这是一篇来自已证抗体库的有关人类 γ-微管 (gamma-tubulin) 的综述,是根据219篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合γ-微管 抗体。
γ-微管 同义词: CDCBM4; GCP-1; TUBG; TUBGCP1

圣克鲁斯生物技术
小鼠 单克隆(TU-30)
  • 免疫细胞化学; 大鼠; 1:100; 图 4e
圣克鲁斯生物技术γ-微管抗体(Santa, sc-51715)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4e). elife (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术γ-微管抗体(Santacruz, C-11)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2020) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术γ-微管抗体(Santacruz, C-11)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2020) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 小鼠; 1:400; 图 9e
  • 免疫组化; 小鼠; 1:400; 图 4a
圣克鲁斯生物技术γ-微管抗体(Santa Cruz Biotechnology, sc-17787)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 9e) 和 被用于免疫组化在小鼠样本上浓度为1:400 (图 4a). elife (2020) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 1:2000; 图 1f
圣克鲁斯生物技术γ-微管抗体(Santa Cruz, sc-17787)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1f). J Exp Med (2020) ncbi
小鼠 单克隆(TU-30)
  • 免疫印迹; 人类; 图 2i
圣克鲁斯生物技术γ-微管抗体(Santa Cruz, sc-51715)被用于被用于免疫印迹在人类样本上 (图 2i). Cell Rep (2019) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4c
圣克鲁斯生物技术γ-微管抗体(Santa Cruz, sc-17787)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4c). PLoS Genet (2018) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术γ-微管抗体(Santa, sc-17787)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS Genet (2018) ncbi
小鼠 单克隆(TU-30)
  • 免疫印迹; 人类; 1:100; 图 1
圣克鲁斯生物技术γ-微管抗体(Santa Cruz, sc-51715)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(TU-30)
  • 免疫细胞化学; 人类; 1:500; 图 1s1
圣克鲁斯生物技术γ-微管抗体(Santa Cruz Biotechology, sc-51715)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1s1). elife (2016) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 人类; 图 5
圣克鲁斯生物技术γ-微管抗体(Santa Cruz, sc-17787)被用于被用于免疫细胞化学在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(D-10)
  • 免疫沉淀; 人类; 图 s9
圣克鲁斯生物技术γ-微管抗体(Santa Cruz, sc-17788)被用于被用于免疫沉淀在人类样本上 (图 s9). Nature (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术γ-微管抗体(santa Cruz, sc-17787)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术γ-微管抗体(Santa Cruz, sc-17787)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(C-11)
  • 流式细胞仪; 人类
圣克鲁斯生物技术γ-微管抗体(Santa Cruz Biotechnology, sc-17787)被用于被用于流式细胞仪在人类样本上. Tumour Biol (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 人类; 1:1000; 图 1
圣克鲁斯生物技术γ-微管抗体(Santa Cruz Biotechnology, C-11)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). J Cell Sci (2014) ncbi
小鼠 单克隆(TU-30)
  • 免疫细胞化学; 人类; 1:200
圣克鲁斯生物技术γ-微管抗体(Santa, sc-51715)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Cell Physiol (2014) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术γ-微管抗体(Santa Cruz, D-10)被用于被用于免疫印迹在人类样本上 (图 2). Clin Cancer Res (2010) ncbi
赛默飞世尔
小鼠 单克隆(4D11)
  • 免疫印迹; 人类; 图 8a
赛默飞世尔γ-微管抗体(Thermo Scientific, 4D11)被用于被用于免疫印迹在人类样本上 (图 8a). Circulation (2017) ncbi
小鼠 单克隆(4D11)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔γ-微管抗体(Thermo Fisher, MA1-850)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(4D11)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔γ-微管抗体(Thermo Scientific, 4D11)被用于被用于免疫细胞化学在人类样本上 (图 2). J Negat Results Biomed (2015) ncbi
小鼠 单克隆(4D11)
  • 免疫印迹; 小鼠
赛默飞世尔γ-微管抗体(Thermo, MA1-850)被用于被用于免疫印迹在小鼠样本上. J Endocrinol Diabetes (2015) ncbi
小鼠 单克隆(4D11)
  • 免疫印迹; 人类
赛默飞世尔γ-微管抗体(Thermo Scientific, 4D11)被用于被用于免疫印迹在人类样本上. Platelets (2015) ncbi
小鼠 单克隆(4D11)
  • 免疫印迹; 人类
赛默飞世尔γ-微管抗体(Thermo Scientific, 4D11)被用于被用于免疫印迹在人类样本上. Nutrients (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3c
艾博抗(上海)贸易有限公司γ-微管抗体(Abcam, ab179503)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3c). Mol Metab (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5a
艾博抗(上海)贸易有限公司γ-微管抗体(Abcam, ab179503)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). Am J Physiol Endocrinol Metab (2019) ncbi
西格玛奥德里奇
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). elife (2022) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化-冰冻切片; 人类; 1:2000; 图 s1g
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 (图 s1g). Cell Rep (2022) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; fruit fly ; 1:500; 图 2c
西格玛奥德里奇γ-微管抗体(Sigma Aldrich, T5326)被用于被用于免疫组化在fruit fly 样本上浓度为1:500 (图 2c). G3 (Bethesda) (2021) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 1:5000; 图 3f
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 3f). Mol Biol Cell (2021) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:500; 图 1e''
西格玛奥德里奇γ-微管抗体(Sigma, GTU88)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1e''). Biol Open (2021) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:400; 图 2a
西格玛奥德里奇γ-微管抗体(Sigma, GYU-88)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2a). Sci Signal (2020) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:500; 图 6a
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6a). elife (2020) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 6d
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫印迹在人类样本上 (图 6d). Sci Adv (2020) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:400; 图 s2d
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s2d). Nat Commun (2020) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 6b
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). elife (2020) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 s5b
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, A6557)被用于被用于免疫细胞化学在人类样本上 (图 s5b). Sci Adv (2019) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 大鼠; 图 1b
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在大鼠样本上 (图 1b). Cell (2019) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T5326)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2c). Cell Div (2019) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 7e
  • 免疫细胞化学; 人类; 1:500; 图 1a
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 7e) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). Cell Death Dis (2019) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:2000; 图 2c
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2c). elife (2019) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 2a, s2e
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上 (图 2a, s2e). Cell Rep (2019) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; fruit fly ; 1:100; 图 s5c
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T5326)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 s5c). Dev Cell (2019) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:5000; 图 5j
  • 免疫印迹; 小鼠; 1:5000; 图 s1d
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5j) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s1d). Neuron (2019) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 5a
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在人类样本上 (图 5a). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 1c
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 1c). J Cell Biol (2019) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:8000; 图 5a
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 5a). Nucleic Acids Res (2019) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 斑马鱼; 1:5000; 图 4e
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU-88)被用于被用于免疫组化在斑马鱼样本上浓度为1:5000 (图 4e). Gene Expr Patterns (2018) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:200; 图 s9a
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s9a). Nature (2018) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2d
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2d). elife (2017) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3f
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3f). Mol Cancer Res (2018) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 1d
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在人类样本上 (图 1d). J Biol Chem (2017) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, 6557)被用于被用于免疫印迹在人类样本上 (图 2a). FEBS Lett (2017) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 2a
西格玛奥德里奇γ-微管抗体(Sigma Aldrich, T6557)被用于被用于免疫细胞化学在人类样本上 (图 2a). Curr Biol (2017) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 3a
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫细胞化学在人类样本上 (图 3a). J Biol Chem (2017) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:200; 图 2g
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2g). Sci Rep (2017) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:4000; 图 1a
