这是一篇来自已证抗体库的有关人类 索蛋白 (desmin) 的综述,是根据176篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合索蛋白 抗体。
索蛋白 同义词: CDCD3; CMD1F; CSM1; CSM2; LGMD1D; LGMD1E; LGMD2R

艾博抗(上海)贸易有限公司
小鼠 单克隆(D33)
  • 免疫组化; 鸡; 1:20; 图 7a
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab8470)被用于被用于免疫组化在鸡样本上浓度为1:20 (图 7a). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab185033)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Hepatol Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6g
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab15200)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6g). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫组化; 小鼠; 图 2e
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, Ab32362)被用于被用于免疫组化在小鼠样本上 (图 2e). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab8592)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1c). Nat Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 1d
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab15200)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Sci Adv (2020) ncbi
domestic rabbit 单克隆(Y66)
  • 流式细胞仪; 人类; 1:70; 图 7p
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, Cambridge, UK, #ab32362)被用于被用于流式细胞仪在人类样本上浓度为1:70 (图 7p). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7a
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab15200)被用于被用于免疫组化在小鼠样本上 (图 7a). Biomolecules (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6a
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab15200)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6a). JACC Basic Transl Sci (2020) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s14a, s14b
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab32362)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s14a, s14b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫组化; 大鼠; 1:200; 图 6c
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab32362)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 6c). Cell Prolif (2020) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫细胞化学; 大鼠; 1:400; 图 3b
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab32362)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 3b). J Inflamm (Lond) (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2f
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab15200)被用于被用于免疫细胞化学在小鼠样本上 (图 2f). EMBO Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab15200)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Am J Pathol (2020) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫组化; 小鼠; 1:300; 图 4i, s3j
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab32362)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4i, s3j). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab15200)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4a). Nat Commun (2019) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫组化-石蜡切片; 犬; 1:100; 图 14
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab6322)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:100 (图 14). Heliyon (2019) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫细胞化学; 人类; 1:50; 图 s1a
  • 免疫印迹; 人类; 图 s1b
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab32362)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s1a) 和 被用于免疫印迹在人类样本上 (图 s1b). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 7e
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, 15200)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7e). J Biol Chem (2019) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4d
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab6322)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4d). Mol Ther (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3b
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, Ab15200)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3b). Chin Med J (Engl) (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3a
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab15200)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2b
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, Ab15200-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 4g
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab32362)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 4g). J Clin Endocrinol Metab (2017) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab185033)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 96
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab15200)被用于被用于免疫组化在大鼠样本上 (图 96). J Toxicol Pathol (2017) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫细胞化学; 小鼠; 1:50; 图 4f
  • 免疫组化; 小鼠; 1:50; 图 2g
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, Ab32362)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 4f) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 2g). Hear Res (2017) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s6f
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab32362)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s6f). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司索蛋白抗体(abcam, ab8592)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 1a). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 S1
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab15200)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 S1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1a
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab8592)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1a). Nat Commun (2016) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab6322)被用于被用于免疫印迹在小鼠样本上 (图 4). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab8592)被用于被用于免疫印迹在人类样本上 (图 3). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1c
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab15200)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1c). Invest Ophthalmol Vis Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 1
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab8592)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司索蛋白抗体(abcam, ab15200)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫组化; 小鼠; 1:50; 图 6
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab6322)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 6
  • 免疫组化; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab8592)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6) 和 被用于免疫组化在人类样本上浓度为1:100 (图 4). Development (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4a
  • 免疫细胞化学; 小鼠; 1:80; 图 s2a-g
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab8592)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4a), 被用于免疫细胞化学在小鼠样本上浓度为1:80 (图 s2a-g) 和 被用于免疫印迹在小鼠样本上 (图 6c). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab15200)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫组化; 人类; 图 1
  • 免疫细胞化学; 大鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab6322)被用于被用于免疫组化在人类样本上 (图 1) 和 被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 2). J Ophthalmol (2015) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab 6322)被用于被用于免疫印迹在人类样本上. Physiol Rep (2015) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫细胞化学; 小鼠; 图 6
艾博抗(上海)贸易有限公司索蛋白抗体(abcam, ab32362)被用于被用于免疫细胞化学在小鼠样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab6322)被用于被用于免疫组化在小鼠样本上 (图 3a). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫组化; 小鼠; 1:50; 图 2
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, Ab32362)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab15200)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). Cytotechnology (2016) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫组化-石蜡切片; 大鼠
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab6322)被用于被用于免疫组化-石蜡切片在大鼠样本上. Hypertension (2015) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab32362)被用于被用于免疫印迹在人类样本上. J Histochem Cytochem (2015) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab6322)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 表 2
