这是一篇来自已证抗体库的有关人类 脂肪酸合成酶 (fatty acid synthase) 的综述,是根据96篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合脂肪酸合成酶 抗体。
脂肪酸合成酶 同义词: FAS; OA-519; SDR27X1

圣克鲁斯生物技术
小鼠 单克隆(A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa, sc-55580)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Nat Commun (2020) ncbi
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术脂肪酸合成酶抗体(SantaCruz, H-300)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Psychiatry (2018) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图 s2b
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa, H-300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2b). Nat Commun (2018) ncbi
小鼠 单克隆(G-11)
  • 免疫组化; 小鼠; 1:100; 图 e3c
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, sc48357)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 e3c). Nature (2018) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 人类; 图 s7
  • 免疫印迹; 小鼠; 图 s9a
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, sc-55580)被用于被用于免疫印迹在人类样本上 (图 s7) 和 被用于免疫印迹在小鼠样本上 (图 s9a). Sci Signal (2017) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 小鼠; 图 5A
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, sc-55580)被用于被用于免疫印迹在小鼠样本上 (图 5A). Int J Mol Med (2017) ncbi
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, H-300)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Biol Cell (2017) ncbi
  • 免疫细胞化学; 人类; 图 s3b
  • 免疫印迹; 人类; 图 s2f
圣克鲁斯生物技术脂肪酸合成酶抗体(SantaCruz, H-300)被用于被用于免疫细胞化学在人类样本上 (图 s3b) 和 被用于免疫印迹在人类样本上 (图 s2f). J Cell Biol (2016) ncbi
  • 免疫印迹; 小鼠; 1:500; 图 5b
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, H-300)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Prostate (2017) ncbi
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz Biotechnology, H-300)被用于被用于免疫印迹在小鼠样本上 (图 1b). Sci Rep (2016) ncbi
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, sc-20140)被用于被用于免疫印迹在小鼠样本上 (图 2a). Am J Pathol (2016) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 大鼠; 图 9a
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, sc-55580)被用于被用于免疫印迹在大鼠样本上 (图 9a). Redox Biol (2016) ncbi
  • 免疫组化-石蜡切片; 人类; 8 ug/ml; 图 1a
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, sc20140)被用于被用于免疫组化-石蜡切片在人类样本上浓度为8 ug/ml (图 1a). Int J Oncol (2016) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, 55580)被用于被用于免疫印迹在人类样本上 (图 5). BMC Complement Altern Med (2016) ncbi
  • 免疫印迹; 小鼠; 图 3h
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, sc-20140)被用于被用于免疫印迹在小鼠样本上 (图 3h). J Lipid Res (2016) ncbi
  • 免疫印迹; 大鼠; 1:1000; 图 7c
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, H-300)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7c). PLoS ONE (2016) ncbi
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, H-300)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
  • 其他; 人类; 图 st1
圣克鲁斯生物技术脂肪酸合成酶抗体(SCBT, H-300)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz Biotechnology, sc-55580)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, sc-55580)被用于被用于免疫印迹在大鼠样本上. Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 小鼠; 图 7
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, sc-55580)被用于被用于免疫印迹在小鼠样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 7). Oncogene (2016) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 人类; 0.3 ug/ml; 图 s6c
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa cruz, sc-55580)被用于被用于免疫印迹在人类样本上浓度为0.3 ug/ml (图 s6c). Mol Cancer (2015) ncbi
  • 免疫印迹; 人类; 1:1000; 图 1c
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, H-300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). DNA Repair (Amst) (2015) ncbi
  • 免疫印迹; 小鼠; 图 s3a
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz Biotechnology, H-300)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Cell Death Differ (2015) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术脂肪酸合成酶抗体(santa cruz, sc-55580)被用于被用于免疫印迹在人类样本上 (图 5b). Int J Mol Med (2015) ncbi
小鼠 单克隆(A-5)
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫沉淀; 人类; 图 5
