这是一篇来自已证抗体库的有关人类 纤维连接蛋白 (fibronectin) 的综述,是根据257篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合纤维连接蛋白 抗体。
纤维连接蛋白 同义词: CIG; ED-B; FINC; FN; FNZ; GFND; GFND2; LETS; MSF; SMDCF

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4a
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2a
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫印迹在大鼠样本上 (图 2a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 4 ug/ml; 图 2d
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫组化在小鼠样本上浓度为4 ug/ml (图 2d). Antioxidants (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1c
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab23750)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). J Cell Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3a). Int J Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2b
  • 免疫印迹; 大鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab23750)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫印迹在小鼠样本上 (图 3d). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2a
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, 299)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). Diabetologia (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(abcam, ab23750)被用于被用于免疫组化在小鼠样本上. Nat Commun (2021) ncbi
domestic rabbit 单克隆(F14)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab45688)被用于被用于免疫印迹在人类样本上浓度为1:2000. Aging Cell (2021) ncbi
domestic rabbit 单克隆(F1)
  • 免疫印迹; 人类; 图 3e
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab32419)被用于被用于免疫印迹在人类样本上 (图 3e). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 7c
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫细胞化学在小鼠样本上 (图 7c). Front Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫细胞化学在人类样本上 (图 3). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2j
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2j). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫印迹在人类样本上 (图 3c). Cancer Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(abcam, Ab2413)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(F14)
  • 免疫印迹; 人类; 1:1500; 图 2f
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab45688)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 2f). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1d
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫印迹在大鼠样本上 (图 1d). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 3e
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab23751)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 3e). Biores Open Access (2020) ncbi
小鼠 单克隆(IST-9)
  • 免疫印迹; 人类; 1:1000; 图 1d
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, Ab6328)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Proc Natl Acad Sci U S A (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3c
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫组化在小鼠样本上 (图 3c). Cell Rep (2020) ncbi
domestic rabbit 单克隆(F14)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 3a
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, F14)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 3a). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(F1)
  • 免疫印迹; 人类; 1:1500; 图 6d
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, F1)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 6d). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:50; 图 5f
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab23750)被用于被用于免疫组化在人类样本上浓度为1:50 (图 5f). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(F1)
  • 免疫印迹; 人类; 图 6c
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab32419)被用于被用于免疫印迹在人类样本上 (图 6c). Cell Death Dis (2019) ncbi
小鼠 单克隆(IST-9)
  • 免疫细胞化学; 人类; 2 ug/ml; 图 4c
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6328)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 4c). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:200; 图 1b
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1b). BMC Mol Biol (2019) ncbi
domestic rabbit 单克隆(F1)
  • 免疫印迹; pigs ; 1:1000; 图 2a
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab32419)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 2a). BMC Genomics (2019) ncbi
domestic rabbit 单克隆(F1)
  • 流式细胞仪; 人类; 图 4c
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(abcam, ab198934)被用于被用于流式细胞仪在人类样本上 (图 4c). Cell (2019) ncbi
domestic rabbit 单克隆(F1)
  • 免疫印迹; 人类; 1:10,000; 图 8a
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, Ab32419)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 8a). EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫印迹在小鼠样本上 (图 2e). J Cell Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫印迹在人类样本上 (图 1c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab23750)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). BMC Nephrol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5c
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab23750)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5c). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3d
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3d). J Histochem Cytochem (2018) ncbi
domestic rabbit 单克隆(F14)
  • 免疫印迹; 人类; 图 6d
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Epitomics, EP265(2)Y)被用于被用于免疫印迹在人类样本上 (图 6d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:250; 图 3c
  • 免疫印迹; 人类; 1:250; 图 3b
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab23750)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:250 (图 3b). JCI Insight (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1e). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(IST-9)
  • 免疫印迹; domestic rabbit; 3 mg/ml; 图 6b
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6328)被用于被用于免疫印迹在domestic rabbit样本上浓度为3 mg/ml (图 6b). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 1e
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1e). Int J Mol Med (2017) ncbi
小鼠 单克隆(IST-9)
  • 免疫细胞化学; 人类; 1:200; 图 2b
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6328)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2b). J Transl Med (2017) ncbi
小鼠 单克隆(Fn-3)
  • 其他; 人类; 图 3
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab18265)被用于被用于其他在人类样本上 (图 3). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2a). Am J Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4e
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫印迹在小鼠样本上 (图 4e). Skelet Muscle (2016) ncbi
小鼠 单克隆(IST-9)
  • 免疫印迹; 人类; 1:1000; 图 s3a
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6328)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(abcam, ab2413)被用于被用于免疫印迹在人类样本上 (图 4). Carcinogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1c
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫细胞化学在人类样本上 (图 1c). J Vis Exp (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab23750)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(abcam, ab2413)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 4
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab23751)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4). Evid Based Complement Alternat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 4e
  • 免疫印迹; 人类; 图 s7
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫组化在人类样本上 (图 4e) 和 被用于免疫印迹在人类样本上 (图 s7). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Adv Healthc Mater (2016) ncbi
小鼠 单克隆(IST-9)
  • 免疫组化; 小鼠; 1:100; 图 s6
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, IST-9)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1b
  • 免疫印迹; 人类; 图 2a
  • 免疫组化-石蜡切片; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b), 被用于免疫印迹在人类样本上 (图 2a), 被用于免疫组化-石蜡切片在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3b). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 6b
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, AB2413)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). Nat Med (2016) ncbi
小鼠 单克隆(IST-9)
  • 免疫细胞化学; 人类; 图 6
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6328)被用于被用于免疫细胞化学在人类样本上 (图 6). Mol Reprod Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 12
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(abcam, ab23750)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 12). J Immunol Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:250-1:400; 图 2
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250-1:400 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 3
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3). PLoS Negl Trop Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab23750)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Dev Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:400; 图 1a
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab23750)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 1a). Transplantation (2016) ncbi
domestic rabbit 单克隆(F14)
  • 免疫印迹; 小鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(abcam, ab45688)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(abcam, ab2413)被用于被用于免疫细胞化学在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). Aging Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6584)被用于被用于免疫细胞化学在人类样本上浓度为1:400. Cell Tissue Res (2016) ncbi
小鼠 单克隆(IST-9)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab-6328)被用于被用于免疫组化在小鼠样本上浓度为1:200. Cell Tissue Res (2016) ncbi
小鼠 单克隆(IST-9)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s1c
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6328)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s1c). Hum Mol Genet (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
小鼠 单克隆(IST-9)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6328)被用于被用于免疫印迹在人类样本上 (图 1). Int J Mol Med (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 s3
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab2413)被用于被用于免疫组化在人类样本上 (图 s3). Oncogene (2016) ncbi
小鼠 单克隆(IST-9)
  • 免疫组化-冰冻切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, AB6328)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Control Release (2015) ncbi
小鼠 单克隆(IST-9)
  • 免疫组化; 人类; 图 1
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6328)被用于被用于免疫组化在人类样本上 (图 1). Circ Heart Fail (2015) ncbi
domestic rabbit 单克隆(F1)
  • 免疫印迹; 人类; 1:5000; 图 2d
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab32419)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2d). Mol Oncol (2015) ncbi
小鼠 单克隆(IST-9)
  • 免疫组化-石蜡切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6328)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. Acta Biomater (2014) ncbi
