这是一篇来自已证抗体库的有关人类 半乳糖凝集素3 (galectin 3) 的综述,是根据76篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合半乳糖凝集素3 抗体。
半乳糖凝集素3 同义词: CBP35; GAL3; GALBP; GALIG; L31; LGALS2; MAC2

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司半乳糖凝集素3抗体(Abcam, Ab76466)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4a). J Cell Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司半乳糖凝集素3抗体(Abcam, ab53082)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6a). BMC Musculoskelet Disord (2021) ncbi
domestic rabbit 单克隆(EP2775Y)
  • 免疫组化; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司半乳糖凝集素3抗体(Abcam, ab76245)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 2). Ren Fail (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
艾博抗(上海)贸易有限公司半乳糖凝集素3抗体(abcam, ab53082)被用于被用于免疫组化在小鼠样本上 (图 6). Theranostics (2021) ncbi
小鼠 单克隆(A3A12)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司半乳糖凝集素3抗体(Abcam, ab2785)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 7a). Theranostics (2020) ncbi
domestic rabbit 单克隆(EP2775Y)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1c
艾博抗(上海)贸易有限公司半乳糖凝集素3抗体(Abcam, ab76245)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1c). EBioMedicine (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1a
艾博抗(上海)贸易有限公司半乳糖凝集素3抗体(Abcam, ab53082)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). Front Endocrinol (Lausanne) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4b
艾博抗(上海)贸易有限公司半乳糖凝集素3抗体(Abcam, ab53082)被用于被用于免疫印迹在大鼠样本上 (图 4b). Mol Pain (2020) ncbi
domestic rabbit 单克隆(EP2775Y)
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 4a
  • 免疫印迹; 大鼠; 1:5000; 图 4d
艾博抗(上海)贸易有限公司半乳糖凝集素3抗体(Abcam, ab76245)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4d). Biosci Rep (2019) ncbi
小鼠 单克隆(A3A12)
  • 免疫细胞化学; 小鼠; 图 7a
艾博抗(上海)贸易有限公司半乳糖凝集素3抗体(Abcam, A3A12)被用于被用于免疫细胞化学在小鼠样本上 (图 7a). PLoS Pathog (2016) ncbi
小鼠 单克隆(A3A12)
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司半乳糖凝集素3抗体(Abcam, ab2785)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(A3A12)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司半乳糖凝集素3抗体(Abcam, ab2785)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Biomaterials (2015) ncbi
小鼠 单克隆(A3A12)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司半乳糖凝集素3抗体(Abcam, ab2785)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Mol Cell Cardiol (2015) ncbi
赛默飞世尔
大鼠 单克隆(eBioM3/38 (M3/38))
  • 免疫组化; 小鼠; 1:150; 图 2e
赛默飞世尔半乳糖凝集素3抗体(eBioscience, eBioM3/38 (M3/38))被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 2e). Cell Rep (2021) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛默飞世尔半乳糖凝集素3抗体(eBioscience, 14-5301-82)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). elife (2021) ncbi
小鼠 单克隆(A3A12)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1c, 4a
赛默飞世尔半乳糖凝集素3抗体(Thermo Fisher, A3A12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1c, 4a). PLoS ONE (2020) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 免疫细胞化学; 人类; 1 ug/ml; 图 4d
赛默飞世尔半乳糖凝集素3抗体(Thermo Fisher, BMS1043)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 4d). Cell Host Microbe (2019) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔半乳糖凝集素3抗体(eBioscience, eBioM3/38)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Neurosci (2018) ncbi
小鼠 单克隆(B2C10)
  • 抑制或激活实验; 小鼠; 图 st1
赛默飞世尔半乳糖凝集素3抗体(Thermo, MA1-40229)被用于被用于抑制或激活实验在小鼠样本上 (图 st1). Sci Rep (2017) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 其他; 小鼠; 图 4e
  • 流式细胞仪; 小鼠; 图 4e