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T5326)被用于被用于免疫细胞化学在人类样本上浓度为1:4000 (图 1a). J Cell Sci (2017) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 日本大米鱼; 图 5c
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在日本大米鱼样本上 (图 5c). Nat Commun (2017) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:1000; 图 3a
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU88)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3a). Mol Biol Cell (2017) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 8d
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫细胞化学在人类样本上 (图 8d). Mol Cell Biol (2017) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:5000; 图 1a
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (图 1a). PLoS ONE (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:1000; 图 4a'
西格玛奥德里奇γ-微管抗体(Sigma, GTU88)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a'). Mol Biol Cell (2017) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; fruit fly ; 1:500; 图 2c
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:500 (图 2c). Nat Commun (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 1:300; 图 s2a
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s2a). Science (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:1000; 图 4
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; fruit fly ; 1:200; 图 2
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:200 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 大鼠; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). EMBO J (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:1000; 图 1B
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1B). Methods Cell Biol (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:1000; 图 4
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). J Cell Biol (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:4000; 图 3d
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 3d). Nat Commun (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 7
  • 免疫印迹; 人类; 图 s3
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫细胞化学在小鼠样本上 (图 3), 被用于免疫印迹在小鼠样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 s3). J Cell Biol (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 人类; 图 4
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫组化在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在大鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:500; 图 s1
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 图 2
  • 免疫细胞化学; 人类; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫细胞化学在小鼠样本上 (图 2) 和 被用于免疫细胞化学在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). PLoS Genet (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:500; 图 5c
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5c). Nat Cell Biol (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2
  • 免疫组化; 小鼠; 1:1000; 图 2
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:5000; 图 3
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (图 3). Mol Biol Cell (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:2000; 图 5
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:10,000; 图 s5
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s5). Cell Rep (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在大鼠样本上 (图 1). Anal Biochem (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Oncogenesis (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 图 7
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫细胞化学在小鼠样本上 (图 7). Acta Neuropathol (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU-88)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化-石蜡切片; 小鼠; 图 2cd
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T5326)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2cd). Nat Commun (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:1000; 图 4
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU88)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:500; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T6557-.2ML)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 1:1000; 图 6g
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 6g). J Biol Chem (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:1000; 图 2
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU-88)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 小鼠; 1:200; 表 1
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫组化在小鼠样本上浓度为1:200 (表 1). J Vis Exp (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:500; 图 6
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Nat Cell Biol (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:5000; 图 1
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 1c
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU-88)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 1c). Cell Mol Neurobiol (2017) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:500; 图 4d
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4d). Nat Commun (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T5326)被用于被用于免疫印迹在人类样本上 (图 1). Cell Rep (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化-石蜡切片; 小鼠; 图 4
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 大鼠; 1:1000; 图 4
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 小鼠; 1:400; 图 5
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:100; 图 2b
西格玛奥德里奇γ-微管抗体(Sigma, 6557)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2b). PLoS ONE (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 大鼠; 1:400; 图 7b
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 7b). J Cell Sci (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在人类样本上 (图 1). Mol Oncol (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 图 5d
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU-88)被用于被用于免疫印迹在小鼠样本上 (图 5d). Mol Cell (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:2000
  • 免疫组化; 人类; 1:2000; 图 s4
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 和 被用于免疫组化在人类样本上浓度为1:2000 (图 s4). Oncotarget (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:200; 图 4
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 1:200-1:500; 图 4
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200-1:500 (图 4). PLoS Genet (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 4
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫细胞化学在人类样本上 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:500; 图 7d
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7d). Nat Cell Biol (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:3000; 图 1c
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1c). Hum Mol Genet (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:250; 图 1
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T5326)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 非洲爪蛙; 1:100; 图 2a
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:100 (图 2a). Dev Biol (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Nat Med (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 斑马鱼; 图 s1
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在斑马鱼样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU- 88)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5). Dev Biol (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 1
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS Genet (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化-石蜡切片; fruit fly ; 1:100
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:100. Biol Open (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T5326)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 小鼠
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich Corp, T5326)被用于被用于免疫组化在小鼠样本上. Dev Biol (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 图 1d
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在小鼠样本上 (图 1d). Oncogene (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 人类
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T5326)被用于被用于免疫组化在人类样本上. elife (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 3
西格玛奥德里奇γ-微管抗体(Sigma, T-6557)被用于被用于免疫细胞化学在人类样本上 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:5000; 图 s2
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU-88)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (图 s2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 小鼠; 1:1000; 图 2a
  • 免疫组化; 人类; 1:1000; 图 2a