小鼠 单克隆(IST-9)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6328)被用于被用于免疫印迹在小鼠样本上. Clin Sci (Lond) (2014) ncbi
小鼠 单克隆(IST-9)
  • 免疫组化-冰冻切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6328)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. Biomaterials (2014) ncbi
domestic rabbit 单克隆(F1)
  • 免疫组化; 人类; 1:400
  • 酶联免疫吸附测定; 人类
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab32419)被用于被用于免疫组化在人类样本上浓度为1:400 和 被用于酶联免疫吸附测定在人类样本上. Matrix Biol (2014) ncbi
小鼠 单克隆(IST-9)
  • 免疫细胞化学; 登革热病毒
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6328)被用于被用于免疫细胞化学在登革热病毒样本上. J Virol (2014) ncbi
小鼠 单克隆(IST-9)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, AB6328)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(IST-9)
  • 免疫组化-石蜡切片; 人类; 1:400
艾博抗(上海)贸易有限公司纤维连接蛋白抗体(Abcam, ab6328)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Oncology (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(2755-8)
  • 免疫印迹; 人类; 1:1000; 图 3f
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc-69681)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Cancers (Basel) (2021) ncbi
小鼠 单克隆(EP5)
  • 免疫组化; 小鼠; 1:50; 图 4d
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc8422)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4d). elife (2021) ncbi
小鼠 单克隆(IST-9)
  • 免疫组化; 小鼠; 1:200; 图 4f
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc-59826)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4f). Curr Biol (2020) ncbi
小鼠 单克隆(568)
  • 免疫印迹; 小鼠; 1:200; 图 3a
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc-52331)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3a). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(A-11)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3e
圣克鲁斯生物技术纤维连接蛋白抗体(Santa, sc-271098)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3e). Cell Death Dis (2018) ncbi
小鼠 单克隆(P5F3)
  • 酶联免疫吸附测定; 人类; 1:667; 图 4b
圣克鲁斯生物技术纤维连接蛋白抗体(SantaCruz, P5F3)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:667 (图 4b). Acta Biomater (2018) ncbi
小鼠 单克隆(EP5)
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 图 1e
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz Biotechnology, sc8422)被用于被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 1e). Mol Biol Cell (2017) ncbi
小鼠 单克隆(2755-8)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc-69681)被用于被用于免疫印迹在人类样本上 (图 1c). Biosci Rep (2017) ncbi
小鼠 单克隆(EP5)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc8422)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(EP5)
  • 免疫印迹; 人类
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc-8422)被用于被用于免疫印迹在人类样本上. J Proteome Res (2016) ncbi
小鼠 单克隆(EP5)
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 1
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc-8422)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(617)
  • 免疫印迹; 人类; 1:2000; 图 2B
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc-81769)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2B). Mol Med Rep (2016) ncbi
小鼠 单克隆(EP5)
  • 免疫组化-石蜡切片; pigs ; 图 7
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, SC-8422)被用于被用于免疫组化-石蜡切片在pigs 样本上 (图 7). Cells Tissues Organs (2016) ncbi
小鼠 单克隆(IST-9)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc-59826)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4). Hepatology (2016) ncbi
小鼠 单克隆(P1H11)
  • 免疫细胞化学; 人类; 2 ug/ml; 图 2
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc-18825)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(EP5)
  • 免疫印迹; 小鼠; 图 12
圣克鲁斯生物技术纤维连接蛋白抗体(santa Cruz, sc-8422)被用于被用于免疫印迹在小鼠样本上 (图 12). Oncotarget (2016) ncbi
小鼠 单克隆(P5F3)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术纤维连接蛋白抗体(santa Cruz, SC-18827)被用于被用于免疫印迹在人类样本上 (图 2). Aging Cell (2016) ncbi
小鼠 单克隆(EP5)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc-8422)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(IST-9)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s5
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, IST-9)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s5). Nature (2015) ncbi
小鼠 单克隆(P1H11)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz Biotechnology, sc-18825)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(EP5)
  • 免疫印迹; 人类; 图 6D
圣克鲁斯生物技术纤维连接蛋白抗体(Santa cruz, EP5)被用于被用于免疫印迹在人类样本上 (图 6D). Mol Cell Biol (2015) ncbi
小鼠 单克隆(EP5)
  • 免疫印迹; 大鼠; 图 1
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, SC-8422)被用于被用于免疫印迹在大鼠样本上 (图 1). J Neuroinflammation (2015) ncbi
小鼠 单克隆(P1H11)
  • 免疫印迹; 人类
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz Biotechnology, SC-18825)被用于被用于免疫印迹在人类样本上. BMC Cancer (2015) ncbi
小鼠 单克隆(IST-9)
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 1:500; 图 6
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc-59826)被用于被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 6). BMC Cancer (2015) ncbi
小鼠 单克隆(EP5)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz Biotechnology, SC-8422)被用于被用于免疫细胞化学在小鼠样本上. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(EP5)
  • 免疫细胞化学; 人类; 1:100; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz Biotechnology, sc-8422)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Mol Med (2015) ncbi
小鼠 单克隆(C6F10)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, C6F10)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆(IST-9)
  • 免疫印迹; 小鼠; 1:1000; 图 6
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz Biotechnology, sc-59826)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(P5F3)
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz Biotechnology, sc-18827)被用于被用于免疫印迹在大鼠样本上 (图 2). Biochem Pharmacol (2015) ncbi
小鼠 单克隆(EP5)
  • 免疫印迹; 人类
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz Biotechnology, sc-8422)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(EP5)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz Biotechnology, sc-8422)被用于被用于免疫细胞化学在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(616)
  • 免疫组化-石蜡切片; pigs
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc-81767)被用于被用于免疫组化-石蜡切片在pigs 样本上. Biomaterials (2013) ncbi
小鼠 单克隆(EP5)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术纤维连接蛋白抗体(Santa Cruz, sc-8422)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Renal Physiol (2013) ncbi
赛默飞世尔
小鼠 单克隆(Fn-3)
  • 免疫细胞化学; 人类; 1:400; 图 s9a
赛默飞世尔纤维连接蛋白抗体(eBiosciences, 53-9869-82)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s9a). Nat Commun (2021) ncbi
小鼠 单克隆(Fn-3)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔纤维连接蛋白抗体(eBioscience, 53-9869-82)被用于被用于免疫细胞化学在人类样本上 (图 1). Nephron (2019) ncbi
小鼠 单克隆(FBN11)
  • 免疫印迹; 人类; 图 5d
赛默飞世尔纤维连接蛋白抗体(Thermo Fisher, MA5-11981)被用于被用于免疫印迹在人类样本上 (图 5d). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(FBN11)
  • 免疫细胞化学; 人类; 图 1f
赛默飞世尔纤维连接蛋白抗体(ThermoFisher, FBN11)被用于被用于免疫细胞化学在人类样本上 (图 1f). J Biomed Mater Res A (2017) ncbi
小鼠 单克隆(FBN11)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛默飞世尔纤维连接蛋白抗体(ThermoFisher Scientific, MA5-11981)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 家羊; 1:400; 图 2g
赛默飞世尔纤维连接蛋白抗体(ThermoFisher, PAI-23693)被用于被用于免疫细胞化学在家羊样本上浓度为1:400 (图 2g). Int J Trichology (2016) ncbi
小鼠 单克隆(FBN11)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔纤维连接蛋白抗体(Thermo Fisher, MA5-11981)被用于被用于免疫印迹在人类样本上 (图 1a). J Cell Mol Med (2016) ncbi
小鼠 单克隆(A32)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 3a
赛默飞世尔纤维连接蛋白抗体(Thermo, A32)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 3a). Free Radic Biol Med (2016) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; pigs ; 1:1000; 图 3
赛默飞世尔纤维连接蛋白抗体(Thermo Scientific, PA1-23693)被用于被用于酶联免疫吸附测定在pigs 样本上浓度为1:1000 (图 3). Cell Tissue Res (2016) ncbi
小鼠 单克隆(FBN11)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔纤维连接蛋白抗体(ThermoFisher Scientific, FBN11)被用于被用于免疫细胞化学在人类样本上 (图 1). Tissue Cell (2016) ncbi
小鼠 单克隆(A32)
  • 免疫组化; 人类; 1:200
  • 酶联免疫吸附测定; 人类
赛默飞世尔纤维连接蛋白抗体(Pierce, CSI 005-32-02)被用于被用于免疫组化在人类样本上浓度为1:200 和 被用于酶联免疫吸附测定在人类样本上. Matrix Biol (2014) ncbi
小鼠 单克隆(FBN11)
  • 免疫组化-冰冻切片; 人类; 1:500
赛默飞世尔纤维连接蛋白抗体(Thermo Scientific, MS-1351- P0)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500. J Tissue Eng Regen Med (2016) ncbi
小鼠 单克隆(FBN11)
  • 免疫组化; 人类
赛默飞世尔纤维连接蛋白抗体(Lab Vision, FBNII)被用于被用于免疫组化在人类样本上. Am J Pathol (2009) ncbi
湖南远泰生物技术有限公司
小鼠 单克隆(#2F4)
  • 免疫组化-石蜡切片; 人类; 图 2f
  • 免疫细胞化学; 人类; 图 1f
  • 免疫印迹; 人类; 图 2d
湖南远泰生物技术有限公司纤维连接蛋白抗体(Promab, 30339)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2f), 被用于免疫细胞化学在人类样本上 (图 1f) 和 被用于免疫印迹在人类样本上 (图 2d). Biomed Res Int (2019) ncbi
Novus Biologicals
domestic rabbit 多克隆(711-66)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
Novus Biologicals纤维连接蛋白抗体(Novus, NBP1-91258)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). FEBS Open Bio (2020) ncbi
domestic rabbit 多克隆(711-66)
Novus Biologicals纤维连接蛋白抗体(Novus Biologicals, NBP1-91258)被用于. Hum Reprod (2015) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 6e
Rockland Immunochemicals纤维连接蛋白抗体(Rockland, 600-401-117-0.1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 6e). Sci Rep (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(E5H6X)
  • 免疫组化; 人类; 1:200; 图 2c
赛信通(上海)生物试剂有限公司纤维连接蛋白抗体(Cell Signaling Technology, 26836)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E5H6X)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司纤维连接蛋白抗体(Cell Signaling, 26836)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Biosci Rep (2020) ncbi
Vector Laboratories
  • 免疫组化; 人类; 1:500; 图 5e
载体实验室纤维连接蛋白抗体(载体实验室, VPF705)被用于被用于免疫组化在人类样本上浓度为1:500 (图 5e). Biomaterials (2017) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化; 小鼠
西格玛奥德里奇纤维连接蛋白抗体(Sigma Aldrich, F3648)被用于被用于免疫组化在小鼠样本上. iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
西格玛奥德里奇纤维连接蛋白抗体(Sigma Aldrich, F3648)被用于被用于免疫印迹在小鼠样本上 (图 2e). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于被用于免疫印迹在小鼠样本上 (图 5b). Dis Model Mech (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 4a
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1g
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1g). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:250; 图 3e
西格玛奥德里奇纤维连接蛋白抗体(Sigma Aldrich, F3648)被用于被用于免疫组化在斑马鱼样本上浓度为1:250 (图 3e). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 1s2a
  • 免疫细胞化学; 小鼠; 1:400; 图 1s2a
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1s2a) 和 被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1s2a). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于被用于免疫印迹在人类样本上 (图 1c). Amino Acids (2021) ncbi