  • 免疫细胞化学; 小鼠; 图 2b
赛默飞世尔半乳糖凝集素3抗体(eBiosciences, M3/38)被用于被用于其他在小鼠样本上 (图 4e), 被用于流式细胞仪在小鼠样本上 (图 4e) 和 被用于免疫细胞化学在小鼠样本上 (图 2b). J Leukoc Biol (2017) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔半乳糖凝集素3抗体(ebioscience, 12-5301-83)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Death Dis (2016) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 流式细胞仪; 小鼠; 1:300; 表 1
赛默飞世尔半乳糖凝集素3抗体(eBioscience, 12-5301)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (表 1). Front Cell Neurosci (2015) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 流式细胞仪; 小鼠
赛默飞世尔半乳糖凝集素3抗体(eBioscience, M3/38)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔半乳糖凝集素3抗体(eBioscience, M3/38)被用于被用于免疫组化-石蜡切片在小鼠样本上. Circulation (2013) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 流式细胞仪; 小鼠
赛默飞世尔半乳糖凝集素3抗体(eBioscience, M3/38)被用于被用于流式细胞仪在小鼠样本上. J Proteomics (2012) ncbi
小鼠 单克隆(ZG001)
  • 免疫印迹; 人类; 1:1000; 图 6
赛默飞世尔半乳糖凝集素3抗体(Invitrogen, ZG001)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). J Proteome Res (2011) ncbi
小鼠 单克隆(A3A12)
  • 免疫印迹; 小鼠; 1:2000
  • 免疫印迹; 人类; 1:2000
赛默飞世尔半乳糖凝集素3抗体(Affinity Bioreagents, A3A12)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 和 被用于免疫印迹在人类样本上浓度为1:2000. Am J Pathol (2008) ncbi
BioLegend
大鼠 单克隆(M3/38)
  • 免疫组化; 小鼠; 1:500; 图 3b, 3d
BioLegend半乳糖凝集素3抗体(BioLegend, 125401)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3b, 3d). elife (2021) ncbi
大鼠 单克隆(M3/38)
BioLegend半乳糖凝集素3抗体(BioLegend, M3/38)被用于. Nature (2020) ncbi
大鼠 单克隆(M3/38)
  • 流式细胞仪; 人类; 0.05 ug/ml
BioLegend半乳糖凝集素3抗体(Biolegend, 125410)被用于被用于流式细胞仪在人类样本上浓度为0.05 ug/ml. Arterioscler Thromb Vasc Biol (2020) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 1:500
BioLegend半乳糖凝集素3抗体(BioLegend, 125,401)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Mol Metab (2020) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 人类; 图 7h
BioLegend半乳糖凝集素3抗体(BioLegend, 125403)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7h). Cancer Cell (2019) ncbi
大鼠 单克隆(M3/38)
  • 免疫印迹; 小鼠; 图 2
BioLegend半乳糖凝集素3抗体(Biolegend, M3-38)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化; 小鼠; 图 s9
BioLegend半乳糖凝集素3抗体(Biolegend, 125401)被用于被用于免疫组化在小鼠样本上 (图 s9). Nat Neurosci (2016) ncbi
大鼠 单克隆(M3/38)
BioLegend半乳糖凝集素3抗体(BioLegend, 125408)被用于. Nat Commun (2015) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 人类; 1:50
BioLegend半乳糖凝集素3抗体(BioLegend, clone M3/38)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. PLoS ONE (2015) ncbi
大鼠 单克隆(M3/38)
  • 免疫细胞化学; 犬
BioLegend半乳糖凝集素3抗体(Biolegend, 125401)被用于被用于免疫细胞化学在犬样本上. J Cell Sci (2015) ncbi
圣克鲁斯生物技术
大鼠 单克隆(M3/38)
  • 免疫细胞化学; 小鼠; 1:250; 图 2b
圣克鲁斯生物技术半乳糖凝集素3抗体(Santa Cruz, sc-23938)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 2b). Front Cell Dev Biol (2021) ncbi
大鼠 单克隆(M3/38)
  • 免疫细胞化学; 小鼠; 图 6b
圣克鲁斯生物技术半乳糖凝集素3抗体(Santa Cruz, sc-23938)被用于被用于免疫细胞化学在小鼠样本上 (图 6b). Sci Rep (2017) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
圣克鲁斯生物技术半乳糖凝集素3抗体(Santa Cruz, sc-23938)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). J Neuroinflammation (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化基因敲除验证; 小鼠; 图 7
  • 免疫印迹基因敲除验证; 小鼠; 图 5
  • 免疫组化-石蜡切片; 小鼠; 图 7
圣克鲁斯生物技术半乳糖凝集素3抗体(Santa Cruz, M3/38)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 7), 被用于免疫印迹基因敲除验证在小鼠样本上 (图 5) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 7). Kidney Int (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