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, sc-55580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4), 被用于免疫沉淀在人类样本上 (图 5), 被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Cell Cycle (2014) ncbi
小鼠 单克隆(G-11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz, sc-48357)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1). Stem Cell Reports (2014) ncbi
小鼠 单克隆(G-11)
  • 免疫组化-冰冻切片; 小鼠
圣克鲁斯生物技术脂肪酸合成酶抗体(Santa Cruz Biotechnology, sc-48357)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS Genet (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR7465)
  • 免疫印迹; 小鼠; 图 9f
艾博抗(上海)贸易有限公司脂肪酸合成酶抗体(Abcam, AB128856)被用于被用于免疫印迹在小鼠样本上 (图 9f). PLoS Biol (2021) ncbi
domestic rabbit 单克隆(EPR7465)
  • 免疫印迹; 人类; 1:1000; 图 6g
艾博抗(上海)贸易有限公司脂肪酸合成酶抗体(Abcam, Ab128856)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1a
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司脂肪酸合成酶抗体(Abcam, ab22759)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 2). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(EPR7466)
  • 免疫印迹基因敲除验证; 人类; 1:2000
艾博抗(上海)贸易有限公司脂肪酸合成酶抗体(Abcam, ab128870)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:2000. Nat Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 图 3a
艾博抗(上海)贸易有限公司脂肪酸合成酶抗体(Abcam, ab22759)被用于被用于免疫印迹在牛样本上 (图 3a). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(EPR7466)
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司脂肪酸合成酶抗体(Abcam, ab128870)被用于被用于免疫印迹在小鼠样本上 (图 1b). EMBO J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1f
艾博抗(上海)贸易有限公司脂肪酸合成酶抗体(Abcam, ab22759)被用于被用于免疫印迹在小鼠样本上 (图 1f). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(EPR7466)
  • 免疫印迹; 小鼠; 图 3g
艾博抗(上海)贸易有限公司脂肪酸合成酶抗体(Abcam, ab128870)被用于被用于免疫印迹在小鼠样本上 (图 3g). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • proximity ligation assay; 小鼠; 图 1h
  • 免疫细胞化学; 小鼠; 图 1f
  • 免疫印迹; 小鼠; 1 ug/ml; 图 s4c
  • proximity ligation assay; 人类; 图 1b
  • 免疫沉淀; 人类; 图 1a
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 1 ug/ml; 图 1a
艾博抗(上海)贸易有限公司脂肪酸合成酶抗体(Abcam, ab22759)被用于被用于proximity ligation assay在小鼠样本上 (图 1h), 被用于免疫细胞化学在小鼠样本上 (图 1f), 被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 s4c), 被用于proximity ligation assay在人类样本上 (图 1b), 被用于免疫沉淀在人类样本上 (图 1a), 被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1 ug/ml (图 1a). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(EPR7466)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司脂肪酸合成酶抗体(Abcam, ab128870)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EPR7466)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司脂肪酸合成酶抗体(Abcam, ab128870)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EPR7466)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司脂肪酸合成酶抗体(Abcam, ab128870)被用于被用于免疫印迹在小鼠样本上. J Lipid Res (2013) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
Novus Biologicals脂肪酸合成酶抗体(Novus, NB400-114)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(CST, 3189)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3e). Cell Mol Gastroenterol Hepatol (2022) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling Technology, C20G5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling Technology, 3180S)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 1e). Nat Metab (2021) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫组化; 小鼠; 1:200; 图 3a
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling Technology, 3180)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3a). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 图 3j
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling Technology, 3180S)被用于被用于免疫印迹在小鼠样本上 (图 3j). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180S)被用于被用于免疫印迹在小鼠样本上 (图 3a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 人类; 1:1000; 图 4d
  • 免疫印迹; 小鼠; 1:1000; 图 4a, 4c
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(CST, 3180)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a, 4c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Commun Biol (2021) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫组化-石蜡切片; 人类; 1:30; 图 1e