小鼠 单克隆(FN-15)
  • 免疫组化; 小鼠
西格玛奥德里奇纤维连接蛋白抗体(Sigma, FN-15)被用于被用于免疫组化在小鼠样本上. MBio (2020) ncbi
小鼠 单克隆(FN-3E2)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇纤维连接蛋白抗体(Sigma?\Aldrich, F6140)被用于被用于免疫印迹在人类样本上浓度为1:5000. Br J Pharmacol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:50; 图 3
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于被用于免疫组化在人类样本上浓度为1:50 (图 3). BMC Ophthalmol (2020) ncbi
小鼠 单克隆(FN-15)
  • 免疫印迹; 人类; 图 5c
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F7387)被用于被用于免疫印迹在人类样本上 (图 5c). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:100; 图 3b
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 3b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F-3648)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1e
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F-3648)被用于被用于免疫细胞化学在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 3b). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1b
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1b). Nat Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7i
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于被用于免疫印迹在小鼠样本上 (图 7i). Kidney Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s4d
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于被用于免疫细胞化学在人类样本上 (图 s4d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 s2j
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 s2j). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5b
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5b). Nat Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫印迹在人类样本上 (图 1d). Cancer Metab (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:100; 图 s5
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F-3648)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100 (图 s5). Dev Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 斑马鱼; 1:100; 图 s1B
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:100 (图 s1B). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:100; 图 4a
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 4a). PLoS ONE (2017) ncbi
小鼠 单克隆(FN-15)
  • 免疫细胞化学; 人类; 图 5
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F7387)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s1
  • 免疫印迹; 小鼠; 1:1000; 图 4a
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5f
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫印迹在小鼠样本上 (图 5f). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4c
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4c). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 8
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 8b
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 8b). Am J Physiol Heart Circ Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 斑马鱼; 1:400; 图 s4b
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:400 (图 s4b). Immunity (2016) ncbi
小鼠 单克隆(IST-3)
  • 流式细胞仪; African green monkey; 图 1a
西格玛奥德里奇纤维连接蛋白抗体(Sigma, IST-3)被用于被用于流式细胞仪在African green monkey样本上 (图 1a). J Gen Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 7d
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫组化在人类样本上 (图 7d). Biomacromolecules (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 8c
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于被用于免疫细胞化学在人类样本上 (图 8c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3d
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 s3
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(IST-4)
  • 免疫组化; 人类; 图 1h
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F0916)被用于被用于免疫组化在人类样本上 (图 1h). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 表 1
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (表 1). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫印迹在人类样本上 (图 5a). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s3
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s3). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫印迹在人类样本上 (图 3). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:400; 图 3
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:400 (图 3). Open Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1b
  • 免疫印迹; 人类; 图 3a
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于被用于免疫组化在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 3a). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫印迹在小鼠样本上 (图 2). Stem Cells (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 非洲爪蛙; 1:250; 图 5
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:250 (图 5). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; pigs ; 图 9
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于被用于免疫组化在pigs 样本上 (图 9). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于. Front Cell Neurosci (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
  • 免疫细胞化学; 大鼠; 1:500; 图 2
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 2). Methods Mol Biol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于. BMC Dev Biol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于. J Anat (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于. Am J Physiol Renal Physiol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于. Kidney Int (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于. Biomed Res Int (2015) ncbi
小鼠 单克隆(FN-15)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇纤维连接蛋白抗体(Sigma, FN-15)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). Exp Dermatol (2015) ncbi
小鼠 单克隆(IST-3)
  • 免疫组化; newts; 1:200; 表 1
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F0791)被用于被用于免疫组化在newts样本上浓度为1:200 (表 1). Methods Mol Biol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于. Dev Neurobiol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于. Hypertension (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, F3648)被用于. BMC Dev Biol (2015) ncbi
小鼠 单克隆(IST-4)
  • 免疫细胞化学; 人类; 1:100; 图 3
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F0916)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Methods Mol Biol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇纤维连接蛋白抗体(Sigma, F3648)被用于. J Am Soc Nephrol (2015) ncbi
小鼠 单克隆(FN-15)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇纤维连接蛋白抗体(Sigma-Aldrich, FN15)被用于被用于免疫组化-冰冻切片在小鼠样本上. Genes Cells (2014) ncbi
碧迪BD
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 2h
  • 免疫印迹; 小鼠; 图 4n
碧迪BD纤维连接蛋白抗体(BD Systems, 610077)被用于被用于免疫印迹在人类样本上 (图 2h) 和 被用于免疫印迹在小鼠样本上 (图 4n). Clin Transl Med (2021) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 1:1000
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2020) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 6b
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610078)被用于被用于免疫印迹在人类样本上 (图 6b). Sci Rep (2019) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 3b
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫印迹在人类样本上 (图 3b). Cancer Cell (2019) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 4a
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫印迹在人类样本上 (图 4a). Invest Ophthalmol Vis Sci (2019) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 4c
碧迪BD纤维连接蛋白抗体(BD Transduction Laboratories, 610078)被用于被用于免疫印迹在人类样本上 (图 4c). Am J Physiol Lung Cell Mol Physiol (2019) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫组化; 大鼠; 1:50; 图 s1h
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 s1h). Cell Death Differ (2018) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 4b
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫印迹在人类样本上 (图 4b). Cancer Res (2017) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫细胞化学; 人类; 1:100; 图 3b
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610078)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). Nature (2017) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫细胞化学; 人类; 图 1d
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫细胞化学在人类样本上 (图 1d). Nat Commun (2017) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫组化; 人类; 1:2000; 图 s1b
  • 免疫印迹; 人类; 1:4000; 图 1d
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 s1b) 和 被用于免疫印迹在人类样本上浓度为1:4000 (图 1d). Nat Commun (2017) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 1a
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫印迹在人类样本上 (图 1a). Int J Mol Med (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 6a
碧迪BD纤维连接蛋白抗体(BD Transduction, 610078)被用于被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 3c
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Rep (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). EMBO Mol Med (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 2
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫印迹在人类样本上 (图 2). Mol Biol Rep (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫细胞化学; 人类; 图 3
碧迪BD纤维连接蛋白抗体(BD Transduction Laboratories, 610078)被用于被用于免疫细胞化学在人类样本上 (图 3). Am J Transl Res (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 1:1000; 图 4
  • 免疫细胞化学; pigs ; 图 4
  • 免疫印迹; pigs ; 1:1000; 图 4
碧迪BD纤维连接蛋白抗体(BD Transduction Laboratories, 610077)被用于被用于免疫细胞化学在人类样本上 (图 4), 被用于免疫印迹在人类样本上浓度为1:1000 (图 4), 被用于免疫细胞化学在pigs 样本上 (图 4) 和 被用于免疫印迹在pigs 样本上浓度为1:1000 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫组化; 小鼠; 图 2
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫组化在小鼠样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 1:1000; 图 s3b
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610078)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Science (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 4
碧迪BD纤维连接蛋白抗体(BD Transduction, 610077)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 3g
碧迪BD纤维连接蛋白抗体(BD, 610077)被用于被用于免疫印迹在人类样本上 (图 3g). Cancer Res (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫组化; 大鼠; 1:200; 图 1d
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610078)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1d). Acta Biomater (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 1:2000; 图 2f
碧迪BD纤维连接蛋白抗体(BD, 10)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2f). Nat Commun (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 1:2000; 图 6
碧迪BD纤维连接蛋白抗体(bD Bioscience, 610077)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫组化; 小鼠; 图 s7
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610078)被用于被用于免疫组化在小鼠样本上 (图 s7). Sci Rep (2015) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD纤维连接蛋白抗体(bD Bioscience, 10/Fibronectin)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 2a
