这是一篇来自已证抗体库的有关人类 真核生物肽起始因子4e (eIF4E) 的综述,是根据65篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合真核生物肽起始因子4e 抗体。
真核生物肽起始因子4e 同义词: AUTS19; CBP; EIF4E1; EIF4EL1; EIF4F; eIF-4E

圣克鲁斯生物技术
小鼠 单克隆(A-10)
  • 免疫组化基因敲除验证; 人类; 1:1000; 图 4f
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz Biotechnology, sc-271480)被用于被用于免疫组化基因敲除验证在人类样本上浓度为1:1000 (图 4f). Int J Mol Med (2019) ncbi
小鼠 单克隆(A-10)
  • 免疫沉淀; 人类; 图 1e
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz Biotechnology, sc-271480)被用于被用于免疫沉淀在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 1a). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
小鼠 单克隆(P-2)
  • 免疫印迹; 小鼠; 图 5c
圣克鲁斯生物技术真核生物肽起始因子4e抗体(SantaCruz, sc-9976)被用于被用于免疫印迹在小鼠样本上 (图 5c). Blood (2017) ncbi
小鼠 单克隆(P-2)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz Biotechnology, sc-9976)被用于被用于免疫印迹在人类样本上 (图 1b). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(P-2)
  • 免疫细胞化学; 人类; 10 ug/ml; 图 1d
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz, sc-9976)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 1d). Nat Commun (2016) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz, sc-271480)被用于被用于免疫印迹在人类样本上 (图 8). PLoS Pathog (2016) ncbi
小鼠 单克隆(P-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz, sc-9976)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2015) ncbi
小鼠 单克隆(P-2)
  • 免疫印迹; 人类; 1:1000; 图 s8
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz, SC9976)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). BMC Cancer (2015) ncbi
小鼠 单克隆(P-2)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz, P-2)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(P-2)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz, sc-9976)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(P-2)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz, sc-9976)被用于被用于免疫印迹在人类样本上浓度为1:200. Methods (2015) ncbi
小鼠 单克隆(P-2)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1a
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz, sc-9976)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1a). Int J Oral Sci (2015) ncbi
小鼠 单克隆(P-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz, sc-9976)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2015) ncbi
小鼠 单克隆(P-2)
  • 免疫印迹; 小鼠; 1:2000
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz Biotechnology Inc, sc9976)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(P-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术真核生物肽起始因子4e抗体(Santa Cruz Biotech, sc9976)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(Y448)
  • 免疫印迹; 人类; 1:500; 图 1a
艾博抗(上海)贸易有限公司真核生物肽起始因子4e抗体(Abcam, Y448)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1a). Proc Natl Acad Sci U S A (2019) ncbi
domestic rabbit 单克隆(EP2151Y)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司真核生物肽起始因子4e抗体(Abcam, ab76256)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(Y449)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司真核生物肽起始因子4e抗体(Abcam, ab33768)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2a). Exp Neurol (2018) ncbi
domestic rabbit 单克隆(Y448)
  • 免疫印迹; 人类; 图 4e
艾博抗(上海)贸易有限公司真核生物肽起始因子4e抗体(abcam, ab33766)被用于被用于免疫印迹在人类样本上 (图 4e). elife (2017) ncbi
domestic rabbit 单克隆(Y448)
  • 核糖核酸免疫沉淀; 人类; 图 4
  • 免疫沉淀; 人类; 图 4
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司真核生物肽起始因子4e抗体(Abcam, ab33766)被用于被用于核糖核酸免疫沉淀在人类样本上 (图 4), 被用于免疫沉淀在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
赛默飞世尔
小鼠 单克隆(5D11)
  • 免疫沉淀; 小鼠; 图 2b
  • 免疫细胞化学; 小鼠; 1:100; 图 4b
  • 免疫印迹; 小鼠; 图 2b