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab32362)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (表 2). Toxicol Lett (2015) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab32362)被用于被用于免疫印迹在小鼠样本上 (图 3). J Proteome Res (2015) ncbi
domestic rabbit 单克隆(Y66)
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab32362)被用于被用于流式细胞仪在人类样本上. Cell Death Dis (2013) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, Ab32362)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Assoc Res Otolaryngol (2013) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab32362)被用于被用于免疫细胞化学在小鼠样本上. Nat Protoc (2013) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫细胞化学; 小鼠
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, Ab32362)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫组化在小鼠样本上浓度为1:100. J Assoc Res Otolaryngol (2013) ncbi
domestic rabbit 单克隆(Y66)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, Ab32362)被用于被用于免疫细胞化学在人类样本上. Stem Cells (2013) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫印迹; 小鼠; 图 3h
艾博抗(上海)贸易有限公司索蛋白抗体(Abcam, ab6322)被用于被用于免疫印迹在小鼠样本上 (图 3h). Cell Death Differ (2012) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1d
赛默飞世尔索蛋白抗体(ThermoFisher, RB-9014)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1d). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7d
赛默飞世尔索蛋白抗体(Thermo Fisher, RB-9014-P0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7d). Hepatology (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
  • 免疫组化-石蜡切片; 人类; 图 s4
赛默飞世尔索蛋白抗体(Thermo Fisher, PA5-16705)被用于被用于免疫组化在小鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上 (图 s4). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 表 1
赛默飞世尔索蛋白抗体(ThermoFisher, RB9014P)被用于被用于免疫组化在小鼠样本上浓度为1:200 (表 1). Appl Physiol Nutr Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7
赛默飞世尔索蛋白抗体(ThermoFisher Scientific, PA1-37556)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:50; 图 s9d
赛默飞世尔索蛋白抗体(Neomarkers/Thermo, RB-9014-P)被用于被用于免疫组化在人类样本上浓度为1:50 (图 s9d). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1g
赛默飞世尔索蛋白抗体(Thermo Scientific, RB-9014)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1g). Nat Commun (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔索蛋白抗体(Thermo Fisher, D33)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Exp Ther Med (2016) ncbi
小鼠 单克隆(D9)
  • 免疫印迹; 大鼠; 1:1000; 图 s1
赛默飞世尔索蛋白抗体(Thermo Fisher Scientific, MA1-06401)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s1). Endocrinology (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔索蛋白抗体(Lab Vision, RB-9014-P;)被用于. J Clin Invest (2015) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类; 1:50
赛默飞世尔索蛋白抗体(Thermo Scientific, D33)被用于被用于免疫组化在人类样本上浓度为1:50. Pol J Pathol (2014) ncbi
小鼠 单克隆(D33)
  • 免疫细胞化学; 人类
赛默飞世尔索蛋白抗体(Thermo Scientific, MS-376)被用于被用于免疫细胞化学在人类样本上. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类
赛默飞世尔索蛋白抗体(Thermo, d33)被用于被用于免疫组化在人类样本上. J Pak Med Assoc (2014) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类; 1:200; 图 1
赛默飞世尔索蛋白抗体(Lab Vision, MS-376-S1)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1). PLoS Pathog (2012) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类
赛默飞世尔索蛋白抗体(Neomarkers, D33)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上. Pathol Res Pract (2005) ncbi
圣克鲁斯生物技术
小鼠 单克隆(RD301)
  • 免疫组化; 小鼠; 1:100; 图 3s1a, 4s1
圣克鲁斯生物技术索蛋白抗体(Santa Cruz, sc-23879)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3s1a, 4s1). elife (2022) ncbi
小鼠 单克隆(RD301)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
圣克鲁斯生物技术索蛋白抗体(Santa Cruz, SC-23879)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). Front Immunol (2021) ncbi
小鼠 单克隆(RD301)
  • 免疫细胞化学; 小鼠; 图 9c
  • 免疫印迹; 小鼠; 图 9d
圣克鲁斯生物技术索蛋白抗体(Santa Cruz, sc-23879)被用于被用于免疫细胞化学在小鼠样本上 (图 9c) 和 被用于免疫印迹在小鼠样本上 (图 9d). Cell Death Dis (2021) ncbi
小鼠 单克隆(RD301)
  • 免疫印迹; 人类; 1:500; 图 2s1b
圣克鲁斯生物技术索蛋白抗体(SCBT, sc-23879)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2s1b). elife (2019) ncbi
小鼠 单克隆(RD301)
  • 免疫细胞化学; 小鼠; 图 6E
圣克鲁斯生物技术索蛋白抗体(Santa cruz, RD301)被用于被用于免疫细胞化学在小鼠样本上 (图 6E). PLoS ONE (2017) ncbi
小鼠 单克隆(RD301)
  • 免疫组化; 人类; 1:500
圣克鲁斯生物技术索蛋白抗体(Santa Cruz, sc-23879)被用于被用于免疫组化在人类样本上浓度为1:500. Oncol Lett (2016) ncbi
小鼠 单克隆(RD301)
  • 免疫沉淀; 大鼠
  • 免疫印迹; 大鼠; 1:100
圣克鲁斯生物技术索蛋白抗体(Santa Cruz, sc -23879)被用于被用于免疫沉淀在大鼠样本上 和 被用于免疫印迹在大鼠样本上浓度为1:100. IUBMB Life (2015) ncbi
小鼠 单克隆(RD301)
  • 免疫沉淀; 大鼠
  • 免疫印迹; 大鼠; 1:100
圣克鲁斯生物技术索蛋白抗体(Santa Cruz Biotechnology, sc-23879)被用于被用于免疫沉淀在大鼠样本上 和 被用于免疫印迹在大鼠样本上浓度为1:100. Arch Biochem Biophys (2014) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 2 ug/ml; 图 4c
安迪生物R&D索蛋白抗体(R&D, AF3844)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为2 ug/ml (图 4c). J Cell Commun Signal (2021) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(D33)
  • 免疫组化; 人类; 1:20; 图 5b
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(DAKO, D33)被用于被用于免疫组化在人类样本上浓度为1:20 (图 5b). Genes (Basel) (2021) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 小鼠; 图 s1b
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫组化在小鼠样本上 (图 s1b). Cells (2021) ncbi
小鼠 单克隆(D33)
  • 免疫细胞化学; 人类; 1:1000; 图 4f
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(DAKO, M0760)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4f). elife (2020) ncbi
小鼠 单克隆(D33)
  • 免疫细胞化学; 人类; 图 3c
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫细胞化学在人类样本上 (图 3c). Stem Cells Int (2019) ncbi
小鼠 单克隆(D33)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3d
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3d). J Clin Invest (2017) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 大鼠; 图 95
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, IR606)被用于被用于免疫组化在大鼠样本上 (图 95). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(D33)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 6i
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 6i). Am J Pathol (2017) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 图 6b
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 6b). Sci Rep (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1d
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(DakoCytomation, M0760)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1d). Histochem Cell Biol (2017) ncbi
小鼠 单克隆(D33)
  • 免疫细胞化学; 小鼠; 图 7a
  • 免疫印迹; 人类; 图 8a
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫细胞化学在小鼠样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 8a). Mol Biol Cell (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-冰冻切片; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(D33)
  • 免疫细胞化学; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(DAKO, D33)被用于被用于免疫细胞化学在人类样本上 (表 1). Stem Cells Int (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 图 4c
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4c). Oncol Lett (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(DAKO, D33)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Neuropathology (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 3
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 3). Acta Neuropathol (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Histopathology (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:80; 图 3c
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (图 3c). Mol Cancer (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2b
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, IR606)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2b). Ultrastruct Pathol (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-冰冻切片; 小鼠; 图 2
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(DAKO, D33)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). EMBO Mol Med (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类; 1:100; 表 1