西格玛奥德里奇γ-微管抗体(Sigma Aldrich, T5326)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2a) 和 被用于免疫组化在人类样本上浓度为1:1000 (图 2a). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:1000; 图 2
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Development (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:200; 图 s9
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s9). PLoS Biol (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:2000; 图 4
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:2000; 图 2
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 2). J Cell Sci (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 非洲爪蛙; 1:100; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫细胞化学在非洲爪蛙样本上浓度为1:100 (图 1). Protoplasma (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:800; 图 2a
西格玛奥德里奇γ-微管抗体(Sigma Aldrich, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 2a). Cell Cycle (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 小鼠; 1:500; 图 3c
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3c). Methods Cell Biol (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:4000; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 图 2f
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在小鼠样本上 (图 2f). J Biol Chem (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 小鼠; 1:3000; 图 s1
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 s1). Nat Commun (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 鸡; 图 5
西格玛奥德里奇γ-微管抗体(Sigma, GTU88)被用于被用于免疫细胞化学在鸡样本上 (图 5). PLoS Genet (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫细胞化学在人类样本上. Nature (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类
西格玛奥德里奇γ-微管抗体(Sigma Aldrich, GTU-88)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 大鼠; 1:10,000; 图 6
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫印迹在人类样本上浓度为1:2000. Sci Rep (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇γ-微管抗体(SIGMA, clone GTU88)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Biol (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 犬
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在犬样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:1000; 图 1
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). J Cell Biol (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:2000
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 1:200; 图 3
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3). Cell Cycle (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在人类样本上 (图 2). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫细胞化学在小鼠样本上. Methods Cell Biol (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇γ-微管抗体(Sigma, GTU88)被用于被用于免疫印迹在人类样本上 (图 5). EMBO J (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:500; 图 3
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Nature (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Biol Reprod (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类
西格玛奥德里奇γ-微管抗体(Sigma Aldrich, T6557)被用于被用于免疫细胞化学在人类样本上. Mutat Res (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 1:200
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Cytoskeleton (Hoboken) (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:10,000; 图 6
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 6). Circulation (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:1000
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Cell Biol (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 小鼠; 1:1000; 图 4
西格玛奥德里奇γ-微管抗体(Sigma, T-6557)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Development (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 小鼠; 1:100; 图 7
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类
西格玛奥德里奇γ-微管抗体(Sigma, T-6557)被用于被用于免疫细胞化学在人类样本上. Methods Mol Biol (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 1). Biol Open (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 牛; 图 s5
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫细胞化学在牛样本上 (图 s5). Nature (2015) ncbi
小鼠 单克隆(GTU-88)
西格玛奥德里奇γ-微管抗体(Sigma Aldrich, T6557)被用于. Nat Cell Biol (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:500; 图 s4
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T5326)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s4). Science (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 大鼠; 图 4
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫印迹在大鼠样本上 (图 4). Cell Cycle (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:1000; 图 2
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:2000; 图 1a
西格玛奥德里奇γ-微管抗体(sigma, T5326)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1a). PLoS ONE (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在小鼠样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 1
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫细胞化学在人类样本上 (图 1). Cell Cycle (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Cycle (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 9
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫细胞化学在人类样本上 (图 9). Oncotarget (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s2
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; pigs ; 图 2
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫细胞化学在pigs 样本上 (图 2). J Clin Invest (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 3
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 白色念珠菌; 1:5000; 图 3
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在白色念珠菌样本上浓度为1:5000 (图 3). Nat Commun (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 小鼠; 1:1000; 图 1
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). J Cell Biol (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 2, 3, 4
西格玛奥德里奇γ-微管抗体(Sigma, T 6557)被用于被用于免疫细胞化学在人类样本上 (图 2, 3, 4). Cardiovasc Res (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:3000; 图 8
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T-6557)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 8). Biol Open (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 1:200; 图 5
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5). Oncogene (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫细胞化学在小鼠样本上. Stem Cell Res (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU-88)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2). Mol Biol Cell (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 s5
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T5326)被用于被用于免疫印迹在人类样本上 (图 s5). PLoS ONE (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:5000; 图 2
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, T6557)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:2000
西格玛奥德里奇γ-微管抗体(Sigma, GTU88)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. EMBO J (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:10,000; 图 7
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7). Nat Commun (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6). Nat Commun (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在人类样本上. Am J Hum Genet (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; African green monkey; 1:800
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU-88)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:800. Nat Neurosci (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类
西格玛奥德里奇γ-微管抗体(Sigma, GTU88)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:1000
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU88)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在人类样本上 (图 4a). Genes Dev (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类
西格玛奥德里奇γ-微管抗体(Sigma Aldrich, T6557)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类
西格玛奥德里奇γ-微管抗体(Sigma Aldrich, GTU-88)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇γ-微管抗体(Sigma, GTU88)被用于被用于免疫细胞化学在人类样本上浓度为1:500. J Biol Chem (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫印迹在人类样本上浓度为1:5000. Nat Struct Mol Biol (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫细胞化学在人类样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:1000; 图 5
西格玛奥德里奇γ-微管抗体(Sigma, T5326)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 5). Endocrinology (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU88)被用于被用于免疫沉淀在人类样本上 和 被用于免疫细胞化学在人类样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU88)被用于被用于免疫细胞化学在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 3a