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(CST, 3180)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30 (图 1e). Oncogene (2021) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling Technology, 3180S)被用于被用于免疫印迹在人类样本上 (图 5c). Cancer Res (2020) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫组化基因敲除验证; 小鼠; 1:50; 图 6a
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 s1d
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:50 (图 6a), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 大鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3e). Am J Physiol Regul Integr Comp Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling Technology, 3189)被用于被用于免疫印迹在小鼠样本上 (图 6e). Cell Metab (2019) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling Technology, 3180)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Mol Med Rep (2019) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫组化基因敲除验证; 小鼠; 1:500; 图 1c
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling Technology, 3180)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:500 (图 1c). Gut (2020) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 图 s2g, s4a
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在小鼠样本上 (图 s2g, s4a). Cell (2018) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在人类样本上 (图 6b). FEBS Lett (2018) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 1:1000; 图 s2b
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2b). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C20G5)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180S)被用于被用于免疫印迹在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫细胞化学; 人类; 图 1a
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, C20G5)被用于被用于免疫细胞化学在人类样本上 (图 1a). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Toxicol Appl Pharmacol (2017) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3c). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(C20G5)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(CST, 3180)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 4
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 4). Cell Cycle (2017) ncbi
domestic rabbit 单克隆(C20G5)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(CST, 3180)被用于被用于免疫印迹在人类样本上 (图 4i). Nature (2017) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, C20G5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Parasitol Res (2017) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Arch Biochem Biophys (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6a
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell signaling, 3189)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6a). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180S)被用于被用于免疫印迹在小鼠样本上 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2016) ncbi
domestic rabbit 单克隆(C20G5)
  • proximity ligation assay; 小鼠; 图 1h
  • 免疫细胞化学; 小鼠; 图 1f
  • 免疫印迹; 小鼠; 1:1000; 图 s4c
  • proximity ligation assay; 人类; 图 1b
  • 免疫沉淀; 人类; 图 1a
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于proximity ligation assay在小鼠样本上 (图 1h), 被用于免疫细胞化学在小鼠样本上 (图 1f), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4c), 被用于proximity ligation assay在人类样本上 (图 1b), 被用于免疫沉淀在人类样本上 (图 1a), 被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3189)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell signaling, 3180)被用于被用于免疫印迹在人类样本上 (图 3e). Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling Tech, 3189)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫组化; 小鼠; 1:100; 图 3d
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3d). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 1:1000; 图 s8
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s8). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫组化; 人类; 图 2c
