这是一篇来自已证抗体库的有关人类 eIF2alpha的综述,是根据209篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合eIF2alpha 抗体。
eIF2alpha 同义词: EIF-2; EIF-2A; EIF-2alpha; EIF2; EIF2A

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(E90)
  • 免疫印迹; 人类; 图 s1i
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在人类样本上 (图 s1i). Cell (2019) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 大鼠; 1:500; 图 ev5a
  • 免疫印迹; 人类; 1:500; 图 ev5a
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 ev5a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 ev5a). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(E90)
  • 免疫细胞化学; 人类; 图 6b
  • 免疫印迹; 人类; 图 ev4g
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫细胞化学在人类样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 ev4g). EMBO J (2018) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 人类; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Science (2018) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 人类; 图 s4b
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在人类样本上 (图 s4b). Mol Cell (2018) ncbi
domestic rabbit 单克隆(E90)
  • 流式细胞仪; 人类; 图 4a
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于流式细胞仪在人类样本上 (图 4a). Cell (2018) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 仓鼠; 图 11a
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在仓鼠样本上 (图 11a). elife (2017) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5a). Front Pharmacol (2017) ncbi
小鼠 单克隆(EIF2a)
  • 免疫印迹; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab5369)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Front Pharmacol (2017) ncbi
domestic rabbit 单克隆(E90)
  • 免疫细胞化学; 人类; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在人类样本上 (图 3c). PLoS Genet (2017) ncbi
小鼠 单克隆(EIF2a)
  • 免疫印迹; 大鼠; 图 6a
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab5369)被用于被用于免疫印迹在大鼠样本上 (图 6a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 人类; 图 6c
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在人类样本上 (图 6c). Proteomics (2016) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 小鼠; 1:3000; 图 2
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(E90)
  • 免疫组化-石蜡切片; 人类; 7 ug/ml; 图 2e
艾博抗(上海)贸易有限公司 eIF2alpha抗体(abcam, ab32157)被用于被用于免疫组化-石蜡切片在人类样本上浓度为7 ug/ml (图 2e). Oncoimmunology (2016) ncbi
小鼠 单克隆(EIF2a)
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab5369)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). elife (2016) ncbi
小鼠 单克隆(EIF2a)
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab5369)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cancer Res (2016) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cancer Res (2016) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在小鼠样本上 (图 1a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). EMBO Rep (2016) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 牛; 图 5c
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在牛样本上 (图 5c). Mol Cells (2016) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在小鼠样本上 (图 3c). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 eIF2alpha抗体(abcam, ab32157)被用于被用于免疫印迹在人类样本上 (图 5). Sci Signal (2016) ncbi
domestic rabbit 单克隆(E90)
  • 流式细胞仪; 人类; 图 s10b
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, E90)被用于被用于流式细胞仪在人类样本上 (图 s10b). Mol Ther Methods Clin Dev (2015) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 eIF2alpha抗体(AbCam, 32157)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, 32157)被用于被用于免疫印迹在人类样本上浓度为1:1000. Methods (2015) ncbi
小鼠 单克隆(EIF2a)
  • 免疫印迹; 人类; 1:1000; 图 s2b
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab5369)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2b). Science (2015) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 eIF2alpha抗体(AbCam, ab32157)被用于被用于免疫印迹在小鼠样本上. Vasc Cell (2014) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Nat Commun (2015) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 人类; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). J Virol (2015) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 小鼠; 1:200; 图 s1d
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s1d). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 猪; 1:1000
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在猪样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(E90)
  • 免疫印迹; 猪
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab32157)被用于被用于免疫印迹在猪样本上. Physiol Genomics (2013) ncbi
小鼠 单克隆(EIF2a)
  • 免疫印迹; 人类; 1:500; 图 9
艾博抗(上海)贸易有限公司 eIF2alpha抗体(Abcam, ab5369)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 9). PLoS ONE (2010) ncbi
赛默飞世尔
小鼠 单克隆(EIF2-alpha)
  • 免疫印迹; 大鼠; 1:2000; 图 7h
赛默飞世尔 eIF2alpha抗体(ThermoFisher, AHO0802)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 7h). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 7h
赛默飞世尔 eIF2alpha抗体(ThermoFisher, 44-728 G)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 7h). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; S. cerevisiae; 1:1000; 图 3f
赛默飞世尔 eIF2alpha抗体(Invitrogen, 44-728G)被用于被用于免疫印迹在S. cerevisiae样本上浓度为1:1000 (图 3f). elife (2019) ncbi
小鼠 单克隆(EIF2-alpha)
  • 免疫印迹; 人类; 图 s5a
赛默飞世尔 eIF2alpha抗体(Thermo Fisher Scientific, AHO0802)被用于被用于免疫印迹在人类样本上 (图 s5a). Cell (2018) ncbi
domestic rabbit 单克隆(S.674.5)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛默飞世尔 eIF2alpha抗体(Thermo, MA5-15133)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2a
赛默飞世尔 eIF2alpha抗体(Invitrogen, 44728G)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3i
赛默飞世尔 eIF2alpha抗体(Thermo Fisher, 44-728G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3i). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; asian clam; 图 5
赛默飞世尔 eIF2alpha抗体(Invitrogen, AHO1182)被用于被用于免疫印迹在asian clam样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1a
赛默飞世尔 eIF2alpha抗体(Invitrogen, 44-728G)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a). J Cell Sci (2016) ncbi
小鼠 单克隆(EIF2-alpha)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛默飞世尔 eIF2alpha抗体(Invitrogen, AHO0802)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6a
赛默飞世尔 eIF2alpha抗体(Biosource, 44-728G)被用于被用于免疫印迹在大鼠样本上 (图 6a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 秀丽隐杆线虫; 图 1a
赛默飞世尔 eIF2alpha抗体(Invitrogen, 44728G)被用于被用于免疫印迹在秀丽隐杆线虫样本上 (图 1a). BMC Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛默飞世尔 eIF2alpha抗体(Invitrogen, 44728)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(S.674.5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 eIF2alpha抗体(Pierce, MA5-15133)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 eIF2alpha抗体(Pierce, MA1-079)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛默飞世尔 eIF2alpha抗体(生活技术, 44728G)被用于被用于免疫印迹在人类样本上 (图 5). J Pediatr (2016) ncbi
小鼠 单克隆(EIF2-alpha)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 eIF2alpha抗体(生活技术, AHO0802)被用于被用于免疫印迹在人类样本上 (图 5). J Pediatr (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 eIF2alpha抗体(Invitrogen, 44728G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(S.674.5)
  • 免疫印迹; 人类; 1:50; 图 7a
赛默飞世尔 eIF2alpha抗体(Thermo Scientific, S.674.5)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 7a). Brain Pathol (2017) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 人类; 1:50; 图 7a
赛默飞世尔 eIF2alpha抗体(Thermo Scientific, 5A5)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 7a). Brain Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8
赛默飞世尔 eIF2alpha抗体(生活技术, 44-728G)被用于被用于免疫印迹在人类样本上 (图 8). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; scallops; 图 7
赛默飞世尔 eIF2alpha抗体(生活技术, AHO1182)被用于被用于免疫印迹在scallops样本上 (图 7). J Exp Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猫; 图 1
  • 免疫印迹; 小鼠; 图 8
赛默飞世尔 eIF2alpha抗体(Invitrogen, 44-728G)被用于被用于免疫印迹在猫样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 8). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3a
赛默飞世尔 eIF2alpha抗体(Invitrogen, 44728G)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). J Virol (2016) ncbi
domestic rabbit 单克隆(S.674.5)
  • 免疫印迹; 小鼠; 1:1000; 图 s3a
赛默飞世尔 eIF2alpha抗体(ThermoFisher Scientific, MA5-15133)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛默飞世尔 eIF2alpha抗体(Invitrogen, 44728G)被用于被用于免疫印迹在人类样本上 (图 2). Environ Toxicol (2016) ncbi
小鼠 单克隆(EIF2-alpha)
  • 免疫印迹; 小鼠
赛默飞世尔 eIF2alpha抗体(Invitrogen, AHO0802)被用于被用于免疫印迹在小鼠样本上. Cancer Biol Ther (2014) ncbi
小鼠 单克隆(EIF2-alpha)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 eIF2alpha抗体(Invitrogen, AHO0802)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Free Radic Biol Med (2008) ncbi
小鼠 单克隆(EIF2-alpha)
  • 免疫印迹; 人类
赛默飞世尔 eIF2alpha抗体(Biosource, AHO0802)被用于被用于免疫印迹在人类样本上. Gene Ther (2007) ncbi
小鼠 单克隆(EIF2-alpha)
  • 免疫印迹; African green monkey
赛默飞世尔 eIF2alpha抗体(Biosource, AHO0802)被用于被用于免疫印迹在African green monkey样本上. J Virol (2005) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-3)
  • 免疫印迹; 人类; 图 2g
圣克鲁斯生物技术 eIF2alpha抗体(Santa Cruz, sc-133132)被用于被用于免疫印迹在人类样本上 (图 2g). elife (2019) ncbi
小鼠 单克隆(D-3)
  • 免疫印迹; fission yeast; 1:500; 图 3c
圣克鲁斯生物技术 eIF2alpha抗体(Santa Cruz Biotechnology, sc133132)被用于被用于免疫印迹在fission yeast样本上浓度为1:500 (图 3c). J Cell Sci (2019) ncbi
小鼠 单克隆(D-3)
  • 免疫印迹; 大鼠; 1:1000; 图 ev5a
  • 免疫印迹; 人类; 1:1000; 图 ev5a
圣克鲁斯生物技术 eIF2alpha抗体(Santa, sc-133132)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 ev5a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 ev5a). EMBO Mol Med (2019) ncbi