西格玛奥德里奇γ-微管抗体(Sigma, GTU-88)被用于被用于免疫细胞化学在人类样本上 (图 3a). Hum Mol Genet (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇γ-微管抗体(Sigma, GTU88)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2013) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类
西格玛奥德里奇γ-微管抗体(Sigma Aldrich, GTU88)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
西格玛奥德里奇γ-微管抗体(Sigma, GTU88)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Cilia (2012) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU88)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 鸡; 1:150
西格玛奥德里奇γ-微管抗体(Sigma, GTU88)被用于被用于免疫细胞化学在鸡样本上浓度为1:150. Cell Cycle (2013) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇γ-微管抗体(Sigma, GTU88)被用于被用于免疫细胞化学在小鼠样本上. Science (2013) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类
西格玛奥德里奇γ-微管抗体(Sigma, GTU88)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU88)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Cell Cycle (2012) ncbi
小鼠 单克隆(GTU-88)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇γ-微管抗体(Sigma, T6557)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类
西格玛奥德里奇γ-微管抗体(Sigma, GTU8)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2012) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:500; 图 4
西格玛奥德里奇γ-微管抗体(Sigma-Aldrich, GTU88)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4). J Cell Biol (2012) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类
西格玛奥德里奇γ-微管抗体(Sigma, clone GTU-88)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2012) ncbi
文章列表
  1. Riley L, Zhang X, Douglas C, Mijares J, Hammers D, Wolff C, et al. The skeletal muscle circadian clock regulates titin splicing through RBM20. elife. 2022;11: pubmed 出版商
  2. Schembs L, Willems A, Hasenpusch Theil K, Cooper J, Whiting K, Burr K, et al. The ciliary gene INPP5E confers dorsal telencephalic identity to human cortical organoids by negatively regulating Sonic hedgehog signaling. Cell Rep. 2022;39:110811 pubmed 出版商
  3. Bouska M, Bai H. Long noncoding RNA regulation of spermatogenesis via the spectrin cytoskeleton in Drosophila. G3 (Bethesda). 2021;11: pubmed 出版商
  4. Turn R, Linnert J, Gigante E, Wolfrum U, Caspary T, Kahn R. Roles for ELMOD2 and Rootletin in ciliogenesis. Mol Biol Cell. 2021;32:800-822 pubmed 出版商
  5. Sass F, Schlein C, Jaeckstein M, Pertzborn P, Schweizer M, Schinke T, et al. TFEB deficiency attenuates mitochondrial degradation upon brown adipose tissue whitening at thermoneutrality. Mol Metab. 2021;47:101173 pubmed 出版商
  6. Qiu H, Fujisawa S, Nozaki S, Katoh Y, Nakayama K. Interaction of INPP5E with ARL13B is essential for its ciliary membrane retention but dispensable for its ciliary entry. Biol Open. 2021;10: pubmed 出版商
  7. Vergarajauregui S, Becker R, Steffen U, Sharkova M, Esser T, Petzold J, et al. AKAP6 orchestrates the nuclear envelope microtubule-organizing center by linking golgi and nucleus via AKAP9. elife. 2020;9: pubmed 出版商
  8. Okitsu Y, Nagano M, Yamagata T, Ito C, Toshimori K, Dohra H, et al. Dlec1 is required for spermatogenesis and male fertility in mice. Sci Rep. 2020;10:18883 pubmed 出版商
  9. Yoshida S, Aoki K, Fujiwara K, Nakakura T, Kawamura A, Yamada K, et al. The novel ciliogenesis regulator DYRK2 governs Hedgehog signaling during mouse embryogenesis. elife. 2020;9: pubmed 出版商
  10. Zurli V, Montecchi T, Heilig R, Poschke I, Volkmar M, Wimmer G, et al. Phosphoproteomics of CD2 signaling reveals AMPK-dependent regulation of lytic granule polarization in cytotoxic T cells. Sci Signal. 2020;13: pubmed 出版商
  11. An L, Nie P, Chen M, Tang Y, Zhang H, Guan J, et al. MST4 kinase suppresses gastric tumorigenesis by limiting YAP activation via a non-canonical pathway. J Exp Med. 2020;217: pubmed 出版商
  12. Chong W, Wang W, Lo C, Chiu T, Chang T, Liu Y, et al. Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages. elife. 2020;9: pubmed 出版商
  13. Reynders M, Matsuura B, Bérouti M, Simoneschi D, Marzio A, Pagano M, et al. PHOTACs enable optical control of protein degradation. Sci Adv. 2020;6:eaay5064 pubmed 出版商
  14. Boukhalfa A, Nascimbeni A, Ramel D, Dupont N, Hirsch E, Gayral S, et al. PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nat Commun. 2020;11:294 pubmed 出版商
  15. Bowie E, Goetz S. TTBK2 and primary cilia are essential for the connectivity and survival of cerebellar Purkinje neurons. elife. 2020;9: pubmed 出版商
  16. Lee C, Aizawa K, Jiang J, Kung S, Jain R. JLP-centrosome is essential for the microtubule-mediated nucleocytoplasmic transport induced by extracellular stimuli. Sci Adv. 2019;5:eaav0318 pubmed 出版商
  17. Lundby A, Franciosa G, Emdal K, Refsgaard J, Gnosa S, Bekker Jensen D, et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179:543-560.e26 pubmed 出版商
  18. Hartono -, Hazawa M, Lim K, Dewi F, Kobayashi A, Wong R. Nucleoporin Nup58 localizes to centrosomes and mid-bodies during mitosis. Cell Div. 2019;14:7 pubmed 出版商
  19. Kim D, Ahn J, Han H, Kim H, Hwang J, Lee K, et al. Cep131 overexpression promotes centrosome amplification and colon cancer progression by regulating Plk4 stability. Cell Death Dis. 2019;10:570 pubmed 出版商
  20. Carvalho J, Fortunato I, Fonseca C, Pezzarossa A, Barbacena P, Domínguez Cejudo M, et al. Non-canonical Wnt signaling regulates junctional mechanocoupling during angiogenic collective cell migration. elife. 2019;8: pubmed 出版商
  21. Douanne T, André Grégoire G, Thys A, Trillet K, Gavard J, Bidere N. CYLD Regulates Centriolar Satellites Proteostasis by Counteracting the E3 Ligase MIB1. Cell Rep. 2019;27:1657-1665.e4 pubmed 出版商
  22. Sun T, Song Y, Dai J, Mao D, Ma M, Ni J, et al. Spectraplakin Shot Maintains Perinuclear Microtubule Organization in Drosophila Polyploid Cells. Dev Cell. 2019;49:731-747.e7 pubmed 出版商
  23. Tai Y, Gallo N, Wang M, Yu J, Van Aelst L. Axo-axonic Innervation of Neocortical Pyramidal Neurons by GABAergic Chandelier Cells Requires AnkyrinG-Associated L1CAM. Neuron. 2019;102:358-372.e9 pubmed 出版商
  24. Davis M, Fairgrieve M, den Hartigh A, Yakovenko O, Duvvuri B, Lood C, et al. Calpain drives pyroptotic vimentin cleavage, intermediate filament loss, and cell rupture that mediates immunostimulation. Proc Natl Acad Sci U S A. 2019;116:5061-5070 pubmed 出版商
  25. Malaby H, Dumas M, Ohi R, Stumpff J. Kinesin-binding protein ensures accurate chromosome segregation by buffering KIF18A and KIF15. J Cell Biol. 2019;218:1218-1234 pubmed 出版商
  26. Paschos K, Bazot Q, Lees J, Farrell P, Allday M. Requirement for PRC1 subunit BMI1 in host gene activation by Epstein-Barr virus protein EBNA3C. Nucleic Acids Res. 2019;47:2807-2821 pubmed 出版商
  27. Fischer A, Schlein C, Cannon B, Heeren J, Nedergaard J. Intact innervation is essential for diet-induced recruitment of brown adipose tissue. Am J Physiol Endocrinol Metab. 2019;316:E487-E503 pubmed 出版商
  28. Konjikusic M, Yeetong P, Boswell C, Lee C, Roberson E, Ittiwut R, et al. Mutations in Kinesin family member 6 reveal specific role in ependymal cell ciliogenesis and human neurological development. PLoS Genet. 2018;14:e1007817 pubmed 出版商
  29. Song P, Perkins B. Developmental expression of the zebrafish Arf-like small GTPase paralogs arl13a and arl13b. Gene Expr Patterns. 2018;29:82-87 pubmed 出版商
  30. Rai A, Chen J, Selbach M, Pelkmans L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature. 2018;559:211-216 pubmed 出版商
  31. Wu X, Tommasi di Vignano A, Zhou Q, Michel Dziunycz P, Bai F, Mi J, et al. The ARE-binding protein Tristetraprolin (TTP) is a novel target and mediator of calcineurin tumor suppressing function in the skin. PLoS Genet. 2018;14:e1007366 pubmed 出版商
  32. Connell M, Chen H, Jiang J, Kuan C, Fotovati A, Chu T, et al. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. elife. 2017;6: pubmed 出版商
  33. Chu T, Connell M, Zhou L, He Z, Won J, Chen H, et al. Cell Cycle-Dependent Tumor Engraftment and Migration Are Enabled by Aurora-A. Mol Cancer Res. 2018;16:16-31 pubmed 出版商
  34. Lee I, Kim G, Bae J, Kim J, Rhee K, Hwang D. The DNA replication protein Cdc6 inhibits the microtubule-organizing activity of the centrosome. J Biol Chem. 2017;292:16267-16276 pubmed 出版商
  35. Wei J, Xu H, Meng W. Noncentrosomal microtubules regulate autophagosome transport through CAMSAP2-EB1 cross-talk. FEBS Lett. 2017;591:2379-2393 pubmed 出版商
  36. Joachim J, Razi M, Judith D, Wirth M, Calamita E, Encheva V, et al. Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy. Curr Biol. 2017;27:2123-2136.e7 pubmed 出版商