赛默飞世尔真核生物肽起始因子4e抗体(Thermo Fisher Scientific, MA1-089)被用于被用于免疫沉淀在小鼠样本上 (图 2b), 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4b) 和 被用于免疫印迹在小鼠样本上 (图 2b). Biol Reprod (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛默飞世尔真核生物肽起始因子4e抗体(Invitrogen, 44528G)被用于被用于免疫印迹在人类样本上 (图 2). J Clin Invest (2016) ncbi
安迪生物R&D
小鼠 单克隆(299910)
  • 免疫印迹; 小鼠; 图 3d
安迪生物R&D真核生物肽起始因子4e抗体(R&D Systems, 299910)被用于被用于免疫印迹在小鼠样本上 (图 3d). Nat Commun (2016) ncbi
小鼠 单克隆(299910)
  • 免疫印迹; 小鼠; 1:250; 表 3
安迪生物R&D真核生物肽起始因子4e抗体(R&D Systems, 299910)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (表 3). Comput Struct Biotechnol J (2013) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling Technology, 9741)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3d). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1b
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 9742)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Int J Biol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 9741)被用于被用于免疫印迹在人类样本上 (图 6c). Oncogene (2019) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 人类; 图 2d, s1c
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 2067)被用于被用于免疫印迹在人类样本上 (图 2d, s1c). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 9742)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 9742)被用于被用于免疫印迹在人类样本上 (图 s5a). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 9741)被用于被用于免疫印迹在人类样本上 (图 s5a). Cell (2018) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 2067)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 人类; 图 s5p
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 2067)被用于被用于免疫印迹在人类样本上 (图 s5p). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5p
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 9741)被用于被用于免疫印迹在人类样本上 (图 s5p). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 9741)被用于被用于免疫印迹在人类样本上 (图 1e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling Technology, C46H6)被用于被用于免疫印迹在小鼠样本上 (图 3f). Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling Technology, 9741)被用于被用于免疫印迹在小鼠样本上 (图 5b). Cancer Res (2017) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 人类; 1:10; 图 3c
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 2067)被用于被用于免疫印迹在人类样本上浓度为1:10 (图 3c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(CST, 9742)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 9742)被用于被用于免疫印迹在人类样本上 (图 s1c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling Technology, 9742)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 8a
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 9741)被用于被用于免疫印迹在大鼠样本上 (图 8a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 2067)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 9741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 小鼠; 图 s3d
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 2067)被用于被用于免疫印迹在小鼠样本上 (图 s3d). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 9742)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1s1
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(CST, 9742)被用于被用于免疫印迹在人类样本上 (图 1s1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell signaling, 9742)被用于被用于免疫印迹在人类样本上 (图 1). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 2067)被用于被用于免疫印迹在人类样本上 (图 2d). Mol Cell (2016) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 2067S)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 9741S)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 1a
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 2067)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Onco Targets Ther (2016) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling Technology, 2067S)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体((Cell Signaling, C46H6)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 非洲爪蛙; 1:1000; 图 2B
