor. PLoS ONE. 2015;10:e0129242 pubmed 出版商
  116. Scalia C, Gendusa R, Cattoretti G. A 2-Step Laemmli and Antigen Retrieval Method Improves Immunodetection. Appl Immunohistochem Mol Morphol. 2016;24:436-46 pubmed 出版商
  117. Mohapatra S, Sandhu A, Singh K, Singla S, Chauhan M, Manik R, et al. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them. PLoS ONE. 2015;10:e0129235 pubmed 出版商
  118. Berry R, Ozdemir D, Aronow B, Lindström N, Dudnakova T, Thornburn A, et al. Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Dis Model Mech. 2015;8:903-17 pubmed 出版商
  119. Swaminathan T, Basheer V, Kumar R, Kathirvelpandian A, Sood N, Jena J. Establishment and characterization of fin-derived cell line from ornamental carp, Cyprinus carpio koi, for virus isolation in India. In Vitro Cell Dev Biol Anim. 2015;51:705-13 pubmed 出版商
  120. Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed 出版商
  121. Kershaw S, Cummings J, Morris K, Tugwood J, Dive C. Optimisation of immunofluorescence methods to determine MCT1 and MCT4 expression in circulating tumour cells. BMC Cancer. 2015;15:387 pubmed 出版商
  122. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  123. Hines W, Yaswen P, Bissell M. Modelling breast cancer requires identification and correction of a critical cell lineage-dependent transduction bias. Nat Commun. 2015;6:6927 pubmed 出版商
  124. Zhao H, Agazie Y. Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment. BMC Cancer. 2015;15:109 pubmed 出版商
  125. Sood N, Chaudhary D, Pradhan P, Verma D, Raja Swaminathan T, Kushwaha B, et al. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim. 2015;51:787-96 pubmed 出版商
  126. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  127. Mailly L, Xiao F, Lupberger J, Wilson G, Aubert P, Duong F, et al. Clearance of persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting monoclonal antibody. Nat Biotechnol. 2015;33:549-554 pubmed 出版商
  128. Xiu Y, Jiang L, Liu W. Classic biphasic pulmonary blastoma with brain and axillary metastases: a case report with molecular analysis and review of literature. Int J Clin Exp Pathol. 2015;8:983-8 pubmed
  129. Ahmed H, Abdul Gader Suliman R, Abd El Aziz M, Alshammari F. Immunohistochemical expression of cytokeratins and epithelial membrane protein 2 in nasopharyngeal carcinoma and its potential implications. Asian Pac J Cancer Prev. 2015;16:653-6 pubmed
  130. Kap M, Lam K, Ewing Graham P, Riegman P. A reference image-based method for optimization of clinical immunohistochemistry. Histopathology. 2015;67:193-205 pubmed 出版商
  131. Zheng L, Cardaci S, Jerby L, MacKenzie E, Sciacovelli M, Johnson T, et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat Commun. 2015;6:6001 pubmed 出版商
  132. Weston C, Shepherd E, Claridge L, Rantakari P, Curbishley S, Tomlinson J, et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest. 2015;125:501-20 pubmed 出版商
  133. German S, Campbell K, Thornton E, McLachlan G, Sweetman D, Alberio R. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram. 2015;17:19-27 pubmed 出版商
  134. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed 出版商
  135. BaÅŸak K, KiroÄŸlu K. Multiple oncocytic cystadenoma with intraluminal crystalloids in parotid gland: case report. Medicine (Baltimore). 2014;93:e246 pubmed 出版商
  136. Huang Y, Bertrand V, Bozukova D, Pagnoulle C, Labrugère C, De Pauw E, et al. RGD surface functionalization of the hydrophilic acrylic intraocular lens material to control posterior capsular opacification. PLoS ONE. 2014;9:e114973 pubmed 出版商
  137. Kuramoto G, Takagi S, Ishitani K, Shimizu T, Okano T, Matsui H. Preventive effect of oral mucosal epithelial cell sheets on intrauterine adhesions. Hum Reprod. 2015;30:406-16 pubmed 出版商
  138. Liu D, Yovchev M, Zhang J, Alfieri A, Tchaikovskaya T, Laconi E, et al. Identification and characterization of mesenchymal-epithelial progenitor-like cells in normal and injured rat liver. Am J Pathol. 2015;185:110-28 pubmed 出版商