碧迪BD纤维连接蛋白抗体(BD, 610077)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2016) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 牛
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫印迹在牛样本上. Int J Mol Med (2015) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 2c
碧迪BD纤维连接蛋白抗体(BD Bioscience, 610077)被用于被用于免疫印迹在人类样本上 (图 2c). J Exp Clin Cancer Res (2015) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 1:5000; 图 4b
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4b). Nat Commun (2015) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫细胞化学; 人类; 图 2
碧迪BD纤维连接蛋白抗体(BD, 610077)被用于被用于免疫细胞化学在人类样本上 (图 2). BMC Cancer (2015) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 1a
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 8
碧迪BD纤维连接蛋白抗体(BD Transduction Laboratories, 610077)被用于被用于免疫印迹在人类样本上 (图 8). RNA Biol (2014) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫细胞化学; 人类; 图 2
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫细胞化学在人类样本上 (图 2). J Transl Med (2015) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 1:1000; 图 5, 6
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5, 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫细胞化学; 人类; 1:100; 图 2a
  • 免疫印迹; 人类; 1:2500; 图 2d
碧迪BD纤维连接蛋白抗体(BD Transduction Laboratories, 610077)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 2d). Cancer Lett (2015) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类; 图 4
碧迪BD纤维连接蛋白抗体(BD Transduction Laboratories, 610077)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2015) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 小鼠
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫印迹在小鼠样本上. Exp Gerontol (2015) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类; 1:2500
碧迪BD纤维连接蛋白抗体(BD Transduction Laboratories, 610077)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:2500. Cell Death Dis (2014) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫细胞化学; 人类
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2014) ncbi
  • 免疫组化-冰冻切片; 人类; 1:50; 图 3k
碧迪BD纤维连接蛋白抗体(BD Bioscience, 555867)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 3k). J Neuroimmunol (2014) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 图 7
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610078)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上 (图 7). Oncogene (2015) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BD纤维连接蛋白抗体(BD Transduction Laboratories, 610077)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Biomaterials (2014) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫组化-石蜡切片; pigs ; 1:100
碧迪BD纤维连接蛋白抗体(BD, 610077)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100. Biomaterials (2014) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫组化; 人类; 1:2000
碧迪BD纤维连接蛋白抗体(BD Transduction, 610078)被用于被用于免疫组化在人类样本上浓度为1:2000. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610078)被用于被用于免疫印迹在人类样本上. Oncol Rep (2013) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类
碧迪BD纤维连接蛋白抗体(BD Pharmingen, 610078)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(10/Fibronectin)
  • 免疫印迹; 人类
碧迪BD纤维连接蛋白抗体(BD Biosciences, 610077)被用于被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
ATCC
小鼠 单克隆
  • 免疫组化-冰冻切片; 人类; 1:100; 图 5c
ATCC纤维连接蛋白抗体(ATCC, CRL-1606 clone HFN7.1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 5c). Nat Protoc (2017) ncbi
小鼠 单克隆
  • 酶联免疫吸附测定; 小鼠; 图 2e
ATCC纤维连接蛋白抗体(ATCC, HB-9018)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2e). J Bone Miner Res (2017) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(13G3B7 Fibronectin III-15)
  • 免疫细胞化学; 人类; 1:500; 图 1
Developmental Studies Hybridoma Bank纤维连接蛋白抗体(DSHB, 13G3B7)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). Nat Neurosci (2016) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆
  • 免疫印迹; 人类; 图 2
徕卡显微系统(上海)贸易有限公司纤维连接蛋白抗体(Novocastra/Leica Biosystems, NCL-FIB)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
文章列表
  1. Fu H, Gui Y, Liu S, Wang Y, Bastacky S, Qiao Y, et al. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience. 2021;24:103112 pubmed 出版商
  2. Li K, Wu R, Zhou M, Tong H, Luo K. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265 pubmed 出版商
  3. Zhang Y, Wen P, Luo J, Ding H, Cao H, He W, et al. Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis. Cell Death Dis. 2021;12:847 pubmed 出版商
  4. Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, et al. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol. 2021;12:724141 pubmed 出版商
  5. Gu P, Wang D, Zhang J, Wang X, Chen Z, Gu L, et al. Protective function of interleukin-22 in pulmonary fibrosis. Clin Transl Med. 2021;11:e509 pubmed 出版商
  6. Stanton C, Findlay A, Drake C, Mustafa M, Gautier P, McKie L, et al. A Mouse Model of Brittle Cornea Syndrome caused by mutation in Zfp469. Dis Model Mech. 2021;: pubmed 出版商
  7. Freitas A, Aroso M, Barros A, Fernández M, Conde Sousa E, Leite M, et al. Characterization of the Striatal Extracellular Matrix in a Mouse Model of Parkinson's Disease. Antioxidants (Basel). 2021;10: pubmed 出版商
  8. Savorani C, Malinverno M, Seccia R, Maderna C, Giannotta M, Terreran L, et al. A dual role of YAP in driving TGFβ-mediated endothelial-to-mesenchymal transition. J Cell Sci. 2021;134: pubmed 出版商
  9. Zehender A, Li Y, Lin N, Stefanica A, Nüchel J, Chen C, et al. TGFβ promotes fibrosis by MYST1-dependent epigenetic regulation of autophagy. Nat Commun. 2021;12:4404 pubmed 出版商
  10. Zhao J, Chen J, Li Y, Xia L, Wu Y. Bruton's tyrosine kinase regulates macrophage‑induced inflammation in the diabetic kidney via NLRP3 inflammasome activation. Int J Mol Med. 2021;48: pubmed 出版商
  11. Xu L, Tan B, Huang D, Yuan M, Li T, Wu M, et al. Remdesivir Inhibits Tubulointerstitial Fibrosis in Obstructed Kidneys. Front Pharmacol. 2021;12:626510 pubmed 出版商
  12. Lee H, Donati A, Feliers D, Sun Y, Ding Y, Madesh M, et al. Chloride channel accessory 1 integrates chloride channel activity and mTORC1 in aging-related kidney injury. Aging Cell. 2021;20:e13407 pubmed 出版商
  13. Wood A, Lin C, Li M, Nishtala K, Alaei S, Rosselló F, et al. FKRP-dependent glycosylation of fibronectin regulates muscle pathology in muscular dystrophy. Nat Commun. 2021;12:2951 pubmed 出版商
  14. Lindfors S, Polianskyte Prause Z, Bouslama R, Lehtonen E, Mannerla M, Nisen H, et al. Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Diabetologia. 2021;64:1866-1879 pubmed 出版商
  15. Budden T, Gaudy Marqueste C, Porter A, Kay E, Gurung S, Earnshaw C, et al. Ultraviolet light-induced collagen degradation inhibits melanoma invasion. Nat Commun. 2021;12:2742 pubmed 出版商
  16. Tsutsui K, Machida H, Nakagawa A, Ahn K, Morita R, Sekiguchi K, et al. Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions. Nat Commun. 2021;12:2577 pubmed 出版商
  17. Yu H, Liu Y, He B, He T, Chen C, He J, et al. Platelet biomarkers for a descending cognitive function: A proteomic approach. Aging Cell. 2021;20:e13358 pubmed 出版商
  18. Li X, Lin P, Tao Y, Jiang X, Li T, Wang Y, et al. LECT 2 Antagonizes FOXM1 Signaling via Inhibiting MET to Retard PDAC Progression. Front Cell Dev Biol. 2021;9:661122 pubmed 出版商
  19. Zheng H, Zhang Y, He J, Yang Z, Zhang R, Li L, et al. Hydroxychloroquine Inhibits Macrophage Activation and Attenuates Renal Fibrosis After Ischemia-Reperfusion Injury. Front Immunol. 2021;12:645100 pubmed 出版商
  20. Evtushenko N, Beilin A, Dashinimaev E, Ziganshin R, Kosykh A, Perfilov M, et al. hTERT-Driven Immortalization of RDEB Fibroblast and Keratinocyte Cell Lines Followed by Cre-Mediated Transgene Elimination. Int J Mol Sci. 2021;22: pubmed 出版商
  21. Zhang X, Huang Z, Wang J, Ma Z, Yang J, Corey E, et al. Targeting Feedforward Loops Formed by Nuclear Receptor RORγ and Kinase PBK in mCRPC with Hyperactive AR Signaling. Cancers (Basel). 2021;13: pubmed 出版商
  22. Li G, Lee C, Read A, Wang K, Ha J, Kuhn M, et al. Anti-fibrotic activity of a rho-kinase inhibitor restores outflow function and intraocular pressure homeostasis. elife. 2021;10: pubmed 出版商
  23. Ma S, McGuire M, Mangala L, Lee S, Stur E, Hu W, et al. Gain-of-function p53 protein transferred via small extracellular vesicles promotes conversion of fibroblasts to a cancer-associated phenotype. Cell Rep. 2021;34:108726 pubmed 出版商
  24. Fazio M, van Rooijen E, Dang M, van de Hoek G, Ablain J, Mito J, et al. SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance. elife. 2021;10: pubmed 出版商
  25. Lehtimäki J, Rajakylä E, Tojkander S, Lappalainen P. Generation of stress fibers through myosin-driven reorganization of the actin cortex. elife. 2021;10: pubmed 出版商
  26. Fell S, Wang Z, Blanchard A, Nanthakumar C, Griffin M. Transglutaminase 2: a novel therapeutic target for idiopathic pulmonary fibrosis using selective small molecule inhibitors. Amino Acids. 2021;53:205-217 pubmed 出版商
  27. Jinno A, Hayashida A, Jenkinson H, Park P. Syndecan-1 Promotes Streptococcus pneumoniae Corneal Infection by Facilitating the Assembly of Adhesive Fibronectin Fibrils. MBio. 2020;11: pubmed 出版商
  28. Wang C, Weng M, Xia S, Zhang M, Chen C, Tang J, et al. Distinct roles of programmed death ligand 1 alternative splicing isoforms in colorectal cancer. Cancer Sci. 2021;112:178-193 pubmed 出版商
  29. Kim Y, Oh S, Ahn J, Yook J, Kim C, Park S, et al. The Crucial Role of Xanthine Oxidase in CKD Progression Associated with Hypercholesterolemia. Int J Mol Sci. 2020;21: pubmed 出版商
  30. Lee T, Yeh C, Lee Y, Shih Y, Chen Y, Hung C, et al. Fibroblast-enriched endoplasmic reticulum protein TXNDC5 promotes pulmonary fibrosis by augmenting TGFβ signaling through TGFBR1 stabilization. Nat Commun. 2020;11:4254 pubmed 出版商
  31. Wei J, Dong J, Li L. Cancer-associated fibroblasts-derived gamma-glutamyltransferase 5 promotes tumor growth and drug resistance in lung adenocarcinoma. Aging (Albany NY). 2020;12:13220-13233 pubmed 出版商
  32. Ledein L, Leger B, Dees C, Beyer C, Distler A, Vettori S, et al. Translational engagement of lysophosphatidic acid receptor 1 in skin fibrosis: from dermal fibroblasts of patients with scleroderma to tight skin 1 mouse. Br J Pharmacol. 2020;177:4296-4309 pubmed 出版商
  33. Yang Y, Tai W, Lu N, Li T, Liu Y, Wu W, et al. lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis. Aging (Albany NY). 2020;12:9085-9102 pubmed 出版商
  34. Sundararaman A, Fukushima Y, Norman J, Uemura A, Mellor H. RhoJ Regulates α5β1 Integrin Trafficking to Control Fibronectin Remodeling during Angiogenesis. Curr Biol. 2020;30:2146-2155.e5 pubmed 出版商