圣克鲁斯生物技术半乳糖凝集素3抗体(Santa Cruz, sc-23938)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a). Am J Physiol Renal Physiol (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫沉淀; 人类; 图 1
圣克鲁斯生物技术半乳糖凝集素3抗体(Santa Cruz, M3/38)被用于被用于免疫沉淀在人类样本上 (图 1). BMC Cancer (2016) ncbi
小鼠 单克隆(B2C10)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术半乳糖凝集素3抗体(Santa Cruz, sc-32790)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(B2C10)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术半乳糖凝集素3抗体(Santa Cruz, sc-32790)被用于被用于免疫印迹在人类样本上 (图 1). Glycobiology (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术半乳糖凝集素3抗体(Santa Cruz, sc-23938)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Glia (2016) ncbi
小鼠 单克隆(B2C10)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术半乳糖凝集素3抗体(Santa Cruz Biotechnology, sc-32790)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Thyroid (2015) ncbi
大鼠 单克隆(M3/38)
  • 免疫印迹; 小鼠; 1:5000; 图 4.e,f
圣克鲁斯生物技术半乳糖凝集素3抗体(Santa Cruz, sc-23938)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4.e,f). Nat Commun (2015) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 6b
安迪生物R&D半乳糖凝集素3抗体(R&D Systems, AF1197)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 6b). Acta Neuropathol Commun (2021) ncbi
大鼠 单克隆(202213)
  • mass cytometry; 小鼠; 图 s3
安迪生物R&D半乳糖凝集素3抗体(R&D Systems, MAB1197)被用于被用于mass cytometry在小鼠样本上 (图 s3). EMBO J (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 人类; 2 ug/ml
  • 免疫印迹; 人类
安迪生物R&D半乳糖凝集素3抗体(R&D, AF1154)被用于被用于免疫组化在人类样本上浓度为2 ug/ml 和 被用于免疫印迹在人类样本上. Arterioscler Thromb Vasc Biol (2020) ncbi
Cedarlanelabs
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4a, b, c
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942AP)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4a, b, c). Front Physiol (2021) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4d
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942AP)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4d). elife (2020) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化; 小鼠; 图 1d, 2f
Cedarlanelabs半乳糖凝集素3抗体(CEDARLANE, CL8942AP)被用于被用于免疫组化在小鼠样本上 (图 1d, 2f). Front Physiol (2020) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化; 小鼠; 0.25 ug/ml; 图 1c
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942AP)被用于被用于免疫组化在小鼠样本上浓度为0.25 ug/ml (图 1c). Arterioscler Thromb Vasc Biol (2020) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942AP)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). J Am Heart Assoc (2019) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化; 小鼠; 1:100; 图 4a
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942AP)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4a). elife (2019) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-冰冻切片; 小鼠; 图 3C
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3C). Sci Rep (2017) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 st10
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942AP)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 st10). J Toxicol Pathol (2017) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 1b
Cedarlanelabs半乳糖凝集素3抗体(Cederlane, CP8942AP)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 1b). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 s5d
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942AP)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 s5d). Nature (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化; 小鼠; 图 s5b