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). J Anat (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 4
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 4). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-自由浮动切片; 小鼠; 1:800
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(DAKO, D33)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:800. Cell Tissue Res (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 3
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 3). Ann Diagn Pathol (2015) ncbi
小鼠 单克隆(D33)
  • 免疫细胞化学; 人类; 1:50; 图 2
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(D33)
  • 免疫细胞化学; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M076029)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Female Pelvic Med Reconstr Surg (2015) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 大鼠; 图 7
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 7). EMBO Mol Med (2015) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(DAKO, D33)被用于被用于免疫组化在人类样本上 (表 1). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Pediatr Surg (2015) ncbi
小鼠 单克隆(D33)
  • 免疫印迹; 人类
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类; 1:100
  • 免疫印迹; 人类
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(D33)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Death Differ (2015) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:75
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:75. Mod Pathol (2015) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化在人类样本上浓度为1:400. Pathol Res Pract (2015) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 小鼠; 图 s2
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M-0760)被用于被用于免疫组化在小鼠样本上 (图 s2). FASEB J (2015) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化-石蜡切片在人类样本上. Virchows Arch (2014) ncbi
小鼠 单克隆(D33)
  • 免疫细胞化学; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Cell Reprogram (2014) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(DAKO, D33)被用于被用于免疫组化在人类样本上. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类; 1:4000
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M076001)被用于被用于免疫组化在人类样本上浓度为1:4000. Histopathology (2014) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类; 1:200; 图 s2b
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s2b). J Urol (2014) ncbi
小鼠 单克隆(D33)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M076029)被用于被用于免疫细胞化学在人类样本上. Biol Reprod (2014) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(DAKO, D33)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Neuropathology (2014) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(D33)
  • 免疫印迹; 小鼠; 1:250; 表 3
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33 M0760)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (表 3). Comput Struct Biotechnol J (2013) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫组化在人类样本上浓度为1:200. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化在人类样本上浓度为1:50. Fetal Pediatr Pathol (2014) ncbi
小鼠 单克隆(D33)
  • 免疫细胞化学; 家羊; 图 5
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(dako, D33)被用于被用于免疫细胞化学在家羊样本上 (图 5). J Tissue Eng Regen Med (2016) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Pathol Int (2013) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类; 1:400; 表 1
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化在人类样本上浓度为1:400 (表 1). Int J Surg Pathol (2014) ncbi
小鼠 单克隆(D33)
  • 免疫组化-冰冻切片; 小鼠
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Am Soc Nephrol (2013) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫细胞化学在人类样本上浓度为1:50. Am J Pathol (2013) ncbi
小鼠 单克隆(D33)
  • 免疫细胞化学; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(DAKO, D33)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Mitochondrion (2013) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 小鼠; 1:75
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, M0760)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:75. Biomaterials (2013) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:250
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako, D33)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250. Histopathology (2013) ncbi
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(DAKO, D33)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Neuropathology (2013) ncbi
小鼠 单克隆(D33)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司索蛋白抗体(Dako Cytomation, D33)被用于被用于免疫组化在人类样本上浓度为1:100. Pathol Int (2011) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D93F5)
  • 免疫组化; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司索蛋白抗体(Cell Signaling, 5332)被用于被用于免疫组化在小鼠样本上 (图 5a). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(D93F5)
  • 免疫组化; 小鼠; 1:300; 图 2c
赛信通(上海)生物试剂有限公司索蛋白抗体(Cell Signaling Technology, 5332)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2c). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(D93F5)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司索蛋白抗体(Cell Signaling Technology, 5332)被用于被用于免疫组化在小鼠样本上浓度为1:100. Redox Biol (2021) ncbi
domestic rabbit 单克隆(D93F5)
  • 免疫细胞化学; 小鼠; 1:200; 图 6g
赛信通(上海)生物试剂有限公司索蛋白抗体(Cell Signaling, D93F5)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6g). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D93F5)
  • 免疫印迹; 人类; 图 4c
  • 免疫组化; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司索蛋白抗体(CST, 5332)被用于被用于免疫印迹在人类样本上 (图 4c) 和 被用于免疫组化在小鼠样本上 (图 1c). Front Oncol (2020) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司索蛋白抗体(CST, 4024S)被用于. J Appl Physiol (1985) (2019) ncbi
domestic rabbit 单克隆(D93F5)
  • 免疫细胞化学; 小鼠; 1:100; 图 2b
赛信通(上海)生物试剂有限公司索蛋白抗体(Cell Signaling, 5332)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2b). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(D93F5)
  • 免疫细胞化学; 人类; 1:250; 图 2a
赛信通(上海)生物试剂有限公司索蛋白抗体(Cell Signalling, D93F5)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 2a). elife (2016) ncbi
domestic rabbit 单克隆(D93F5)
  • 免疫印迹; pigs ; 图 1e
赛信通(上海)生物试剂有限公司索蛋白抗体(Cell Signaling, 5332)被用于被用于免疫印迹在pigs 样本上 (图 1e). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D93F5)
  • 免疫组化-冰冻切片; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司索蛋白抗体(Cell Signaling, 5332)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Hum Mol Genet (2015) ncbi
domestic rabbit 单克隆(D93F5)
  • 免疫细胞化学; 小鼠; 1:50
赛信通(上海)生物试剂有限公司索蛋白抗体(Cell Signaling Technology, 5332)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Ups J Med Sci (2015) ncbi
domestic rabbit 单克隆(D93F5)
  • 免疫细胞化学; 人类; 1:250; 表 4
赛信通(上海)生物试剂有限公司索蛋白抗体(New England BioLabs, 5332S)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (表 4). J Vis Exp (2015) ncbi
Biocare Medical
小鼠 单克隆(D33)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4f
Biocare Medical索蛋白抗体(Biocare, CM036C)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4f). Am J Hum Genet (2016) ncbi
Progen
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:100; 图 2
Progen索蛋白抗体(Progen Biotechnik, 10570)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:100 (图 2). Acta Neuropathol (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(DE-U-10)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
西格玛奥德里奇索蛋白抗体(Sigma-Aldrich, D1033)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 斑马鱼; 1:100; 图 4s1b
西格玛奥德里奇索蛋白抗体(Sigma Aldrich, D8281)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:100 (图 4s1b). elife (2020) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫组化-石蜡切片; 大鼠; 1:80; 图 2a
西格玛奥德里奇索蛋白抗体(Sigma, D1033)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:80 (图 2a). J Histochem Cytochem (2017) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫细胞化学; 人类; 图 6
西格玛奥德里奇索蛋白抗体(Sigma-Aldrich, D1033)被用于被用于免疫细胞化学在人类样本上 (图 6). Int J Mol Med (2017) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫印迹; 大鼠; 1:7000; 图 5b