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 2067S)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:1000 (图 2B). RNA (2015) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, 20675)被用于被用于免疫印迹在人类样本上 (图 1). Cancer Discov (2015) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 鸡; 1:500; 图 3
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling, C46H6)被用于被用于免疫印迹在鸡样本上浓度为1:500 (图 3). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling Technology, C46H6)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Agric Food Chem (2014) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 猪; 1:500
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling Technology, 2067)被用于被用于免疫印迹在猪样本上浓度为1:500. Amino Acids (2014) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling Technology, 2067)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling Technology, 2067)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell signaling Technology, 2067)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2014) ncbi
domestic rabbit 单克隆(C46H6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司真核生物肽起始因子4e抗体(Cell Signaling Technology, C46H6)被用于被用于免疫印迹在人类样本上. Mol Pharm (2013) ncbi
碧迪BD
小鼠 单克隆(87/eIF-4E)
  • 免疫印迹; 小鼠; 1:1000; 图 s3d
碧迪BD真核生物肽起始因子4e抗体(BBD Transduction Laboratories, 610269)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3d). Science (2019) ncbi
小鼠 单克隆(87/eIF-4E)
  • 免疫细胞化学; 人类; 图 4d
碧迪BD真核生物肽起始因子4e抗体(BD Transduction, 611624)被用于被用于免疫细胞化学在人类样本上 (图 4d). Oncogene (2019) ncbi
小鼠 单克隆(87/eIF-4E)
  • 免疫印迹; 人类; 图 1e
碧迪BD真核生物肽起始因子4e抗体(BD Biosciences, 610269)被用于被用于免疫印迹在人类样本上 (图 1e). J Clin Invest (2017) ncbi
小鼠 单克隆(87/eIF-4E)
  • 免疫组化-冰冻切片; 大鼠; 图 2a
  • 免疫印迹; 大鼠; 图 8a
碧迪BD真核生物肽起始因子4e抗体(BD Transduction Laboratories, 610269)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 2a) 和 被用于免疫印迹在大鼠样本上 (图 8a). J Biol Chem (2016) ncbi
小鼠 单克隆(87/eIF-4E)
  • 免疫印迹; 小鼠; 图 s1a
碧迪BD真核生物肽起始因子4e抗体(BD Biosciences, 610270)被用于被用于免疫印迹在小鼠样本上 (图 s1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(87/eIF-4E)
  • 免疫印迹; 黑腹果蝇; 图 s1
碧迪BD真核生物肽起始因子4e抗体(BD Biosciences, 610270)被用于被用于免疫印迹在黑腹果蝇样本上 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(87/eIF-4E)
  • 免疫印迹; 人类; 1:1000; 图 s3
碧迪BD真核生物肽起始因子4e抗体(BD Biosciences, 610269)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(87/eIF-4E)
  • 免疫印迹; 大鼠; 图 2
碧迪BD真核生物肽起始因子4e抗体(BD Biosciences, 610270)被用于被用于免疫印迹在大鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(87/eIF-4E)
  • 免疫印迹; 小鼠; 1:1000; 图 2
碧迪BD真核生物肽起始因子4e抗体(BD Transduction Laboratories, 610269)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). elife (2015) ncbi
小鼠 单克隆(87/eIF-4E)
  • 免疫印迹; 人类; 图 13a
碧迪BD真核生物肽起始因子4e抗体(BD Transduction Laboratories, 610269)被用于被用于免疫印迹在人类样本上 (图 13a). J Biol Chem (2015) ncbi
小鼠 单克隆(87/eIF-4E)
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BD真核生物肽起始因子4e抗体(BD Bioscience, 610269)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(87/eIF-4E)
  • 免疫印迹; 人类; 图 1c
碧迪BD真核生物肽起始因子4e抗体(BD PharMingen, 610270)被用于被用于免疫印迹在人类样本上 (图 1c). Nature (2014) ncbi
默克密理博中国
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
默克密理博中国真核生物肽起始因子4e抗体(Millipore, 07-823)被用于被用于免疫印迹在人类样本上 (图 1e). Autophagy (2017) ncbi
文章列表
  1. Zhu P, Khatiwada S, Cui Y, Reineke L, Dooling S, Kim J, et al. Activation of the ISR mediates the behavioral and neurophysiological abnormalities in Down syndrome. Science. 2019;366:843-849 pubmed 出版商
  2. Fang D, Peng J, Wang G, Zhou D, Geng X. Upregulation of eukaryotic translation initiation factor 4E associates with a poor prognosis in gallbladder cancer and promotes cell proliferation in vitro and in vivo. Int J Mol Med. 2019;44:1325-1332 pubmed 出版商