  35. Guo Y, Zhang Z, Wang Z, Liu G, Liu Y, Wang H. Astragalus polysaccharides inhibit ovarian cancer cell growth via microRNA-27a/FBXW7 signaling pathway. Biosci Rep. 2020;40: pubmed 出版商
  36. Qian W, Cai X, Qian Q. Sirt1 antisense long non-coding RNA attenuates pulmonary fibrosis through sirt1-mediated epithelial-mesenchymal transition. Aging (Albany NY). 2020;12:4322-4336 pubmed 出版商
  37. Nayakawde N, Methe K, Banerjee D, Berg M, Premaratne G, Olausson M. In Vitro Regeneration of Decellularized Pig Esophagus Using Human Amniotic Stem Cells. Biores Open Access. 2020;9:22-36 pubmed 出版商
  38. Hillenmayer A, Wertheimer C, Kassumeh S, von Studnitz A, Luft N, Ohlmann A, et al. Evaluation of posterior capsule opacification of the Alcon Clareon IOL vs the Alcon Acrysof IOL using a human capsular bag model. BMC Ophthalmol. 2020;20:77 pubmed 出版商
  39. Xiong G, Chen J, Zhang G, Wang S, Kawasaki K, Zhu J, et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci U S A. 2020;117:3748-3758 pubmed 出版商
  40. He B, Johansson Percival A, Backhouse J, Li J, Lee G, Hamzah J, et al. Remodeling of Metastatic Vasculature Reduces Lung Colonization and Sensitizes Overt Metastases to Immunotherapy. Cell Rep. 2020;30:714-724.e5 pubmed 出版商
  41. Sharma S, Plotkin M. Id1 expression in kidney endothelial cells protects against diabetes-induced microvascular injury. FEBS Open Bio. 2020;: pubmed 出版商
  42. Medeiros B, Goodale D, Postenka C, Lowes L, Kiser P, Hearn S, et al. Triple-Negative Primary Breast Tumors Induce Supportive Premetastatic Changes in the Extracellular Matrix and Soluble Components of the Lung Microenvironment. Cancers (Basel). 2020;12: pubmed 出版商
  43. Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol. 2019;17:e3000557 pubmed 出版商
  44. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10:918 pubmed 出版商
  45. de Vries J, Barendrecht A, Clark C, Urbanus R, Boross P, de Maat S, et al. Heparin Forms Polymers with Cell-free DNA Which Elongate Under Shear in Flowing Blood. Sci Rep. 2019;9:18316 pubmed 出版商
  46. Zhou S, da Silva S, Siegel P, Philip A. CD109 acts as a gatekeeper of the epithelial trait by suppressing epithelial to mesenchymal transition in squamous cell carcinoma cells in vitro. Sci Rep. 2019;9:16317 pubmed 出版商
  47. Gomes A, Ilter D, Low V, Rosenzweig A, Shen Z, Schild T, et al. Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell. 2019;36:402-417.e13 pubmed 出版商
  48. Ren J, Smid M, Iaria J, Salvatori D, van Dam H, Zhu H, et al. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Res. 2019;21:109 pubmed 出版商
  49. Duchemin A, Vignes H, Vermot J. Mechanically activated piezo channels modulate outflow tract valve development through the Yap1 and Klf2-Notch signaling axis. elife. 2019;8: pubmed 出版商
  50. Shen J, Xing W, Liu R, Zhang Y, Xie C, Gong F. MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol. 2019;20:21 pubmed 出版商
  51. Zhao Y, Lu X, Cheng Z, Tian M, Qiangba Y, Fu Q, et al. Comparative proteomic analysis of Tibetan pig spermatozoa at high and low altitudes. BMC Genomics. 2019;20:569 pubmed 出版商
  52. Nagamatsu G, Shimamoto S, Hamazaki N, Nishimura Y, Hayashi K. Mechanical stress accompanied with nuclear rotation is involved in the dormant state of mouse oocytes. Sci Adv. 2019;5:eaav9960 pubmed 出版商
  53. Ligorio M, Sil S, Malagon Lopez J, Nieman L, Misale S, Di Pilato M, et al. Stromal Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer. Cell. 2019;: pubmed 出版商
  54. Bon H, Hales P, Lumb S, Holdsworth G, Johnson T, Qureshi O, et al. Spontaneous Extracellular Matrix Accumulation in a Human in vitro Model of Renal Fibrosis Is Mediated by αV Integrins. Nephron. 2019;:1-23 pubmed 出版商
  55. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  56. Huang X, Xue H, Ma J, Zhang Y, Zhang J, Liu Y, et al. Salidroside ameliorates Adriamycin nephropathy in mice by inhibiting β-catenin activity. J Cell Mol Med. 2019;23:4443-4453 pubmed 出版商
  57. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  58. Ferraro D, Patella F, Zanivan S, Donato C, Aceto N, Giannotta M, et al. Endothelial cell-derived nidogen-1 inhibits migration of SK-BR-3 breast cancer cells. BMC Cancer. 2019;19:312 pubmed 出版商
  59. Li Y, Li H, Duan Y, Cai X, You D, Zhou F, et al. Blockage of TGF-α Induced by Spherical Silica Nanoparticles Inhibits Epithelial-Mesenchymal Transition and Proliferation of Human Lung Epithelial Cells. Biomed Res Int. 2019;2019:8231267 pubmed 出版商
  60. Sun Y, Yang Y, Keller K. Myosin-X Silencing in the Trabecular Meshwork Suggests a Role for Tunneling Nanotubes in Outflow Regulation. Invest Ophthalmol Vis Sci. 2019;60:843-851 pubmed 出版商
  61. Jung H, Fattet L, Tsai J, Kajimoto T, Chang Q, Newton A, et al. Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol. 2019;21:359-371 pubmed 出版商
  62. Zhou L, Chen X, Lu M, Wu Q, Yuan Q, Hu C, et al. Wnt/β-catenin links oxidative stress to podocyte injury and proteinuria. Kidney Int. 2019;95:830-845 pubmed 出版商
  63. Lin P, Wu M, Qin J, Yang J, Ye C, Wang C. Magnesium lithospermate B improves renal hemodynamics and reduces renal oxygen consumption in 5/6th renal ablation/infarction rats. BMC Nephrol. 2019;20:49 pubmed 出版商
  64. Novielli Kuntz N, Jelen M, Barr K, DeLalio L, Feng Q, Isakson B, et al. Ablation of both Cx40 and Panx1 results in similar cardiovascular phenotypes exhibited in Cx40 knockout mice. Biosci Rep. 2019;39: pubmed 出版商
  65. Wimmer R, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature. 2019;565:505-510 pubmed 出版商
  66. Zhang J, Wang D, Wang L, Wang S, Roden A, Zhao H, et al. Profibrotic effect of IL-17A and elevated IL-17RA in idiopathic pulmonary fibrosis and rheumatoid arthritis-associated lung disease support a direct role for IL-17A/IL-17RA in human fibrotic interstitial lung disease. Am J Physiol Lung Cell Mol Physiol. 2019;316:L487-L497 pubmed 出版商
  67. Zhang X, Zhang M, Wang C. Loss of LRRC25 accelerates pathological cardiac hypertrophy through promoting fibrosis and inflammation regulated by TGF-β1. Biochem Biophys Res Commun. 2018;506:137-144 pubmed 出版商
  68. Yin J, Wang Y, Chang J, Li B, Zhang J, Liu Y, et al. Apelin inhibited epithelial-mesenchymal transition of podocytes in diabetic mice through downregulating immunoproteasome subunits β5i. Cell Death Dis. 2018;9:1031 pubmed 出版商
  69. Natsumi A, Sugawara K, Yasumizu M, Mizukami Y, Sano S, Morita A, et al. Re-investigating the Basement Membrane Zone of Psoriatic Epidermal Lesions: Is Laminin-511 a New Player in Psoriasis Pathogenesis?. J Histochem Cytochem. 2018;66:847-862 pubmed 出版商
  70. Dias D, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlen M, et al. Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell. 2018;173:153-165.e22 pubmed 出版商
  71. Victor M, Richner M, Olsen H, Lee S, Monteys A, Ma C, et al. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci. 2018;21:341-352 pubmed 出版商
  72. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  73. Gossart A, Battiston K, Gand A, Pauthe E, Santerre J. Mono vs multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes. Acta Biomater. 2018;66:129-140 pubmed 出版商
  74. Toloczko A, Guo F, Yuen H, Wen Q, Wood S, Ong Y, et al. Deubiquitinating Enzyme USP9X Suppresses Tumor Growth via LATS Kinase and Core Components of the Hippo Pathway. Cancer Res. 2017;77:4921-4933 pubmed 出版商
  75. Miikkulainen P, Högel H, Rantanen K, Suomi T, Kouvonen P, Elo L, et al. HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma. Cancer Metab. 2017;5:5 pubmed 出版商
  76. Li L, Guo X, Shi X, Li C, Wu W, Yan C, et al. Ionic CD3-Lck interaction regulates the initiation of T-cell receptor signaling. Proc Natl Acad Sci U S A. 2017;114:E5891-E5899 pubmed 出版商
  77. Gocheva V, Naba A, Bhutkar A, Guardia T, Miller K, Li C, et al. Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. Proc Natl Acad Sci U S A. 2017;114:E5625-E5634 pubmed 出版商
  78. Kara N, Wei C, Commanday A, Patton J. miR-27 regulates chondrogenesis by suppressing focal adhesion kinase during pharyngeal arch development. Dev Biol. 2017;429:321-334 pubmed 出版商
  79. Gibot L, Galbraith T, Bourland J, Rogic A, Skobe M, Auger F. Tissue-engineered 3D human lymphatic microvascular network for in vitro studies of lymphangiogenesis. Nat Protoc. 2017;12:1077-1088 pubmed 出版商
  80. Gerarduzzi C, Kumar R, Trivedi P, Ajay A, Iyer A, Boswell S, et al. Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation. JCI Insight. 2017;2: pubmed 出版商
  81. Sidhaye J, Norden C. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. elife. 2017;6: pubmed 出版商
  82. Heim J, Squirewell E, Neu A, Zocher G, Sominidi Damodaran S, Wyles S, et al. Myosin-1E interacts with FAK proline-rich region 1 to induce fibronectin-type matrix. Proc Natl Acad Sci U S A. 2017;114:3933-3938 pubmed 出版商
  83. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  84. Varadaraj A, JENKINS L, Singh P, Chanda A, Snider J, Lee N, et al. TGF-β triggers rapid fibrillogenesis via a novel TβRII-dependent fibronectin-trafficking mechanism. Mol Biol Cell. 2017;28:1195-1207 pubmed 出版商
  85. Liu J, Hu F, Tang J, Tang S, Xia K, Wu S, et al. Homemade-device-induced negative pressure promotes wound healing more efficiently than VSD-induced positive pressure by regulating inflammation, proliferation and remodeling. Int J Mol Med. 2017;39:879-888 pubmed 出版商
  86. Bi Y, Shen W, Min M, Liu Y. MicroRNA-7 functions as a tumor-suppressor gene by regulating ILF2 in pancreatic carcinoma. Int J Mol Med. 2017;39:900-906 pubmed 出版商
  87. Zakharova I, Zhiven M, Saaya S, Shevchenko A, Smirnova A, Strunov A, et al. Endothelial and smooth muscle cells derived from human cardiac explants demonstrate angiogenic potential and suitable for design of cell-containing vascular grafts. J Transl Med. 2017;15:54 pubmed 出版商
  88. Caberlotto E, Ruiz L, Miller Z, Poletti M, Tadlock L. Effects of a skin-massaging device on the ex-vivo expression of human dermis proteins and in-vivo facial wrinkles. PLoS ONE. 2017;12:e0172624 pubmed 出版商
  89. Zhang L, Liu H, Mu X, Cui J, Peng Z. Dysregulation of Fra1 expression by Wnt/β-catenin signalling promotes glioma aggressiveness through epithelial-mesenchymal transition. Biosci Rep. 2017;37: pubmed 出版商
  90. Stahnke T, Kowtharapu B, Stachs O, Schmitz K, Wurm J, Wree A, et al. Suppression of TGF-β pathway by pirfenidone decreases extracellular matrix deposition in ocular fibroblasts in vitro. PLoS ONE. 2017;12:e0172592 pubmed 出版商