西格玛奥德里奇索蛋白抗体(Sigma-Aldrich, DE-U-10)被用于被用于免疫印迹在大鼠样本上浓度为1:7000 (图 5b). Mol Cell Biochem (2017) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫细胞化学; 人类; 1:1000; 图 2
西格玛奥德里奇索蛋白抗体(Sigma, D1033)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). Skelet Muscle (2016) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 4
西格玛奥德里奇索蛋白抗体(Sigma, D1033)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 4). Acta Neuropathol (2016) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇索蛋白抗体(Sigma, D1033)被用于被用于免疫细胞化学在人类样本上 (图 2). Stem Cells Int (2016) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇索蛋白抗体(Sigma-Aldrich, D1033)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Int J Mol Med (2016) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫组化-冰冻切片; 小鼠; 图 3
西格玛奥德里奇索蛋白抗体(Sigma, D1033)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). elife (2016) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫细胞化学; 小鼠; 1:50; 图 s2a-g
西格玛奥德里奇索蛋白抗体(Sigma Aldrich, D1033)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s2a-g). Biol Open (2016) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫细胞化学; 小鼠; 1:500; 图 7a
西格玛奥德里奇索蛋白抗体(Sigma Aldrich, D1033)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 7a). PLoS ONE (2015) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇索蛋白抗体(BD Biosciences, D1033)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫组化; 大鼠; 1:80
西格玛奥德里奇索蛋白抗体(Sigma, DEU10)被用于被用于免疫组化在大鼠样本上浓度为1:80. Gene (2014) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫印迹; 牛; 1:5000
西格玛奥德里奇索蛋白抗体(Sigma, D1033)被用于被用于免疫印迹在牛样本上浓度为1:5000. Meat Sci (2014) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫组化; 家羊; 0.3 ug/ml
西格玛奥德里奇索蛋白抗体(Sigma, D1033)被用于被用于免疫组化在家羊样本上浓度为0.3 ug/ml. Mech Dev (2014) ncbi
小鼠 单克隆(DE-U-10)
  • 免疫组化-石蜡切片; 小鼠; 图 3
西格玛奥德里奇索蛋白抗体(Sigma, D1033)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(DE-R-11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3a
徕卡显微系统(上海)贸易有限公司索蛋白抗体(Leica Novacastra, NCL-L-Des-Der11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3a). Nat Commun (2020) ncbi
小鼠 单克隆(DE-R-11)
  • 免疫组化-石蜡切片; black ferret; 1:500; 图 8c
徕卡显微系统(上海)贸易有限公司索蛋白抗体(Leica Biosystems, DES-DERII-L-CE)被用于被用于免疫组化-石蜡切片在black ferret样本上浓度为1:500 (图 8c). Am J Pathol (2018) ncbi
小鼠 单克隆(DE-R-11)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 5b
徕卡显微系统(上海)贸易有限公司索蛋白抗体(Novocastra, NCL-Des)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 5b). Am J Hum Genet (2016) ncbi
单克隆(DE-R-11)
  • 免疫组化-石蜡切片; 家羊; 图 12
徕卡显微系统(上海)贸易有限公司索蛋白抗体(Leica Biosystems, PA0033)被用于被用于免疫组化-石蜡切片在家羊样本上 (图 12). Vet Pathol (2016) ncbi
小鼠 单克隆(DE-R-11)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 4
徕卡显微系统(上海)贸易有限公司索蛋白抗体(Novocastra, NCL-DES-DER11)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(DE-R-11)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司索蛋白抗体(Novocastra, DE-R-11)被用于被用于免疫组化-石蜡切片在人类样本上. Hum Pathol (2015) ncbi
小鼠 单克隆(DE-R-11)
  • 免疫组化-石蜡切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司索蛋白抗体(Leica, DER11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Nat Genet (2014) ncbi
小鼠 单克隆(DE-R-11)
  • 免疫组化-石蜡切片; 人类; 图 s2
徕卡显微系统(上海)贸易有限公司索蛋白抗体(Leica Bond, DE-R-11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s2). Pathol Res Pract (2014) ncbi
小鼠 单克隆(DE-R-11)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司索蛋白抗体(Leica, DE-R-11)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Gynecol Pathol (2014) ncbi
小鼠 单克隆(DE-R-11)
  • 免疫印迹; 小鼠; 1:800; 图 7
徕卡显微系统(上海)贸易有限公司索蛋白抗体(Leica, NCL-DER11)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 7). Hum Mol Genet (2014) ncbi
碧迪BD
小鼠 单克隆(RD301)
  • 免疫细胞化学; 小鼠; 1:100
碧迪BD索蛋白抗体(BD Bioscience, 550626)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Development (2016) ncbi
小鼠 单克隆(RD301)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫细胞化学; 人类
碧迪BD索蛋白抗体(BD Biosciences, 550626)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于免疫细胞化学在人类样本上. J Transl Med (2015) ncbi
文章列表
  1. Van Meenen D, Doege A, Alefeld E, Haase A, Beier M, Kiefer T, et al. ADAM10 and ADAM17-Novel Players in Retinoblastoma Carcinogenesis. Int J Mol Sci. 2022;23: pubmed 出版商
  2. Yoshioka N, Kurose M, Yano M, Tran D, Okuda S, Mori Ochiai Y, et al. Isoform-specific mutation in Dystonin-b gene causes late-onset protein aggregate myopathy and cardiomyopathy. elife. 2022;11: pubmed 出版商
  3. O Brien A, Zhou T, White T, Medford A, Chen L, Kyritsi K, et al. FGF1 Signaling Modulates Biliary Injury and Liver Fibrosis in the Mdr2-/- Mouse Model of Primary Sclerosing Cholangitis. Hepatol Commun. 2022;6:1574-1588 pubmed 出版商
  4. Hua X, Ge S, Zhang M, Mo F, Zhang L, Zhang J, et al. Pathogenic Roles of CXCL10 in Experimental Autoimmune Prostatitis by Modulating Macrophage Chemotaxis and Cytokine Secretion. Front Immunol. 2021;12:706027 pubmed 出版商
  5. Generali M, Satheesha S, Bode P, Wanner D, Schafer B, Casanova E. High Frequency of Tumor Propagating Cells in Fusion-Positive Rhabdomyosarcoma. Genes (Basel). 2021;12: pubmed 出版商
  6. Langdon C, Gadek K, Garcia M, Evans M, Reed K, Bush M, et al. Synthetic essentiality between PTEN and core dependency factor PAX7 dictates rhabdomyosarcoma identity. Nat Commun. 2021;12:5520 pubmed 出版商
  7. Wei X, Meel M, Breur M, Bugiani M, Hulleman E, Phoenix T. Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas. Acta Neuropathol Commun. 2021;9:142 pubmed 出版商
  8. Song R, Zhao S, Xu Y, Hu J, Ke S, Li F, et al. MRTF-A regulates myoblast commitment to differentiation by targeting PAX7 during muscle regeneration. J Cell Mol Med. 2021;25:8645-8661 pubmed 出版商
  9. Maier J, Rogg M, Helmstädter M, Sammarco A, Walz G, Werner M, et al. A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis. Cells. 2021;10: pubmed 出版商
  10. Williams H, Wadey K, Frankow A, Blythe H, Forbes T, Johnson J, et al. Aneurysm severity is suppressed by deletion of CCN4. J Cell Commun Signal. 2021;15:421-432 pubmed 出版商
  11. Morelli C, Castaldi L, Brown S, Streich L, Websdale A, Taberner F, et al. Identification of a population of peripheral sensory neurons that regulates blood pressure. Cell Rep. 2021;35:109191 pubmed 出版商
  12. Tan S, Liu X, Chen L, Wu X, Tao L, Pan X, et al. Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis. 2021;12:474 pubmed 出版商
  13. Komeno M, Pang X, Shimizu A, Molla M, Yasuda Yamahara M, Kume S, et al. Cardio- and reno-protective effects of dipeptidyl peptidase III in diabetic mice. J Biol Chem. 2021;296:100761 pubmed 出版商
  14. Catalano A, Adlesic M, Kaltenbacher T, Klar R, Albers J, Seidel P, et al. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel). 2021;13: pubmed 出版商
  15. Rosenthal S, Liu X, Ganguly S, Dhar D, Pasillas M, Ricciardelli E, et al. Heterogeneity of HSCs in a Mouse Model of NASH. Hepatology. 2021;74:667-685 pubmed 出版商
  16. Dorrier C, Aran D, Haenelt E, Sheehy R, Hoi K, Pintarić L, et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci. 2021;24:234-244 pubmed 出版商
  17. Li S, Zhu Z, Xue M, Pan X, Tong G, Yi X, et al. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice. Redox Biol. 2021;40:101859 pubmed 出版商
  18. Ganassi M, Badodi S, Wanders K, Zammit P, Hughes S. Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis. elife. 2020;9: pubmed 出版商
  19. Kim K, Wu Y, Yoon J, Adachi K, Wu G, Velychko S, et al. Reprogramming competence of OCT factors is determined by transactivation domains. Sci Adv. 2020;6: pubmed 出版商
  20. Fulgenzi G, Hong Z, Tomassoni Ardori F, Barella L, Becker J, Barrick C, et al. Novel metabolic role for BDNF in pancreatic β-cell insulin secretion. Nat Commun. 2020;11:1950 pubmed 出版商
  21. Gremlich S, Roth Kleiner M, Equey L, Fytianos K, Schittny J, Cremona T. Tenascin-C inactivation impacts lung structure and function beyond lung development. Sci Rep. 2020;10:5118 pubmed 出版商