  37. Wang Q, Tang Y, Xu Y, Xu S, Jiang Y, Dong Q, et al. The X-linked deubiquitinase USP9X is an integral component of centrosome. J Biol Chem. 2017;292:12874-12884 pubmed 出版商
  38. Magescas J, Sengmanivong L, Viau A, Mayeux A, Dang T, Burtin M, et al. Spindle pole cohesion requires glycosylation-mediated localization of NuMA. Sci Rep. 2017;7:1474 pubmed 出版商
  39. Conkar D, Culfa E, Odabasi E, Rauniyar N, Yates J, Firat Karalar E. The centriolar satellite protein CCDC66 interacts with CEP290 and functions in cilium formation and trafficking. J Cell Sci. 2017;130:1450-1462 pubmed 出版商
  40. Inoue D, Stemmer M, Thumberger T, Ruppert T, Bärenz F, Wittbrodt J, et al. Expression of the novel maternal centrosome assembly factor Wdr8 is required for vertebrate embryonic mitoses. Nat Commun. 2017;8:14090 pubmed 出版商
  41. Funabashi T, Katoh Y, Michisaka S, Terada M, Sugawa M, Nakayama K. Ciliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46-IFT56 as well as on its nuclear localization signal. Mol Biol Cell. 2017;28:624-633 pubmed 出版商
  42. Sierra Potchanant E, Cerabona D, Sater Z, He Y, Sun Z, Gehlhausen J, et al. INPP5E Preserves Genomic Stability through Regulation of Mitosis. Mol Cell Biol. 2017;37: pubmed 出版商
  43. Yu Z, Mouillesseaux K, Kushner E, Bautch V. Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell Centrosome Over-Duplication. PLoS ONE. 2016;11:e0168334 pubmed 出版商
  44. Hirano T, Katoh Y, Nakayama K. Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors. Mol Biol Cell. 2017;28:429-439 pubmed 出版商
  45. Abu Taha I, Heijman J, Hippe H, Wolf N, El Armouche A, Nikolaev V, et al. Nucleoside Diphosphate Kinase-C Suppresses cAMP Formation in Human Heart Failure. Circulation. 2017;135:881-897 pubmed 出版商
  46. Tirmarche S, Kimura S, Dubruille R, Horard B, Loppin B. Unlocking sperm chromatin at fertilization requires a dedicated egg thioredoxin in Drosophila. Nat Commun. 2016;7:13539 pubmed 出版商
  47. Kanakkanthara A, Jeganathan K, Limzerwala J, Baker D, Hamada M, Nam H, et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353:1549-1552 pubmed
  48. Maina P, Shao P, Liu Q, Fazli L, Tyler S, Nasir M, et al. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget. 2016;7:75585-75602 pubmed 出版商
  49. Bertolin G, Sizaire F, Herbomel G, Reboutier D, Prigent C, Tramier M. A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells. Nat Commun. 2016;7:12674 pubmed 出版商
  50. Meghini F, Martins T, Tait X, Fujimitsu K, Yamano H, Glover D, et al. Targeting of Fzr/Cdh1 for timely activation of the APC/C at the centrosome during mitotic exit. Nat Commun. 2016;7:12607 pubmed 出版商
  51. Villa M, Crotta S, Dingwell K, Hirst E, Gialitakis M, Ahlfors H, et al. The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis. Nat Commun. 2016;7:12652 pubmed 出版商
  52. Vingill S, Brockelt D, Lancelin C, Tatenhorst L, Dontcheva G, Preisinger C, et al. Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J. 2016;35:2008-25 pubmed 出版商
  53. Kim M, Froese C, Xie H, Trimble W. Immunofluorescent staining of septins in primary cilia. Methods Cell Biol. 2016;136:269-83 pubmed 出版商
  54. Gao J, Liu D, Li J, Song Q, Wang Q. Effect of STK17A on the sensitivity of ovarian cancer cells to paclitaxel and carboplatin. Oncol Lett. 2016;12:1107-1112 pubmed
  55. Meitinger F, Anzola J, Kaulich M, Richardson A, Stender J, Benner C, et al. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J Cell Biol. 2016;214:155-66 pubmed 出版商
  56. Müller S, Balaz M, Stefanicka P, Varga L, Amri E, Ukropec J, et al. Proteomic Analysis of Human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways. Sci Rep. 2016;6:30030 pubmed 出版商
  57. Fong C, Mazo G, Das T, Goodman J, Kim M, O Rourke B, et al. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. elife. 2016;5: pubmed 出版商
  58. Zhang X, Cheng X, Yu L, Yang J, Calvo R, Patnaik S, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun. 2016;7:12109 pubmed 出版商
  59. Muroyama A, Seldin L, Lechler T. Divergent regulation of functionally distinct γ-tubulin complexes during differentiation. J Cell Biol. 2016;213:679-92 pubmed 出版商
  60. Airik R, Schueler M, Airik M, Cho J, Ulanowicz K, Porath J, et al. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling. PLoS ONE. 2016;11:e0156081 pubmed 出版商
  61. Meek S, Thomson A, Sutherland L, Sharp M, Thomson J, Bishop V, et al. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease. Sci Rep. 2016;6:25592 pubmed 出版商
  62. Rao S, Flores Rodriguez N, Page S, Wong C, Robinson P, Chircop M. The Clathrin-dependent Spindle Proteome. Mol Cell Proteomics. 2016;15:2537-53 pubmed 出版商
  63. Cooley L, El Shikh M, Li W, Keim R, Zhang Z, Strauss J, et al. Impaired immunological synapse in sperm associated antigen 6 (SPAG6) deficient mice. Sci Rep. 2016;6:25840 pubmed 出版商
  64. Lamar K, Bogdanovich S, Gardner B, Gao Q, Miller T, Earley J, et al. Overexpression of Latent TGF? Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGF?. PLoS Genet. 2016;12:e1006019 pubmed 出版商
  65. Shahbazi M, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, et al. Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol. 2016;18:700-708 pubmed 出版商
  66. Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A. 2016;113:E2589-97 pubmed 出版商
  67. Kushner E, Ferro L, Yu Z, Bautch V. Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation. Mol Biol Cell. 2016;27:1911-20 pubmed 出版商
  68. Bianchi E, Boekelheide K, Sigman M, Lamb D, Hall S, Hwang K. Ghrelin Inhibits Post-Operative Adhesions via Blockage of the TGF-β Signaling Pathway. PLoS ONE. 2016;11:e0153968 pubmed 出版商
  69. Conway A, Van Nostrand E, Pratt G, Aigner S, Wilbert M, Sundararaman B, et al. Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. Cell Rep. 2016;15:666-679 pubmed 出版商
  70. Fortes M, Marzuca Nassr G, Vitzel K, da Justa Pinheiro C, Newsholme P, Curi R. Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models?. Anal Biochem. 2016;504:38-40 pubmed 出版商
  71. West A, Martin B, Andrews D, Hogg S, Banerjee A, Grigoriadis G, et al. The SMAC mimetic, LCL-161, reduces survival in aggressive MYC-driven lymphoma while promoting susceptibility to endotoxic shock. Oncogenesis. 2016;5:e216 pubmed 出版商
  72. Yadav P, Selvaraj B, Bender F, Behringer M, Moradi M, Sivadasan R, et al. Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling. Acta Neuropathol. 2016;132:93-110 pubmed 出版商
  73. Braun J, Meixner A, Brachner A, Foisner R. The GIY-YIG Type Endonuclease Ankyrin Repeat and LEM Domain-Containing Protein 1 (ANKLE1) Is Dispensable for Mouse Hematopoiesis. PLoS ONE. 2016;11:e0152278 pubmed 出版商
  74. San Agustin J, Klena N, Granath K, Panigrahy A, Stewart E, Devine W, et al. Genetic link between renal birth defects and congenital heart disease. Nat Commun. 2016;7:11103 pubmed 出版商
  75. Yen T, Yang A, Chiu W, Li T, Wang L, Wu Y, et al. Hepatitis B virus PreS2-mutant large surface antigen activates store-operated calcium entry and promotes chromosome instability. Oncotarget. 2016;7:23346-60 pubmed 出版商
  76. Chavali P, Chandrasekaran G, Barr A, Tátrai P, Taylor C, Papachristou E, et al. A CEP215-HSET complex links centrosomes with spindle poles and drives centrosome clustering in cancer. Nat Commun. 2016;7:11005 pubmed 出版商
  77. Obino D, Farina F, Malbec O, Sáez P, Maurin M, Gaillard J, et al. Actin nucleation at the centrosome controls lymphocyte polarity. Nat Commun. 2016;7:10969 pubmed 出版商
  78. Katoh Y, Terada M, Nishijima Y, Takei R, Nozaki S, Hamada H, et al. Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex. J Biol Chem. 2016;291:10962-75 pubmed 出版商
  79. Hasegawa K, Yasuda T, Shiraishi C, Fujiwara K, Przedborski S, Mochizuki H, et al. Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults. Nat Commun. 2016;7:10943 pubmed 出版商
  80. May Simera H. Evaluation of Planar-Cell-Polarity Phenotypes in Ciliopathy Mouse Mutant Cochlea. J Vis Exp. 2016;:53559 pubmed 出版商
  81. Li X, Rydzewski N, Hider A, Zhang X, Yang J, Wang W, et al. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat Cell Biol. 2016;18:404-17 pubmed 出版商
  82. Rai R, Chen Y, Lei M, Chang S. TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nat Commun. 2016;7:10881 pubmed 出版商
  83. Di Pietro C, Marazziti D, La Sala G, Abbaszadeh Z, Golini E, Matteoni R, et al. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma. Cell Mol Neurobiol. 2017;37:145-154 pubmed 出版商