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫组化在人类样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 8a). EMBO Rep (2015) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, C20G5)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signal, 3180)被用于被用于免疫印迹在小鼠样本上. J Lipid Res (2014) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(CST, 3180)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Agric Food Chem (2014) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫印迹; 小鼠; 1:1000; 图 s10e
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signaling, 3180S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10e). Nat Commun (2013) ncbi
domestic rabbit 单克隆(C20G5)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司脂肪酸合成酶抗体(Cell Signalling, 3180)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
碧迪BD
小鼠 单克隆(23/Fatty Acid Synthase)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
碧迪BD脂肪酸合成酶抗体(BD BioSciences, 610962)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Cells (2021) ncbi
小鼠 单克隆(23/Fatty Acid Synthase)
  • 免疫印迹; 人类; 1:2000; 图 3c
碧迪BD脂肪酸合成酶抗体(BD Biosciences, 610963)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(23/Fatty Acid Synthase)
  • 免疫印迹; 大鼠; 图 5
碧迪BD脂肪酸合成酶抗体(BD Transduction Laboratories, 610962)被用于被用于免疫印迹在大鼠样本上 (图 5). Physiol Rep (2016) ncbi
小鼠 单克隆(23/Fatty Acid Synthase)
  • 免疫印迹; 人类; 图 2
碧迪BD脂肪酸合成酶抗体(BD, 610962)被用于被用于免疫印迹在人类样本上 (图 2). Traffic (2016) ncbi
小鼠 单克隆(23/Fatty Acid Synthase)
  • 免疫印迹; 小鼠; 1:2000; 图 4
碧迪BD脂肪酸合成酶抗体(BD Biosciences, 610963)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(23/Fatty Acid Synthase)
  • 免疫组化; 人类; 1:500; 图 6
  • 免疫印迹; 人类; 图 4D
碧迪BD脂肪酸合成酶抗体(BD Transduction Laboratories, 610962)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6) 和 被用于免疫印迹在人类样本上 (图 4D). Oncogenesis (2015) ncbi
小鼠 单克隆(23/Fatty Acid Synthase)
  • 免疫组化-石蜡切片; 小鼠; 图 2
碧迪BD脂肪酸合成酶抗体(bD Bioscience, 610962)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(23/Fatty Acid Synthase)
  • 免疫组化-石蜡切片; 小鼠
碧迪BD脂肪酸合成酶抗体(BD Bioscience, 610962)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Physiol Endocrinol Metab (2014) ncbi
文章列表
  1. Helmrich N, Roderfeld M, Baier A, Windhorst A, Herebian D, Mayatepek E, et al. Pharmacologic Antagonization of Cannabinoid Receptor 1 Improves Cholestasis in Abcb4-/- Mice. Cell Mol Gastroenterol Hepatol. 2022;13:1041-1055 pubmed 出版商
  2. Nuernberger V, Mortoga S, Metzendorf C, Burkert C, Ehricke K, Knuth E, et al. Hormonally Induced Hepatocellular Carcinoma in Diabetic Wild Type and Carbohydrate Responsive Element Binding Protein Knockout Mice. Cells. 2021;10: pubmed 出版商
  3. Carroll P, Freie B, Cheng P, Kasinathan S, Gu H, Hedrich T, et al. The glucose-sensing transcription factor MLX balances metabolism and stress to suppress apoptosis and maintain spermatogenesis. PLoS Biol. 2021;19:e3001085 pubmed 出版商
  4. Wang X, Yung M, Sharma R, Chen F, Poon Y, Lam W, et al. Epigenetic Silencing of miR-33b Promotes Peritoneal Metastases of Ovarian Cancer by Modulating the TAK1/FASN/CPT1A/NF-κB Axis. Cancers (Basel). 2021;13: pubmed 出版商
  5. Chu J, Xing C, Du Y, Duan T, Liu S, Zhang P, et al. Pharmacological inhibition of fatty acid synthesis blocks SARS-CoV-2 replication. Nat Metab. 2021;3:1466-1475 pubmed 出版商
  6. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  7. Cheng C, Xue F, Sui W, Meng L, Xie L, Zhang C, et al. Deletion of natriuretic peptide receptor C alleviates adipose tissue inflammation in hypercholesterolemic Apolipoprotein E knockout mice. J Cell Mol Med. 2021;25:9837-9850 pubmed 出版商
  8. Guo W, Liu J, Cheng L, Liu Z, Zheng X, Liang H, et al. Metformin Alleviates Steatohepatitis in Diet-Induced Obese Mice in a SIRT1-Dependent Way. Front Pharmacol. 2021;12:704112 pubmed 出版商
  9. Tomacha J, Dokduang H, Padthaisong S, Namwat N, Klanrit P, Phetcharaburanin J, et al. Targeting Fatty Acid Synthase Modulates Metabolic Pathways and Inhibits Cholangiocarcinoma Cell Progression. Front Pharmacol. 2021;12:696961 pubmed 出版商
  10. Li L, Yang Q, Jiang Y, Yang W, Jiang Y, Li X, et al. Interplay and cooperation between SREBF1 and master transcription factors regulate lipid metabolism and tumor-promoting pathways in squamous cancer. Nat Commun. 2021;12:4362 pubmed 出版商