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942AP)被用于被用于免疫组化在小鼠样本上 (图 s5b). Nat Med (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942AP)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Development (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化基因敲除验证; 小鼠; 1:200; 图 5
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane Laboratories, noca)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:200 (图 5). Am J Pathol (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, M3/38)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 图 3
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942AP)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化; 小鼠; 1:200; 图 4
Cedarlanelabs半乳糖凝集素3抗体(CEDARLANE实验室, CL8942AP)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化; 小鼠; 图 5b
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane Labs, CL8942AAP)被用于被用于免疫组化在小鼠样本上 (图 5b). Am J Respir Cell Mol Biol (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 图 1
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942AP)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Nat Med (2015) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942AP)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Leukoc Biol (2014) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
Cedarlanelabs半乳糖凝集素3抗体(Cedarlane, CL8942AP)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Proc Natl Acad Sci U S A (2012) ncbi
碧迪BD
小鼠 单克隆(B2C10)
  • 免疫细胞化学; 人类; 图 3e
碧迪BD半乳糖凝集素3抗体(BD Biosciences, 556904)被用于被用于免疫细胞化学在人类样本上 (图 3e). PLoS ONE (2017) ncbi
小鼠 单克隆(B2C10)
  • 免疫细胞化学; 人类; 1:100; 图 3
碧迪BD半乳糖凝集素3抗体(Becton-Dickinson Pharmingen, B2C10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). PLoS Pathog (2016) ncbi
  • 流式细胞仪; 人类; 图 st1
碧迪BD半乳糖凝集素3抗体(BD, 556909)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(B2C10)
  • 免疫组化; 豚鼠; 图 s6
碧迪BD半乳糖凝集素3抗体(BD Biosciences, 556904)被用于被用于免疫组化在豚鼠样本上 (图 s6). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B2C10)
  • 免疫细胞化学; 人类; 图 2
碧迪BD半乳糖凝集素3抗体(BD Biosciences, 556904)被用于被用于免疫细胞化学在人类样本上 (图 2). MBio (2015) ncbi
小鼠 单克隆(B2C10)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BD半乳糖凝集素3抗体(BD Pharmigen, B2C10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Ann Clin Transl Neurol (2015) ncbi
小鼠 单克隆(B2C10)
  • 免疫印迹; 人类; 1:500
碧迪BD半乳糖凝集素3抗体(BD Pharmingen, 556904)被用于被用于免疫印迹在人类样本上浓度为1:500. Nat Cell Biol (2014) ncbi
文章列表
  1. Cheng C, Xue F, Sui W, Meng L, Xie L, Zhang C, et al. Deletion of natriuretic peptide receptor C alleviates adipose tissue inflammation in hypercholesterolemic Apolipoprotein E knockout mice. J Cell Mol Med. 2021;25:9837-9850 pubmed 出版商
  2. Liu Y, Zhao Y, Shukha Y, Lu H, Wang L, Liu Z, et al. Dysregulated oxalate metabolism is a driver and therapeutic target in atherosclerosis. Cell Rep. 2021;36:109420 pubmed 出版商
  3. Ribeiro T, Delgado García L, Porcionatto M. Notch1 and Galectin-3 Modulate Cortical Reactive Astrocyte Response After Brain Injury. Front Cell Dev Biol. 2021;9:649854 pubmed 出版商
  4. Emre C, Do K, Jun B, Hjorth E, Alcalde S, Kautzmann M, et al. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:116 pubmed 出版商
  5. Chen L, Cheng S, Sun K, Wang J, Liu X, Zhao Y, et al. Changes in macrophage and inflammatory cytokine expressions during fracture healing in an ovariectomized mice model. BMC Musculoskelet Disord. 2021;22:494 pubmed 出版商
  6. Li N, Zhao S, Zhang Z, Zhu Y, Gliniak C, Vishvanath L, et al. Adiponectin preserves metabolic fitness during aging. elife. 2021;10: pubmed 出版商