  3. Wang H, Huang F, Zhang Z, Wang P, Luo Y, Li H, et al. Feedback Activation of SGK3 and AKT Contributes to Rapamycin Resistance by Reactivating mTORC1/4EBP1 Axis via TSC2 in Breast Cancer. Int J Biol Sci. 2019;15:929-941 pubmed 出版商
  4. Li X, Zhu Q, Shi X, Cheng Y, Li X, Xu H, et al. O-GlcNAcylation of core components of the translation initiation machinery regulates protein synthesis. Proc Natl Acad Sci U S A. 2019;116:7857-7866 pubmed 出版商
  5. Urtishak K, Wang L, Culjkovic Kraljacic B, Davenport J, Porazzi P, Vincent T, et al. Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene. 2019;38:2241-2262 pubmed 出版商
  6. Avolio R, Järvelin A, Mohammed S, Agliarulo I, Condelli V, Zoppoli P, et al. Protein Syndesmos is a novel RNA-binding protein that regulates primary cilia formation. Nucleic Acids Res. 2018;46:12067-12086 pubmed 出版商
  7. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  8. Chung H, Calis J, Wu X, Sun T, Yu Y, Sarbanes S, et al. Human ADAR1 Prevents Endogenous RNA from Triggering Translational Shutdown. Cell. 2018;172:811-824.e14 pubmed 出版商
  9. Wang J, Ye Q, Cao Y, Guo Y, Huang X, Mi W, et al. Snail determines the therapeutic response to mTOR kinase inhibitors by transcriptional repression of 4E-BP1. Nat Commun. 2017;8:2207 pubmed 出版商
  10. Hu J, Sun F, Handel M. Nuclear localization of EIF4G3 suggests a role for the XY body in translational regulation during spermatogenesis in mice. Biol Reprod. 2018;98:102-114 pubmed 出版商
  11. Schafer S, Viswanathan S, Widjaja A, Lim W, Moreno Moral A, Delaughter D, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110-115 pubmed 出版商
  12. Zhan Y, Guo J, Yang W, Goncalves C, Rzymski T, Dreas A, et al. MNK1/2 inhibition limits oncogenicity and metastasis of KIT-mutant melanoma. J Clin Invest. 2017;127:4179-4192 pubmed 出版商
  13. Hsu J, Hubbell Engler B, Adelmant G, Huang J, Joyce C, Vazquez F, et al. PRMT1-Mediated Translation Regulation Is a Crucial Vulnerability of Cancer. Cancer Res. 2017;77:4613-4625 pubmed 出版商
  14. Oblinger J, Burns S, Huang J, Pan L, Ren Y, Shen R, et al. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol. 2018;299:299-307 pubmed 出版商
  15. Min K, Davila S, Zealy R, Lloyd L, Lee I, Lee R, et al. eIF4E phosphorylation by MST1 reduces translation of a subset of mRNAs, but increases lncRNA translation. Biochim Biophys Acta Gene Regul Mech. 2017;1860:761-772 pubmed 出版商
  16. Sinkala E, Sollier Christen E, Renier C, Rosàs Canyelles E, Che J, Heirich K, et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat Commun. 2017;8:14622 pubmed 出版商
  17. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  18. Huang J, Ku W, Chen Y, Chang Y, Chu C. Dual mechanisms regulate the nucleocytoplasmic localization of human DDX6. Sci Rep. 2017;7:42853 pubmed 出版商
  19. Tamarkin Ben Harush A, Vasseur J, Debart F, Ulitsky I, Dikstein R. Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress. elife. 2017;6: pubmed 出版商
  20. Eritja N, Chen B, Rodríguez Barrueco R, Santacana M, Gatius S, Vidal A, et al. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy. 2017;13:608-624 pubmed 出版商
  21. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  22. Alvarez Dominguez J, Zhang X, Hu W. Widespread and dynamic translational control of red blood cell development. Blood. 2017;129:619-629 pubmed 出版商
  23. Ayuso M, Martínez Alonso E, Regidor I, Alcazar A. Stress Granule Induction after Brain Ischemia Is Independent of Eukaryotic Translation Initiation Factor (eIF) 2? Phosphorylation and Is Correlated with a Decrease in eIF4B and eIF4E Proteins. J Biol Chem. 2016;291:27252-27264 pubmed 出版商