小鼠 单克隆(D-3)
  • 免疫印迹; 人类; 1:100; 图 3b
圣克鲁斯生物技术 eIF2alpha抗体(santa, sc-133132)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3b). Nat Commun (2018) ncbi
小鼠 单克隆(D-3)
  • 免疫印迹; 人类; 图 s1e
圣克鲁斯生物技术 eIF2alpha抗体(Santa Cruz, sc-133132)被用于被用于免疫印迹在人类样本上 (图 s1e). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(G-12)
  • 免疫印迹; 小鼠; 1:3000; 图 2
圣克鲁斯生物技术 eIF2alpha抗体(Santa Cruz, sc-133227)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2). Cell Cycle (2016) ncbi
小鼠 单克隆(D-3)
  • 免疫印迹; 大鼠; 1:1000; 图 6d
圣克鲁斯生物技术 eIF2alpha抗体(Santa Cruz, sc-133132)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6d). FASEB J (2016) ncbi
小鼠 单克隆(D-3)
  • 免疫印迹; 小鼠; 1:1000; 图 s3a
圣克鲁斯生物技术 eIF2alpha抗体(Santa Cruz Biotechnology, sc-133132)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3a). Nat Commun (2016) ncbi
小鼠 单克隆(G-12)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 eIF2alpha抗体(Santa Cruz, sc-133227)被用于被用于免疫印迹在小鼠样本上. elife (2015) ncbi
小鼠 单克隆(D-3)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 eIF2alpha抗体(Santa Cruz, sc-133132)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(D-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术 eIF2alpha抗体(Santa Cruz, sc-133132)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(G-12)
  • 免疫沉淀; 小鼠
圣克鲁斯生物技术 eIF2alpha抗体(Santa Cruz Biotechnology, sc133227)被用于被用于免疫沉淀在小鼠样本上. J Biol Chem (2012) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 表 1
西格玛奥德里奇 eIF2alpha抗体(Sigma, SAB4504388)被用于被用于免疫组化在大鼠样本上浓度为1:200 (表 1). Front Cell Neurosci (2017) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(L57A5)
  • 免疫组化; 大鼠; 1:500; 图 1e
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, L57A5)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1e). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1g
  • 免疫印迹; 小鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 9722)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Science (2019) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 1:1000; 图 1g
  • 免疫印迹; 小鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3398)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Science (2019) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 仓鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597S)被用于被用于免疫印迹在仓鼠样本上浓度为1:1000 (图 4a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(NEB, 9722S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1e
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(NEB, 9721)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1e). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; S. cerevisiae; 1:1000; 图 1s1c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signalling, 9721S)被用于被用于免疫印迹在S. cerevisiae样本上浓度为1:1000 (图 1s1c). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). J Cell Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9721)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). J Cell Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9721)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell (2019) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597S)被用于被用于免疫印迹在人类样本上 (图 2g). elife (2019) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5f). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 1:2000; 图 5f
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5f). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在小鼠样本上 (图 6d). Cell Discov (2019) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在小鼠样本上 (图 6d). Cell Discov (2019) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(CST, 5324)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(CST, 9721)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1l
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1l). Haematologica (2019) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). elife (2019) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类; 1:1000; 图 2i
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technologies, 5324S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d, s13c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在小鼠样本上 (图 6d, s13c). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(CST, 9722)被用于被用于免疫印迹在小鼠样本上 (图 4b). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 9722S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 9721S)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 6a). Neuron (2018) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 图 s1e
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在人类样本上 (图 s1e). Nucleic Acids Res (2018) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 4c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 4c). Acta Neuropathol Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Science (2018) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫组化; 人类; 1:100; 图 5d
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 119A11)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Neurobiol Dis (2018) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, D7D3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Neurobiol Dis (2018) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类; 图 s3c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324S)被用于被用于免疫印迹在人类样本上 (图 s3c). Mol Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
  • 免疫印迹; 小鼠; 图 2k
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722S)被用于被用于免疫印迹在人类样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2k). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9721)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在人类样本上 (图 3b). J Virol (2018) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在人类样本上 (图 3b). J Virol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在人类样本上 (图 6a). PLoS Pathog (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9721)被用于被用于免疫印迹在人类样本上 (图 6a). PLoS Pathog (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在小鼠样本上 (图 2d). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9e
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signal, 9722S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9e). Eneuro (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9e
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signal, 9721)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9e). Eneuro (2017) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 1:1000; 图 s5c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5c). Science (2017) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 1:1000; 图 s5c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5c). Science (2017) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 5324)被用于被用于免疫印迹在小鼠样本上 (图 5b). Cancer Res (2017) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 3597)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). EMBO J (2017) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 1:3000; 图 5a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5a). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在人类样本上 (图 3d). Free Radic Biol Med (2017) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在人类样本上 (图 3d). Free Radic Biol Med (2017) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). J Virol (2017) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 3597L)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). elife (2017) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 5324)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9721s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Acta Neuropathol Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722s)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4c). Acta Neuropathol Commun (2017) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 图 9d
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 5324)被用于被用于免疫印迹在小鼠样本上 (图 9d). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2g
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2g). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 9721)被用于被用于免疫印迹在人类样本上 (图 6b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 9722)被用于被用于免疫印迹在人类样本上 (图 6b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(CST, 9722)被用于被用于免疫印迹在人类样本上 (图 s2c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(CST, 9721)被用于被用于免疫印迹在人类样本上 (图 s2c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Front Mol Neurosci (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Front Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; S. cerevisiae; 图 3e