  7. Manrique Acevedo C, Padilla J, Naz H, Woodford M, Ghiarone T, Aroor A, et al. Mineralocorticoid Receptor in Myeloid Cells Mediates Angiotensin II-Induced Vascular Dysfunction in Female Mice. Front Physiol. 2021;12:588358 pubmed 出版商
  8. Lagnado A, Leslie J, Ruchaud Sparagano M, Victorelli S, Hirsova P, Ogrodnik M, et al. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J. 2021;40:e106048 pubmed 出版商
  9. Ruan L, Yao X, Li W, Zhang L, Yang H, Sun J, et al. Effect of galectin-3 in the pathogenesis of arteriovenous fistula stenosis formation. Ren Fail. 2021;43:566-576 pubmed 出版商
  10. Tapias A, Lazaro D, Yin B, Rasa S, Krepelova A, Kelmer Sacramento E, et al. HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration. elife. 2021;10: pubmed 出版商
  11. Varasteh Z, De Rose F, Mohanta S, Li Y, Zhang X, Miritsch B, et al. Imaging atherosclerotic plaques by targeting Galectin-3 and activated macrophages using (89Zr)-DFO- Galectin3-F(ab')2 mAb. Theranostics. 2021;11:1864-1876 pubmed 出版商
  12. Zhan L, Fan L, Kodama L, Sohn P, Wong M, Mousa G, et al. A MAC2-positive progenitor-like microglial population is resistant to CSF1R inhibition in adult mouse brain. elife. 2020;9: pubmed 出版商
  13. Yan W, Li T, Yin T, Hou Z, Qu K, Wang N, et al. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics. 2020;10:10712-10728 pubmed 出版商
  14. Asare Y, Koehncke J, Selle J, Simsekyilmaz S, Jankowski J, Shagdarsuren G, et al. Differential Role for Activating FcγRIII in Neointima Formation After Arterial Injury and Diet-Induced Chronic Atherosclerosis in Apolipoprotein E-Deficient Mice. Front Physiol. 2020;11:673 pubmed 出版商
  15. Song H, Xu T, Feng X, Lai Y, Yang Y, Zheng H, et al. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2. EBioMedicine. 2020;57:102832 pubmed 出版商
  16. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  17. Di Gregoli K, Somerville M, Bianco R, Thomas A, Frankow A, Newby A, et al. Galectin-3 Identifies a Subset of Macrophages With a Potential Beneficial Role in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2020;40:1491-1509 pubmed 出版商
  18. Zhao S, Li N, Zhu Y, Straub L, Zhang Z, Wang M, et al. Partial leptin deficiency confers resistance to diet-induced obesity in mice. Mol Metab. 2020;37:100995 pubmed 出版商
  19. Kasacka I, Piotrowska Z, Niezgoda M, Lewandowska A, Łebkowski W. Ageing-related changes in the levels of β-catenin, CacyBP/SIP, galectin-3 and immunoproteasome subunit LMP7 in the heart of men. PLoS ONE. 2020;15:e0229462 pubmed 出版商
  20. Petrovic I, Pejnovic N, Ljujic B, Pavlovic S, Miletic Kovacevic M, Jeftic I, et al. Overexpression of Galectin 3 in Pancreatic β Cells Amplifies β-Cell Apoptosis and Islet Inflammation in Type-2 Diabetes in Mice. Front Endocrinol (Lausanne). 2020;11:30 pubmed 出版商
  21. Yun Z, Wang Y, Feng W, Zang J, Zhang D, Gao Y. Overexpression of microRNA-185 alleviates intervertebral disc degeneration through inactivation of the Wnt/β-catenin signaling pathway and downregulation of Galectin-3. Mol Pain. 2020;16:1744806920902559 pubmed 出版商
  22. Thirugnanam K, Cossette S, Lu Q, Chowdhury S, Harmann L, Gupta A, et al. Cardiomyocyte-Specific Snrk Prevents Inflammation in the Heart. J Am Heart Assoc. 2019;8:e012792 pubmed 出版商
  23. Chen P, Zhao D, Li J, Liang X, Li J, Chang A, et al. Symbiotic Macrophage-Glioma Cell Interactions Reveal Synthetic Lethality in PTEN-Null Glioma. Cancer Cell. 2019;35:868-884.e6 pubmed 出版商