  11. Jiang D, Zhang J, Lin S, Wang Y, Chen Y, Fan J. Prolyl Endopeptidase Gene Disruption Improves Gut Dysbiosis and Non-alcoholic Fatty Liver Disease in Mice Induced by a High-Fat Diet. Front Cell Dev Biol. 2021;9:628143 pubmed 出版商
  12. Ma N, Wang Y, Xu S, Ni Q, Zheng Q, Zhu B, et al. PPDPF alleviates hepatic steatosis through inhibition of mTOR signaling. Nat Commun. 2021;12:3059 pubmed 出版商
  13. Zhao Z, Wang Z, Zhou D, Han Y, Ma F, Hu Z, et al. Sodium Butyrate Supplementation Inhibits Hepatic Steatosis by Stimulating Liver Kinase B1 and Insulin-Induced Gene. Cell Mol Gastroenterol Hepatol. 2021;12:857-871 pubmed 出版商
  14. Zhang M, Ceyhan Y, Kaftanovskaya E, Vasquez J, Vacher J, Knop F, et al. INPP4B protects from metabolic syndrome and associated disorders. Commun Biol. 2021;4:416 pubmed 出版商
  15. Galbraith L, Mui E, Nixon C, Hedley A, Strachan D, Mackay G, et al. PPAR-gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene. 2021;40:2355-2366 pubmed 出版商
  16. Aregger M, Lawson K, Billmann M, Costanzo M, Tong A, Chan K, et al. Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism. Nat Metab. 2020;2:499-513 pubmed 出版商
  17. Feng Y, Mischler W, Gurung A, Kavanagh T, Androsov G, Sadow P, et al. Therapeutic Targeting of the Secreted Lysophospholipase D Autotaxin Suppresses Tuberous Sclerosis Complex-Associated Tumorigenesis. Cancer Res. 2020;80:2751-2763 pubmed 出版商
  18. Viscarra J, Wang Y, Nguyen H, Choi Y, Sul H. Histone demethylase JMJD1C is phosphorylated by mTOR to activate de novo lipogenesis. Nat Commun. 2020;11:796 pubmed 出版商
  19. Bueno M, Jimenez Renard V, Samino S, Capellades J, Junza A, López Rodríguez M, et al. Essentiality of fatty acid synthase in the 2D to anchorage-independent growth transition in transforming cells. Nat Commun. 2019;10:5011 pubmed 出版商
  20. Presby D, Checkley L, Jackman M, Higgins J, Jones K, Giles E, et al. Regular exercise potentiates energetically expensive hepatic de novo lipogenesis during early weight regain. Am J Physiol Regul Integr Comp Physiol. 2019;317:R684-R695 pubmed 出版商
  21. Choi W, Kim H, Kim M, Cinar R, Yi H, Eun H, et al. Glutamate Signaling in Hepatic Stellate Cells Drives Alcoholic Steatosis. Cell Metab. 2019;30:877-889.e7 pubmed 出版商
  22. Guo Z, Zhao K, Feng X, Yan D, Yao R, Chen Y, et al. mTORC2 Regulates Lipogenic Gene Expression through PPARγ to Control Lipid Synthesis in Bovine Mammary Epithelial Cells. Biomed Res Int. 2019;2019:5196028 pubmed 出版商
  23. Ma X, Cheng F, Yuan K, Jiang K, Zhu T. Lipid storage droplet protein 5 reduces sodium palmitate‑induced lipotoxicity in human normal liver cells by regulating lipid metabolism‑related factors. Mol Med Rep. 2019;20:879-886 pubmed 出版商
  24. Che L, Chi W, Qiao Y, Zhang J, Song X, Liu Y, et al. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans. Gut. 2020;69:177-186 pubmed 出版商
  25. Su L, Zhou L, Chen F, Wang H, Qian H, Sheng Y, et al. Cideb controls sterol-regulated ER export of SREBP/SCAP by promoting cargo loading at ER exit sites. EMBO J. 2019;38: pubmed 出版商
  26. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  27. Guo J, Fang W, Chen X, Lin Y, Hu G, Wei J, et al. Upstream stimulating factor 1 suppresses autophagy and hepatic lipid droplet catabolism by activating mTOR. FEBS Lett. 2018;592:2725-2738 pubmed 出版商
  28. Hartl D, May P, Gu W, Mayhaus M, Pichler S, Spaniol C, et al. A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease. Mol Psychiatry. 2018;: pubmed 出版商
  29. Li T, Song L, Sun Y, Li J, Yi C, Lam S, et al. Tip60-mediated lipin 1 acetylation and ER translocation determine triacylglycerol synthesis rate. Nat Commun. 2018;9:1916 pubmed 出版商
  30. Liakath Ali K, Mills E, Sequeira I, Lichtenberger B, Pisco A, Sipilä K, et al. An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature. 2018;556:376-380 pubmed 出版商