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9721S)被用于被用于免疫印迹在S. cerevisiae样本上 (图 3e). Mol Biol Cell (2017) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 2103)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Neuroinflammation (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9721)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Neuroinflammation (2017) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, D7D3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4h). Nature (2017) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 119A11)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4h). Nature (2017) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Biochim Biophys Acta Mol Cell Res (2017) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 2103)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在小鼠样本上 (图 4c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在小鼠样本上 (图 4d). Hepatology (2017) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在小鼠样本上 (图 4d). Hepatology (2017) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 2103)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在人类样本上 (图 4). PLoS Pathog (2016) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 2103)被用于被用于免疫印迹在人类样本上 (图 4). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 9722)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 s1a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 s1a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324P)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398P)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398p)被用于被用于免疫印迹在小鼠样本上 (图 3a). Am J Pathol (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324p)被用于被用于免疫印迹在小鼠样本上 (图 3a). Am J Pathol (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, D7D3)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, D9G8)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 大鼠; 1:500; 图 2a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2a). Int J Biochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 9722)被用于被用于免疫印迹在小鼠样本上 (图 1a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 9722)被用于被用于免疫印迹在大鼠样本上 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 9721)被用于被用于免疫印迹在大鼠样本上 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3398)被用于被用于免疫印迹在人类样本上 (图 2b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 33985)被用于被用于免疫印迹在人类样本上 (图 6c). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类; 图 4A
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在人类样本上 (图 4A). Oncoimmunology (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 4A
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在人类样本上 (图 4A). Oncoimmunology (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(CellSignaling, 9721)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s5
  • 免疫组化; 小鼠; 1:1000; 图 s6
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9721)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s5), 被用于免疫组化在小鼠样本上浓度为1:1000 (图 s6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3398)被用于被用于免疫印迹在人类样本上 (图 8). J Virol (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 5324)被用于被用于免疫印迹在人类样本上 (图 8). J Virol (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3398P)被用于被用于免疫印迹在小鼠样本上 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 5324P)被用于被用于免疫印迹在小鼠样本上 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫细胞化学; 人类; 1:400; 图 8C
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 8C). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫细胞化学; 人类; 1:400; 图 8D
  • 免疫印迹; 人类; 1:1000; 图 7A
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 8D) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 7A). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在小鼠样本上 (图 1a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9721)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫组化; 小鼠; 1:250; 图 2
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Tech, D9G8)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3398)被用于被用于免疫印迹在人类样本上 (图 1a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9721)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
  • 免疫印迹; 猫; 图 1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在小鼠样本上 (图 8) 和 被用于免疫印迹在猫样本上 (图 1). J Virol (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 3398)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Diabetologia (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 5324)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Diabetologia (2016) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 2103)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). J Virol (2016) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, L57A5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Am J Pathol (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, D9G8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 9721S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597S)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cell Rep (2016) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 2103S)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cell Rep (2016) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technologies, 2103)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technologies, 9721)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, D7D3)被用于被用于免疫印迹在小鼠样本上 (图 1). Acta Neuropathol (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 流式细胞仪; 小鼠; 2 ug/ml; 图 s1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml (图 s1). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). J Physiol Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9721S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). J Physiol Biochem (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398S)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(cell Signaling Tech, 9722)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(cell Signaling Tech, 3597)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technologies, 9722)被用于被用于免疫印迹在小鼠样本上 (图 4). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technologies, 9721S)被用于被用于免疫印迹在小鼠样本上 (图 4). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 图 s7
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 9721S)被用于被用于免疫印迹在斑马鱼样本上 (图 s7). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 2103)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cell Proteomics (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 9721)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Tech, 9722S)被用于被用于免疫印迹在人类样本上 (图 5). Sci Signal (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 3597)被用于被用于免疫印迹在大鼠样本上 (图 3). Cell Stress Chaperones (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324S)被用于被用于免疫印迹在小鼠样本上 (图 s2). J Neuroinflammation (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398S)被用于被用于免疫印迹在小鼠样本上 (图 s2). J Neuroinflammation (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在人类样本上 (图 6a). J Virol (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1a
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫细胞化学; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 5324P)被用于被用于免疫细胞化学在小鼠样本上 (图 5). J Neurosci (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫细胞化学; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 3597S)被用于被用于免疫细胞化学在小鼠样本上 (图 5). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在人类样本上 (图 4a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9721)被用于被用于免疫印迹在人类样本上 (图 4a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3398)被用于被用于免疫印迹在小鼠样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 9722)被用于被用于免疫印迹在小鼠样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Cell Rep (2016) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 大鼠; 1:1000; 图 2, 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, L57A5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2, 5). Biochem J (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 大鼠; 1:1000; 图 2, 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 119A11)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2, 5). Biochem J (2016) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signalling, 5324S)被用于被用于免疫印迹在小鼠样本上. Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signalling, 9721)被用于被用于免疫印迹在小鼠样本上 (图 6). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signalling, 9722)被用于被用于免疫印迹在人类样本上 (图 3). Eur J Immunol (2016) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 2103)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). J Neurosci (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1A
  • 免疫印迹; 小鼠; 图 1C
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(CST, 9721)被用于被用于免疫细胞化学在小鼠样本上 (图 1A) 和 被用于免疫印迹在小鼠样本上 (图 1C). Cell Stem Cell (2016) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2a
  • 免疫印迹; 小鼠; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9721)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 1b
  • 免疫印迹; 人类; 1:5000; 图 2a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9722)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 2a). FASEB J (2016) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Death Dis (2015) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 2103)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Acta Neuropathol (2015) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3597)被用于被用于免疫印迹在人类样本上 (图 5). Breast Cancer Res Treat (2015) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(CST, 3398)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 2103)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597S)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 5324)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2015) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 2103S)被用于被用于免疫印迹在人类样本上. Methods (2015) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 图 f6
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technologies, D7D3)被用于被用于免疫印迹在小鼠样本上 (图 f6). Sci Signal (2015) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 图 f6