  24. Bottermann M, Foss S, Caddy S, Clift D, van Tienen L, Vaysburd M, et al. Complement C4 Prevents Viral Infection through Capsid Inactivation. Cell Host Microbe. 2019;25:617-629.e7 pubmed 出版商
  25. Chen X, He Y, Xu A, Deng Z, Feng J, Lu F, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep. 2019;39: pubmed 出版商
  26. Munro D, Wineberg Y, Tarnick J, Vink C, Li Z, Pridans C, et al. Macrophages restrict the nephrogenic field and promote endothelial connections during kidney development. elife. 2019;8: pubmed 出版商
  27. Quenum Zangbede F, Chauhan A, Sharma J, Mishra B. Galectin-3 in M2 Macrophages Plays a Protective Role in Resolution of Neuropathology in Brain Parasitic Infection by Regulating Neutrophil Turnover. J Neurosci. 2018;38:6737-6750 pubmed 出版商
  28. Hubber A, Kubori T, Coban C, Matsuzawa T, Ogawa M, Kawabata T, et al. Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Sci Rep. 2017;7:44795 pubmed 出版商
  29. Busnelli M, Manzini S, Hilvo M, Parolini C, Ganzetti G, Dellera F, et al. Liver-specific deletion of the Plpp3 gene alters plasma lipid composition and worsens atherosclerosis in apoE-/- mice. Sci Rep. 2017;7:44503 pubmed 出版商
  30. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  31. Yip P, Carrillo Jimenez A, King P, Vilalta A, Nomura K, Chau C, et al. Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration. Sci Rep. 2017;7:41689 pubmed 出版商
  32. Nakajima S, Aikawa C, Nozawa T, Minowa Nozawa A, Toh H, Nakagawa I. Bcl-xL Affects Group A Streptococcus-Induced Autophagy Directly, by Inhibiting Fusion between Autophagosomes and Lysosomes, and Indirectly, by Inhibiting Bacterial Internalization via Interaction with Beclin 1-UVRAG. PLoS ONE. 2017;12:e0170138 pubmed 出版商
  33. de Jong R, Paulin N, Lemnitzer P, Viola J, Winter C, Ferraro B, et al. Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:312-315 pubmed 出版商
  34. Abshire C, Dragoi A, Roy C, Ivanov S. MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis. PLoS Pathog. 2016;12:e1006088 pubmed 出版商
  35. Wright R, Souza P, Flak M, Thedchanamoorthy P, Norling L, Cooper D. Galectin-3-null mice display defective neutrophil clearance during acute inflammation. J Leukoc Biol. 2017;101:717-726 pubmed 出版商
  36. Eichholz K, Bru T, Tran T, Fernandes P, Welles H, Mennechet F, et al. Immune-Complexed Adenovirus Induce AIM2-Mediated Pyroptosis in Human Dendritic Cells. PLoS Pathog. 2016;12:e1005871 pubmed 出版商
  37. Cheng X, Boza Serrano A, Turesson M, Deierborg T, Ekblad E, Voss U. Galectin-3 causes enteric neuronal loss in mice after left sided permanent middle cerebral artery occlusion, a model of stroke. Sci Rep. 2016;6:32893 pubmed 出版商
  38. Vermeij W, Dollé M, Reiling E, Jaarsma D, Payan Gomez C, Bombardieri C, et al. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature. 2016;537:427-431 pubmed 出版商
  39. Hillis J, Davies J, Mundim M, Al Dalahmah O, Szele F. Cuprizone demyelination induces a unique inflammatory response in the subventricular zone. J Neuroinflammation. 2016;13:190 pubmed 出版商
  40. Ilmer M, Mazurek N, Byrd J, Ramirez K, Hafley M, Alt E, et al. Cell surface galectin-3 defines a subset of chemoresistant gastrointestinal tumor-initiating cancer cells with heightened stem cell characteristics. Cell Death Dis. 2016;7:e2337 pubmed 出版商