  31. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  32. Li S, Mi L, Yu L, Yu Q, Liu T, Wang G, et al. Zbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and thermogenesis. Proc Natl Acad Sci U S A. 2017;114:E7111-E7120 pubmed 出版商
  33. Al Khalaf H, Amir M, Al Mohanna F, Tulbah A, Al Sayed A, Aboussekhra A. Obesity and p16INK4A Downregulation Activate Breast Adipocytes and Promote Their Protumorigenicity. Mol Cell Biol. 2017;37: pubmed 出版商
  34. Bai X, Hong W, Cai P, Chen Y, Xu C, Cao D, et al. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. Toxicol Appl Pharmacol. 2017;324:12-25 pubmed 出版商
  35. Song Z, Xiaoli A, Zhang Q, Zhang Y, Yang E, Wang S, et al. Cyclin C regulates adipogenesis by stimulating transcriptional activity of CCAAT/enhancer-binding protein ?. J Biol Chem. 2017;292:8918-8932 pubmed 出版商
  36. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  37. Viscarra J, Wang Y, Hong I, Sul H. Transcriptional activation of lipogenesis by insulin requires phosphorylation of MED17 by CK2. Sci Signal. 2017;10: pubmed 出版商
  38. Kim I, Nam T. Enzyme-treated Ecklonia cava extract inhibits adipogenesis through the downregulation of C/EBP? in 3T3-L1 adipocytes. Int J Mol Med. 2017;39:636-644 pubmed 出版商
  39. Che L, Pilo M, Cigliano A, Latte G, Simile M, Ribback S, et al. Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Cell Cycle. 2017;16:499-507 pubmed 出版商
  40. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  41. Dey P, Baddour J, Muller F, Wu C, Wang H, Liao W, et al. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature. 2017;542:119-123 pubmed 出版商
  42. Stein S, Lemos V, Xu P, Demagny H, Wang X, Ryu D, et al. Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease. J Clin Invest. 2017;127:583-592 pubmed 出版商
  43. Steffen J, Vashisht A, Wan J, Jen J, Claypool S, Wohlschlegel J, et al. Rapid degradation of mutant SLC25A46 by the ubiquitin-proteasome system results in MFN1/2-mediated hyperfusion of mitochondria. Mol Biol Cell. 2017;28:600-612 pubmed 出版商
  44. Lizardo K, Almonte V, Law C, Aiyyappan J, Cui M, Nagajyothi J. Diet regulates liver autophagy differentially in murine acute Trypanosoma cruzi infection. Parasitol Res. 2017;116:711-723 pubmed 出版商
  45. Marmisolle I, Martínez J, Liu J, Mastrogiovanni M, Fergusson M, Rovira I, et al. Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. Arch Biochem Biophys. 2017;613:12-22 pubmed 出版商
  46. Liu L, Guan H, Li Y, Ying Z, Wu J, Zhu X, et al. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness. Mol Cell Biol. 2017;37: pubmed 出版商
  47. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  48. Bendre S, Rondelet A, Hall C, Schmidt N, Lin Y, Brouhard G, et al. GTSE1 tunes microtubule stability for chromosome alignment and segregation by inhibiting the microtubule depolymerase MCAK. J Cell Biol. 2016;215:631-647 pubmed
  49. Sulek J, Robinson S, Petrossian A, Zhou S, Goliadze E, Manjili M, et al. Role of Epigenetic Modification and Immunomodulation in a Murine Prostate Cancer Model. Prostate. 2017;77:361-373 pubmed 出版商
  50. Hinds T, Burns K, Hosick P, McBeth L, Nestor Kalinoski A, Drummond H, et al. Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3? Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) ?. J Biol Chem. 2016;291:25179-25191 pubmed
  51. Haney S, Upchurch G, Opavska J, Klinkebiel D, Appiah A, Smith L, et al. Loss of Dnmt3a induces CLL and PTCL with distinct methylomes and transcriptomes in mice. Sci Rep. 2016;6:34222 pubmed 出版商
  52. Yang Z, Tsuchiya H, Zhang Y, Lee S, Liu C, Huang Y, et al. REV-ERB? Activates C/EBP Homologous Protein to Control Small Heterodimer Partner-Mediated Oscillation of Alcoholic Fatty Liver. Am J Pathol. 2016;186:2909-2920 pubmed 出版商
  53. Serviddio G, Bellanti F, Villani R, Tamborra R, Zerbinati C, Blonda M, et al. Effects of dietary fatty acids and cholesterol excess on liver injury: A lipidomic approach. Redox Biol. 2016;9:296-305 pubmed 出版商