  22. Calandrini C, Schutgens F, Oka R, Margaritis T, Candelli T, Mathijsen L, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat Commun. 2020;11:1310 pubmed 出版商
  23. Addinsall A, Forgan L, McRae N, Kelly R, McDonald P, McNeill B, et al. Treatment of Dystrophic mdx Mice with an ADAMTS-5 Specific Monoclonal Antibody Increases the Ex Vivo Strength of Isolated Fast Twitch Hindlimb Muscles. Biomolecules. 2020;10: pubmed 出版商
  24. Butts B, Ahmed M, Bajaj N, Cox Powell P, Pat B, Litovsky S, et al. Reduced Left Atrial Emptying Fraction and Chymase Activation in Pathophysiology of Primary Mitral Regurgitation. JACC Basic Transl Sci. 2020;5:109-122 pubmed 出版商
  25. Fu X, Qie J, Fu Q, Chen J, Jin Y, Ding Z. miR-20a-5p/TGFBR2 Axis Affects Pro-inflammatory Macrophages and Aggravates Liver Fibrosis. Front Oncol. 2020;10:107 pubmed 出版商
  26. Choi I, Lim H, Cho H, Oh Y, Chou B, Bai H, et al. Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. elife. 2020;9: pubmed 出版商
  27. Kim J, Fei L, Yin W, Coquenlorge S, Rao Bhatia A, Zhang X, et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun. 2020;11:334 pubmed 出版商
  28. Yang W, Chen Z, Ma X, Ouyang X, Fang J, Wei H. Co-overexpression of VEGF and GDNF in adipose-derived stem cells optimizes therapeutic effect in neurogenic erectile dysfunction model. Cell Prolif. 2020;53:e12756 pubmed 出版商
  29. Wang G, Huang T, Hu Y, Wang K, Shi H, Yin L, et al. Corpus cavernosum smooth muscle cell dysfunction and phenotype transformation are related to erectile dysfunction in prostatitis rats with chronic prostatitis/chronic pelvic pain syndrome. J Inflamm (Lond). 2020;17:2 pubmed 出版商
  30. Bella P, Farini A, Banfi S, Parolini D, Tonna N, Meregalli M, et al. Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Mol Med. 2020;12:e11019 pubmed 出版商
  31. Zhang X, Olsavszky V, Yin Y, Wang B, Engleitner T, Ollinger R, et al. Angiocrine Hepatocyte Growth Factor Signaling Controls Physiological Organ and Body Size and Dynamic Hepatocyte Proliferation to Prevent Liver Damage during Regeneration. Am J Pathol. 2020;190:358-371 pubmed 出版商
  32. Selvaraj S, Mondragón González R, Xu B, Magli A, Kim H, Laine J, et al. Screening identifies small molecules that enhance the maturation of human pluripotent stem cell-derived myotubes. elife. 2019;8: pubmed 出版商
  33. Yung T, Poon F, Liang M, Coquenlorge S, McGaugh E, Hui C, et al. Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. Nat Commun. 2019;10:4647 pubmed 出版商
  34. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  35. Ma X, Chang H, Wang Z, Xu S, Peng X, Zhang J, et al. Differential activation of the calpain system involved in individualized adaptation of different fast-twitch muscles in hibernating Daurian ground squirrels. J Appl Physiol (1985). 2019;127:328-341 pubmed 出版商
  36. Powell P, Wei C, Fu L, Pat B, Bradley W, Collawn J, et al. Chymase uptake by cardiomyocytes results in myosin degradation in cardiac volume overload. Heliyon. 2019;5:e01397 pubmed 出版商
  37. Dmitrieva R, Lelyavina T, Komarova M, Galenko V, Ivanova O, Tikanova P, et al. Skeletal Muscle Resident Progenitor Cells Coexpress Mesenchymal and Myogenic Markers and Are Not Affected by Chronic Heart Failure-Induced Dysregulations. Stem Cells Int. 2019;2019:5690345 pubmed 出版商
  38. Niu F, Liao K, Hu G, Sil S, Callen S, Guo M, et al. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol. 2019;218:700-721 pubmed 出版商
  39. Liu Z, Li C, Kang N, Malhi H, Shah V, Maiers J. Transforming growth factor β (TGFβ) cross-talk with the unfolded protein response is critical for hepatic stellate cell activation. J Biol Chem. 2019;294:3137-3151 pubmed 出版商
  40. de Lázaro I, Yilmazer A, Nam Y, Qubisi S, Razak F, Degens H, et al. Non-viral, Tumor-free Induction of Transient Cell Reprogramming in Mouse Skeletal Muscle to Enhance Tissue Regeneration. Mol Ther. 2019;27:59-75 pubmed 出版商
  41. Hou X, Dong H, Sun L, Yang M, Cheng H, Chen Y. Purinergic 2X7 Receptor is Involved in the Podocyte Damage of Obesity-Related Glomerulopathy via Activating Nucleotide-Binding and Oligomerization Domain-Like Receptor Protein 3 Inflammasome. Chin Med J (Engl). 2018;131:2713-2725 pubmed 出版商
  42. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  43. Greicius G, Kabiri Z, Sigmundsson K, Liang C, Bunte R, Singh M, et al. PDGFR?+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc Natl Acad Sci U S A. 2018;115:E3173-E3181 pubmed 出版商
  44. Rotti P, Xie W, Poudel A, Yi Y, Sun X, Tyler S, et al. Pancreatic and Islet Remodeling in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Knockout Ferrets. Am J Pathol. 2018;188:876-890 pubmed 出版商
  45. La Porta S, Roth L, Singhal M, Mogler C, Spegg C, Schieb B, et al. Endothelial Tie1-mediated angiogenesis and vascular abnormalization promote tumor progression and metastasis. J Clin Invest. 2018;128:834-845 pubmed 出版商
  46. Nofi C, Bogatyryov Y, Dedkov E. Preservation of Functional Microvascular Bed Is Vital for Long-Term Survival of Cardiac Myocytes Within Large Transmural Post-Myocardial Infarction Scar. J Histochem Cytochem. 2017;:22155417741640 pubmed 出版商
  47. Papizan J, Garry G, Brezprozvannaya S, McAnally J, Bassel Duby R, Liu N, et al. Deficiency in Kelch protein Klhl31 causes congenital myopathy in mice. J Clin Invest. 2017;127:3730-3740 pubmed 出版商
  48. Krag T, Ruiz Ruiz C, Vissing J. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle. J Clin Endocrinol Metab. 2017;102:2690-2700 pubmed 出版商
  49. Zhu X, Yuan X, Wang M, Fang Y, Liu Y, Zhang X, et al. A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. J Biol Chem. 2017;292:9409-9419 pubmed 出版商
  50. Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest. 2017;127:1254-1270 pubmed 出版商
  51. Park S, Choi Y, Jung N, Kim J, Oh S, Yu Y, et al. Autophagy induction in the skeletal myogenic differentiation of human tonsil-derived mesenchymal stem cells. Int J Mol Med. 2017;39:831-840 pubmed 出版商
  52. Kovacs A, Kalász J, Pasztor E, Toth A, Papp Z, Dhalla N, et al. Myosin heavy chain and cardiac troponin T damage is associated with impaired myofibrillar ATPase activity contributing to sarcomeric dysfunction in Ca2+-paradox rat hearts. Mol Cell Biochem. 2017;430:57-68 pubmed 出版商
  53. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  54. Barateau A, Vadrot N, Vicart P, Ferreiro A, Mayer M, Heron D, et al. A Novel Lamin A Mutant Responsible for Congenital Muscular Dystrophy Causes Distinct Abnormalities of the Cell Nucleus. PLoS ONE. 2017;12:e0169189 pubmed 出版商
  55. Zhang J, Chen S, Cai J, Hou Z, Wang X, Kachelmeier A, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system. Hear Res. 2017;345:10-22 pubmed 出版商
  56. Jørgensen L, Jepsen P, Boysen A, Dalgaard L, Hvid L, Ørtenblad N, et al. SPARC Interacts with Actin in Skeletal Muscle in Vitro and in Vivo. Am J Pathol. 2017;187:457-474 pubmed 出版商
  57. Sakata K, Araki K, Nakano H, Nishina T, Komazawa Sakon S, Murai S, et al. Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome. Sci Rep. 2016;6:37200 pubmed 出版商
  58. Moyle L, Blanc E, Jaka O, Prueller J, Banerji C, Tedesco F, et al. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy. elife. 2016;5: pubmed 出版商
  59. Wan X, Wang D, Xiong Q, Xiang H, Li H, Wang H, et al. Elucidating a molecular mechanism that the deterioration of porcine meat quality responds to increased cortisol based on transcriptome sequencing. Sci Rep. 2016;6:36589 pubmed 出版商
  60. Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143:4509-4520 pubmed
  61. Moser G, Weiss G, Sundl M, Gauster M, Siwetz M, Lang Olip I, et al. Extravillous trophoblasts invade more than uterine arteries: evidence for the invasion of uterine veins. Histochem Cell Biol. 2017;147:353-366 pubmed 出版商
  62. Strikoudis A, Lazaris C, Trimarchi T, Galvao Neto A, Yang Y, Ntziachristos P, et al. Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a. Nat Cell Biol. 2016;18:1127-1138 pubmed 出版商