  41. Balbo B, Amaral A, Fonseca J, de Castro I, Salemi V, Souza L, et al. Cardiac dysfunction in Pkd1-deficient mice with phenotype rescue by galectin-3 knockout. Kidney Int. 2016;90:580-97 pubmed 出版商
  42. Yoshioka W, Kawaguchi T, Nishimura N, Akagi T, Fujisawa N, Yanagisawa H, et al. Polyuria-associated hydronephrosis induced by xenobiotic chemical exposure in mice. Am J Physiol Renal Physiol. 2016;311:F752-F762 pubmed 出版商
  43. Fritsch K, Mernberger M, Nist A, Stiewe T, Brehm A, Jacob R. Galectin-3 interacts with components of the nuclear ribonucleoprotein complex. BMC Cancer. 2016;16:502 pubmed 出版商
  44. Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K, Yona S, et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci. 2016;19:995-8 pubmed 出版商
  45. Cherepanova O, Gomez D, Shankman L, Swiatlowska P, Williams J, Sarmento O, et al. Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nat Med. 2016;22:657-65 pubmed 出版商
  46. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  47. Tan S, Krasnow M. Developmental origin of lung macrophage diversity. Development. 2016;143:1318-27 pubmed 出版商
  48. Frunza O, Russo I, Saxena A, Shinde A, Humeres C, Hanif W, et al. Myocardial Galectin-3 Expression Is Associated with Remodeling of the Pressure-Overloaded Heart and May Delay the Hypertrophic Response without Affecting Survival, Dysfunction, and Cardiac Fibrosis. Am J Pathol. 2016;186:1114-27 pubmed 出版商
  49. Weilner S, Keider V, Winter M, Harreither E, Salzer B, Weiss F, et al. Vesicular Galectin-3 levels decrease with donor age and contribute to the reduced osteo-inductive potential of human plasma derived extracellular vesicles. Aging (Albany NY). 2016;8:16-33 pubmed
  50. Tiwari A, Swamy S, Gopinath K, Kumar A. Genomic amplification upregulates estrogen-related receptor alpha and its depletion inhibits oral squamous cell carcinoma tumors in vivo. Sci Rep. 2015;5:17621 pubmed 出版商
  51. Miles B, Miller S, Folkvord J, Kimball A, Chamanian M, Meditz A, et al. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nat Commun. 2015;6:8608 pubmed 出版商
  52. Dhondup Y, Sjaastad I, Scott H, Sandanger Ø, Zhang L, Haugstad S, et al. Sustained Toll-Like Receptor 9 Activation Promotes Systemic and Cardiac Inflammation, and Aggravates Diastolic Heart Failure in SERCA2a KO Mice. PLoS ONE. 2015;10:e0139715 pubmed 出版商
  53. Kuo H, Hsu H, Chen Y, Chang Y, Liu F, Wu C. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology. 2016;26:155-65 pubmed 出版商
  54. James R, Hillis J, Adorján I, Gration B, Mundim M, Iqbal A, et al. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia. 2016;64:105-21 pubmed 出版商
  55. Smolders S, Smolders S, Swinnen N, Gärtner A, Rigo J, Legendre P, et al. Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo. Front Cell Neurosci. 2015;9:301 pubmed 出版商
  56. Spillane D, Wang D, Newbigging S, Wang Y, Shi C, Cho H, et al. Chromosome Condensation 1-Like (Chc1L) Is a Novel Tumor Suppressor Involved in Development of Histiocyte-Rich Neoplasms. PLoS ONE. 2015;10:e0135755 pubmed 出版商
  57. Morley T, Xia J, Scherer P. Selective enhancement of insulin sensitivity in the mature adipocyte is sufficient for systemic metabolic improvements. Nat Commun. 2015;6:7906 pubmed 出版商
  58. ELDREDGE L, Treuting P, MANICONE A, Ziegler S, Parks W, McGuire J. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice. Am J Respir Cell Mol Biol. 2016;54:273-83 pubmed 出版商