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technologies, D9G8)被用于被用于免疫印迹在小鼠样本上 (图 f6). Sci Signal (2015) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 1:2000; 图 8
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(cell signaling tech, 5324)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 1:2000; 图 8
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(cell signaling tech, 3398)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8). Nat Commun (2015) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在人类样本上 (图 2). Cell Host Microbe (2015) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在人类样本上 (图 2). Cell Host Microbe (2015) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3597)被用于被用于免疫印迹在人类样本上 (图 2g). Cancer Res (2015) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 21035)被用于被用于免疫印迹在人类样本上 (图 2g). Cancer Res (2015) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类; 1:2000; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 2103s)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). J Virol (2015) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 3398)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 2103)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 2103)被用于被用于免疫印迹在小鼠样本上 (图 4). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫组化; 小鼠; 1:300; 图 2a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597L)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2a). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在大鼠样本上. J Lipid Res (2015) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3597)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3597)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nutr Res (2014) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 3597)被用于被用于免疫印迹在小鼠样本上 (图 2). Nat Med (2014) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signalling, 2103)被用于被用于免疫印迹在人类样本上 (图 4). EMBO Mol Med (2014) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signalling, 3597)被用于被用于免疫印迹在人类样本上 (图 4). EMBO Mol Med (2014) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3398)被用于被用于免疫印迹在人类样本上 (图 2). Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 5324)被用于被用于免疫印迹在人类样本上 (图 2). Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫组化; 小鼠; 1:150
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 119A11)被用于被用于免疫组化在小鼠样本上浓度为1:150. Neurobiol Dis (2015) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, D7D3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Alzheimers Dis (2015) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, D9G8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Alzheimers Dis (2015) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Commun (2014) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signaling, 3597)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3398)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Aging (2014) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在小鼠样本上. Cancer Biol Ther (2014) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3398)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 2103)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cell Proteomics (2014) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Arch Toxicol (2014) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 5324)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:500. Nucleic Acids Res (2014) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3597)被用于被用于免疫印迹在人类样本上浓度为1:1000. Head Neck (2015) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 猪; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, L57A5)被用于被用于免疫印迹在猪样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3597)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫组化-冰冻切片; 大鼠; 1:50
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell signalling, 119A11)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 2103)被用于被用于免疫印迹在人类样本上. Diabetes (2014) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3597)被用于被用于免疫印迹在人类样本上. Diabetes (2014) ncbi
domestic rabbit 单克隆(D7D3)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 9079)被用于被用于免疫印迹在人类样本上浓度为1:500. Autophagy (2013) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Aging Cell (2014) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 2103)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2013) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3398)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2013) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Transl Psychiatry (2013) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3597)被用于被用于免疫印迹在大鼠样本上浓度为1:500. J Nutr Biochem (2013) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3597)被用于被用于免疫印迹在大鼠样本上. Apoptosis (2013) ncbi
小鼠 单克隆(L57A5)
  • 免疫印迹; 大鼠; 1:1,000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 2103S)被用于被用于免疫印迹在大鼠样本上浓度为1:1,000. Am J Physiol Endocrinol Metab (2013) ncbi
domestic rabbit 单克隆(D9G8)
  • 免疫印迹; 大鼠; 1:1,000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3398S)被用于被用于免疫印迹在大鼠样本上浓度为1:1,000. Am J Physiol Endocrinol Metab (2013) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling, 3597)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Environ Health Perspect (2013) ncbi
domestic rabbit 单克隆(119A11)
  • 免疫组化; 人类; 1:50
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 3597)被用于被用于免疫组化在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2008) ncbi
小鼠 单克隆(L57A5)
  • 免疫组化; 人类; 1:50
赛信通(上海)生物试剂有限公司 eIF2alpha抗体(Cell Signaling Technology, 2103)被用于被用于免疫组化在人类样本上浓度为1:50. BMC Cancer (2008) ncbi
文章列表
  1. Santos M, Anderson C, Neschen S, Zumbrennen Bullough K, Romney S, Kahle Stephan M, et al. Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification. Nat Commun. 2020;11:296 pubmed 出版商
  2. Ostroff L, Santini E, SEARS R, Deane Z, Kanadia R, LeDoux J, et al. Axon TRAP reveals learning-associated alterations in cortical axonal mRNAs in the lateral amgydala. elife. 2019;8: pubmed 出版商
  3. Zhu P, Khatiwada S, Cui Y, Reineke L, Dooling S, Kim J, et al. Activation of the ISR mediates the behavioral and neurophysiological abnormalities in Down syndrome. Science. 2019;366:843-849 pubmed 出版商
  4. Yong J, Bischof H, Burgstaller S, Siirin M, Murphy A, Malli R, et al. Mitochondria supply ATP to the ER through a mechanism antagonized by cytosolic Ca2. elife. 2019;8: pubmed 出版商
  5. Abdel Nour M, Carneiro L, Downey J, Tsalikis J, Outlioua A, Prescott D, et al. The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling. Science. 2019;365: pubmed 出版商
  6. Gupta R, Walvekar A, Liang S, Rashida Z, Shah P, Laxman S. A tRNA modification balances carbon and nitrogen metabolism by regulating phosphate homeostasis. elife. 2019;8: pubmed 出版商
  7. Das R, Schwintzer L, Vinopal S, Roca E, Sylvester M, Oprişoreanu A, et al. New roles for the de-ubiquitylating enzyme OTUD4 in an RNA-protein network and RNA granules. J Cell Sci. 2019;: pubmed 出版商
  8. Hernández Alvarez M, Sebastian D, Vives S, Ivanova S, Bartoccioni P, Kakimoto P, et al. Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell. 2019;177:881-895.e17 pubmed 出版商
  9. Zhang P, Fan B, Yang P, Temirov J, Messing J, Kim H, et al. Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD pathology. elife. 2019;8: pubmed 出版商
  10. Subramanian A, Capalbo A, Iyengar N, Rizzo R, Di Campli A, Di Martino R, et al. Auto-regulation of Secretory Flux by Sensing and Responding to the Folded Cargo Protein Load in the Endoplasmic Reticulum. Cell. 2019;176:1461-1476.e23 pubmed 出版商
  11. Tye B, Commins N, Ryazanova L, Wühr M, Springer M, Pincus D, et al. Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness. elife. 2019;8: pubmed 出版商
  12. Zhu H, Bhatt B, Sivaprakasam S, Cai Y, Liu S, Kodeboyina S, et al. Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR. Nat Commun. 2019;10:1084 pubmed 出版商
  13. Forte G, Davie E, Lie S, Franz Wachtel M, Ovens A, Wang T, et al. Import of extracellular ATP in yeast and man modulates AMPK and TORC1 signalling. J Cell Sci. 2019;132: pubmed 出版商
  14. Cai Y, Zhu G, Liu S, Pan Z, Quintero M, Poole C, et al. Indispensable role of the Ubiquitin-fold modifier 1-specific E3 ligase in maintaining intestinal homeostasis and controlling gut inflammation. Cell Discov. 2019;5:7 pubmed 出版商
  15. Wang D, Xu Q, Yuan Q, Jia M, Niu H, Liu X, et al. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene. 2019;38:3458-3474 pubmed 出版商
  16. Santana Codina N, Gableske S, Quiles Del Rey M, Małachowska B, Jedrychowski M, Biancur D, et al. NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica. 2019;: pubmed 出版商
  17. Wong Y, Lebon L, Basso A, Kohlhaas K, Nikkel A, Robb H, et al. eIF2B activator prevents neurological defects caused by a chronic integrated stress response. elife. 2019;8: pubmed 出版商
  18. Westergard T, McAvoy K, Russell K, Wen X, Pang Y, Morris B, et al. Repeat-associated non-AUG translation in C9orf72-ALS/FTD is driven by neuronal excitation and stress. EMBO Mol Med. 2019;11: pubmed 出版商
