这是一篇来自已证抗体库的有关人类 糖皮质激素受体 (glucocorticoid receptor) 的综述,是根据68篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合糖皮质激素受体 抗体。
糖皮质激素受体 同义词: GCCR; GCR; GCRST; GR; GRL

赛默飞世尔
小鼠 单克隆(BuGR2)
  • 免疫组化基因敲除验证; 小鼠; 1:500; 图 s1d
  • 免疫组化; 小鼠; 1:500; 图 s1e
赛默飞世尔糖皮质激素受体抗体(Thermo Fisher, MA1-510)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:500 (图 s1d) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 s1e). iScience (2022) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1a, 7b
赛默飞世尔糖皮质激素受体抗体(Thermo Fisher, PA1-511A)被用于被用于ChIP-Seq在小鼠样本上 (图 1a, 7b). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4d
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, PA1-511A)被用于被用于染色质免疫沉淀 在人类样本上 (图 4d). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1
赛默飞世尔糖皮质激素受体抗体(Thermo Fischer Scientific, PA1-511A)被用于被用于ChIP-Seq在小鼠样本上 (图 1). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 2
赛默飞世尔糖皮质激素受体抗体(ThermoFischer, PA3-514)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 2
赛默飞世尔糖皮质激素受体抗体(ThermoFischer, PA1-516)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 s1a
赛默飞世尔糖皮质激素受体抗体(ThermoFisher, PA1-511A)被用于被用于ChIP-Seq在小鼠样本上 (图 s1a). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 2a
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, PA1-511A)被用于被用于ChIP-Seq在小鼠样本上 (图 2a). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(BuGR2)
  • 免疫组化-冰冻切片; 大鼠; 图 4a
赛默飞世尔糖皮质激素受体抗体(ThermoFisher Scientific, MA1-510)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4a). J Dent Res (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 5a
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, PA1-511A)被用于被用于ChIP-Seq在小鼠样本上 (图 5a). Nat Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔糖皮质激素受体抗体(Affinity BioReagents, PA1 511A)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Eur J Nutr (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:750; 图 8a
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, PA5-17668)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 8a). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(BuGR2)
  • 免疫印迹; 小鼠; 1:6000; 图 3
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, MA1-510)被用于被用于免疫印迹在小鼠样本上浓度为1:6000 (图 3). Neurosci Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1 ug/ml; 图 2
赛默飞世尔糖皮质激素受体抗体(Thermo, PA1-516)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 2). Hum Mutat (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, PA5-17668)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(BuGR2)
  • 染色质免疫沉淀 ; 小鼠; 图 1d
  • 免疫印迹; 小鼠; 图 s3c
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, MA1-510)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 s3c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 1d
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, PA1-511A)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, PA1-516)被用于被用于免疫细胞化学在人类样本上 (图 4). Respir Res (2016) ncbi
小鼠 单克隆(BuGR2)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔糖皮质激素受体抗体(Thermo Fisher Scientific, MA1-510)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Manag Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, PA1-511A)被用于. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(BuGR2)
  • 染色质免疫沉淀 ; 大鼠; 图 2
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, MA1-510)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 2). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔糖皮质激素受体抗体(ThermoFisher Scientific, PA1-511A)被用于被用于免疫印迹在大鼠样本上 (图 3). Stress (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2
赛默飞世尔糖皮质激素受体抗体(Pierce Antibodies, PA3- 514)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2). J Steroid Biochem Mol Biol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, PA1-511A)被用于. Exp Neurol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔糖皮质激素受体抗体(Pierce, PA1-511A)被用于. Genome Res (2015) ncbi
小鼠 单克隆(5E4)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, 5E4 MA1-81793)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Pediatr Crit Care Med (2015) ncbi
小鼠 单克隆(BuGR2)
  • 染色质免疫沉淀 ; 小鼠
赛默飞世尔糖皮质激素受体抗体(ABR, MA1-510)被用于被用于染色质免疫沉淀 在小鼠样本上. Genome Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔糖皮质激素受体抗体(ABR, PA1-511A)被用于. Genome Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔糖皮质激素受体抗体(Affinity BioReagents, PA1-511A)被用于. Hormones (Athens) (2015) ncbi
小鼠 单克隆(BuGR2)
  • 免疫组化; 家羊; 1:50
  • 免疫印迹; 家羊; 1:1000
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, MA1-510)被用于被用于免疫组化在家羊样本上浓度为1:50 和 被用于免疫印迹在家羊样本上浓度为1:1000. Reprod Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, PA3-514)被用于. Reprod Sci (2015) ncbi