  91. Wong C, Chen C, Chang C, Chen C. Bio-functionalized magnetic nanoparticles for the immunoassay of fetal fibronectin: a feasibility study for the prediction of preterm birth. Sci Rep. 2017;7:42461 pubmed 出版商
  92. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  93. Chen Z, Givens C, Reader J, Tzima E. Haemodynamics Regulate Fibronectin Assembly via PECAM. Sci Rep. 2017;7:41223 pubmed 出版商
  94. Xu J, Zhu S, Heng B, Dissanayaka W, Zhang C. TGF-?1-induced differentiation of SHED into functional smooth muscle cells. Stem Cell Res Ther. 2017;8:10 pubmed 出版商
  95. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun. 2017;8:14105 pubmed 出版商
  96. Gouveia R, González Andrades E, Cardona J, González Gallardo C, Ionescu A, Garzon I, et al. Controlling the 3D architecture of Self-Lifting Auto-generated Tissue Equivalents (SLATEs) for optimized corneal graft composition and stability. Biomaterials. 2017;121:205-219 pubmed 出版商
  97. Gong T, Heng B, Xu J, Zhu S, Yuan C, Lo E, et al. Decellularized extracellular matrix of human umbilical vein endothelial cells promotes endothelial differentiation of stem cells from exfoliated deciduous teeth. J Biomed Mater Res A. 2017;105:1083-1093 pubmed 出版商
  98. Muranen T, Iwanicki M, Curry N, Hwang J, DuBois C, Coloff J, et al. Starved epithelial cells uptake extracellular matrix for survival. Nat Commun. 2017;8:13989 pubmed 出版商
  99. Guiraud S, Migeon T, Ferry A, Chen Z, Ouchelouche S, Verpont M, et al. HANAC Col4a1 Mutation in Mice Leads to Skeletal Muscle Alterations due to a Primary Vascular Defect. Am J Pathol. 2017;187:505-516 pubmed 出版商
  100. Hammers D, Sleeper M, Forbes S, Coker C, Jirousek M, Zimmer M, et al. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016;1:e90341 pubmed 出版商
  101. Dinulovic I, Furrer R, Beer M, Ferry A, Cardel B, Handschin C. Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche. Skelet Muscle. 2016;6:39 pubmed
  102. Choi S, Piao Z, Jin L, Kim J, Kim G, Ryu Y, et al. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PLoS ONE. 2016;11:e0167340 pubmed 出版商
  103. Goreczny G, Ouderkirk Pecone J, Olson E, Krendel M, Turner C. Hic-5 remodeling of the stromal matrix promotes breast tumor progression. Oncogene. 2017;36:2693-2703 pubmed 出版商
  104. Chaudhury A, Cheema S, Fachini J, Kongchan N, Lu G, Simon L, et al. CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Nat Commun. 2016;7:13362 pubmed 出版商
  105. Keshri G, Gupta A, Yadav A, Sharma S, Singh S. Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As) Augments Dermal Wound Healing in Immunosuppressed Rats. PLoS ONE. 2016;11:e0166705 pubmed 出版商
  106. Ballmann C, Denney T, Beyers R, Quindry T, Romero M, Amin R, et al. Lifelong quercetin enrichment and cardioprotection in Mdx/Utrn+/- mice. Am J Physiol Heart Circ Physiol. 2017;312:H128-H140 pubmed 出版商
  107. Dismuke W, Klingeborn M, Stamer W. Mechanism of Fibronectin Binding to Human Trabecular Meshwork Exosomes and Its Modulation by Dexamethasone. PLoS ONE. 2016;11:e0165326 pubmed 出版商
  108. Richter E, Harms M, Ventz K, Nölker R, Fraunholz M, Mostertz J, et al. Quantitative Proteomics Reveals the Dynamics of Protein Phosphorylation in Human Bronchial Epithelial Cells during Internalization, Phagosomal Escape, and Intracellular Replication of Staphylococcus aureus. J Proteome Res. 2016;15:4369-4386 pubmed
  109. Cronan M, Beerman R, ROSENBERG A, Saelens J, Johnson M, Oehlers S, et al. Macrophage Epithelial Reprogramming Underlies Mycobacterial Granuloma Formation and Promotes Infection. Immunity. 2016;45:861-876 pubmed 出版商
  110. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  111. Parween S, Kostromina E, Nord C, Eriksson M, Lindstrom P, Ahlgren U. Intra-islet lesions and lobular variations in ?-cell mass expansion in ob/ob mice revealed by 3D imaging of intact pancreas. Sci Rep. 2016;6:34885 pubmed 出版商
  112. Nanbo A, Kachi K, Yoshiyama H, Ohba Y. Epstein-Barr virus exploits host endocytic machinery for cell-to-cell viral transmission rather than a virological synapse. J Gen Virol. 2016;97:2989-3006 pubmed 出版商
  113. Kim M, Jeong J, Seo J, Kim H, Kim S, Jin W. Dysregulated JAK2 expression by TrkC promotes metastasis potential, and EMT program of metastatic breast cancer. Sci Rep. 2016;6:33899 pubmed 出版商
  114. Sari A, Rufaut N, Jones L, Sinclair R. Characterization of Ovine Dermal Papilla Cell Aggregation. Int J Trichology. 2016;8:121-9 pubmed 出版商
  115. Rother S, Samsonov S, Hempel U, Vogel S, Moeller S, Blaszkiewicz J, et al. Sulfated Hyaluronan Alters the Interaction Profile of TIMP-3 with the Endocytic Receptor LRP-1 Clusters II and IV and Increases the Extracellular TIMP-3 Level of Human Bone Marrow Stromal Cells. Biomacromolecules. 2016;17:3252-3261 pubmed
  116. Hesler R, Huang J, Starr M, Treboschi V, Bernanke A, Nixon A, et al. TGF-?-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis. 2016;37:1041-1051 pubmed 出版商
  117. Hsu Y, Shi G, Wang K, Ma C, Cheng T, Wu H. Thrombomodulin promotes focal adhesion kinase activation and contributes to angiogenesis by binding to fibronectin. Oncotarget. 2016;7:68122-68139 pubmed 出版商
  118. Benny P, Badowski C, Lane E, Raghunath M. Improving 2D and 3D Skin In Vitro Models Using Macromolecular Crowding. J Vis Exp. 2016;: pubmed 出版商
  119. Yang Y, Zhang Y, Iwamoto H, Hosaka K, Seki T, Andersson P, et al. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun. 2016;7:12680 pubmed 出版商
  120. Wu W, Wang Q, Yin F, Yang Z, Zhang W, Gabra H, et al. Identification of proteomic and metabolic signatures associated with chemoresistance of human epithelial ovarian cancer. Int J Oncol. 2016;49:1651-65 pubmed 出版商
  121. Kaukonen R, Mai A, Georgiadou M, Saari M, De Franceschi N, Betz T, et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat Commun. 2016;7:12237 pubmed 出版商
  122. Yang Y, Sun Y, Acott T, Keller K. Effects of induction and inhibition of matrix cross-linking on remodeling of the aqueous outflow resistance by ocular trabecular meshwork cells. Sci Rep. 2016;6:30505 pubmed 出版商
  123. Sens C, Altrock E, Rau K, Klemis V, von Au A, Pettera S, et al. An O-Glycosylation of Fibronectin Mediates Hepatic Osteodystrophy Through α4β1 Integrin. J Bone Miner Res. 2017;32:70-81 pubmed 出版商
  124. Choi S, Kee H, Kurz T, Hansen F, Ryu Y, Kim G, et al. Class I HDACs specifically regulate E-cadherin expression in human renal epithelial cells. J Cell Mol Med. 2016;20:2289-2298 pubmed 出版商
  125. Wei M, He W, Lu X, Ni L, Yang Y, Chen L, et al. JiaWeiDangGui Decoction Ameliorates Proteinuria and Kidney Injury in Adriamycin-Induced Rat by Blockade of TGF-?/Smad Signaling. Evid Based Complement Alternat Med. 2016;2016:5031890 pubmed 出版商
  126. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  127. Degendorfer G, Chuang C, Kawasaki H, Hammer A, Malle E, Yamakura F, et al. Peroxynitrite-mediated oxidation of plasma fibronectin. Free Radic Biol Med. 2016;97:602-615 pubmed 出版商
  128. Li H, Mai R, Huang H, Chou C, Chang Y, Chang Y, et al. DDX3 Represses Stemness by Epigenetically Modulating Tumor-suppressive miRNAs in Hepatocellular Carcinoma. Sci Rep. 2016;6:28637 pubmed 出版商
  129. Muñoz Félix J, Pérez Roque L, Núñez Gómez E, Oujo B, Arevalo M, Ruiz Remolina L, et al. Overexpression of the short endoglin isoform reduces renal fibrosis and inflammation after unilateral ureteral obstruction. Biochim Biophys Acta. 2016;1862:1801-14 pubmed 出版商
  130. Li Q, Sodroski C, Lowey B, Schweitzer C, Cha H, Zhang F, et al. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113:7620-5 pubmed 出版商
  131. Du C, Narayanan K, Leong M, Ibrahim M, Chua Y, Khoo V, et al. Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds. Adv Healthc Mater. 2016;5:2080-91 pubmed 出版商
  132. Bhattacharyya S, Wang W, Morales Nebreda L, Feng G, Wu M, Zhou X, et al. Tenascin-C drives persistence of organ fibrosis. Nat Commun. 2016;7:11703 pubmed 出版商
  133. Xu G, Yue F, Huang H, He Y, Li X, Zhao H, et al. Defects in MAP1S-mediated autophagy turnover of fibronectin cause renal fibrosis. Aging (Albany NY). 2016;8:977-85 pubmed 出版商
  134. Daubon T, Spuul P, Alonso F, Fremaux I, Genot E. VEGF-A stimulates podosome-mediated collagen-IV proteolysis in microvascular endothelial cells. J Cell Sci. 2016;129:2586-98 pubmed 出版商
  135. Fessler E, Drost J, van Hooff S, Linnekamp J, Wang X, Jansen M, et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med. 2016;8:745-60 pubmed 出版商
  136. Lin S, Wang B, Lin C, Chien P, Wu Y, Ko J, et al. Chidamide alleviates TGF-?-induced epithelial-mesenchymal transition in lung cancer cell lines. Mol Biol Rep. 2016;43:687-95 pubmed 出版商
  137. Zhang M, Huang W, Bai J, Nie X, Wang W. Chymase inhibition protects diabetic rats from renal lesions. Mol Med Rep. 2016;14:121-8 pubmed 出版商
  138. Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, et al. LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial?mesenchymal transition in retinal pigment epithelium cells. Mol Med Rep. 2016;14:145-50 pubmed 出版商
  139. Kumar A, Ouyang M, van den Dries K, McGhee E, Tanaka K, Anderson M, et al. Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. J Cell Biol. 2016;213:371-83 pubmed 出版商
  140. Ding H, Xu Y, Gao D, Wang L. Glioma-associated oncogene homolog 1 promotes epithelial-mesenchymal transition in human renal tubular epithelial cell. Am J Transl Res. 2016;8:662-9 pubmed
  141. O Connor Mooney R, Davis N, Hoey D, Hogan L, McGloughlin T, Walsh M. On the Automatic Decellularisation of Porcine Aortae: A Repeatability Study Using a Non-Enzymatic Approach. Cells Tissues Organs. 2016;201:299-318 pubmed 出版商
  142. Li C, Zhen G, Chai Y, Xie L, Crane J, Farber E, et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat Commun. 2016;7:11455 pubmed 出版商
  143. Inada M, Izawa G, Kobayashi W, Ozawa M. 293 cells express both epithelial as well as mesenchymal cell adhesion molecules. Int J Mol Med. 2016;37:1521-7 pubmed 出版商
  144. Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016;19:807-15 pubmed 出版商
  145. Laklai H, Miroshnikova Y, Pickup M, Collisson E, Kim G, Barrett A, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med. 2016;22:497-505 pubmed 出版商
  146. Waisbourd Zinman O, Koh H, Tsai S, Lavrut P, Dang C, Zhao X, et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology. 2016;64:880-93 pubmed 出版商