  63. O Grady G, Best H, Sztal T, Schartner V, Sanjuan Vazquez M, Donkervoort S, et al. Variants in the Oxidoreductase PYROXD1 Cause Early-Onset Myopathy with Internalized Nuclei and Myofibrillar Disorganization. Am J Hum Genet. 2016;99:1086-1105 pubmed 出版商
  64. Hernandez D, Bennett C, Dunina Barkovskaya L, Wedig T, Capetanaki Y, Herrmann H, et al. Nebulette is a powerful cytolinker organizing desmin and actin in mouse hearts. Mol Biol Cell. 2016;27:3869-3882 pubmed
  65. Sun K, Xu S, Chen J, Liu G, Shen X, Wu X. Atypical presentation of a gastric stromal tumor masquerading as a giant intraabdominal cyst: A case report. Oncol Lett. 2016;12:3018-3020 pubmed
  66. Kim E, Page P, Dellefave Castillo L, McNally E, Wyatt E. Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease. Skelet Muscle. 2016;6:32 pubmed 出版商
  67. Begam M, Abro V, Mueller A, Roche J. Sodium 4-phenylbutyrate reduces myofiber damage in a mouse model of Duchenne muscular dystrophy. Appl Physiol Nutr Metab. 2016;41:1108-1111 pubmed
  68. Diokmetzidou A, Soumaka E, Kloukina I, Tsikitis M, Makridakis M, Varela A, et al. Desmin and ?B-crystallin interplay in the maintenance of mitochondrial homeostasis and cardiomyocyte survival. J Cell Sci. 2016;129:3705-3720 pubmed
  69. Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, et al. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun. 2016;7:12422 pubmed 出版商
  70. Gerling M, Büller N, Kirn L, Joost S, Frings O, Englert B, et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun. 2016;7:12321 pubmed 出版商
  71. Cetinkaya A, Xiong J, Vargel I, Kosemehmetoglu K, Canter H, Gerdan Ö, et al. Loss-of-Function Mutations in ELMO2 Cause Intraosseous Vascular Malformation by Impeding RAC1 Signaling. Am J Hum Genet. 2016;99:299-317 pubmed 出版商
  72. Cox A, Barrandon O, Cai E, Rios J, Chavez J, Bonnyman C, et al. Resolving Discrepant Findings on ANGPTL8 in ?-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE. 2016;11:e0159276 pubmed 出版商
  73. Winter L, Wittig I, Peeva V, Eggers B, Heidler J, Chevessier F, et al. Mutant desmin substantially perturbs mitochondrial morphology, function and maintenance in skeletal muscle tissue. Acta Neuropathol. 2016;132:453-73 pubmed 出版商
  74. Su X, Tan Q, Parikh B, Tan A, Mehta M, Sia Wey Y, et al. Characterization of Fatty Acid Binding Protein 7 (FABP7) in the Murine Retina. Invest Ophthalmol Vis Sci. 2016;57:3397-408 pubmed 出版商
  75. Lambert M, Richard E, Duban Deweer S, Krzewinski F, Deracinois B, Dupont E, et al. O-GlcNAcylation is a key modulator of skeletal muscle sarcomeric morphometry associated to modulation of protein-protein interactions. Biochim Biophys Acta. 2016;1860:2017-30 pubmed 出版商
  76. Hyslop L, Blakeley P, Craven L, Richardson J, Fogarty N, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534:383-6 pubmed 出版商
  77. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  78. Winter L, Türk M, Harter P, Mittelbronn M, Kornblum C, Norwood F, et al. Downstream effects of plectin mutations in epidermolysis bullosa simplex with muscular dystrophy. Acta Neuropathol Commun. 2016;4:44 pubmed 出版商
  79. Cheng A, Yin H, Chen A, Liu Y, Chuang M, He H, et al. Celecoxib and Pioglitazone as Potential Therapeutics for Regulating TGF-?-Induced Hyaluronan in Dysthyroid Myopathy. Invest Ophthalmol Vis Sci. 2016;57:1951-9 pubmed 出版商
  80. Haemmerle M, Bottsford Miller J, Pradeep S, Taylor M, Choi H, Hansen J, et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126:1885-96 pubmed 出版商
  81. El Kehdy H, Pourcher G, Zhang W, Hamidouche Z, Goulinet Mainot S, Sokal E, et al. Hepatocytic Differentiation Potential of Human Fetal Liver Mesenchymal Stem Cells: In Vitro and In Vivo Evaluation. Stem Cells Int. 2016;2016:6323486 pubmed 出版商
  82. Almeida C, Fernandes S, Ribeiro Junior A, Keith Okamoto O, Vainzof M. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them. Stem Cells Int. 2016;2016:1078686 pubmed 出版商
  83. Wu S, Rupaimoole R, Shen F, Pradeep S, Pecot C, Ivan C, et al. A miR-192-EGR1-HOXB9 regulatory network controls the angiogenic switch in cancer. Nat Commun. 2016;7:11169 pubmed 出版商
  84. Park S, Choi Y, Jung N, Yu Y, Ryu K, Kim H, et al. Myogenic differentiation potential of human tonsil-derived mesenchymal stem cells and their potential for use to promote skeletal muscle regeneration. Int J Mol Med. 2016;37:1209-20 pubmed 出版商
  85. Fox K, Wootton S, Marolf A, Rouse N, LeVan I, Spraker T, et al. Experimental Transmission of Bighorn Sheep Sinus Tumors to Bighorn Sheep (Ovis canadensis canadensis) and Domestic Sheep. Vet Pathol. 2016;53:1164-1171 pubmed
  86. Lao X, Liang Y, Su Y, Zhang S, Zhou X, Liao G. Distribution and significance of interstitial fibrosis and stroma-infiltrating B cells in tongue squamous cell carcinoma. Oncol Lett. 2016;11:2027-2034 pubmed
  87. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  88. Park S, Yun Y, Lim J, Kim M, Kim S, Kim J, et al. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration. Nat Commun. 2016;7:10871 pubmed 出版商
  89. Ito M, Nakamura K, Mori F, Miki Y, Tanji K, Wakabayashi K. Novel eosinophilic neuronal cytoplasmic inclusions in the external cuneate nucleus of humans. Neuropathology. 2016;36:441-447 pubmed 出版商
  90. Gurnik S, Devraj K, Macas J, Yamaji M, Starke J, Scholz A, et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol. 2016;131:753-73 pubmed 出版商
  91. Li H, Shen P, Liang Y, Zhang F. Fibroblastic reticular cell tumor of the breast: A case report and review of the literature. Exp Ther Med. 2016;11:561-564 pubmed
  92. Farini A, Sitzia C, Cassinelli L, Colleoni F, Parolini D, Giovanella U, et al. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Development. 2016;143:658-69 pubmed 出版商
  93. Yamada Y, Yamamoto H, Kohashi K, Ishii T, Iura K, Maekawa A, et al. Histological spectrum of angiofibroma of soft tissue: histological and genetic analysis of 13 cases. Histopathology. 2016;69:459-69 pubmed 出版商
  94. Fuchs C, Gawlas S, Heher P, Nikouli S, Paar H, Ivankovic M, et al. Desmin enters the nucleus of cardiac stem cells and modulates Nkx2.5 expression by participating in transcription factor complexes that interact with the nkx2.5 gene. Biol Open. 2016;5:140-53 pubmed 出版商
  95. Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 2016;15:3 pubmed 出版商
  96. Vieira Ramos G, Pinheiro C, Messa S, Delfino G, Marqueti R, Salvini T, et al. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle. Sci Rep. 2016;6:18525 pubmed 出版商
  97. Gutiérrez R, Alvarez Argüelles H, González Gómez M, García M, Díaz Flores L. Ultrastructure and histogenesis of the acral calcified angioleiomyoma. Ultrastruct Pathol. 2016;40:24-32 pubmed 出版商
  98. Scholz A, Harter P, Cremer S, Yalcin B, Gurnik S, Yamaji M, et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med. 2016;8:39-57 pubmed 出版商
  99. Shah F, Berggren D, Holmlund T, Levring Jäghagen E, StÃ¥l P. Unique expression of cytoskeletal proteins in human soft palate muscles. J Anat. 2016;228:487-94 pubmed 出版商
  100. Lesmana R, Sinha R, Singh B, Zhou J, Ohba K, Wu Y, et al. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology. 2016;157:23-38 pubmed 出版商
  101. Chen L, Tao Y, Feng J, Jiang Y. Apelin Protects Primary Rat Retinal Pericytes from Chemical Hypoxia-Induced Apoptosis. J Ophthalmol. 2015;2015:186946 pubmed 出版商
  102. Agaimy A, Specht K, Stoehr R, Lorey T, Märkl B, Niedobitek G, et al. Metastatic Malignant Melanoma With Complete Loss of Differentiation Markers (Undifferentiated/Dedifferentiated Melanoma): Analysis of 14 Patients Emphasizing Phenotypic Plasticity and the Value of Molecular Testing as Surrogate Diagnostic Marker. Am J Surg Pathol. 2016;40:181-91 pubmed 出版商