  19. Aggarwal S, Gabrovsek L, Langeberg L, Golkowski M, Ong S, Smith F, et al. Depletion of dAKAP1-protein kinase A signaling islands from the outer mitochondrial membrane alters breast cancer cell metabolism and motility. J Biol Chem. 2019;294:3152-3168 pubmed 出版商
  20. Hato T, Maier B, Syed F, Myslinski J, Zollman A, Plotkin Z, et al. Bacterial sepsis triggers an antiviral response that causes translation shutdown. J Clin Invest. 2019;129:296-309 pubmed 出版商
  21. Jeon Y, Kim T, Park D, Nuovo G, Rhee S, Joshi P, et al. miRNA-mediated TUSC3 deficiency enhances UPR and ERAD to promote metastatic potential of NSCLC. Nat Commun. 2018;9:5110 pubmed 出版商
  22. Du X, de Almeida P, Manieri N, de Almeida Nagata D, Wu T, Harden Bowles K, et al. CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proc Natl Acad Sci U S A. 2018;115:E11731-E11740 pubmed 出版商
  23. López Erauskin J, Tadokoro T, Baughn M, Myers B, McAlonis Downes M, Chillon Marinas C, et al. ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS. Neuron. 2018;100:816-830.e7 pubmed 出版商
  24. Avolio R, Järvelin A, Mohammed S, Agliarulo I, Condelli V, Zoppoli P, et al. Protein Syndesmos is a novel RNA-binding protein that regulates primary cilia formation. Nucleic Acids Res. 2018;46:12067-12086 pubmed 出版商
  25. Tuorto F, Legrand C, Cirzi C, Federico G, Liebers R, Muller M, et al. Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J. 2018;37: pubmed 出版商
  26. Maziuk B, Apicco D, Cruz A, Jiang L, Ash P, da Rocha E, et al. RNA binding proteins co-localize with small tau inclusions in tauopathy. Acta Neuropathol Commun. 2018;6:71 pubmed 出版商
  27. Grevet J, Lan X, Hamagami N, Edwards C, Sankaranarayanan L, Ji X, et al. Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Science. 2018;361:285-290 pubmed 出版商
  28. Sonobe Y, Ghadge G, Masaki K, Sendoel A, Fuchs E, Roos R. Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress. Neurobiol Dis. 2018;116:155-165 pubmed 出版商
  29. Ivanov I, Shin B, Loughran G, Tzani I, Young Baird S, Cao C, et al. Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing. Mol Cell. 2018;70:254-264.e6 pubmed 出版商
  30. Longchamp A, Mirabella T, Arduini A, MacArthur M, Das A, Treviño Villarreal J, et al. Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell. 2018;173:117-129.e14 pubmed 出版商
  31. Makhov P, Naito S, Haifler M, Kutikov A, Boumber Y, Uzzo R, et al. The convergent roles of NF-κB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death Dis. 2018;9:374 pubmed 出版商
  32. Liu R, Moss B. Vaccinia Virus C9 Ankyrin Repeat/F-Box Protein Is a Newly Identified Antagonist of the Type I Interferon-Induced Antiviral State. J Virol. 2018;92: pubmed 出版商
  33. Yang X, Hu Z, Fan S, Zhang Q, Zhong Y, Guo D, et al. Picornavirus 2A protease regulates stress granule formation to facilitate viral translation. PLoS Pathog. 2018;14:e1006901 pubmed 出版商
  34. Chung H, Calis J, Wu X, Sun T, Yu Y, Sarbanes S, et al. Human ADAR1 Prevents Endogenous RNA from Triggering Translational Shutdown. Cell. 2018;172:811-824.e14 pubmed 出版商
  35. Green K, Glineburg M, Kearse M, Flores B, Linsalata A, Fedak S, et al. RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat Commun. 2017;8:2005 pubmed 出版商
  36. Ersoy B, Maner Smith K, Li Y, Alpertunga I, Cohen D. Thioesterase-mediated control of cellular calcium homeostasis enables hepatic ER stress. J Clin Invest. 2018;128:141-156 pubmed 出版商
  37. Tseng K, Danilova T, Domanskyi A, Saarma M, Lindahl M, Airavaara M. MANF Is Essential for Neurite Extension and Neuronal Migration in the Developing Cortex. Eneuro. 2017;4: pubmed 出版商
  38. Nguyen A, Prado M, Schmidt P, Sendamarai A, Wilson Grady J, Min M, et al. UBE2O remodels the proteome during terminal erythroid differentiation. Science. 2017;357: pubmed 出版商
  39. Hsu J, Hubbell Engler B, Adelmant G, Huang J, Joyce C, Vazquez F, et al. PRMT1-Mediated Translation Regulation Is a Crucial Vulnerability of Cancer. Cancer Res. 2017;77:4613-4625 pubmed 出版商
  40. Pereira R, Tadinada S, Zasadny F, Oliveira K, Pires K, Olvera A, et al. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J. 2017;36:2126-2145 pubmed 出版商
  41. Xu X, Cui Y, Cao L, Zhang Y, Yin Y, Hu X. PCSK9 regulates apoptosis in human lung adenocarcinoma A549 cells via endoplasmic reticulum stress and mitochondrial signaling pathways. Exp Ther Med. 2017;13:1993-1999 pubmed 出版商
  42. Potes Y, de Luxán Delgado B, Rodríguez González S, Guimarães M, Solano J, Fernández Fernández M, et al. Overweight in elderly people induces impaired autophagy in skeletal muscle. Free Radic Biol Med. 2017;110:31-41 pubmed 出版商
  43. King B, Hershkowitz D, Eisenhauer P, Weir M, Ziegler C, Russo J, et al. A Map of the Arenavirus Nucleoprotein-Host Protein Interactome Reveals that Junín Virus Selectively Impairs the Antiviral Activity of Double-Stranded RNA-Activated Protein Kinase (PKR). J Virol. 2017;91: pubmed 出版商
  44. Crespillo Casado A, Chambers J, Fischer P, Marciniak S, Ron D. PPP1R15A-mediated dephosphorylation of eIF2α is unaffected by Sephin1 or Guanabenz. elife. 2017;6: pubmed 出版商
  45. Kaufman D, Papillon J, Larose L, Iwawaki T, Cybulsky A. Deletion of inositol-requiring enzyme-1? in podocytes disrupts glomerular capillary integrity and autophagy. Mol Biol Cell. 2017;28:1636-1651 pubmed 出版商
  46. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  47. Yan L, Deng Y, Gao J, Liu Y, Li F, Shi J, et al. Icariside II Effectively Reduces Spatial Learning and Memory Impairments in Alzheimer's Disease Model Mice Targeting Beta-Amyloid Production. Front Pharmacol. 2017;8:106 pubmed 出版商
  48. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  49. Amici D, Pinal Fernández I, Mázala D, Lloyd T, Corse A, Christopher Stine L, et al. Calcium dysregulation, functional calpainopathy, and endoplasmic reticulum stress in sporadic inclusion body myositis. Acta Neuropathol Commun. 2017;5:24 pubmed 出版商
  50. Ohgaki R, Ohmori T, Hara S, Nakagomi S, Kanai Azuma M, Kaneda Nakashima K, et al. Essential Roles of L-Type Amino Acid Transporter 1 in Syncytiotrophoblast Development by Presenting Fusogenic 4F2hc. Mol Cell Biol. 2017;37: pubmed 出版商
  51. Dimasi P, Quintiero A, Shelkovnikova T, Buchman V. Modulation of p-eIF2α cellular levels and stress granule assembly/disassembly by trehalose. Sci Rep. 2017;7:44088 pubmed 出版商
  52. Kim J, Hyun H, Min S, Kang T. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci. 2017;11:47 pubmed 出版商
  53. Shadle S, Zhong J, Campbell A, Conerly M, Jagannathan S, Wong C, et al. DUX4-induced dsRNA and MYC mRNA stabilization activate apoptotic pathways in human cell models of facioscapulohumeral dystrophy. PLoS Genet. 2017;13:e1006658 pubmed 出版商
  54. Williams P, Harder J, Foxworth N, Cochran K, Philip V, Porciatti V, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355:756-760 pubmed 出版商
  55. Sanchez Martin M, Ambesi Impiombato A, Qin Y, Herranz D, Bansal M, Girardi T, et al. Synergistic antileukemic therapies in NOTCH1-induced T-ALL. Proc Natl Acad Sci U S A. 2017;114:2006-2011 pubmed 出版商
  56. Nita I, Hostettler K, Tamo L, Medová M, Bombaci G, Zhong J, et al. Hepatocyte growth factor secreted by bone marrow stem cell reduce ER stress and improves repair in alveolar epithelial II cells. Sci Rep. 2017;7:41901 pubmed 出版商
  57. Liu J, Wang Y, Song L, Zeng L, Yi W, Liu T, et al. A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability. Nat Commun. 2017;8:14186 pubmed 出版商
  58. Biever A, Boubaker Vitre J, Cutando L, Gracia Rubio I, Costa Mattioli M, Puighermanal E, et al. Repeated Exposure to D-Amphetamine Decreases Global Protein Synthesis and Regulates the Translation of a Subset of mRNAs in the Striatum. Front Mol Neurosci. 2016;9:165 pubmed 出版商
  59. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  60. Weisshaar N, Welsch H, Guerra Moreno A, Hanna J. Phospholipase Lpl1 links lipid droplet function with quality control protein degradation. Mol Biol Cell. 2017;28:716-725 pubmed 出版商
  61. Merckx E, Albertini G, Paterka M, Jensen C, Albrecht P, Dietrich M, et al. Absence of system xc- on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis. J Neuroinflammation. 2017;14:9 pubmed 出版商
  62. Sendoel A, Dunn J, Rodriguez E, Naik S, Gomez N, Hurwitz B, et al. Translation from unconventional 5' start sites drives tumour initiation. Nature. 2017;541:494-499 pubmed 出版商
  63. Su C, Gao X, Yang W, Zhao Y, Fu X, Cui X, et al. Phosphorylation of Tudor-SN, a novel substrate of JNK, is involved in the efficient recruitment of Tudor-SN into stress granules. Biochim Biophys Acta Mol Cell Res. 2017;1864:562-571 pubmed 出版商
  64. Falfushynska H, Phan T, Sokolova I. Long-Term Acclimation to Different Thermal Regimes Affects Molecular Responses to Heat Stress in a Freshwater Clam Corbicula Fluminea. Sci Rep. 2016;6:39476 pubmed 出版商
  65. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  66. Hu J, Li B, Apisa L, Yu H, Entenman S, Xu M, et al. ER stress inhibitor attenuates hearing loss and hair cell death in Cdh23erl/erl mutant mice. Cell Death Dis. 2016;7:e2485 pubmed 出版商
  67. Newberry E, Xie Y, Kennedy S, Graham M, Crooke R, Jiang H, et al. Prevention of hepatic fibrosis with liver microsomal triglyceride transfer protein deletion in liver fatty acid binding protein null mice. Hepatology. 2017;65:836-852 pubmed 出版商