小鼠 单克隆(BuGR2)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔糖皮质激素受体抗体(Pierce, MA1-510)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Brain Behav Immun (2014) ncbi
小鼠 单克隆(BuGR2)
  • 染色质免疫沉淀 ; 人类
  • 染色质免疫沉淀 ; 大鼠
赛默飞世尔糖皮质激素受体抗体(Thermo Scientific, MA1-510)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于染色质免疫沉淀 在大鼠样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(BuGR2)
  • 免疫印迹; 人类; 图 1d
  • 免疫印迹; 大鼠
赛默飞世尔糖皮质激素受体抗体(Affinity BioReagents, MA1-510)被用于被用于免疫印迹在人类样本上 (图 1d) 和 被用于免疫印迹在大鼠样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(BuGR2)
  • 染色质免疫沉淀 ; 小鼠
赛默飞世尔糖皮质激素受体抗体(ABR, MA1-510)被用于被用于染色质免疫沉淀 在小鼠样本上. EMBO J (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-5)
  • 免疫细胞化学; 人类; 图 3d
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术糖皮质激素受体抗体(Santa Cruz, sc-393232)被用于被用于免疫细胞化学在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 3e). Front Pharmacol (2022) ncbi
小鼠 单克隆(G-5)
  • 免疫细胞化学; 人类; 图 s6d
圣克鲁斯生物技术糖皮质激素受体抗体(Santa Cruz, sc-393232)被用于被用于免疫细胞化学在人类样本上 (图 s6d). Cell Rep (2022) ncbi
小鼠 单克隆(G-5)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5c
  • 免疫印迹; 小鼠; 图 s8
圣克鲁斯生物技术糖皮质激素受体抗体(Santa Cruz, sc-393232)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 s8). J Biol Chem (2022) ncbi
小鼠 单克隆(F-10)
  • proximity ligation assay; 小鼠; 图 5a
圣克鲁斯生物技术糖皮质激素受体抗体(Santa Cruz, sc-376426)被用于被用于proximity ligation assay在小鼠样本上 (图 5a). J Biol Chem (2022) ncbi
小鼠 单克隆(G-5)
  • 染色质免疫沉淀 ; 小鼠; 图 1b
圣克鲁斯生物技术糖皮质激素受体抗体(Santa Cruz, sc-393232)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1b). J Biol Chem (2021) ncbi
小鼠 单克隆(G-5)
  • 免疫沉淀; 小鼠; 图 1f
  • 免疫组化; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 图 1f
圣克鲁斯生物技术糖皮质激素受体抗体(Santa Cruz, sc-393232)被用于被用于免疫沉淀在小鼠样本上 (图 1f), 被用于免疫组化在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 1f). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术糖皮质激素受体抗体(Santa Cruz, sc-393232)被用于被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2017) ncbi
小鼠 单克隆(41)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术糖皮质激素受体抗体(Santa Cruz Biotechnology, sc-136209)被用于被用于免疫印迹在人类样本上 (图 1). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(3D5)
  • 染色质免疫沉淀 ; 人类; 图 4
圣克鲁斯生物技术糖皮质激素受体抗体(Santa Cruz, sc-56851)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Mol Cells (2016) ncbi
小鼠 单克隆(41)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术糖皮质激素受体抗体(Santa Cruz, sc-136209)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 小鼠; 1:100
圣克鲁斯生物技术糖皮质激素受体抗体(Santa Cruz, sc-376425)被用于被用于免疫印迹在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(BuGR2)
  • 免疫组化; 大鼠; 1:1500; 图 5e
艾博抗(上海)贸易有限公司糖皮质激素受体抗体(Abcam, ab2768)被用于被用于免疫组化在大鼠样本上浓度为1:1500 (图 5e). Front Behav Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 6d
艾博抗(上海)贸易有限公司糖皮质激素受体抗体(Abcam, ab3580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 核糖核酸免疫沉淀; 人类; 图 3c
  • 免疫沉淀; 人类; 图 5a
  • 免疫印迹; 人类; 图 1f
艾博抗(上海)贸易有限公司糖皮质激素受体抗体(Abcam, ab3579)被用于被用于核糖核酸免疫沉淀在人类样本上 (图 3c), 被用于免疫沉淀在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 1f). Genes Dev (2016) ncbi
小鼠 单克隆(BuGR2)
  • 免疫印迹; 大鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司糖皮质激素受体抗体(Abcam, AB2768)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 3). Neuromodulation (2016) ncbi
小鼠 单克隆(BuGR2)
  • 免疫印迹; 大鼠; 1:2000; 图 8a
艾博抗(上海)贸易有限公司糖皮质激素受体抗体(Abcam, ab2768)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 8a). PLoS ONE (2015) ncbi
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司糖皮质激素受体抗体(Abcam, ab55189)被用于被用于免疫印迹在人类样本上浓度为1:500. Hormones (Athens) (2015) ncbi
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司糖皮质激素受体抗体(Abcam, ab55189)被用于被用于染色质免疫沉淀 在小鼠样本上. Mol Cell Biol (2014) ncbi
Novus Biologicals
小鼠 单克隆(BuGR2)
  • 免疫印迹; 小鼠; 1:1000; 图 s12c
Novus Biologicals糖皮质激素受体抗体(Novus Biologicals, NB300-731)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s12c). J Clin Invest (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3e
  • 免疫印迹; 大鼠; 图 2d
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling, 4161)被用于被用于免疫印迹在人类样本上 (图 3e) 和 被用于免疫印迹在大鼠样本上 (图 2d). Front Pharmacol (2022) ncbi
domestic rabbit 单克隆(D8H2)
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(CST, 3660)被用于. J Neuroendocrinol (2022) ncbi
domestic rabbit 单克隆(D6H2L)
  • 免疫印迹基因敲除验证; 人类; 图 2c
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling, 12041)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 2c). Sci Adv (2022) ncbi
domestic rabbit 单克隆(D6H2L)
  • 免疫细胞化学基因敲除验证; 人类; 1:50; 图 s6a
  • 染色质免疫沉淀 ; 人类; 图 5b
  • 免疫细胞化学; 人类; 1:50; 图 3g, 5a, s2a, s7c
  • 免疫印迹; 人类; 1:1000; 图 1a, s2e