  103. Mu X, Español Suñer R, Mederacke I, Affò S, Manco R, Sempoux C, et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest. 2015;125:3891-903 pubmed 出版商
  104. Pourteymour S, Lee S, Langleite T, Eckardt K, Hjorth M, Bindesbøll C, et al. Perilipin 4 in human skeletal muscle: localization and effect of physical activity. Physiol Rep. 2015;3: pubmed 出版商
  105. Frenay A, Yazdani S, Boersema M, van der Graaf A, Waanders F, van den Born J, et al. Incomplete Restoration of Angiotensin II-Induced Renal Extracellular Matrix Deposition and Inflammation Despite Complete Functional Recovery in Rats. PLoS ONE. 2015;10:e0129732 pubmed 出版商
  106. Morita S, Furube E, Mannari T, Okuda H, Tatsumi K, Wanaka A, et al. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell Tissue Res. 2016;363:497-511 pubmed 出版商
  107. Winter L, Kuznetsov A, Grimm M, Zeöld A, Fischer I, Wiche G. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle. Hum Mol Genet. 2015;24:4530-44 pubmed 出版商
  108. Yousef H, Conboy M, Morgenthaler A, Schlesinger C, Bugaj L, Paliwal P, et al. Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget. 2015;6:11959-78 pubmed
  109. Ohlmann C, Brecht I, Junker K, van der Zee J, Nistor A, Bohle R, et al. Sclerosing epithelioid fibrosarcoma of the kidney: clinicopathologic and molecular study of a rare neoplasm at a novel location. Ann Diagn Pathol. 2015;19:221-5 pubmed 出版商
  110. Chen H, Aksoy I, Gonnot F, Osteil P, Aubry M, Hamela C, et al. Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat Commun. 2015;6:7095 pubmed 出版商
  111. Miracco C, Toscano M, Butorano M, Baldino G, Tacchini D, Barone A, et al. Unusual clear cell, lymphoplasmacyte-rich, dural-based tumor with divergent differentiation: a tricky case mimicking a meningioma. Hum Pathol. 2015;46:1050-6 pubmed 出版商
  112. Medel S, Alarab M, Kufaishi H, Drutz H, Shynlova O. Attachment of Primary Vaginal Fibroblasts to Absorbable and Nonabsorbable Implant Materials Coated With Platelet-Rich Plasma: Potential Application in Pelvic Organ Prolapse Surgery. Female Pelvic Med Reconstr Surg. 2015;21:190-7 pubmed 出版商
  113. Reddy V, Jakhotia S, Reddy P, Reddy G. Hyperglycemia induced expression, phosphorylation, and translocation of αB-crystallin in rat skeletal muscle. IUBMB Life. 2015;67:291-9 pubmed 出版商
  114. Tóth A, Fodor J, Vincze J, Oláh T, Juhász T, Zákány R, et al. The Effect of SERCA1b Silencing on the Differentiation and Calcium Homeostasis of C2C12 Skeletal Muscle Cells. PLoS ONE. 2015;10:e0123583 pubmed 出版商
  115. Zang G, Gustafsson K, Jamalpour M, Hong J, Genové G, Welsh M. Vascular dysfunction and increased metastasis of B16F10 melanomas in Shb deficient mice as compared with their wild type counterparts. BMC Cancer. 2015;15:234 pubmed 出版商
  116. Lee H, Jeong H, Park S, Yoo W, Choi S, Choi K, et al. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis. EMBO Mol Med. 2015;7:819-30 pubmed 出版商
  117. Zang G, Sandberg M, Carlsson P, Welsh N, Jansson L, Barbu A. Activated pancreatic stellate cells can impair pancreatic islet function in mice. Ups J Med Sci. 2015;120:169-80 pubmed 出版商
  118. Zhang J, Chen S, Hou Z, Cai J, Dong M, Shi X. Lipopolysaccharide-induced middle ear inflammation disrupts the cochlear intra-strial fluid-blood barrier through down-regulation of tight junction proteins. PLoS ONE. 2015;10:e0122572 pubmed 出版商
  119. Xiu Y, Jiang L, Liu W. Classic biphasic pulmonary blastoma with brain and axillary metastases: a case report with molecular analysis and review of literature. Int J Clin Exp Pathol. 2015;8:983-8 pubmed
  120. Alaggio R, Midrio P, Sgrò A, Piovan G, Guzzardo V, Donato R, et al. Congenital diaphragmatic hernia: focus on abnormal muscle formation. J Pediatr Surg. 2015;50:388-93 pubmed 出版商
  121. TaÅŸlı P, DoÄŸan A, Demirci S, Åžahin F. Myogenic and neurogenic differentiation of human tooth germ stem cells (hTGSCs) are regulated by pluronic block copolymers. Cytotechnology. 2016;68:319-29 pubmed 出版商
  122. Agley C, Rowlerson A, Velloso C, Lazarus N, Harridge S. Isolation and quantitative immunocytochemical characterization of primary myogenic cells and fibroblasts from human skeletal muscle. J Vis Exp. 2015;:52049 pubmed 出版商
  123. Feng W, Chumley P, Prieto M, Miyada K, Seth D, Fatima H, et al. Transcription factor avian erythroblastosis virus E26 oncogen homolog-1 is a novel mediator of renal injury in salt-sensitive hypertension. Hypertension. 2015;65:813-20 pubmed 出版商
  124. Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu Kaoud N, Halabi N, et al. Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 2015;13:27 pubmed 出版商
  125. Ahmad F, Shen W, Vandeput F, Szabo Fresnais N, Krall J, Degerman E, et al. Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2. J Biol Chem. 2015;290:6763-76 pubmed 出版商
  126. Koutakis P, Miserlis D, Myers S, Kim J, Zhu Z, Papoutsi E, et al. Abnormal accumulation of desmin in gastrocnemius myofibers of patients with peripheral artery disease: associations with altered myofiber morphology and density, mitochondrial dysfunction and impaired limb function. J Histochem Cytochem. 2015;63:256-69 pubmed 出版商
  127. Fichna J, Karolczak J, Potulska Chromik A, Miszta P, Berdynski M, Sikorska A, et al. Two desmin gene mutations associated with myofibrillar myopathies in Polish families. PLoS ONE. 2014;9:e115470 pubmed 出版商
  128. Karaca G, Xie G, Moylan C, Swiderska Syn M, Guy C, Krüger L, et al. Role of Fn14 in acute alcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2015;308:G325-34 pubmed 出版商
  129. Yang Z, Broz D, Noderer W, Ferreira J, Overton K, Spencer S, et al. p53 suppresses muscle differentiation at the myogenin step in response to genotoxic stress. Cell Death Differ. 2015;22:560-73 pubmed 出版商
  130. Folmsbee S, Morales Nebreda L, van Hengel J, Tyberghein K, van Roy F, Budinger G, et al. The cardiac protein αT-catenin contributes to chemical-induced asthma. Am J Physiol Lung Cell Mol Physiol. 2015;308:L253-8 pubmed 出版商
  131. Ortega P, Suster D, Falconieri G, Zambrano E, Moran C, Morrison C, et al. Liposarcomas of the posterior mediastinum: clinicopathologic study of 18 cases. Mod Pathol. 2015;28:721-31 pubmed 出版商
  132. Chow L. Primary intraosseous hybrid nerve sheath tumor of femur: a hitherto undescribed occurrence in bone with secondary aneurysmal bone cyst formation resulting in pathological fracture. Pathol Res Pract. 2015;211:409-14 pubmed 出版商
  133. Li L, Bu T, Su H, Chen Z, Liang Y, Zhang G, et al. Inutero exposure to diisononyl phthalate caused testicular dysgenesis of rat fetal testis. Toxicol Lett. 2015;232:466-74 pubmed 出版商
  134. O Hara L, McInnes K, Simitsidellis I, Morgan S, Atanassova N, Slowikowska Hilczer J, et al. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FASEB J. 2015;29:894-910 pubmed 出版商
  135. Ozdemir C, Akpulat U, Sharafi P, Yıldız Y, Onbaşılar I, Kocaefe C. Periostin is temporally expressed as an extracellular matrix component in skeletal muscle regeneration and differentiation. Gene. 2014;553:130-9 pubmed 出版商
  136. Bakshi M, Azimzadeh O, Barjaktarovic Z, Kempf S, Merl Pham J, Hauck S, et al. Total body exposure to low-dose ionizing radiation induces long-term alterations to the liver proteome of neonatally exposed mice. J Proteome Res. 2015;14:366-73 pubmed 出版商
  137. Jeon Y, Moon K, Park S, Chung D. Primary pulmonary myxoid sarcomas with EWSR1-CREB1 translocation might originate from primitive peribronchial mesenchymal cells undergoing (myo)fibroblastic differentiation. Virchows Arch. 2014;465:453-61 pubmed 出版商
  138. Tasli F, Vardar E, Argon A, Kabat T, Deniz S, Nart A, et al. Histochemical and immunohistochemical characteristics of elastofibromas. Pol J Pathol. 2014;65:120-4 pubmed
  139. Ma M, Czepiel M, Krause T, Schafer K, Boddeke E, Copray S. Generation of induced pluripotent stem cells from hair follicle bulge neural crest stem cells. Cell Reprogram. 2014;16:307-13 pubmed 出版商