  54. Gabriel K, Jones A, Nguyen J, Antillon K, Janos S, Overton H, et al. Association and regulation of protein factors of field effect in prostate tissues. Int J Oncol. 2016;49:1541-1552 pubmed 出版商
  55. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  56. Cader M, Boroviak K, Zhang Q, Assadi G, Kempster S, Sewell G, et al. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat Immunol. 2016;17:1046-56 pubmed 出版商
  57. Jeong H, Cho Y, Kim K, Kim Y, Kim K, Na Y, et al. Anti-lipoapoptotic effects of Alisma orientalis extract on non-esterified fatty acid-induced HepG2 cells. BMC Complement Altern Med. 2016;16:239 pubmed 出版商
  58. Zinkhan E, Zalla J, Carpenter J, Yu B, Yu X, Chan G, et al. Intrauterine growth restriction combined with a maternal high-fat diet increases hepatic cholesterol and low-density lipoprotein receptor activity in rats. Physiol Rep. 2016;4: pubmed 出版商
  59. Shinohara S, Gu Y, Yang Y, Furuta Y, Tanaka M, Yue X, et al. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes. Int J Mol Med. 2016;38:574-84 pubmed 出版商
  60. Geng F, Cheng X, Wu X, Yoo J, Cheng C, Guo J, et al. Inhibition of SOAT1 Suppresses Glioblastoma Growth via Blocking SREBP-1-Mediated Lipogenesis. Clin Cancer Res. 2016;22:5337-5348 pubmed
  61. Tong X, Li P, Zhang D, VanDommelen K, Gupta N, Rui L, et al. E4BP4 is an insulin-induced stabilizer of nuclear SREBP-1c and promotes SREBP-1c-mediated lipogenesis. J Lipid Res. 2016;57:1219-30 pubmed 出版商
  62. Karlas A, Berrè S, Couderc T, Varjak M, Braun P, Meyer M, et al. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs. Nat Commun. 2016;7:11320 pubmed 出版商
  63. Gómez SanMiguel A, Villanúa M, Martín A, López Calderón A. D-TRP(8)-γMSH Prevents the Effects of Endotoxin in Rat Skeletal Muscle Cells through TNFα/NF-KB Signalling Pathway. PLoS ONE. 2016;11:e0155645 pubmed 出版商
  64. Rapiteanu R, Davis L, Williamson J, Timms R, Paul Luzio J, Lehner P. A Genetic Screen Identifies a Critical Role for the WDR81-WDR91 Complex in the Trafficking and Degradation of Tetherin. Traffic. 2016;17:940-58 pubmed 出版商
  65. Thomas A, Belaidi E, Aron Wisnewsky J, van der Zon G, Levy P, Clement K, et al. Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice. Sci Rep. 2016;6:24618 pubmed 出版商
  66. Nishikido T, Oyama J, Shiraki A, Komoda H, Node K. Deletion of Apoptosis Inhibitor of Macrophage (AIM)/CD5L Attenuates the Inflammatory Response and Infarct Size in Acute Myocardial Infarction. J Am Heart Assoc. 2016;5:e002863 pubmed 出版商
  67. Wang C, Chen Y, Wang C, Yu J, Chang Y, Yu C. mTOR regulates proteasomal degradation and Dp1/E2F1- mediated transcription of KPNA2 in lung cancer cells. Oncotarget. 2016;7:25432-42 pubmed 出版商
  68. Senol Cosar O, Flach R, DiStefano M, Chawla A, Nicoloro S, Straubhaar J, et al. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nat Commun. 2016;7:10686 pubmed 出版商
  69. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  70. Lee K, Hsieh Y, Yang Y, Chan C, Huang Y, Lin H. Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice. Sci Rep. 2016;6:18899 pubmed 出版商
  71. Nemazanyy I, Montagnac G, Russell R, Morzyglod L, Burnol A, Guan K, et al. Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nat Commun. 2015;6:8283 pubmed 出版商
  72. Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen P, Viero G, et al. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun. 2015;6:8261 pubmed 出版商
  73. Bollu L, Katreddy R, Blessing A, Pham N, Zheng B, Wu X, et al. Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation. Oncotarget. 2015;6:34992-5003 pubmed 出版商
  74. Jung Y, Kim H, Koo J. Expression of Lipid Metabolism-Related Proteins in Metastatic Breast Cancer. PLoS ONE. 2015;10:e0137204 pubmed 出版商
  75. Dettlaff Pokora A, Sledzinski T, Swierczynski J. Up-Regulation Mttp and Apob Gene Expression in Rat Liver is Related to Post-Lipectomy Hypertriglyceridemia. Cell Physiol Biochem. 2015;36:1767-77 pubmed
  76. Zidek L, Ackermann T, Hartleben G, Eichwald S, Kortman G, Kiehntopf M, et al. Deficiency in mTORC1-controlled C/EBPβ-mRNA translation improves metabolic health in mice. EMBO Rep. 2015;16:1022-36 pubmed 出版商