  147. Sadeghian Nodoushan F, Aflatoonian R, Borzouie Z, Akyash F, Fesahat F, Soleimani M, et al. Pluripotency and differentiation of cells from human testicular sperm extraction: An investigation of cell stemness. Mol Reprod Dev. 2016;83:312-23 pubmed 出版商
  148. Ufimtseva E. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro. J Immunol Res. 2016;2016:4325646 pubmed 出版商
  149. Macritchie N, Volpert G, Al Washih M, Watson D, Futerman A, Kennedy S, et al. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal. 2016;28:946-55 pubmed 出版商
  150. Zobel K, Hansen U, Galla H. Blood-brain barrier properties in vitro depend on composition and assembly of endogenous extracellular matrices. Cell Tissue Res. 2016;365:233-45 pubmed 出版商
  151. Ren J, Li J, Liu X, Feng Y, Gui Y, Yang J, et al. Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling. Sci Rep. 2016;6:23968 pubmed 出版商
  152. Yu J, Berga S, Johnston MacAnanny E, Sidell N, Bagchi I, Bagchi M, et al. Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal. Endocrinology. 2016;157:2432-46 pubmed 出版商
  153. Herrera C, Macêdo J, Feoli A, Escalante T, Rucavado A, Gutierrez J, et al. Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis. PLoS Negl Trop Dis. 2016;10:e0004599 pubmed 出版商
  154. Sallin P, Jazwinska A. Acute stress is detrimental to heart regeneration in zebrafish. Open Biol. 2016;6: pubmed 出版商
  155. Li X, He F, Gabelt B, Wang Y, Cai S, Cao J, et al. Effects of Latanoprost and Bimatoprost on the Expression of Molecules Relevant to Ocular Inflow and Outflow Pathways. PLoS ONE. 2016;11:e0151644 pubmed 出版商
  156. Wu J, Ivanov A, Fisher P, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. elife. 2016;5: pubmed 出版商
  157. Kurimoto R, Iwasawa S, Ebata T, Ishiwata T, Sekine I, Tada Y, et al. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol. 2016;48:1825-36 pubmed 出版商
  158. Sakar M, Eyckmans J, Pieters R, Eberli D, Nelson B, Chen C. Cellular forces and matrix assembly coordinate fibrous tissue repair. Nat Commun. 2016;7:11036 pubmed 出版商
  159. Kraft Sheleg O, Zaffryar Eilot S, Genin O, Yaseen W, Soueid Baumgarten S, Kessler O, et al. Localized LoxL3-Dependent Fibronectin Oxidation Regulates Myofiber Stretch and Integrin-Mediated Adhesion. Dev Cell. 2016;36:550-61 pubmed 出版商
  160. Djamali A, Wilson N, Sadowski E, Zha W, Niles D, Hafez O, et al. Nox2 and Cyclosporine-Induced Renal Hypoxia. Transplantation. 2016;100:1198-210 pubmed 出版商
  161. Liu S, Wu C, Huang K, Wang C, Guan S, Chen L, et al. C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease. Oncotarget. 2016;7:21900-12 pubmed 出版商
  162. Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed 出版商
  163. Lee E, Oh J, Selvaraj S, Park S, Choi M, Spanel R, et al. Immunogenomics reveal molecular circuits of diclofenac induced liver injury in mice. Oncotarget. 2016;7:14983-5017 pubmed 出版商
  164. Checa M, Hagood J, Velázquez Cruz R, Ruiz V, García de Alba C, Rangel Escareño C, et al. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells. PLoS ONE. 2016;11:e0150383 pubmed 出版商
  165. Zhang Y, Stefanovic B. Akt mediated phosphorylation of LARP6; critical step in biosynthesis of type I collagen. Sci Rep. 2016;6:22597 pubmed 出版商
  166. Eichten A, Su J, Adler A, Zhang L, Ioffe E, Parveen A, et al. Resistance to Anti-VEGF Therapy Mediated by Autocrine IL6/STAT3 Signaling and Overcome by IL6 Blockade. Cancer Res. 2016;76:2327-39 pubmed 出版商
  167. Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, et al. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget. 2016;7:15065-92 pubmed 出版商
  168. Collazos Castro J, García Rama C, Alves Sampaio A. Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta Biomater. 2016;35:42-56 pubmed 出版商
  169. Veluscek G, Li Y, Yang S, Sharrocks A. Jun-Mediated Changes in Cell Adhesion Contribute to Mouse Embryonic Stem Cell Exit from Ground State Pluripotency. Stem Cells. 2016;34:1213-24 pubmed 出版商
  170. Wang X, Jung Y, Jun S, Lee S, Wang W, Schneider A, et al. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun. 2016;7:10633 pubmed 出版商
  171. Gao Y, Zhao Y, Zhang J, Lu Y, Liu X, Geng P, et al. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep. 2016;6:19874 pubmed 出版商
  172. Tandon P, Wilczewski C, Williams C, Conlon F. The Lhx9-integrin pathway is essential for positioning of the proepicardial organ. Development. 2016;143:831-40 pubmed 出版商
  173. Heng B, Zhu S, Xu J, Yuan C, Gong T, Zhang C. Effects of decellularized matrices derived from periodontal ligament stem cells and SHED on the adhesion, proliferation and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Cell. 2016;48:133-43 pubmed 出版商
  174. Sun L, Dutta R, Xie P, Kanwar Y. myo-Inositol Oxygenase Overexpression Accentuates Generation of Reactive Oxygen Species and Exacerbates Cellular Injury following High Glucose Ambience: A NEW MECHANISM RELEVANT TO THE PATHOGENESIS OF DIABETIC NEPHROPATHY. J Biol Chem. 2016;291:5688-707 pubmed 出版商
  175. Fisher G, Shao Y, He T, Qin Z, Perry D, Voorhees J, et al. Reduction of fibroblast size/mechanical force down-regulates TGF-β type II receptor: implications for human skin aging. Aging Cell. 2016;15:67-76 pubmed 出版商
  176. Li W, Zou J, Yue F, Song K, Chen Q, McKeehan W, et al. Defects in MAP1S-mediated autophagy cause reduction in mouse lifespans especially when fibronectin is overexpressed. Aging Cell. 2016;15:370-9 pubmed 出版商
  177. Müller A, Stellmacher A, Freitag C, Landgraf P, Dieterich D. Monitoring Astrocytic Proteome Dynamics by Cell Type-Specific Protein Labeling. PLoS ONE. 2015;10:e0145451 pubmed 出版商
  178. de Almeida G, Yamamoto M, Morioka Y, Ogawa S, Matsuzaki T, Noda M. Critical roles for murine Reck in the regulation of vascular patterning and stabilization. Sci Rep. 2015;5:17860 pubmed 出版商
  179. Heller J, Kwok J, Vecino E, Martin K, Fawcett J. A Method for the Isolation and Culture of Adult Rat Retinal Pigment Epithelial (RPE) Cells to Study Retinal Diseases. Front Cell Neurosci. 2015;9:449 pubmed 出版商
  180. Wang G, Yu Y, Sun C, Liu T, Liang T, Zhan L, et al. STAT3 selectively interacts with Smad3 to antagonize TGF-β signalling. Oncogene. 2016;35:4388-98 pubmed 出版商
  181. Dixon D, Coates J, Del Carpio Pons A, Horabin J, Walker A, Abdul N, et al. A potential mode of action for Anakinra in patients with arthrofibrosis following total knee arthroplasty. Sci Rep. 2015;5:16466 pubmed 出版商
  182. Hoshino A, Costa Silva B, Shen T, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-35 pubmed 出版商
  183. Valcourt U, Carthy J, Okita Y, Alcaraz L, Kato M, Thuault S, et al. Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β. Methods Mol Biol. 2016;1344:147-81 pubmed 出版商
  184. Coram R, Stillwagon S, Guggilam A, Jenkins M, Swanson M, Ladd A. Muscleblind-like 1 is required for normal heart valve development in vivo. BMC Dev Biol. 2015;15:36 pubmed 出版商
  185. Ou Yang L, Xiao S, Liu P, Yi S, Zhang X, Ou Yang S, et al. Forkhead box C1 induces epithelial‑mesenchymal transition and is a potential therapeutic target in nasopharyngeal carcinoma. Mol Med Rep. 2015;12:8003-9 pubmed 出版商
  186. Mia M, Bank R. The pro-fibrotic properties of transforming growth factor on human fibroblasts are counteracted by caffeic acid by inhibiting myofibroblast formation and collagen synthesis. Cell Tissue Res. 2016;363:775-89 pubmed 出版商
  187. Arce Cerezo A, García M, Rodríguez Nuevo A, Crosa Bonell M, Enguix N, Peró A, et al. HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance. Sci Rep. 2015;5:14487 pubmed 出版商
  188. Asanoma K, Liu G, Yamane T, Miyanari Y, Takao T, Yagi H, et al. Regulation of the Mechanism of TWIST1 Transcription by BHLHE40 and BHLHE41 in Cancer Cells. Mol Cell Biol. 2015;35:4096-109 pubmed 出版商
  189. Oltolina F, Zamperone A, Colangelo D, Gregoletto L, Reano S, Pietronave S, et al. Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential. PLoS ONE. 2015;10:e0137999 pubmed 出版商
  190. Liu H, Dolkas J, Hoang K, Angert M, Chernov A, Remacle A, et al. The alternatively spliced fibronectin CS1 isoform regulates IL-17A levels and mechanical allodynia after peripheral nerve injury. J Neuroinflammation. 2015;12:158 pubmed 出版商
  191. Forbes M, Thornhill B, Galarreta C, Chevalier R. A population of mitochondrion-rich cells in the pars recta of mouse kidney. Cell Tissue Res. 2016;363:791-803 pubmed 出版商
  192. Yang G, Xu Z, Lu W, Li X, Sun C, Guo J, et al. Quantitative Analysis of Differential Proteome Expression in Bladder Cancer vs. Normal Bladder Cells Using SILAC Method. PLoS ONE. 2015;10:e0134727 pubmed 出版商
  193. Papke C, Tsunezumi J, Ringuette L, Nagaoka H, Terajima M, Yamashiro Y, et al. Loss of fibulin-4 disrupts collagen synthesis and maturation: implications for pathology resulting from EFEMP2 mutations. Hum Mol Genet. 2015;24:5867-79 pubmed 出版商
  194. Picot N, Guerrette R, Beauregard A, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016;55:1150-62 pubmed 出版商
  195. Zilic L, Garner P, Yu T, Roman S, Haycock J, Wilshaw S. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering. J Anat. 2015;227:302-14 pubmed 出版商
  196. Haraguchi M, Sato M, Ozawa M. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells. PLoS ONE. 2015;10:e0132260 pubmed 出版商
  197. Maggiorani D, Dissard R, Belloy M, Saulnier Blache J, Casemayou A, Ducassé L, et al. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS ONE. 2015;10:e0131416 pubmed 出版商
  198. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed 出版商
  199. Fedorenko I, Abel E, Koomen J, Fang B, Wood E, Chen Y, et al. Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells. Oncogene. 2016;35:1225-35 pubmed 出版商
  200. Subathra M, Korrapati M, Howell L, Arthur J, Shayman J, Schnellmann R, et al. Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells. Am J Physiol Renal Physiol. 2015;309:F204-15 pubmed 出版商
  201. Vecino E, Heller J, Veiga Crespo P, Martin K, Fawcett J. Influence of extracellular matrix components on the expression of integrins and regeneration of adult retinal ganglion cells. PLoS ONE. 2015;10:e0125250 pubmed 出版商
  202. Izawa G, Kobayashi W, Haraguchi M, Sudo A, Ozawa M. The ectopic expression of Snail in MDBK cells does not induce epithelial-mesenchymal transition. Int J Mol Med. 2015;36:166-72 pubmed 出版商
  203. He F, Li J, Xu J, Zhang S, Xu Y, Zhao W, et al. Decreased expression of ARID1A associates with poor prognosis and promotes metastases of hepatocellular carcinoma. J Exp Clin Cancer Res. 2015;34:47 pubmed 出版商