  140. Yuan S, Guo Y, Zhou X, Shen W, Chen H. PDGFR-? (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo. Int J Clin Exp Pathol. 2014;7:2861-70 pubmed
  141. Janbaz A, Lindström M, Liu J, Pedrosa Domellöf F. Intermediate filaments in the human extraocular muscles. Invest Ophthalmol Vis Sci. 2014;55:5151-9 pubmed 出版商
  142. Reddy V, Kumar C, Raghu G, Reddy G. Expression and induction of small heat shock proteins in rat heart under chronic hyperglycemic conditions. Arch Biochem Biophys. 2014;558:1-9 pubmed 出版商
  143. Milione M, Gasparini P, Sozzi G, Mazzaferro V, Ferrari A, Casali P, et al. Ewing sarcoma of the small bowel: a study of seven cases, including one with the uncommonly reported EWSR1-FEV translocation. Histopathology. 2014;64:1014-26 pubmed 出版商
  144. Gevaert T, Vanstreels E, Daelemans D, Franken J, Van Der Aa F, Roskams T, et al. Identification of different phenotypes of interstitial cells in the upper and deep lamina propria of the human bladder dome. J Urol. 2014;192:1555-63 pubmed 出版商
  145. Altinay S, Kusaslan R. Gastrointestinal autonomic nerve tumour of jejunum presenting as a perforated mass. J Pak Med Assoc. 2014;64:461-4 pubmed
  146. Wang X, Bledsoe K, Graham R, Asmann Y, Viswanatha D, Lewis J, et al. Recurrent PAX3-MAML3 fusion in biphenotypic sinonasal sarcoma. Nat Genet. 2014;46:666-8 pubmed 出版商
  147. Changchien Y, Bocskai P, Kovacs I, Hargitai Z, Kollár S, Torok M. Pleomorphic hyalinizing angiectatic tumor of soft parts: case report with unusual ganglion-like cells and review of the literature. Pathol Res Pract. 2014;210:1146-51 pubmed 出版商
  148. Srikhajon K, Shynlova O, Preechapornprasert A, Chanrachakul B, Lye S. A new role for monocytes in modulating myometrial inflammation during human labor. Biol Reprod. 2014;91:10 pubmed 出版商
  149. Mori F, Watanabe Y, Miki Y, Tanji K, Odagiri S, Eto K, et al. Ubiquitin-negative, eosinophilic neuronal cytoplasmic inclusions associated with stress granules and autophagy: an immunohistochemical investigation of two cases. Neuropathology. 2014;34:140-7 pubmed
  150. Lomiwes D, Hurst S, Dobbie P, Frost D, Hurst R, Young O, et al. The protection of bovine skeletal myofibrils from proteolytic damage post mortem by small heat shock proteins. Meat Sci. 2014;97:548-57 pubmed 出版商
  151. Kabaroff L, Gupta A, Menezes S, Babichev Y, Kandel R, Swallow C, et al. Development of genetically flexible mouse models of sarcoma using RCAS-TVA mediated gene delivery. PLoS ONE. 2014;9:e94817 pubmed 出版商
  152. Kammoun M, Picard B, Henry Berger J, Cassar Malek I. A network-based approach for predicting Hsp27 knock-out targets in mouse skeletal muscles. Comput Struct Biotechnol J. 2013;6:e201303008 pubmed 出版商
  153. Tripathi A, Patel A, Shah R, Patel A, Shah T, Bhatt V, et al. Transcriptomic dissection of myogenic differentiation signature in caprine by RNA-Seq. Mech Dev. 2014;132:79-92 pubmed 出版商
  154. Jones H, Gold M, Giannico G, Troutman A, Vnencak Jones C, Schultenover S, et al. Lymphoepithelioma-like carcinoma of the endometrium: immunophenotypic characterization of a rare tumor with microsatellite instability testing. Int J Gynecol Pathol. 2014;33:64-73 pubmed 出版商
  155. Garton F, Seto J, Quinlan K, Yang N, Houweling P, North K. ?-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Hum Mol Genet. 2014;23:1879-93 pubmed 出版商
  156. Ciucurel E, Sefton M. Del-1 overexpression in endothelial cells increases vascular density in tissue-engineered implants containing endothelial cells and adipose-derived mesenchymal stromal cells. Tissue Eng Part A. 2014;20:1235-52 pubmed 出版商
  157. Liu H, Zhang W, Jia Y, Yu Q, Grau G, Peng L, et al. Single-cell clones of liver cancer stem cells have the potential of differentiating into different types of tumor cells. Cell Death Dis. 2013;4:e857 pubmed 出版商
  158. Yu L, Cheng H, Yang S. Clinicopathological and extensive immunohistochemical study of a type II pleuropulmonary blastoma. Fetal Pediatr Pathol. 2014;33:1-8 pubmed 出版商
  159. Weber B, Kehl D, Bleul U, Behr L, Sammut S, Frese L, et al. In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells. J Tissue Eng Regen Med. 2016;10:52-70 pubmed 出版商
  160. Kubota F, Matsuyama A, Shibuya R, Nakamoto M, Hisaoka M. Desmin-positivity in spindle cells: under-recognized immunophenotype of lipoblastoma. Pathol Int. 2013;63:353-7 pubmed 出版商
  161. Zhang F, Zhang J, Neng L, Shi X. Characterization and inflammatory response of perivascular-resident macrophage-like melanocytes in the vestibular system. J Assoc Res Otolaryngol. 2013;14:635-43 pubmed 出版商
  162. Lee P, Yau D, Lau P, Chan J. Plexiform fibromyxoma (plexiform angiomyxoid myofibroblastic tumor) of stomach: an unusual presentation as a fistulating abscess. Int J Surg Pathol. 2014;22:286-90 pubmed 出版商
  163. Okumura N, Akutsu H, Sugawara T, Miura T, Takezawa Y, Hosoda A, et al. ?-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells. PLoS ONE. 2013;8:e63265 pubmed 出版商
  164. Neng L, Zhang W, Hassan A, Zemla M, Kachelmeier A, Fridberger A, et al. Isolation and culture of endothelial cells, pericytes and perivascular resident macrophage-like melanocytes from the young mouse ear. Nat Protoc. 2013;8:709-20 pubmed 出版商
  165. Schell C, Baumhakl L, Salou S, Conzelmann A, Meyer C, Helmstädter M, et al. N-wasp is required for stabilization of podocyte foot processes. J Am Soc Nephrol. 2013;24:713-21 pubmed 出版商
  166. Kazmi S, Byer S, Eckert J, Turk A, Huijbregts R, Brossier N, et al. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. Am J Pathol. 2013;182:646-67 pubmed 出版商
  167. Neng L, Zhang F, Kachelmeier A, Shi X. Endothelial cell, pericyte, and perivascular resident macrophage-type melanocyte interactions regulate cochlear intrastrial fluid-blood barrier permeability. J Assoc Res Otolaryngol. 2013;14:175-85 pubmed 出版商
  168. Valsecchi F, Grefte S, Roestenberg P, Joosten Wagenaars J, Smeitink J, Willems P, et al. Primary fibroblasts of NDUFS4(-/-) mice display increased ROS levels and aberrant mitochondrial morphology. Mitochondrion. 2013;13:436-43 pubmed 出版商
  169. Saclier M, Yacoub Youssef H, Mackey A, Arnold L, Ardjoune H, Magnan M, et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells. 2013;31:384-96 pubmed 出版商
  170. Criswell T, Corona B, Wang Z, Zhou Y, Niu G, Xu Y, et al. The role of endothelial cells in myofiber differentiation and the vascularization and innervation of bioengineered muscle tissue in vivo. Biomaterials. 2013;34:140-9 pubmed 出版商
  171. Büttner M, Kufer V, Brunner K, Hartmann A, Amann K, Agaimy A. Benign mesenchymal tumours and tumour-like lesions in end-stage renal disease. Histopathology. 2013;62:229-36 pubmed 出版商
  172. Kon T, Mori F, Tanji K, Miki Y, Kimura T, Wakabayashi K. Giant cell polymyositis and myocarditis associated with myasthenia gravis and thymoma. Neuropathology. 2013;33:281-7 pubmed 出版商
  173. Zeng M, Southern P, Reilly C, Beilman G, Chipman J, Schacker T, et al. Lymphoid tissue damage in HIV-1 infection depletes naïve T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012;8:e1002437 pubmed 出版商
  174. Yamada Y, Yamamoto H, Ohishi Y, Nishiyama K, Fukuhara M, Saitou T, et al. Sclerosing variant of perivascular epithelioid cell tumor in the female genital organs. Pathol Int. 2011;61:768-72 pubmed 出版商
  175. Kee H, Kim J, Joung H, Choe N, Lee S, Eom G, et al. Ret finger protein inhibits muscle differentiation by modulating serum response factor and enhancer of polycomb1. Cell Death Differ. 2012;19:121-31 pubmed 出版商
  176. Guarino M, Ballabio G, Rubino B, Nebuloni M, Tosoni A. Soft tissue sacrococcygeal chordoma with intracytoplasmic filamentous inclusions. Pathol Res Pract. 2005;201:699-704 pubmed