  84. Xu Q, Zhang Y, Wei Q, Huang Y, Hu J, Ling K. Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat Commun. 2016;7:10777 pubmed 出版商
  85. Wild T, Larsen M, Narita T, Schou J, Nilsson J, Choudhary C. The Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity. Cell Rep. 2016;14:1829-40 pubmed 出版商
  86. Bhattacharyya S, Rainey M, Arya P, Mohapatra B, Mushtaq I, Dutta S, et al. Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development. Sci Rep. 2016;6:20727 pubmed 出版商
  87. Nosak C, Silva P, Sollazzo P, Moon K, Odisho T, Foster L, et al. Jagn1 Is Induced in Response to ER Stress and Regulates Proinsulin Biosynthesis. PLoS ONE. 2016;11:e0149177 pubmed 出版商
  88. Taverna E, Mora Bermúdez F, Strzyz P, Florio M, Icha J, Haffner C, et al. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Sci Rep. 2016;6:21206 pubmed 出版商
  89. Lopes C, Aubert S, Bourgois Rocha F, Barnat M, Rego A, Déglon N, et al. Dominant-Negative Effects of Adult-Onset Huntingtin Mutations Alter the Division of Human Embryonic Stem Cells-Derived Neural Cells. PLoS ONE. 2016;11:e0148680 pubmed 出版商
  90. Gupta A, Schell M, Bhattacharjee A, Lutsenko S, Hubbard A. Myosin Vb mediates Cu+ export in polarized hepatocytes. J Cell Sci. 2016;129:1179-89 pubmed 出版商
  91. Hasvold G, Lund Andersen C, Lando M, Patzke S, Hauge S, Suo Z, et al. Hypoxia-induced alterations of G2 checkpoint regulators. Mol Oncol. 2016;10:764-73 pubmed 出版商
  92. Kibe T, Zimmermann M, de Lange T. TPP1 Blocks an ATR-Mediated Resection Mechanism at Telomeres. Mol Cell. 2016;61:236-46 pubmed 出版商
  93. Hoang Minh L, Deleyrolle L, Siebzehnrubl D, Ugartemendia G, Futch H, Griffith B, et al. Disruption of KIF3A in patient-derived glioblastoma cells: effects on ciliogenesis, hedgehog sensitivity, and tumorigenesis. Oncotarget. 2016;7:7029-43 pubmed 出版商
  94. Hérate C, Ramdani G, Grant N, Marion S, Gasman S, Niedergang F, et al. Phospholipid Scramblase 1 Modulates FcR-Mediated Phagocytosis in Differentiated Macrophages. PLoS ONE. 2016;11:e0145617 pubmed 出版商
  95. Zhou H, Wang T, Zheng T, Teng J, Chen J. Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1-Mad2. Nat Commun. 2016;7:10151 pubmed 出版商
  96. Drusenheimer N, Migdal B, Jäckel S, Tveriakhina L, Scheider K, Schulz K, et al. The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling. PLoS Genet. 2015;11:e1005749 pubmed 出版商
  97. Toya M, Kobayashi S, Kawasaki M, Shioi G, Kaneko M, Ishiuchi T, et al. CAMSAP3 orients the apical-to-basal polarity of microtubule arrays in epithelial cells. Proc Natl Acad Sci U S A. 2016;113:332-7 pubmed 出版商
  98. Acevedo Acevedo S, Crone W. Substrate stiffness effect and chromosome missegregation in hIPS cells. J Negat Results Biomed. 2015;14:22 pubmed 出版商
  99. Farina F, Gaillard J, Guérin C, Couté Y, Sillibourne J, Blanchoin L, et al. The centrosome is an actin-organizing centre. Nat Cell Biol. 2016;18:65-75 pubmed 出版商
  100. Brown K, Selfridge J, Lagger S, Connelly J, De Sousa D, Kerr A, et al. The molecular basis of variable phenotypic severity among common missense mutations causing Rett syndrome. Hum Mol Genet. 2016;25:558-70 pubmed 出版商
  101. Tollenaere M, Villumsen B, Blasius M, Nielsen J, Wagner S, Bartek J, et al. p38- and MK2-dependent signalling promotes stress-induced centriolar satellite remodelling via 14-3-3-dependent sequestration of CEP131/AZI1. Nat Commun. 2015;6:10075 pubmed 出版商
  102. Gulsen T, Hadjicosti I, Li Y, Zhang X, Whitley P, Chalmers A. Truncated RASSF7 promotes centrosomal defects and cell death. Dev Biol. 2016;409:502-17 pubmed 出版商
  103. Suárez Zamorano N, Fabbiano S, Chevalier C, Stojanović O, Colin D, Stevanović A, et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med. 2015;21:1497-1501 pubmed 出版商
  104. He Q, Liu K, Tian Z, Du S. The Effects of Hsp90α1 Mutations on Myosin Thick Filament Organization. PLoS ONE. 2015;10:e0142573 pubmed 出版商
  105. Gazea M, Tasouri E, Tolve M, Bosch V, Kabanova A, Gojak C, et al. Primary cilia are critical for Sonic hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain. Dev Biol. 2016;409:55-71 pubmed 出版商
  106. Fuchs M, Luthold C, Guilbert S, Varlet A, Lambert H, Jetté A, et al. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis. PLoS Genet. 2015;11:e1005582 pubmed 出版商
  107. Tarayrah L, Li Y, Gan Q, Chen X. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity. Biol Open. 2015;4:1518-27 pubmed 出版商
  108. Magron A, Elowe S, Carreau M. The Fanconi Anemia C Protein Binds to and Regulates Stathmin-1 Phosphorylation. PLoS ONE. 2015;10:e0140612 pubmed 出版商
  109. Arya P, Rainey M, Bhattacharyya S, Mohapatra B, George M, Kuracha M, et al. The endocytic recycling regulatory protein EHD1 Is required for ocular lens development. Dev Biol. 2015;408:41-55 pubmed 出版商
  110. Ortega Atienza S, Wong V, Deloughery Z, Luczak M, Zhitkovich A. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage. Nucleic Acids Res. 2016;44:198-209 pubmed 出版商
  111. Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, et al. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene. 2016;35:2893-901 pubmed 出版商
  112. Stephen L, Tawamie H, Davis G, Tebbe L, Nurnberg P, Nurnberg G, et al. TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23). elife. 2015;4: pubmed 出版商
  113. Schnerch D, Nigg E. Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene. 2016;35:2711-22 pubmed 出版商
  114. Van de Mark D, Kong D, Loncarek J, Stearns T. MDM1 is a microtubule-binding protein that negatively regulates centriole duplication. Mol Biol Cell. 2015;26:3788-802 pubmed 出版商
  115. Lai F, Gardini A, Zhang A, Shiekhattar R. Integrator mediates the biogenesis of enhancer RNAs. Nature. 2015;525:399-403 pubmed 出版商
  116. Hu S, Lu Y, Orr B, Godek K, Mustachio L, Kawakami M, et al. Specific CP110 Phosphorylation Sites Mediate Anaphase Catastrophe after CDK2 Inhibition: Evidence for Cooperation with USP33 Knockdown. Mol Cancer Ther. 2015;14:2576-85 pubmed 出版商
  117. Kim S, Lee K, Choi J, Ringstad N, Dynlacht B. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat Commun. 2015;6:8087 pubmed 出版商
  118. Sun D, Buttitta L. Protein phosphatase 2A promotes the transition to G0 during terminal differentiation in Drosophila. Development. 2015;142:3033-45 pubmed 出版商
  119. Wong F, Fei J, Mora Bermúdez F, Taverna E, Haffner C, Fu J, et al. Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex. PLoS Biol. 2015;13:e1002217 pubmed 出版商
  120. He S, Zhao Z, Yang Y, O Connell D, Zhang X, Oh S, et al. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers. Nat Commun. 2015;6:7839 pubmed 出版商
  121. Chen C, Tian F, Lu L, Wang Y, Xiao Z, Yu C, et al. Characterization of Cep85 - a new antagonist of Nek2A that is involved in the regulation of centrosome disjunction. J Cell Sci. 2015;128:3290-303 pubmed 出版商
  122. DubiÅ„ska Magiera M, Chmielewska M, KozioÅ‚ K, Machowska M, Hutchison C, Goldberg M, et al. Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability. Protoplasma. 2016;253:943-56 pubmed 出版商
  123. Restall I, Parolin D, Daneshmand M, Hanson J, Simard M, Fitzpatrick M, et al. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma. Cell Cycle. 2015;14:2938-48 pubmed 出版商
  124. Rujano M, Basto R, Marthiens V. New insights into centrosome imaging in Drosophila and mouse neuroepithelial tissues. Methods Cell Biol. 2015;129:211-227 pubmed 出版商
  125. Patrick P, Price T, Diogo A, Sheibani N, Banks W, Shah G. Topiramate Protects Pericytes from Glucotoxicity: Role for Mitochondrial CA VA in Cerebromicrovascular Disease in Diabetes. J Endocrinol Diabetes. 2015;2: pubmed
  126. Kontro H, Cannino G, Rustin P, Dufour E, Kainulainen H. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells. PLoS ONE. 2015;10:e0131990 pubmed 出版商
  127. Pitari M, Rossi M, Amodio N, Botta C, Morelli E, Federico C, et al. Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts. Oncotarget. 2015;6:27343-58 pubmed 出版商
  128. Tattikota S, Rathjen T, Hausser J, Khedkar A, Kabra U, Pandey V, et al. miR-184 Regulates Pancreatic β-Cell Function According to Glucose Metabolism. J Biol Chem. 2015;290:20284-94 pubmed 出版商
  129. Clift D, Schuh M. A three-step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes. Nat Commun. 2015;6:7217 pubmed 出版商
  130. Burgess S, Peset I, Joseph N, Cavazza T, Vernos I, Pfuhl M, et al. Aurora-A-Dependent Control of TACC3 Influences the Rate of Mitotic Spindle Assembly. PLoS Genet. 2015;11:e1005345 pubmed 出版商