  24. Tahmasebi S, Jafarnejad S, Tam I, Gonatopoulos Pournatzis T, Matta Camacho E, Tsukumo Y, et al. Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2. Proc Natl Acad Sci U S A. 2016;113:12360-12367 pubmed
  25. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  26. Tsai S, Rodriguez A, Dastidar S, Del Greco E, Carr K, Sitzmann J, et al. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice. Cell Rep. 2016;16:1903-14 pubmed 出版商
  27. Penney J, Tsurudome K, Liao E, Kauwe G, Gray L, Yanagiya A, et al. LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction. Nat Commun. 2016;7:12188 pubmed 出版商
  28. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  29. Mounir Z, Korn J, Westerling T, Lin F, Kirby C, Schirle M, et al. ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor. elife. 2016;5: pubmed 出版商
  30. Lyons S, Achorn C, Kedersha N, Anderson P, Ivanov P. YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression. Nucleic Acids Res. 2016;44:6949-60 pubmed 出版商
  31. Lock R, Ingraham R, Maertens O, Miller A, Weledji N, Legius E, et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. J Clin Invest. 2016;126:2181-90 pubmed 出版商
  32. Lin S, Choe J, Du P, Triboulet R, Gregory R. The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol Cell. 2016;62:335-345 pubmed 出版商
  33. Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, et al. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nat Commun. 2016;7:11127 pubmed 出版商
  34. Lyabin D, Ovchinnikov L. Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein. Sci Rep. 2016;6:22502 pubmed 出版商
  35. Xu T, Zong Y, Peng L, Kong S, Zhou M, Zou J, et al. Overexpression of eIF4E in colorectal cancer patients is associated with liver metastasis. Onco Targets Ther. 2016;9:815-22 pubmed 出版商
  36. Llanos S, García Pedrero J, Morgado Palacin L, Rodrigo J, Serrano M. Stabilization of p21 by mTORC1/4E-BP1 predicts clinical outcome of head and neck cancers. Nat Commun. 2016;7:10438 pubmed 出版商
  37. Arimoto Matsuzaki K, Saito H, Takekawa M. TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis. Nat Commun. 2016;7:10252 pubmed 出版商
  38. Leen E, Sorgeloos F, Correia S, Chaudhry Y, Cannac F, Pastore C, et al. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation. PLoS Pathog. 2016;12:e1005379 pubmed 出版商
  39. Smith K, Zhou B, Avdulov S, Benyumov A, Peterson M, Liu Y, et al. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E. Sci Rep. 2015;5:18233 pubmed 出版商
  40. Khoutorsky A, Bonin R, Sorge R, Gkogkas C, Pawlowski S, Jafarnejad S, et al. Translational control of nociception via 4E-binding protein 1. elife. 2015;4: pubmed 出版商
  41. Zucal C, D Agostino V, Casini A, Mantelli B, Thongon N, Soncini D, et al. EIF2A-dependent translational arrest protects leukemia cells from the energetic stress induced by NAMPT inhibition. BMC Cancer. 2015;15:855 pubmed 出版商
  42. Pasini L, Re A, Tebaldi T, Ricci G, Boi S, Adami V, et al. TrkA is amplified in malignant melanoma patients and induces an anti-proliferative response in cell lines. BMC Cancer. 2015;15:777 pubmed 出版商
  43. Agarwal S, Bell C, Taylor S, Moran R. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66-77 pubmed 出版商
  44. Gebhardt A, Habjan M, Benda C, Meiler A, Haas D, Hein M, et al. mRNA export through an additional cap-binding complex consisting of NCBP1 and NCBP3. Nat Commun. 2015;6:8192 pubmed 出版商
  45. Lee S, Kim J, Hong S, Lee A, Park E, Seo H, et al. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer. PLoS ONE. 2015;10:e0135582 pubmed 出版商
  46. Wang J, Ma L, Tang X, Zhang X, Qiao Y, Shi Y, et al. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells. Oncotarget. 2015;6:24075-91 pubmed