  68. Silva R, Sattlegger E, Castilho B. Perturbations in actin dynamics reconfigure protein complexes that modulate GCN2 activity and promote an eIF2 response. J Cell Sci. 2016;129:4521-4533 pubmed
  69. Ayuso M, Martínez Alonso E, Regidor I, Alcazar A. Stress Granule Induction after Brain Ischemia Is Independent of Eukaryotic Translation Initiation Factor (eIF) 2? Phosphorylation and Is Correlated with a Decrease in eIF4B and eIF4E Proteins. J Biol Chem. 2016;291:27252-27264 pubmed 出版商
  70. Li D, Xie B, Wu X, Li J, Ding Y, Wen X, et al. Late-stage inhibition of autophagy enhances calreticulin surface exposure. Oncotarget. 2016;7:80842-80854 pubmed 出版商
  71. Carpentier K, Esparo N, Child S, Geballe A. A Single Amino Acid Dictates Protein Kinase R Susceptibility to Unrelated Viral Antagonists. PLoS Pathog. 2016;12:e1005966 pubmed 出版商
  72. Ferraz R, Camara H, De Souza E, Pinto S, Pinca A, Silva R, et al. IMPACT is a GCN2 inhibitor that limits lifespan in Caenorhabditis elegans. BMC Biol. 2016;14:87 pubmed
  73. Khoutorsky A, Sorge R, Prager Khoutorsky M, Pawlowski S, Longo G, Jafarnejad S, et al. eIF2? phosphorylation controls thermal nociception. Proc Natl Acad Sci U S A. 2016;113:11949-11954 pubmed
  74. Mathieu A, Ohl Séguy E, Dubois M, Jean D, Jones C, Boudreau F, et al. Subcellular proteomics analysis of different stages of colorectal cancer cell lines. Proteomics. 2016;16:3009-3018 pubmed 出版商
  75. Golovko A, Kojukhov A, Guan B, Morpurgo B, Merrick W, Mazumder B, et al. The eIF2A knockout mouse. Cell Cycle. 2016;15:3115-3120 pubmed
  76. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  77. Yang Z, Tsuchiya H, Zhang Y, Lee S, Liu C, Huang Y, et al. REV-ERB? Activates C/EBP Homologous Protein to Control Small Heterodimer Partner-Mediated Oscillation of Alcoholic Fatty Liver. Am J Pathol. 2016;186:2909-2920 pubmed 出版商
  78. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  79. Sherchand S, Ibana J, Zea A, Quayle A, Aiyar A. The High-Risk Human Papillomavirus E6 Oncogene Exacerbates the Negative Effect of Tryptophan Starvation on the Development of Chlamydia trachomatis. PLoS ONE. 2016;11:e0163174 pubmed 出版商
  80. Mohammad S, Wolfe L, Stöbe P, Biskup S, Wainwright M, Melin Aldana H, et al. Infantile Cirrhosis, Growth Impairment, and Neurodevelopmental Anomalies Associated with Deficiency of PPP1R15B. J Pediatr. 2016;179:144-149.e2 pubmed 出版商
  81. Taniuchi S, Miyake M, Tsugawa K, Oyadomari M, Oyadomari S. Integrated stress response of vertebrates is regulated by four eIF2? kinases. Sci Rep. 2016;6:32886 pubmed 出版商
  82. Zhu S, Henninger K, McGrath B, Cavener D. PERK Regulates Working Memory and Protein Synthesis-Dependent Memory Flexibility. PLoS ONE. 2016;11:e0162766 pubmed 出版商
  83. Wu J, Hu G, Lu Y, Zheng J, Chen J, Wang X, et al. Palmitic acid aggravates inflammation of pancreatic acinar cells by enhancing unfolded protein response induced CCAAT-enhancer-binding protein ?-CCAAT-enhancer-binding protein ? activation. Int J Biochem Cell Biol. 2016;79:181-193 pubmed 出版商
  84. Ziros P, Zagoriti Z, Lagoumintzis G, Kyriazopoulou V, Iskrenova R, Habeos E, et al. Hepatic Fgf21 Expression Is Repressed after Simvastatin Treatment in Mice. PLoS ONE. 2016;11:e0162024 pubmed 出版商
  85. Krawczyk K, Ekman M, Rippe C, Grossi M, Nilsson B, Albinsson S, et al. Assessing the contribution of thrombospondin-4 induction and ATF6? activation to endoplasmic reticulum expansion and phenotypic modulation in bladder outlet obstruction. Sci Rep. 2016;6:32449 pubmed 出版商
  86. Nguyen T, Quan X, Xu S, Das R, Cha S, Kong I, et al. Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion. FASEB J. 2016;30:3979-3988 pubmed
  87. Boß M, Newbatt Y, Gupta S, Collins I, Brüne B, Namgaladze D. AMPK-independent inhibition of human macrophage ER stress response by AICAR. Sci Rep. 2016;6:32111 pubmed 出版商
  88. Mihailidou C, Panagiotou C, Kiaris H, Kassi E, Moutsatsou P. Crosstalk between C/EBP homologous protein (CHOP) and glucocorticoid receptor in lung cancer. Mol Cell Endocrinol. 2016;436:211-23 pubmed 出版商
  89. Ladoire S, Senovilla L, Enot D, Ghiringhelli F, Poirier Colame V, Chaba K, et al. Biomarkers of immunogenic stress in metastases from melanoma patients: Correlations with the immune infiltrate. Oncoimmunology. 2016;5:e1160193 pubmed 出版商
  90. Zhang M, Qi Y, Li H, Cui J, Dai L, Frank J, et al. AIM2 inflammasome mediates Arsenic-induced secretion of IL-1 ? and IL-18. Oncoimmunology. 2016;5:e1160182 pubmed 出版商
  91. Bai Y, Dong Z, Shang Q, Zhao H, Wang L, Guo C, et al. Pdcd4 Is Involved in the Formation of Stress Granule in Response to Oxidized Low-Density Lipoprotein or High-Fat Diet. PLoS ONE. 2016;11:e0159568 pubmed 出版商
  92. Plate L, Cooley C, Chen J, Paxman R, Gallagher C, Madoux F, et al. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation. elife. 2016;5: pubmed 出版商
  93. Jiang M, Liu L, He X, Wang H, Lin W, Wang H, et al. Regulation of PERK-eIF2? signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes. Nat Commun. 2016;7:12185 pubmed 出版商
  94. Frau Méndez M, Fernández Vega I, Ansoleaga B, Blanco Tech R, Carmona Tech M, Antonio Del Río J, et al. Fatal familial insomnia: mitochondrial and protein synthesis machinery decline in the mediodorsal thalamus. Brain Pathol. 2017;27:95-106 pubmed 出版商
  95. Liu R, Moss B. Opposing Roles of Double-Stranded RNA Effector Pathways and Viral Defense Proteins Revealed with CRISPR-Cas9 Knockout Cell Lines and Vaccinia Virus Mutants. J Virol. 2016;90:7864-79 pubmed 出版商
  96. Berthoud V, Minogue P, Lambert P, Snabb J, Beyer E. The Cataract-linked Mutant Connexin50D47A Causes Endoplasmic Reticulum Stress in Mouse Lenses. J Biol Chem. 2016;291:17569-78 pubmed 出版商
  97. Zhou X, Wei Y, Qiu S, Xu Y, Zhang T, Zhang S. Propofol Decreases Endoplasmic Reticulum Stress-Mediated Apoptosis in Retinal Pigment Epithelial Cells. PLoS ONE. 2016;11:e0157590 pubmed 出版商
  98. Cormerais Y, Giuliano S, Lefloch R, Front B, Durivault J, Tambutte E, et al. Genetic Disruption of the Multifunctional CD98/LAT1 Complex Demonstrates the Key Role of Essential Amino Acid Transport in the Control of mTORC1 and Tumor Growth. Cancer Res. 2016;76:4481-92 pubmed 出版商
  99. Averous J, Lambert Langlais S, Mesclon F, Carraro V, Parry L, Jousse C, et al. GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Sci Rep. 2016;6:27698 pubmed 出版商
  100. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  101. Ansari M, Haqqi T. Interleukin-1β induced Stress Granules Sequester COX-2 mRNA and Regulates its Stability and Translation in Human OA Chondrocytes. Sci Rep. 2016;6:27611 pubmed 出版商
  102. Morisaki Y, Niikura M, Watanabe M, Onishi K, Tanabe S, Moriwaki Y, et al. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9. Sci Rep. 2016;6:27354 pubmed 出版商
  103. Chaveroux C, Sarcinelli C, Barbet V, Belfeki S, Barthelaix A, Ferraro Peyret C, et al. Nutrient shortage triggers the hexosamine biosynthetic pathway via the GCN2-ATF4 signalling pathway. Sci Rep. 2016;6:27278 pubmed 出版商
  104. Nelson E, Schmidt K, Deflubé L, DoÄŸanay S, Banadyga L, Olejnik J, et al. Ebola Virus Does Not Induce Stress Granule Formation during Infection and Sequesters Stress Granule Proteins within Viral Inclusions. J Virol. 2016;90:7268-7284 pubmed 出版商
  105. Ivanina A, Nesmelova I, Leamy L, Sokolov E, Sokolova I. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. J Exp Biol. 2016;219:1659-74 pubmed 出版商
  106. Yalon M, Tuval Kochen L, Castel D, Moshe I, Mazal I, Cohen O, et al. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations. PLoS ONE. 2016;11:e0155711 pubmed 出版商
  107. Xu Z, Bu Y, Chitnis N, Koumenis C, Fuchs S, Diehl J. miR-216b regulation of c-Jun mediates GADD153/CHOP-dependent apoptosis. Nat Commun. 2016;7:11422 pubmed 出版商
  108. Seiferling D, Szczepanowska K, Becker C, Senft K, Hermans S, Maiti P, et al. Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt. EMBO Rep. 2016;17:953-64 pubmed 出版商
  109. Humoud M, Doyle N, Royall E, Willcocks M, Sorgeloos F, van Kuppeveld F, et al. Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage. J Virol. 2016;90:6489-6501 pubmed 出版商
  110. PluciÅ„ska K, Dekeryte R, Koss D, Shearer K, Mody N, Whitfield P, et al. Neuronal human BACE1 knockin induces systemic diabetes in mice. Diabetologia. 2016;59:1513-1523 pubmed 出版商
  111. Kainulainen M, Lau S, Samuel C, Hornung V, Weber F. NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and ?-TRCP1 To Degrade the Antiviral Protein Kinase PKR. J Virol. 2016;90:6140-7 pubmed 出版商
  112. Rodriguez Ortiz C, Flores J, Valenzuela J, Rodriguez G, Zumkehr J, Tran D, et al. The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress. Am J Pathol. 2016;186:1623-34 pubmed 出版商
  113. Chen Y, Pandiri I, Joe Y, Kim H, Kim S, Park J, et al. Synergistic Effects of Cilostazol and Probucol on ER Stress-Induced Hepatic Steatosis via Heme Oxygenase-1-Dependent Activation of Mitochondrial Biogenesis. Oxid Med Cell Longev. 2016;2016:3949813 pubmed 出版商
  114. Aaes T, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, et al. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Rep. 2016;15:274-87 pubmed 出版商