  131. Hayashi M, Cesare A, Rivera T, Karlseder J. Cell death during crisis is mediated by mitotic telomere deprotection. Nature. 2015;522:492-6 pubmed 出版商
  132. Romano S, Xiao Y, Nakaya M, D Angelillo A, Chang M, Jin J, et al. FKBP51 employs both scaffold and isomerase functions to promote NF-κB activation in melanoma. Nucleic Acids Res. 2015;43:6983-93 pubmed 出版商
  133. Woodcroft M, Nanan K, Thompson P, Tyryshkin K, Smith S, Slany R, et al. Retrovirus-Mediated Expression of E2A-PBX1 Blocks Lymphoid Fate but Permits Retention of Myeloid Potential in Early Hematopoietic Progenitors. PLoS ONE. 2015;10:e0130495 pubmed 出版商
  134. Götze S, Schumacher E, Kordes C, Häussinger D. Epigenetic Changes during Hepatic Stellate Cell Activation. PLoS ONE. 2015;10:e0128745 pubmed 出版商
  135. Barr A, Bakal C. A sensitised RNAi screen reveals a ch-TOG genetic interaction network required for spindle assembly. Sci Rep. 2015;5:10564 pubmed 出版商
  136. Dennis M, Mantegazza A, Snir O, Tenza D, Acosta Ruiz A, Delevoye C, et al. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery. J Cell Biol. 2015;209:563-77 pubmed 出版商
  137. Palla A, Piazzolla D, Alcazar N, Cañamero M, Graña O, Gómez López G, et al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Sci Rep. 2015;5:10205 pubmed 出版商
  138. Reales E, Bernabé Rubio M, Casares Arias J, Rentero C, Fernández Barrera J, Rangel L, et al. The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci. 2015;128:2261-70 pubmed 出版商
  139. Prosser S, Sahota N, Pelletier L, Morrison C, Fry A. Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis. J Cell Biol. 2015;209:339-48 pubmed 出版商
  140. Ohira M, Iwasaki Y, Tanaka C, Kuroki M, Matsuo N, Kitamura T, et al. A novel anti-microtubule agent with carbazole and benzohydrazide structures suppresses tumor cell growth in vivo. Biochim Biophys Acta. 2015;1850:1676-84 pubmed 出版商
  141. Qi S, Wang Z, Huang L, Liang L, Xian Y, Ouyang Y, et al. Casein kinase 1 (α, δ and ε) localize at the spindle poles, but may not be essential for mammalian oocyte meiotic progression. Cell Cycle. 2015;14:1675-85 pubmed 出版商
  142. Shen W, Liang X, Sun H, Crooke S. 2'-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Res. 2015;43:4569-78 pubmed 出版商
  143. Vladar E, Lee Y, Stearns T, Axelrod J. Observing planar cell polarity in multiciliated mouse airway epithelial cells. Methods Cell Biol. 2015;127:37-54 pubmed 出版商
  144. Batenburg N, Thompson E, Hendrickson E, Zhu X. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation. EMBO J. 2015;34:1399-416 pubmed 出版商
  145. Boersma V, Moatti N, Segura Bayona S, Peuscher M, van der Torre J, Wevers B, et al. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5' end resection. Nature. 2015;521:537-540 pubmed 出版商
  146. Balboula A, Stein P, Schultz R, Schindler K. RBBP4 regulates histone deacetylation and bipolar spindle assembly during oocyte maturation in the mouse. Biol Reprod. 2015;92:105 pubmed 出版商
  147. Stellas D, Souliotis V, Bekyrou M, Smirlis D, Kirsch Volders M, Degrassi F, et al. Benzo[a]pyrene-induced cell cycle arrest in HepG2 cells is associated with delayed induction of mitotic instability. Mutat Res. 2014;769:59-68 pubmed 出版商
  148. Liu C, Tan F, Xiao Z, Dawe G. Amyloid precursor protein enhances Nav1.6 sodium channel cell surface expression. J Biol Chem. 2015;290:12048-57 pubmed 出版商
  149. Zhang L, Li W, Ni J, Wu J, Liu J, Zhang Z, et al. RC/BTB2 is essential for formation of primary cilia in mammalian cells. Cytoskeleton (Hoboken). 2015;72:171-81 pubmed 出版商
  150. Jeanne M, Jorgensen J, Gould D. Molecular and Genetic Analyses of Collagen Type IV Mutant Mouse Models of Spontaneous Intracerebral Hemorrhage Identify Mechanisms for Stroke Prevention. Circulation. 2015;131:1555-65 pubmed 出版商
  151. Prosser S, Morrison C. Centrin2 regulates CP110 removal in primary cilium formation. J Cell Biol. 2015;208:693-701 pubmed 出版商
  152. Grego Bessa J, Hildebrand J, Anderson K. Morphogenesis of the mouse neural plate depends on distinct roles of cofilin 1 in apical and basal epithelial domains. Development. 2015;142:1305-14 pubmed 出版商
  153. Arbeille E, Reynaud F, Sanyas I, Bozon M, Kindbeiter K, Causeret F, et al. Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat Commun. 2015;6:6366 pubmed 出版商
  154. Gee H, Kim J, Lee M. Analysis of conventional and unconventional trafficking of CFTR and other membrane proteins. Methods Mol Biol. 2015;1270:137-54 pubmed 出版商
  155. Kratz A, Bärenz F, Richter K, Hoffmann I. Plk4-dependent phosphorylation of STIL is required for centriole duplication. Biol Open. 2015;4:370-7 pubmed 出版商
  156. Marsolier J, Perichon M, Debarry J, Villoutreix B, Chluba J, Lopez T, et al. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation. Nature. 2015;520:378-82 pubmed 出版商
  157. Bangs F, Schrode N, Hadjantonakis A, Anderson K. Lineage specificity of primary cilia in the mouse embryo. Nat Cell Biol. 2015;17:113-22 pubmed 出版商
  158. Chiappetta G, Valentino T, Vitiello M, Pasquinelli R, Monaco M, Palma G, et al. PATZ1 acts as a tumor suppressor in thyroid cancer via targeting p53-dependent genes involved in EMT and cell migration. Oncotarget. 2015;6:5310-23 pubmed
  159. Ochi T, Blackford A, Coates J, Jhujh S, Mehmood S, Tamura N, et al. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science. 2015;347:185-188 pubmed 出版商
  160. Valianou M, Cox A, Pichette B, Hartley S, Paladhi U, Astrinidis A. Pharmacological inhibition of Polo-like kinase 1 (PLK1) by BI-2536 decreases the viability and survival of hamartin and tuberin deficient cells via induction of apoptosis and attenuation of autophagy. Cell Cycle. 2015;14:399-407 pubmed 出版商
  161. Fuentes E, Forero Doria O, Alarcón M, Palomo I. Inhibitory effects of Cyperus digitatus extract on human platelet function in vitro. Platelets. 2015;26:764-70 pubmed 出版商
  162. Shibata H, Kanadome T, Sugiura H, Yokoyama T, Yamamuro M, Moss S, et al. A new role for annexin A11 in the early secretory pathway via stabilizing Sec31A protein at the endoplasmic reticulum exit sites (ERES). J Biol Chem. 2015;290:4981-93 pubmed 出版商
  163. Fuentes E, Alarcón M, Fuentes M, Carrasco G, Palomo I. A novel role of Eruca sativa Mill. (rocket) extract: antiplatelet (NF-κB inhibition) and antithrombotic activities. Nutrients. 2014;6:5839-52 pubmed 出版商
  164. Pagan J, Marzio A, Jones M, Saraf A, Jallepalli P, Florens L, et al. Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing. Nat Cell Biol. 2015;17:31-43 pubmed 出版商
  165. Rao Y, Hao R, Wang B, Yao T. A Mec17-Myosin II Effector Axis Coordinates Microtubule Acetylation and Actin Dynamics to Control Primary Cilium Biogenesis. PLoS ONE. 2014;9:e114087 pubmed 出版商
  166. Hoon J, Li H, Koh C. POPX2 phosphatase regulates cell polarity and centrosome placement. Cell Cycle. 2014;13:2459-68 pubmed 出版商
  167. Zou J, Zhang D, Qin G, Chen X, Wang H, Zhang D. BRCA1 and FancJ cooperatively promote interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1. Cell Cycle. 2014;13:3685-97 pubmed 出版商
  168. Pekkonen P, Järviluoma A, Zinovkina N, Cvrljevic A, Prakash S, Westermarck J, et al. KSHV viral cyclin interferes with T-cell development and induces lymphoma through Cdk6 and Notch activation in vivo. Cell Cycle. 2014;13:3670-84 pubmed 出版商
  169. Colbert P, Vermeer D, Wieking B, Lee J, Vermeer P. EphrinB1: novel microtubule associated protein whose expression affects taxane sensitivity. Oncotarget. 2015;6:953-68 pubmed
  170. Umberger N, Caspary T. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity. Mol Biol Cell. 2015;26:350-8 pubmed 出版商
  171. Cai Y, Fedeles S, Dong K, Anyatonwu G, Onoe T, Mitobe M, et al. Altered trafficking and stability of polycystins underlie polycystic kidney disease. J Clin Invest. 2014;124:5129-44 pubmed 出版商
  172. Liang Y, Gao H, Lin S, Goss J, Du C, Li K. Mcph1/Brit1 deficiency promotes genomic instability and tumor formation in a mouse model. Oncogene. 2015;34:4368-78 pubmed 出版商
  173. Olmsted Z, Colliver A, Riehlman T, Paluh J. Kinesin-14 and kinesin-5 antagonistically regulate microtubule nucleation by γ-TuRC in yeast and human cells. Nat Commun. 2014;5:5339 pubmed 出版商
  174. Miyamoto Y, Mauer A, Kumar S, Mott J, Malhi H. Mmu-miR-615-3p regulates lipoapoptosis by inhibiting C/EBP homologous protein. PLoS ONE. 2014;9:e109637 pubmed 出版商