  47. Riz I, Hawley T, Hawley R. KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models. Oncotarget. 2015;6:14814-31 pubmed
  48. Waghray S, Williams C, Coon J, Wickens M. Xenopus CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo. RNA. 2015;21:1335-45 pubmed 出版商
  49. Fonseca B, Zakaria C, Jia J, Graber T, Svitkin Y, Tahmasebi S, et al. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). J Biol Chem. 2015;290:15996-6020 pubmed 出版商
  50. Panas M, Kedersha N, McInerney G. Methods for the characterization of stress granules in virus infected cells. Methods. 2015;90:57-64 pubmed 出版商
  51. Li Y, Li B, Xu B, Han B, Xia H, Chen Q, et al. Expression of p53, p21(CIP1/WAF1) and eIF4E in the adjacent tissues of oral squamous cell carcinoma: establishing the molecular boundary and a cancer progression model. Int J Oral Sci. 2015;7:161-8 pubmed 出版商
  52. Malikov V, da Silva E, Jovasevic V, Bennett G, de Souza Aranha Vieira D, Schulte B, et al. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. Nat Commun. 2015;6:6660 pubmed 出版商
  53. Modelska A, Turro E, Russell R, Beaton J, Sbarrato T, Spriggs K, et al. The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape. Cell Death Dis. 2015;6:e1603 pubmed 出版商
  54. Van Rechem C, Black J, Boukhali M, Aryee M, Gräslund S, Haas W, et al. Lysine demethylase KDM4A associates with translation machinery and regulates protein synthesis. Cancer Discov. 2015;5:255-63 pubmed 出版商
  55. Tahiri Alaoui A, Zhao Y, Sadigh Y, Popplestone J, Kgosana L, Smith L, et al. Poly(A) binding protein 1 enhances cap-independent translation initiation of neurovirulence factor from avian herpesvirus. PLoS ONE. 2014;9:e114466 pubmed 出版商
  56. Ekmay R, Gatrell S, Lum K, Kim J, Lei X. Nutritional and metabolic impacts of a defatted green marine microalgal (Desmodesmus sp.) biomass in diets for weanling pigs and broiler chickens. J Agric Food Chem. 2014;62:9783-91 pubmed 出版商
  57. Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids. 2014;46:2633-42 pubmed 出版商
  58. Sidhu H, Dansie L, Hickmott P, Ethell D, Ethell I. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J Neurosci. 2014;34:9867-79 pubmed 出版商
  59. Zahreddine H, Culjkovic Kraljacic B, Assouline S, Gendron P, Romeo A, Morris S, et al. The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation. Nature. 2014;511:90-3 pubmed 出版商
  60. Bian Z, Liao H, Zhang Y, Wu Q, Zhou H, Yang Z, et al. Never in mitosis gene A related kinase-6 attenuates pressure overload-induced activation of the protein kinase B pathway and cardiac hypertrophy. PLoS ONE. 2014;9:e96095 pubmed 出版商
  61. Smith H, Matthews K, Oldham J, Jeanplong F, Falconer S, Bass J, et al. Translational signalling, atrogenic and myogenic gene expression during unloading and reloading of skeletal muscle in myostatin-deficient mice. PLoS ONE. 2014;9:e94356 pubmed 出版商
  62. Kammoun M, Picard B, Henry Berger J, Cassar Malek I. A network-based approach for predicting Hsp27 knock-out targets in mouse skeletal muscles. Comput Struct Biotechnol J. 2013;6:e201303008 pubmed 出版商
  63. Galicia Vázquez G, Di Marco S, Lian X, Ma J, Gallouzi I, Pelletier J. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation. PLoS ONE. 2014;9:e87237 pubmed 出版商
  64. Zhu J, Lin F, Brown D, Clark R. A fibronectin peptide redirects PDGF-BB/PDGFR complexes to macropinocytosis-like internalization and augments PDGF-BB survival signals. J Invest Dermatol. 2014;134:921-929 pubmed 出版商
  65. Woessner D, Lim C. Disrupting BCR-ABL in combination with secondary leukemia-specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation. Mol Pharm. 2013;10:270-7 pubmed 出版商