  77. Zeng X, Wang H, Bai F, Zhou X, Li S, Ren L, et al. Identification of matrine as a promising novel drug for hepatic steatosis and glucose intolerance with HSP72 as an upstream target. Br J Pharmacol. 2015;172:4303-18 pubmed 出版商
  78. Wang W, Snyder N, Worth A, Blair I, Witze E. Regulation of lipid synthesis by the RNA helicase Mov10 controls Wnt5a production. Oncogenesis. 2015;4:e154 pubmed 出版商
  79. Li S, Oh Y, Yue P, Khuri F, Sun S. Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells. Oncogene. 2016;35:642-50 pubmed 出版商
  80. Koizume S, Ito S, Nakamura Y, Yoshihara M, Furuya M, Yamada R, et al. Lipid starvation and hypoxia synergistically activate ICAM1 and multiple genes in an Sp1-dependent manner to promote the growth of ovarian cancer. Mol Cancer. 2015;14:77 pubmed 出版商
  81. Li X, Tao J, Cigliano A, Sini M, Calderaro J, Azoulay D, et al. Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver. Oncotarget. 2015;6:10102-15 pubmed
  82. Kumari A, Owen N, Juarez E, McCullough A. BLM protein mitigates formaldehyde-induced genomic instability. DNA Repair (Amst). 2015;28:73-82 pubmed 出版商
  83. Kim S, Lee Y, Koo J. Differential expression of lipid metabolism-related proteins in different breast cancer subtypes. PLoS ONE. 2015;10:e0119473 pubmed 出版商
  84. Woo J, Zhao X, Khan H, Penn C, Wang X, Joly Amado A, et al. Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Aβ ligation to β1-integrin conformers. Cell Death Differ. 2015;22:921-34 pubmed 出版商
  85. Kang O, Kim S, Mun S, Seo Y, Hwang H, Lee Y, et al. Puerarin ameliorates hepatic steatosis by activating the PPARα and AMPK signaling pathways in hepatocytes. Int J Mol Med. 2015;35:803-9 pubmed 出版商
  86. Bollu L, Ren J, Blessing A, Katreddy R, Gao G, Xu L, et al. Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells. Cell Cycle. 2014;13:2415-30 pubmed 出版商
  87. Shimizu H, Astapova I, Ye F, Bilban M, Cohen R, Hollenberg A. NCoR1 and SMRT play unique roles in thyroid hormone action in vivo. Mol Cell Biol. 2015;35:555-65 pubmed 出版商
  88. Kretzschmar K, Cottle D, Donati G, Chiang M, Quist S, Gollnick H, et al. BLIMP1 is required for postnatal epidermal homeostasis but does not define a sebaceous gland progenitor under steady-state conditions. Stem Cell Reports. 2014;3:620-33 pubmed 出版商
  89. DiTommaso T, Cottle D, Pearson H, Schlüter H, Kaur P, Humbert P, et al. Keratin 76 is required for tight junction function and maintenance of the skin barrier. PLoS Genet. 2014;10:e1004706 pubmed 出版商
  90. Daniëls V, Smans K, Royaux I, Chypre M, Swinnen J, Zaidi N. Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment. PLoS ONE. 2014;9:e106913 pubmed 出版商
  91. Mottillo E, Balasubramanian P, Lee Y, Weng C, Kershaw E, Granneman J. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation. J Lipid Res. 2014;55:2276-86 pubmed 出版商
  92. Liu J, Zheng L, Wu N, Ma L, Zhong J, Liu G, et al. Oleanolic acid induces metabolic adaptation in cancer cells by activating the AMP-activated protein kinase pathway. J Agric Food Chem. 2014;62:5528-37 pubmed 出版商
  93. Suburu J, Shi L, Wu J, Wang S, Samuel M, Thomas M, et al. Fatty acid synthase is required for mammary gland development and milk production during lactation. Am J Physiol Endocrinol Metab. 2014;306:E1132-43 pubmed 出版商
  94. Lanaspa M, Ishimoto T, Li N, Cicerchi C, Orlicky D, Ruzycki P, et al. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat Commun. 2013;4:2434 pubmed 出版商
  95. De Sousa Coelho A, Relat J, Hondares E, Pérez Martí A, Ribas F, Villarroya F, et al. FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res. 2013;54:1786-97 pubmed 出版商
  96. Antony N, Weir J, McDougall A, Mantamadiotis T, Meikle P, Cole T, et al. cAMP response element binding protein1 is essential for activation of steroyl co-enzyme a desaturase 1 (Scd1) in mouse lung type II epithelial cells. PLoS ONE. 2013;8:e59763 pubmed 出版商