  115. Lee Y, Lee S, Lee C, Kim S, Song Y, Yoon M, et al. Association between betatrophin/ANGPTL8 and non-alcoholic fatty liver disease: animal and human studies. Sci Rep. 2016;6:24013 pubmed 出版商
  116. Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, et al. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nat Commun. 2016;7:11127 pubmed 出版商
  117. Xia X, Che Y, Gao Y, Zhao S, Ao C, Yang H, et al. Arginine Supplementation Recovered the IFN-?-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2? Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells. Mol Cells. 2016;39:410-7 pubmed 出版商
  118. Yadav P, Selvaraj B, Bender F, Behringer M, Moradi M, Sivadasan R, et al. Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling. Acta Neuropathol. 2016;132:93-110 pubmed 出版商
  119. Bretin A, Carrière J, Dalmasso G, Bergougnoux A, B chir W, Maurin A, et al. Activation of the EIF2AK4-EIF2A/eIF2?-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection. Autophagy. 2016;12:770-83 pubmed 出版商
  120. Shih Y, Hsueh Y. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation. Nat Commun. 2016;7:11020 pubmed 出版商
  121. Ravindran R, Loebbermann J, Nakaya H, Khan N, Ma H, Gama L, et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature. 2016;531:523-527 pubmed 出版商
  122. Soeda J, Mouralidarane A, Cordero P, Li J, Nguyen V, Carter R, et al. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas. J Physiol Biochem. 2016;72:281-91 pubmed 出版商
  123. Fusakio M, Willy J, Wang Y, Mirek E, Al Baghdadi R, Adams C, et al. Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver. Mol Biol Cell. 2016;27:1536-51 pubmed 出版商
  124. Lyabin D, Ovchinnikov L. Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein. Sci Rep. 2016;6:22502 pubmed 出版商
  125. Colangelo T, Polcaro G, Ziccardi P, Muccillo L, Galgani M, Pucci B, et al. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis. 2016;7:e2108 pubmed 出版商
  126. Ben Sahra I, Hoxhaj G, Ricoult S, Asara J, Manning B. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science. 2016;351:728-733 pubmed 出版商
  127. Hu M, Bai Y, Zhang C, Liu F, Cui Z, Chen J, et al. Liver-Enriched Gene 1, a Glycosylated Secretory Protein, Binds to FGFR and Mediates an Anti-stress Pathway to Protect Liver Development in Zebrafish. PLoS Genet. 2016;12:e1005881 pubmed 出版商
  128. Sieber J, Hauer C, Bhuvanagiri M, Leicht S, Krijgsveld J, Neu Yilik G, et al. Proteomic Analysis Reveals Branch-specific Regulation of the Unfolded Protein Response by Nonsense-mediated mRNA Decay. Mol Cell Proteomics. 2016;15:1584-97 pubmed 出版商
  129. Liao B, McManus S, Hughes W, Schmitz Peiffer C. Flavin-Containing Monooxygenase 3 Reduces Endoplasmic Reticulum Stress in Lipid-Treated Hepatocytes. Mol Endocrinol. 2016;30:417-28 pubmed 出版商
  130. Kline C, van den Heuvel A, Allen J, Prabhu V, Dicker D, El Deiry W. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci Signal. 2016;9:ra18 pubmed 出版商
  131. Lei Y, Kansy B, Li J, Cong L, Liu Y, Trivedi S, et al. EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex. Oncogene. 2016;35:4698-707 pubmed 出版商
  132. Hong M, Nam K, Kim K, Kim S, Kim I. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha. Cell Stress Chaperones. 2016;21:485-97 pubmed 出版商
  133. Liao K, Guo M, Niu F, Yang L, Callen S, Buch S. Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis. J Neuroinflammation. 2016;13:33 pubmed 出版商
  134. Lancaster G, Kammoun H, Kraakman M, Kowalski G, Bruce C, Febbraio M. PKR is not obligatory for high-fat diet-induced obesity and its associated metabolic and inflammatory complications. Nat Commun. 2016;7:10626 pubmed 出版商
  135. Baer A, Lundberg L, Swales D, Waybright N, Pinkham C, Dinman J, et al. Venezuelan Equine Encephalitis Virus Induces Apoptosis through the Unfolded Protein Response Activation of EGR1. J Virol. 2016;90:3558-72 pubmed 出版商
  136. El Karoui K, Viau A, Dellis O, Bagattin A, Nguyen C, BARON W, et al. Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2. Nat Commun. 2016;7:10330 pubmed 出版商
  137. Srinivasan R, Henley B, Henderson B, Indersmitten T, Cohen B, Kim C, et al. Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons. J Neurosci. 2016;36:65-79 pubmed 出版商
  138. Arimoto Matsuzaki K, Saito H, Takekawa M. TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis. Nat Commun. 2016;7:10252 pubmed 出版商
  139. Yuen K, Xu B, Krantz I, Gerton J. NIPBL Controls RNA Biogenesis to Prevent Activation of the Stress Kinase PKR. Cell Rep. 2016;14:93-102 pubmed 出版商
  140. Lin H, Masaki H, Yamaguchi T, Wada T, Yachie A, Nishimura K, et al. An assessment of the effects of ectopic gp91phox expression in XCGD iPSC-derived neutrophils. Mol Ther Methods Clin Dev. 2015;2:15046 pubmed 出版商
  141. Ulbrich L, Favaloro F, Trobiani L, Marchetti V, Patel V, Pascucci T, et al. Autism-associated R451C mutation in neuroligin3 leads to activation of the unfolded protein response in a PC12 Tet-On inducible system. Biochem J. 2016;473:423-34 pubmed 出版商
  142. Gao X, Krokowski D, Guan B, Bederman I, Majumder M, Parisien M, et al. Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response. elife. 2015;4:e10067 pubmed 出版商
  143. McIlroy G, Tammireddy S, Maskrey B, Grant L, Doherty M, Watson D, et al. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue. Biochem Pharmacol. 2016;100:86-97 pubmed 出版商
  144. Xu S, Nam S, Kim J, Das R, Choi S, Nguyen T, et al. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis. 2015;6:e1976 pubmed 出版商
  145. Elder M, Webster S, Williams D, Gaston J, Goodall J. TSLP production by dendritic cells is modulated by IL-1β and components of the endoplasmic reticulum stress response. Eur J Immunol. 2016;46:455-63 pubmed 出版商
  146. Ostapchenko V, Chen M, Guzman M, Xie Y, Lavine N, Fan J, et al. The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment. J Neurosci. 2015;35:15157-69 pubmed 出版商
  147. Zismanov V, Chichkov V, Colangelo V, Jamet S, Wang S, Syme A, et al. Phosphorylation of eIF2α Is a Translational Control Mechanism Regulating Muscle Stem Cell Quiescence and Self-Renewal. Cell Stem Cell. 2016;18:79-90 pubmed 出版商
  148. Zucal C, D Agostino V, Casini A, Mantelli B, Thongon N, Soncini D, et al. EIF2A-dependent translational arrest protects leukemia cells from the energetic stress induced by NAMPT inhibition. BMC Cancer. 2015;15:855 pubmed 出版商
  149. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  150. Zhu X, Zelmer A, Kapfhammer J, Wellmann S. Cold-inducible RBM3 inhibits PERK phosphorylation through cooperation with NF90 to protect cells from endoplasmic reticulum stress. FASEB J. 2016;30:624-34 pubmed 出版商
  151. Palam L, Gore J, Craven K, Wilson J, Korc M. Integrated stress response is critical for gemcitabine resistance in pancreatic ductal adenocarcinoma. Cell Death Dis. 2015;6:e1913 pubmed 出版商
  152. Radford H, Moreno J, Verity N, Halliday M, Mallucci G. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol. 2015;130:633-42 pubmed 出版商
  153. Krisenko M, Higgins R, Ghosh S, Zhou Q, Trybula J, Wang W, et al. Syk Is Recruited to Stress Granules and Promotes Their Clearance through Autophagy. J Biol Chem. 2015;290:27803-15 pubmed 出版商
  154. Sakabe I, Hu R, Jin L, Clarke R, Kasid U. TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. 2015;153:285-97 pubmed 出版商
  155. Wang J, Ma L, Tang X, Zhang X, Qiao Y, Shi Y, et al. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells. Oncotarget. 2015;6:24075-91 pubmed
  156. Tholen M, Wolanski J, Stolze B, Chiabudini M, Gajda M, Bronsert P, et al. Stress-resistant Translation of Cathepsin L mRNA in Breast Cancer Progression. J Biol Chem. 2015;290:15758-69 pubmed 出版商
  157. Cha J, Burnum Johnson K, Bartos A, Li Y, Baker E, Tilton S, et al. Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus. J Biol Chem. 2015;290:15337-49 pubmed 出版商
  158. Willy J, Young S, Stevens J, Masuoka H, Wek R. CHOP links endoplasmic reticulum stress to NF-κB activation in the pathogenesis of nonalcoholic steatohepatitis. Mol Biol Cell. 2015;26:2190-204 pubmed 出版商
  159. Panas M, Kedersha N, McInerney G. Methods for the characterization of stress granules in virus infected cells. Methods. 2015;90:57-64 pubmed 出版商
  160. Chung J, Bauer D, Ghamari A, Nizzi C, Deck K, Kingsley P, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal. 2015;8:ra34 pubmed 出版商
  161. Das I, Krzyzosiak A, Schneider K, Wrabetz L, D Antonio M, Barry N, et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science. 2015;348:239-42 pubmed 出版商
  162. Shimizu N, Maruyama T, Yoshikawa N, Matsumiya R, Ma Y, Ito N, et al. A muscle-liver-fat signalling axis is essential for central control of adaptive adipose remodelling. Nat Commun. 2015;6:6693 pubmed 出版商
  163. Wong M, Nicholson C, Holloway A, Hardy D. Maternal nicotine exposure leads to impaired disulfide bond formation and augmented endoplasmic reticulum stress in the rat placenta. PLoS ONE. 2015;10:e0122295 pubmed 出版商
  164. Roost M, van Iperen L, De Melo Bernardo A, Mummery C, Carlotti F, de Koning E, et al. Lymphangiogenesis and angiogenesis during human fetal pancreas development. Vasc Cell. 2014;6:22 pubmed 出版商