  204. Li J, Ren J, Liu X, Jiang L, He W, Yuan W, et al. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int. 2015;88:515-27 pubmed 出版商
  205. Sung B, Ketova T, Hoshino D, Zijlstra A, Weaver A. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun. 2015;6:7164 pubmed 出版商
  206. Polioudaki H, Agelaki S, Chiotaki R, Politaki E, Mavroudis D, Matikas A, et al. Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer. BMC Cancer. 2015;15:399 pubmed 出版商
  207. Cuevas C, Tapia Rojas C, Cespedes C, Inestrosa N, Vio C. β-Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats. Biomed Res Int. 2015;2015:726012 pubmed 出版商
  208. Zhao H, Agazie Y. Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment. BMC Cancer. 2015;15:109 pubmed 出版商
  209. Fullár A, Dudás J, Oláh L, Hollósi P, Papp Z, Sobel G, et al. Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression. BMC Cancer. 2015;15:256 pubmed 出版商
  210. Suhaeri M, Subbiah R, Van S, Du P, Kim I, Lee K, et al. Cardiomyoblast (h9c2) differentiation on tunable extracellular matrix microenvironment. Tissue Eng Part A. 2015;21:1940-51 pubmed 出版商
  211. Novak M, Leonard M, Yang X, Kowluru A, Belkin A, Kaetzel D. Metastasis suppressor NME1 regulates melanoma cell morphology, self-adhesion and motility via induction of fibronectin expression. Exp Dermatol. 2015;24:455-61 pubmed 出版商
  212. Kim S, Wen W, Prowse P, Hamilton D. Regulation of matrix remodelling phenotype in gingival fibroblasts by substratum topography. J Cell Mol Med. 2015;19:1183-96 pubmed 出版商
  213. Qiao Y, Shiue C, Zhu J, Zhuang T, Jonsson P, Wright A, et al. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial-mesenchymal transition in triple-negative breast cancer. Oncotarget. 2015;6:7804-14 pubmed
  214. Simon H, ODELBERG S. Assessing cardiomyocyte proliferative capacity in the newt heart and primary culture. Methods Mol Biol. 2015;1290:227-40 pubmed 出版商
  215. Thomas A, Palma J, Shea L. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. J Control Release. 2015;204:1-10 pubmed 出版商
  216. Stefanovic L, Longo L, Zhang Y, Stefanovic B. Characterization of binding of LARP6 to the 5' stem-loop of collagen mRNAs: implications for synthesis of type I collagen. RNA Biol. 2014;11:1386-401 pubmed 出版商
  217. Arends F, Nowald C, Pflieger K, Boettcher K, Zahler S, Lieleg O. The biophysical properties of Basal lamina gels depend on the biochemical composition of the gel. PLoS ONE. 2015;10:e0118090 pubmed 出版商
  218. Harada K, Harada T, Ferdous T, Takenawa T, Ueyama Y. Osteogenic cell fractions isolated from mouse tongue muscle. Mol Med Rep. 2015;12:31-6 pubmed 出版商
  219. Locher H, de Groot J, van Iperen L, Huisman M, Frijns J, Chuva de Sousa Lopes S. Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss. Dev Neurobiol. 2015;75:1219-40 pubmed 出版商
  220. Hakanpaa L, Sipilä T, Leppänen V, Gautam P, Nurmi H, Jacquemet G, et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun. 2015;6:5962 pubmed 出版商
  221. Feng W, Chumley P, Prieto M, Miyada K, Seth D, Fatima H, et al. Transcription factor avian erythroblastosis virus E26 oncogen homolog-1 is a novel mediator of renal injury in salt-sensitive hypertension. Hypertension. 2015;65:813-20 pubmed 出版商
  222. Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu Kaoud N, Halabi N, et al. Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 2015;13:27 pubmed 出版商
  223. Heeren A, van Iperen L, Klootwijk D, De Melo Bernardo A, Roost M, Gomes Fernandes M, et al. Development of the follicular basement membrane during human gametogenesis and early folliculogenesis. BMC Dev Biol. 2015;15:4 pubmed 出版商
  224. Zhou J, Lin J, Liu L, Zheng Y, Hong Z. Qianliening capsules influence the apoptosis of benign prostatic hyperplasia epithelial-1 cells by regulating the extracellular matrix. Mol Med Rep. 2015;11:3734-40 pubmed 出版商
  225. Joseph J, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens Meijer E, et al. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α-ZEB1 axis. Cancer Lett. 2015;359:107-16 pubmed 出版商
  226. Gong X, Yi J, Carmon K, Crumbley C, Xiong W, Thomas A, et al. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness. Oncogene. 2015;34:4692-701 pubmed 出版商
  227. Sanz Garcia A, Stojkovic M, Escobedo Lucea C. Growth of Human Pluripotent Stem Cells Using Functional Human Extracellular Matrix. Methods Mol Biol. 2016;1307:39-60 pubmed 出版商
  228. Okada H, Takemura G, Kanamori H, Tsujimoto A, Goto K, Kawamura I, et al. Phenotype and physiological significance of the endocardial smooth muscle cells in human failing hearts. Circ Heart Fail. 2015;8:149-55 pubmed 出版商
  229. Kappler C, Guest S, Irish J, Garrett Mayer E, Kratche Z, Wilson R, et al. Oncogenic signaling in amphiregulin and EGFR-expressing PTEN-null human breast cancer. Mol Oncol. 2015;9:527-43 pubmed 出版商
  230. Huang W, Akhter H, Jiang C, MacEwen M, Ding Q, Antony V, et al. Plasminogen activator inhibitor 1, fibroblast apoptosis resistance, and aging-related susceptibility to lung fibrosis. Exp Gerontol. 2015;61:62-75 pubmed 出版商
  231. Xu T, Pan Z, Dong M, Yu C, Niu Y. Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro. Biochem Pharmacol. 2015;93:49-58 pubmed 出版商
  232. Green C, Fraser S, Day M. Insulin-like growth factor 1 increases apical fibronectin in blastocysts to increase blastocyst attachment to endometrial epithelial cells in vitro. Hum Reprod. 2015;30:284-98 pubmed 出版商
  233. Joseph J, Conroy S, Tomar T, Eggens Meijer E, Bhat K, Copray S, et al. TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 2014;5:e1443 pubmed 出版商
  234. Belliere J, Casemayou A, Ducassé L, Zakaroff Girard A, Martins F, Iacovoni J, et al. Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury. J Am Soc Nephrol. 2015;26:1363-77 pubmed 出版商
  235. Hellström M, El Akouri R, Sihlbom C, Olsson B, Lengqvist J, Bäckdahl H, et al. Towards the development of a bioengineered uterus: comparison of different protocols for rat uterus decellularization. Acta Biomater. 2014;10:5034-5042 pubmed 出版商
  236. von Roemeling C, Radisky D, Marlow L, Cooper S, Grebe S, ANASTASIADIS P, et al. Neuronal pentraxin 2 supports clear cell renal cell carcinoma by activating the AMPA-selective glutamate receptor-4. Cancer Res. 2014;74:4796-810 pubmed 出版商
  237. Jung S, Ohk J, Jeong D, Li C, Lee S, Duan J, et al. Distinct regulatory effect of the p34SEI-1 oncoprotein on cancer metastasis in HER2/neu-positive and -negative cells. Int J Oncol. 2014;45:189-96 pubmed 出版商
  238. Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res. 2014;356:391-403 pubmed 出版商
  239. Gomez Choco M, Doucerain C, Urra X, Planas A, Chamorro A. Presence of heat shock protein 70 in secondary lymphoid tissue correlates with stroke prognosis. J Neuroimmunol. 2014;270:67-74 pubmed 出版商
  240. Zeng Z, Shen L, Li X, Luo T, Wei X, Zhang J, et al. Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis. Clin Sci (Lond). 2014;127:435-48 pubmed 出版商
  241. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene. 2015;34:1006-18 pubmed 出版商
  242. Wagner D, Bonenfant N, Parsons C, Sokocevic D, Brooks E, Borg Z, et al. Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials. 2014;35:3281-97 pubmed 出版商
  243. Wagner D, Bonenfant N, Sokocevic D, Desarno M, Borg Z, Parsons C, et al. Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration. Biomaterials. 2014;35:2664-79 pubmed 出版商
  244. Friedrich L, Jungebluth P, Sjöqvist S, Lundin V, Haag J, Lemon G, et al. Preservation of aortic root architecture and properties using a detergent-enzymatic perfusion protocol. Biomaterials. 2014;35:1907-13 pubmed 出版商
  245. Wakatsuki S, Araki T, Sehara Fujisawa A. Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing ?5 ?1 integrin-ErbB2-focal adhesion kinase complex formation. Genes Cells. 2014;19:66-77 pubmed 出版商
  246. Ciucurel E, Sefton M. Del-1 overexpression in endothelial cells increases vascular density in tissue-engineered implants containing endothelial cells and adipose-derived mesenchymal stromal cells. Tissue Eng Part A. 2014;20:1235-52 pubmed 出版商
  247. Hubbard B, Buczek Thomas J, Nugent M, Smith M. Heparin-dependent regulation of fibronectin matrix conformation. Matrix Biol. 2014;34:124-31 pubmed 出版商
  248. Conway M, Watson A, Colpitts T, Dragovic S, Li Z, Wang P, et al. Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host. J Virol. 2014;88:164-75 pubmed 出版商
  249. Chen Y, Huang W, Chang S, Chang K, Kao S, Lo J, et al. Enhanced filopodium formation and stem-like phenotypes in a novel metastatic head and neck cancer cell model. Oncol Rep. 2013;30:2829-37 pubmed 出版商
  250. Kumar M, Allison D, Baranova N, Wamsley J, Katz A, Bekiranov S, et al. NF-?B regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells. PLoS ONE. 2013;8:e68597 pubmed 出版商
  251. Kokubo M, Sato M, Yamato M, Mitani G, Kutsuna T, Ebihara G, et al. Characterization of chondrocyte sheets prepared using a co-culture method with temperature-responsive culture inserts. J Tissue Eng Regen Med. 2016;10:486-95 pubmed 出版商
  252. Mirmalek Sani S, Orlando G, McQuilling J, Pareta R, Mack D, Salvatori M, et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials. 2013;34:5488-95 pubmed 出版商
  253. Fang F, Liu G, Kim C, Yassa R, Zhou J, Scholey J. Adiponectin attenuates angiotensin II-induced oxidative stress in renal tubular cells through AMPK and cAMP-Epac signal transduction pathways. Am J Physiol Renal Physiol. 2013;304:F1366-74 pubmed 出版商
  254. Mogami H, Kishore A, Shi H, Keller P, Akgul Y, Word R. Fetal fibronectin signaling induces matrix metalloproteases and cyclooxygenase-2 (COX-2) in amnion cells and preterm birth in mice. J Biol Chem. 2013;288:1953-66 pubmed 出版商
  255. Viana L, Affonso R, Silva S, Denadai M, Matos D, Salinas de Souza C, et al. Relationship between the expression of the extracellular matrix genes SPARC, SPP1, FN1, ITGA5 and ITGAV and clinicopathological parameters of tumor progression and colorectal cancer dissemination. Oncology. 2013;84:81-91 pubmed 出版商
  256. Wu C, Tang S, Wang P, Lee H, Ko J. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem. 2012;287:25292-302 pubmed 出版商
  257. Andersen T, Sondergaard T, Skorzynska K, Dagnaes Hansen F, Plesner T, Hauge E, et al. A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol. 2009;174:239-47 pubmed 出版商