  139. Morisaki T, Yashiro M, Kakehashi A, Inagaki A, Kinoshita H, Fukuoka T, et al. Comparative proteomics analysis of gastric cancer stem cells. PLoS ONE. 2014;9:e110736 pubmed 出版商
  140. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  141. Cai X, Dai Z, Reeves R, Caballero Benítez A, Duran K, Delrow J, et al. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS ONE. 2014;9:e108942 pubmed 出版商
  142. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  143. Chierchia L, Tussellino M, Guarino D, Carotenuto R, DeMarco N, Campanella C, et al. Cytoskeletal proteins associate with components of the ribosomal maturation and translation apparatus in Xenopus stage I oocytes. Zygote. 2015;23:669-82 pubmed 出版商
  144. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed 出版商
  145. Zollner G, Thueringer A, Lackner C, Fickert P, Trauner M. Alterations of canalicular ATP-binding cassette transporter expression in drug-induced liver injury. Digestion. 2014;90:81-8 pubmed 出版商
  146. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  147. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  148. Goldstein B, Goss G, Hatzistergos K, Rangel E, Seidler B, Saur D, et al. Adult c-Kit(+) progenitor cells are necessary for maintenance and regeneration of olfactory neurons. J Comp Neurol. 2015;523:15-31 pubmed 出版商
  149. Syed B, Green A, Nolan C, Morgan D, Ellis I, Cheung K. Biological characteristics and clinical outcome of triple negative primary breast cancer in older women - comparison with their younger counterparts. PLoS ONE. 2014;9:e100573 pubmed 出版商
  150. de Borja Callejas F, Martinez Anton A, Alobid I, Fuentes M, Cortijo J, Picado C, et al. Reconstituted human upper airway epithelium as 3-d in vitro model for nasal polyposis. PLoS ONE. 2014;9:e100537 pubmed 出版商
  151. Greaves E, Cousins F, Murray A, Esnal Zufiaurre A, Fassbender A, Horne A, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol. 2014;184:1930-9 pubmed 出版商
  152. Munne P, Gu Y, Tumiati M, Gao P, Koopal S, Uusivirta S, et al. TP53 supports basal-like differentiation of mammary epithelial cells by preventing translocation of deltaNp63 into nucleoli. Sci Rep. 2014;4:4663 pubmed 出版商
  153. Yang P, Baciu P, Kerrigan B, Etheridge M, Sung E, Toimil B, et al. Retinal pigment epithelial cell death by the alternative complement cascade: role of membrane regulatory proteins, calcium, PKC, and oxidative stress. Invest Ophthalmol Vis Sci. 2014;55:3012-21 pubmed 出版商
  154. Mäkelä J, Toppari J, Rivero Muller A, Ventelä S. Reconstruction of mouse testicular cellular microenvironments in long-term seminiferous tubule culture. PLoS ONE. 2014;9:e90088 pubmed 出版商
  155. Ryszawy D, Sarna M, Rak M, Szpak K, Kedracka Krok S, Michalik M, et al. Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis. 2014;35:1920-30 pubmed 出版商
  156. Gieseck R, Hannan N, Bort R, Hanley N, Drake R, Cameron G, et al. Maturation of induced pluripotent stem cell derived hepatocytes by 3D-culture. PLoS ONE. 2014;9:e86372 pubmed 出版商
  157. Liu Z, Yu N, Holz F, Yang F, Stanzel B. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837-50 pubmed 出版商
  158. Stratmann A, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, et al. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol. 2014;8:351-65 pubmed 出版商
  159. Motomura K, Sumino H, Noguchi A, Horinouchi T, Nakanishi K. Sentinel nodes identified by computed tomography-lymphography accurately stage the axilla in patients with breast cancer. BMC Med Imaging. 2013;13:42 pubmed 出版商
  160. Kidwai F, Cao T, Lu K. Differentiation of epidermal keratinocytes from human embryonic stem cells. Methods Mol Biol. 2014;1195:13-22 pubmed 出版商
  161. Bulysheva A, Bowlin G, Petrova S, Yeudall W. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater. 2013;8:055009 pubmed 出版商
  162. Motomura K, Izumi T, Tateishi S, Sumino H, Noguchi A, Horinouchi T, et al. Correlation between the area of high-signal intensity on SPIO-enhanced MR imaging and the pathologic size of sentinel node metastases in breast cancer patients with positive sentinel nodes. BMC Med Imaging. 2013;13:32 pubmed 出版商