  165. Burgess H, Mohr I. Cellular 5'-3' mRNA exonuclease Xrn1 controls double-stranded RNA accumulation and anti-viral responses. Cell Host Microbe. 2015;17:332-344 pubmed 出版商
  166. Way S, Podojil J, Clayton B, Zaremba A, Collins T, Kunjamma R, et al. Pharmaceutical integrated stress response enhancement protects oligodendrocytes and provides a potential multiple sclerosis therapeutic. Nat Commun. 2015;6:6532 pubmed 出版商
  167. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  168. Tseng Y, Lin F, Cheng S, Tscharke D, Chulakasian S, Chou C, et al. Functional analysis of the short isoform of orf virus protein OV20.0. J Virol. 2015;89:4966-79 pubmed 出版商
  169. Wang S, Chen X, Hu J, Jiang J, Li Y, Chan Salis K, et al. ATF4 Gene Network Mediates Cellular Response to the Anticancer PAD Inhibitor YW3-56 in Triple-Negative Breast Cancer Cells. Mol Cancer Ther. 2015;14:877-88 pubmed 出版商
  170. Karner C, Esen E, Okunade A, Patterson B, Long F. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. J Clin Invest. 2015;125:551-62 pubmed 出版商
  171. Filézac de L Etang A, Maharjan N, Cordeiro Braña M, Ruegsegger C, Rehmann R, Goswami A, et al. Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS. Nat Neurosci. 2015;18:227-38 pubmed 出版商
  172. Jaishy B, Zhang Q, Chung H, Riehle C, Soto J, Jenkins S, et al. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J Lipid Res. 2015;56:546-61 pubmed 出版商
  173. Li W, Ouyang Z, Zhang Q, Wang L, Shen Y, Gu Y, et al. SBF-1 exerts strong anticervical cancer effect through inducing endoplasmic reticulum stress-associated cell death via targeting sarco/endoplasmic reticulum Ca(2+)-ATPase 2. Cell Death Dis. 2014;5:e1581 pubmed 出版商
  174. Areta J, Hawley J, Ye J, Chan M, Coffey V. Increasing leucine concentration stimulates mechanistic target of rapamycin signaling and cell growth in C2C12 skeletal muscle cells. Nutr Res. 2014;34:1000-7 pubmed 出版商
  175. Arruda A, Pers B, Parlakgül G, Güney E, Inouye K, Hotamisligil G. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med. 2014;20:1427-35 pubmed 出版商
  176. Zhong L, Wang L, Xu L, Liu Q, Jiang L, Zhi Y, et al. The cytotoxic effect of the NOS-mediated oxidative stress in MCF-7 cells after PbClâ‚‚ exposure. Environ Toxicol. 2016;31:601-8 pubmed 出版商
  177. Bhuvanagiri M, Lewis J, Putzker K, Becker J, Leicht S, Krijgsveld J, et al. 5-azacytidine inhibits nonsense-mediated decay in a MYC-dependent fashion. EMBO Mol Med. 2014;6:1593-609 pubmed 出版商
  178. Lin Y, Zhang H, Liang J, Li K, Zhu W, Fu L, et al. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc Natl Acad Sci U S A. 2014;111:E4504-12 pubmed 出版商
  179. Bernard Marissal N, Sunyach C, Marissal T, Raoul C, Pettmann B. Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice. Neurobiol Dis. 2015;73:130-6 pubmed 出版商
  180. Ma Q, Ying M, Sui X, Zhang H, Huang H, Yang L, et al. Chronic copper exposure causes spatial memory impairment, selective loss of hippocampal synaptic proteins, and activation of PKR/eIF2α pathway in mice. J Alzheimers Dis. 2015;43:1413-27 pubmed 出版商
  181. Feng X, Krogh K, Wu C, Lin Y, Tsai H, Thayer S, et al. Receptor-interacting protein 140 attenuates endoplasmic reticulum stress in neurons and protects against cell death. Nat Commun. 2014;5:4487 pubmed 出版商
  182. Sadleir K, Eimer W, Kaufman R, Osten P, Vassar R. Genetic inhibition of phosphorylation of the translation initiation factor eIF2α does not block Aβ-dependent elevation of BACE1 and APP levels or reduce amyloid pathology in a mouse model of Alzheimer's disease. PLoS ONE. 2014;9:e101643 pubmed 出版商
  183. Chang P, Hung C, Wang S, Tsai P, Shih Y, Chen L, et al. Identification and characterization of two novel spliced genes located in the orf47-orf46-orf45 gene locus of Kaposi's sarcoma-associated herpesvirus. J Virol. 2014;88:10092-109 pubmed 出版商
  184. Devi L, Ohno M. PERK mediates eIF2? phosphorylation responsible for BACE1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer's disease. Neurobiol Aging. 2014;35:2272-81 pubmed 出版商
  185. Maas N, Singh N, Diehl J. Generation and characterization of an analog-sensitive PERK allele. Cancer Biol Ther. 2014;15:1106-11 pubmed 出版商
  186. Tape C, Norrie I, Worboys J, Lim L, Lauffenburger D, Jørgensen C. Cell-specific labeling enzymes for analysis of cell-cell communication in continuous co-culture. Mol Cell Proteomics. 2014;13:1866-76 pubmed 出版商
  187. Campos G, Schmidt Heck W, Ghallab A, Rochlitz K, Pütter L, Medinas D, et al. The transcription factor CHOP, a central component of the transcriptional regulatory network induced upon CCl4 intoxication in mouse liver, is not a critical mediator of hepatotoxicity. Arch Toxicol. 2014;88:1267-80 pubmed 出版商
  188. Ost M, Werner F, Dokas J, Klaus S, Voigt A. Activation of AMPK?2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity. PLoS ONE. 2014;9:e94689 pubmed 出版商
  189. Kaehler C, Isensee J, Hucho T, Lehrach H, Krobitsch S. 5-Fluorouracil affects assembly of stress granules based on RNA incorporation. Nucleic Acids Res. 2014;42:6436-47 pubmed 出版商
  190. Nagelkerke A, Sweep F, Stegeman H, Grenman R, Kaanders J, Bussink J, et al. Hypoxic regulation of the PERK/ATF4/LAMP3-arm of the unfolded protein response in head and neck squamous cell carcinoma. Head Neck. 2015;37:896-905 pubmed 出版商
  191. Hsu W, Chen C, Huang S, Wu C, Chen I, Nadar M, et al. The untranslated regions of classic swine fever virus RNA trigger apoptosis. PLoS ONE. 2014;9:e88863 pubmed 出版商
  192. Wang B, Dai S, Dong Z, Sun Y, Song X, Guo C, et al. The modulation of endoplasmic reticulum stress by chemical chaperone upregulates immune negative cytokine IL-35 in apolipoprotein E-deficient mice. PLoS ONE. 2014;9:e87787 pubmed 出版商
  193. Ní Fhlathartaigh M, McMahon J, Reynolds R, Connolly D, Higgins E, Counihan T, et al. Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination. Acta Neuropathol Commun. 2013;1:37 pubmed 出版商
  194. Shang L, Hua H, Foo K, Martínez H, Watanabe K, Zimmer M, et al. β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome. Diabetes. 2014;63:923-33 pubmed 出版商
  195. Peng Y, Shi Y, Ding Z, Ke A, Gu C, Hui B, et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy. 2013;9:2056-68 pubmed 出版商
  196. Naidoo N, Davis J, Zhu J, Yabumoto M, Singletary K, Brown M, et al. Aging and sleep deprivation induce the unfolded protein response in the pancreas: implications for metabolism. Aging Cell. 2014;13:131-41 pubmed 出版商
  197. Huang M, Sivagurunathan S, Ting S, Jansson P, Austin C, Kelly M, et al. Molecular and functional alterations in a mouse cardiac model of Friedreich ataxia: activation of the integrated stress response, eIF2? phosphorylation, and the induction of downstream targets. Am J Pathol. 2013;183:745-57 pubmed 出版商
  198. Devi L, Ohno M. Mechanisms that lessen benefits of ?-secretase reduction in a mouse model of Alzheimer's disease. Transl Psychiatry. 2013;3:e284 pubmed 出版商
  199. Díaz Villaseñor A, Granados O, González Palacios B, Tovar Palacio C, Torre Villalvazo I, Olivares García V, et al. Differential modulation of the functionality of white adipose tissue of obese Zucker (fa/fa) rats by the type of protein and the amount and type of fat. J Nutr Biochem. 2013;24:1798-809 pubmed 出版商
  200. Zhuo X, Wu Y, Ni Y, Liu J, Gong M, Wang X, et al. Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis. 2013;18:800-10 pubmed 出版商
  201. Hernandez A, Colvin E, Chen Y, Geiss S, Eller L, Fueger P. Upregulation of p21 activates the intrinsic apoptotic pathway in ?-cells. Am J Physiol Endocrinol Metab. 2013;304:E1281-90 pubmed 出版商
  202. Banduseela V, Chen Y, Kultima H, Norman H, Aare S, Radell P, et al. Impaired autophagy, chaperone expression, and protein synthesis in response to critical illness interventions in porcine skeletal muscle. Physiol Genomics. 2013;45:477-86 pubmed 出版商
  203. Hou Y, Xue P, Woods C, Wang X, Fu J, Yarborough K, et al. Association between arsenic suppression of adipogenesis and induction of CHOP10 via the endoplasmic reticulum stress response. Environ Health Perspect. 2013;121:237-43 pubmed 出版商
  204. Saikia M, Krokowski D, Guan B, Ivanov P, Parisien M, Hu G, et al. Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem. 2012;287:42708-25 pubmed 出版商
  205. Cheshenko N, Trepanier J, Segarra T, Fuller A, Herold B. HSV usurps eukaryotic initiation factor 3 subunit M for viral protein translation: novel prevention target. PLoS ONE. 2010;5:e11829 pubmed 出版商
  206. Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino A. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer. 2008;8:229 pubmed 出版商
  207. Hengstermann A, Muller T. Endoplasmic reticulum stress induced by aqueous extracts of cigarette smoke in 3T3 cells activates the unfolded-protein-response-dependent PERK pathway of cell survival. Free Radic Biol Med. 2008;44:1097-107 pubmed 出版商
  208. Shah A, Parker J, Gillespie G, Lakeman F, Meleth S, Markert J, et al. Enhanced antiglioma activity of chimeric HCMV/HSV-1 oncolytic viruses. Gene Ther. 2007;14:1045-54 pubmed
  209. Cassady K. Human cytomegalovirus TRS1 and IRS1 gene products block the double-stranded-RNA-activated host protein shutoff response induced by herpes simplex virus type 1 infection. J Virol. 2005;79:8707-15 pubmed