  175. Kong D, Farmer V, Shukla A, James J, Gruskin R, Kiriyama S, et al. Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles. J Cell Biol. 2014;206:855-65 pubmed 出版商
  176. Menhofer M, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, et al. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res. 2014;104:303-14 pubmed 出版商
  177. Liu C, Lin C, Gao C, May Simera H, Swaroop A, Li T. Null and hypomorph Prickle1 alleles in mice phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a. Biol Open. 2014;3:861-70 pubmed 出版商
  178. Rosario C, Kazazian K, Zih F, Brashavitskaya O, Haffani Y, Xu R, et al. A novel role for Plk4 in regulating cell spreading and motility. Oncogene. 2015;34:3441-51 pubmed 出版商
  179. Brown J, Santra T, Owens P, Morrison A, Barry F. Primary cilium-associated genes mediate bone marrow stromal cell response to hypoxia. Stem Cell Res. 2014;13:284-99 pubmed 出版商
  180. Lee Y, Santé J, Comerci C, Cyge B, Menezes L, Li F, et al. Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface and facilitates proper cilium formation and function. Mol Biol Cell. 2014;25:2919-33 pubmed 出版商
  181. Izumi H, Kaneko Y. Trim32 facilitates degradation of MYCN on spindle poles and induces asymmetric cell division in human neuroblastoma cells. Cancer Res. 2014;74:5620-30 pubmed 出版商
  182. Lima W, Vickers T, Nichols J, Li C, Crooke S. Defining the factors that contribute to on-target specificity of antisense oligonucleotides. PLoS ONE. 2014;9:e101752 pubmed 出版商
  183. Booth A, Tarafder A, Hume A, Recchi C, Seabra M. A role for Na+,K+-ATPase ?1 in regulating Rab27a localisation on melanosomes. PLoS ONE. 2014;9:e102851 pubmed 出版商
  184. Kotak S, Busso C, GONCZY P. NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane. EMBO J. 2014;33:1815-30 pubmed 出版商
  185. Piazzolla D, Palla A, Pantoja C, Canamero M, de Castro I, Ortega S, et al. Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun. 2014;5:4226 pubmed 出版商
  186. Veleri S, Manjunath S, Fariss R, May Simera H, Brooks M, Foskett T, et al. Ciliopathy-associated gene Cc2d2a promotes assembly of subdistal appendages on the mother centriole during cilia biogenesis. Nat Commun. 2014;5:4207 pubmed 出版商
  187. Failler M, Gee H, Krug P, Joo K, Halbritter J, Belkacem L, et al. Mutations of CEP83 cause infantile nephronophthisis and intellectual disability. Am J Hum Genet. 2014;94:905-14 pubmed 出版商
  188. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  189. Johansson P, Jeffery J, Al Ejeh F, Schulz R, Callen D, Kumar R, et al. SCF-FBXO31 E3 ligase targets DNA replication factor Cdt1 for proteolysis in the G2 phase of cell cycle to prevent re-replication. J Biol Chem. 2014;289:18514-25 pubmed 出版商
  190. Dai H, Ye M, Peng M, Zhou W, Bai H, Xiao X, et al. Aptamer TY04 inhibits the growth of multiple myeloma cells via cell cycle arrest. Tumour Biol. 2014;35:7561-8 pubmed 出版商
  191. Kuo P, Huang Y, Hsieh C, Lee J, Lin B, Hung L. STK31 is a cell-cycle regulated protein that contributes to the tumorigenicity of epithelial cancer cells. PLoS ONE. 2014;9:e93303 pubmed 出版商
  192. Lee J, Hong W, Majeti R, Stearns T. Centrosome-kinase fusions promote oncogenic signaling and disrupt centrosome function in myeloproliferative neoplasms. PLoS ONE. 2014;9:e92641 pubmed 出版商
  193. Deneubourg L, Elong Edimo W, Moreau C, Vanderwinden J, Erneux C. Phosphorylated SHIP2 on Y1135 localizes at focal adhesions and at the mitotic spindle in cancer cell lines. Cell Signal. 2014;26:1193-203 pubmed 出版商
  194. Fang G, Zhang D, Yin H, Zheng L, Bi X, Yuan L. Centlein mediates an interaction between C-Nap1 and Cep68 to maintain centrosome cohesion. J Cell Sci. 2014;127:1631-9 pubmed 出版商
  195. Douthwright S, Sluder G. Link between DNA damage and centriole disengagement/reduplication in untransformed human cells. J Cell Physiol. 2014;229:1427-36 pubmed 出版商
  196. Davidson L, Muniz L, West S. 3' end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells. Genes Dev. 2014;28:342-56 pubmed 出版商
  197. Facciuto F, Bugnon Valdano M, Marziali F, Massimi P, Banks L, Cavatorta A, et al. Human papillomavirus (HPV)-18 E6 oncoprotein interferes with the epithelial cell polarity Par3 protein. Mol Oncol. 2014;8:533-43 pubmed 出版商
  198. Cheng Y, Holloway M, Nguyen K, McCauley D, Landesman Y, Kauffman M, et al. XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple-negative breast cancer. Mol Cancer Ther. 2014;13:675-86 pubmed 出版商
  199. Polling S, Mok Y, Ramdzan Y, Turner B, Yerbury J, Hill A, et al. Misfolded polyglutamine, polyalanine, and superoxide dismutase 1 aggregate via distinct pathways in the cell. J Biol Chem. 2014;289:6669-80 pubmed 出版商
  200. O Sullivan R, Arnoult N, Lackner D, Oganesian L, Haggblom C, Corpet A, et al. Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. Nat Struct Mol Biol. 2014;21:167-74 pubmed 出版商
  201. Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, et al. Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-? signaling. J Biol Chem. 2014;289:2072-83 pubmed 出版商
  202. Nachbar J, Lázaro Diéguez F, Prekeris R, Cohen D, Müsch A. KIFC3 promotes mitotic progression and integrity of the central spindle in cytokinesis. Cell Cycle. 2014;13:426-33 pubmed 出版商
  203. Lewis S, Hedman C, Ziegler T, Ricke W, Jorgensen J. Steroidogenic factor 1 promotes aggressive growth of castration-resistant prostate cancer cells by stimulating steroid synthesis and cell proliferation. Endocrinology. 2014;155:358-69 pubmed 出版商
  204. Hashizume C, Kobayashi A, Wong R. Down-modulation of nucleoporin RanBP2/Nup358 impaired chromosomal alignment and induced mitotic catastrophe. Cell Death Dis. 2013;4:e854 pubmed 出版商
  205. Hashizume C, Moyori A, Kobayashi A, Yamakoshi N, Endo A, Wong R. Nucleoporin Nup62 maintains centrosome homeostasis. Cell Cycle. 2013;12:3804-16 pubmed 出版商
  206. Zhang Y, Seo S, Bhattarai S, Bugge K, Searby C, Zhang Q, et al. BBS mutations modify phenotypic expression of CEP290-related ciliopathies. Hum Mol Genet. 2014;23:40-51 pubmed 出版商
  207. Dai J, Brooks Y, Lefort K, Getsios S, Dotto G. The retinoid-related orphan receptor ROR? promotes keratinocyte differentiation via FOXN1. PLoS ONE. 2013;8:e70392 pubmed 出版商
  208. Boutros R, Mondesert O, Lorenzo C, Astuti P, McArthur G, Chircop M, et al. CDC25B overexpression stabilises centrin 2 and promotes the formation of excess centriolar foci. PLoS ONE. 2013;8:e67822 pubmed 出版商
  209. Willaredt M, Gorgas K, Gardner H, Tucker K. Multiple essential roles for primary cilia in heart development. Cilia. 2012;1:23 pubmed 出版商
  210. Koreishi M, Yu S, Oda M, Honjo Y, Satoh A. CK2 phosphorylates Sec31 and regulates ER-To-Golgi trafficking. PLoS ONE. 2013;8:e54382 pubmed 出版商
  211. Wang Y, Dantas T, Lalor P, Dockery P, Morrison C. Promoter hijack reveals pericentrin functions in mitosis and the DNA damage response. Cell Cycle. 2013;12:635-46 pubmed 出版商
  212. Zimmermann M, Lottersberger F, Buonomo S, Sfeir A, de Lange T. 53BP1 regulates DSB repair using Rif1 to control 5' end resection. Science. 2013;339:700-4 pubmed 出版商
  213. Jullien L, Mestre M, Roux P, Gire V. Eroded human telomeres are more prone to remain uncapped and to trigger a G2 checkpoint response. Nucleic Acids Res. 2013;41:900-11 pubmed 出版商
  214. Conroy P, Saladino C, Dantas T, Lalor P, Dockery P, Morrison C. C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis. Cell Cycle. 2012;11:3769-78 pubmed 出版商
  215. Pakala S, Nair V, Reddy S, Kumar R. Signaling-dependent phosphorylation of mitotic centromere-associated kinesin regulates microtubule depolymerization and its centrosomal localization. J Biol Chem. 2012;287:40560-9 pubmed 出版商
  216. Ma M, Chircop M. SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis. J Cell Sci. 2012;125:4372-82 pubmed 出版商
  217. Reboutier D, Troadec M, Cremet J, Fukasawa K, Prigent C. Nucleophosmin/B23 activates Aurora A at the centrosome through phosphorylation of serine 89. J Cell Biol. 2012;197:19-26 pubmed 出版商
  218. Chen Y, Fang S, Yeh P, Yang H, Chen S, Chang C, et al. The C-terminus of PARK2 is required for its self-interaction, solubility and role in the spindle assembly checkpoint. Biochim Biophys Acta. 2012;1822:573-80 pubmed 出版商
  219. Yang G, Chang B, Yang F, Guo X, Cai K, Xiao X, et al. Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clin Cancer Res. 2010;16:3171-81 pubmed 出版商