  163. Ishikawa K, Yoshida S, Nakao S, Nakama T, Kita T, Asato R, et al. Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J. 2014;28:131-42 pubmed 出版商
  164. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  165. Rodrigues R, De Kock J, Branson S, Vinken M, Meganathan K, Chaudhari U, et al. Human skin-derived stem cells as a novel cell source for in vitro hepatotoxicity screening of pharmaceuticals. Stem Cells Dev. 2014;23:44-55 pubmed 出版商
  166. Ory V, Tassi E, Cavalli L, Sharif G, Saenz F, Baker T, et al. The nuclear coactivator amplified in breast cancer 1 maintains tumor-initiating cells during development of ductal carcinoma in situ. Oncogene. 2014;33:3033-42 pubmed 出版商
  167. Ito S, Satoh J, Matsubara T, Shah Y, Ahn S, Anderson C, et al. Cholestasis induces reversible accumulation of periplakin in mouse liver. BMC Gastroenterol. 2013;13:116 pubmed 出版商
  168. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed 出版商
  169. Ohta K, Taki M, Ogawa I, Ono S, Mizuta K, Fujimoto S, et al. Malignant ossifying fibromyxoid tumor of the tongue: case report and review of the literature. Head Face Med. 2013;9:16 pubmed 出版商
  170. Nassiri F, Scheithauer B, Corwin D, Kaplan H, Mayberg M, Cusimano M, et al. Invasive thymoma metastatic to the cavernous sinus. Surg Neurol Int. 2013;4:74 pubmed 出版商
  171. Okumura N, Akutsu H, Sugawara T, Miura T, Takezawa Y, Hosoda A, et al. ?-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells. PLoS ONE. 2013;8:e63265 pubmed 出版商
  172. Ohlund D, Franklin O, Lundberg E, Lundin C, Sund M. Type IV collagen stimulates pancreatic cancer cell proliferation, migration, and inhibits apoptosis through an autocrine loop. BMC Cancer. 2013;13:154 pubmed 出版商
  173. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  174. Shukla S, Sharma H, Abbas A, MacLennan G, Fu P, Danielpour D, et al. Upregulation of SATB1 is associated with prostate cancer aggressiveness and disease progression. PLoS ONE. 2013;8:e53527 pubmed 出版商
  175. Weli S, Aamelfot M, Dale O, Koppang E, Falk K. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells. Virol J. 2013;10:5 pubmed 出版商
  176. Lv S, Song Y, Xu J, Shu H, Zhou Z, An N, et al. A novel TP53 somatic mutation involved in the pathogenesis of pediatric choroid plexus carcinoma. Med Sci Monit. 2012;18:CS37-41 pubmed
  177. Sohn W, Gwon G, An C, Moon C, Bae Y, Yamamoto H, et al. Morphological evidences in circumvallate papilla and von Ebners' gland development in mice. Anat Cell Biol. 2011;44:274-83 pubmed 出版商
  178. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106:508-16 pubmed 出版商
  179. Romero Alemán M, Monzon Mayor M, Santos E, Lang D, Yanes C. Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny. J Comp Neurol. 2012;520:2163-84 pubmed 出版商
  180. Kap M, Smedts F, Oosterhuis W, Winther R, Christensen N, Reischauer B, et al. Histological assessment of PAXgene tissue fixation and stabilization reagents. PLoS ONE. 2011;6:e27704 pubmed 出版商
  181. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed 出版商
  182. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed 出版商
  183. Rodriguez F, Scheithauer B, Giannini C, Bryant S, Jenkins R. Epithelial and pseudoepithelial differentiation in glioblastoma and gliosarcoma: a comparative morphologic and molecular genetic study. Cancer. 2008;113:2779-89 pubmed 出版商
  184. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed
  185. Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol. 2004;24:7072-81 pubmed
  186. Song S, Park S, Kim S, Suh Y. Oncocytic adrenocortical carcinomas: a pathological and immunohistochemical study of four cases in comparison with conventional adrenocortical carcinomas. Pathol Int. 2004;54:603-10 pubmed
  187. Kokenyesi R, Murray K, Benshushan A, Huntley E, Kao M. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol. 2003;89:60-72 pubmed