  59. Ralhan R, Veyhl J, Chaker S, Assi J, Alyass A, Jeganathan A, et al. Immunohistochemical Subcellular Localization of Protein Biomarkers Distinguishes Benign from Malignant Thyroid Nodules: Potential for Fine-Needle Aspiration Biopsy Clinical Application. Thyroid. 2015;25:1224-34 pubmed 出版商
  60. Abreu Vieira G, Fischer A, Mattsson C, de Jong J, Shabalina I, Ryden M, et al. Cidea improves the metabolic profile through expansion of adipose tissue. Nat Commun. 2015;6:7433 pubmed 出版商
  61. Punt S, Thijssen V, Vrolijk J, de Kroon C, Gorter A, Jordanova E. Galectin-1, -3 and -9 Expression and Clinical Significance in Squamous Cervical Cancer. PLoS ONE. 2015;10:e0129119 pubmed 出版商
  62. Arena E, Campbell Valois F, Tinevez J, Nigro G, Sachse M, Moya Nilges M, et al. Bioimage analysis of Shigella infection reveals targeting of colonic crypts. Proc Natl Acad Sci U S A. 2015;112:E3282-90 pubmed 出版商
  63. Campbell Valois F, Sachse M, Sansonetti P, Parsot C. Escape of Actively Secreting Shigella flexneri from ATG8/LC3-Positive Vacuoles Formed during Cell-To-Cell Spread Is Facilitated by IcsB and VirA. MBio. 2015;6:e02567-14 pubmed 出版商
  64. Shankman L, Gomez D, Cherepanova O, Salmon M, Alencar G, Haskins R, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21:628-37 pubmed 出版商
  65. Reales E, Bernabé Rubio M, Casares Arias J, Rentero C, Fernández Barrera J, Rangel L, et al. The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci. 2015;128:2261-70 pubmed 出版商
  66. Luo Z, Jiang L, Xu Y, Li H, Xu W, Wu S, et al. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials. 2015;52:463-75 pubmed 出版商
  67. Peters O, Shelkovnikova T, Highley J, Cooper Knock J, Hortobágyi T, Troakes C, et al. Gamma-synuclein pathology in amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2015;2:29-37 pubmed 出版商
  68. Lin Y, Liu P, Adhikari N, Hall J, Wei L. RIP140 contributes to foam cell formation and atherosclerosis by regulating cholesterol homeostasis in macrophages. J Mol Cell Cardiol. 2015;79:287-94 pubmed 出版商
  69. Madireddi S, Eun S, Lee S, Nemčovičová I, Mehta A, Zajonc D, et al. Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. J Exp Med. 2014;211:1433-48 pubmed 出版商
  70. Lakshminarayan R, Wunder C, Becken U, Howes M, Benzing C, Arumugam S, et al. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat Cell Biol. 2014;16:595-606 pubmed 出版商
  71. Sauter K, Pridans C, Sehgal A, Tsai Y, Bradford B, Raza S, et al. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. J Leukoc Biol. 2014;96:265-74 pubmed 出版商
  72. Ryu J, Davidson B, Xie A, Qi Y, Zha D, Belcik J, et al. Molecular imaging of the paracrine proangiogenic effects of progenitor cell therapy in limb ischemia. Circulation. 2013;127:710-9 pubmed 出版商
  73. Kodama K, Horikoshi M, Toda K, Yamada S, Hara K, Irie J, et al. Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes. Proc Natl Acad Sci U S A. 2012;109:7049-54 pubmed 出版商
  74. Ferret Bernard S, Castro Borges W, Dowle A, Sanin D, Cook P, Turner J, et al. Plasma membrane proteomes of differentially matured dendritic cells identified by LC-MS/MS combined with iTRAQ labelling. J Proteomics. 2012;75:938-48 pubmed 出版商
  75. Batista B, Eng W, Pilobello K, Hendricks Munoz K, Mahal L. Identification of a conserved glycan signature for microvesicles. J Proteome Res. 2011;10:4624-33 pubmed 出版商
  76. Farnworth S, Henderson N, Mackinnon A, Atkinson K, Wilkinson T, Dhaliwal K, et al. Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am J Pathol. 2008;172:395-405 pubmed 出版商