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signalling Technology, D6H2L)被用于被用于免疫细胞化学基因敲除验证在人类样本上浓度为1:50 (图 s6a), 被用于染色质免疫沉淀 在人类样本上 (图 5b), 被用于免疫细胞化学在人类样本上浓度为1:50 (图 3g, 5a, s2a, s7c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, s2e). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 11e
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(CST, 4161S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 11e). Int J Mol Med (2021) ncbi
domestic rabbit 单克隆(D8H2)
  • 免疫印迹; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(CST, 3660)被用于被用于免疫印迹在小鼠样本上 (图 2h). Aging Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 6e
  • 免疫印迹; 大鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(CST, 4161)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 6e) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3e). Front Behav Neurosci (2020) ncbi
domestic rabbit 单克隆(D6H2L)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1b
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling, D6H2L)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1b). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(D6H2L)
  • 免疫组化-石蜡切片; 人类; 1:600; 图 5d
  • 染色质免疫沉淀 ; 人类; 图 4g
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling, 12041)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600 (图 5d) 和 被用于染色质免疫沉淀 在人类样本上 (图 4g). elife (2019) ncbi
domestic rabbit 单克隆(D8H2)
  • 免疫印迹; 人类; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling Technology, 3660S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). Eneuro (2019) ncbi
domestic rabbit 单克隆(D8H2)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(CST, 3660)被用于被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(D6H2L)
  • 染色质免疫沉淀 ; 人类; 图 4d
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling, D6H2L)被用于被用于染色质免疫沉淀 在人类样本上 (图 4d). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling, 4161)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Exp Mol Med (2017) ncbi
domestic rabbit 单克隆(D8H2)
  • 染色质免疫沉淀 ; 人类; 图 5b
  • 染色质免疫沉淀 ; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling, 3660)被用于被用于染色质免疫沉淀 在人类样本上 (图 5b) 和 被用于染色质免疫沉淀 在小鼠样本上 (图 5a). Toxicology (2017) ncbi
domestic rabbit 单克隆(D6H2L)
  • 免疫沉淀; 小鼠
  • 免疫细胞化学; 小鼠; 1:200; 图 5b
  • 免疫印迹; 小鼠; 图 3a
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling, D6H2L)被用于被用于免疫沉淀在小鼠样本上, 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5b), 被用于免疫印迹在小鼠样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D8H2)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling, 3660)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Cell Mol Life Sci (2016) ncbi
domestic rabbit 单克隆(D6H2L)
  • 免疫印迹; 人类; 1:2000; 图 5
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling Technology, 12041)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D8H2)
  • 免疫组化-石蜡切片; 人类; 图 1
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling Technology, 3660S)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Cancer Manag Res (2015) ncbi
domestic rabbit 单克隆(D6H2L)
  • 免疫组化-石蜡切片; 人类; 图 1
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling Technology, 12041)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Cancer Manag Res (2015) ncbi
domestic rabbit 单克隆(D6H2L)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling, D6H2L)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Endocr Relat Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell signaling, 4161)被用于被用于免疫印迹在大鼠样本上 (图 3). Stress (2016) ncbi
domestic rabbit 单克隆(D6H2L)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell Signaling, 12041)被用于被用于染色质免疫沉淀 在小鼠样本上. J Clin Invest (2015) ncbi
domestic rabbit 单克隆(D8H2)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell signaling, 3660)被用于被用于免疫细胞化学在人类样本上 (图 s1). Oncogene (2016) ncbi
domestic rabbit 单克隆(D6H2L)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell signaling, 12041)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nature (2015) ncbi
domestic rabbit 单克隆(D8H2)
  • 免疫细胞化学; 小鼠; 1:100; 图 1d
赛信通(上海)生物试剂有限公司糖皮质激素受体抗体(Cell signaling, 3660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1d). EMBO Mol Med (2015) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 1b
西格玛奥德里奇糖皮质激素受体抗体(Sigma, SAB4501309)被用于被用于免疫组化在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1b). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇糖皮质激素受体抗体(Sigma, SAB4501309)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
碧迪BD
小鼠 单克隆(41/Glucocorticoid Receptor)
  • 免疫印迹; 人类; 1:1000; 图 7
碧迪BD糖皮质激素受体抗体(BD Biosciences, 611227)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Respir Res (2016) ncbi
小鼠 单克隆(41/Glucocorticoid Receptor)
  • 核糖核酸免疫沉淀; 人类; 图 3c
  • 免疫沉淀; 人类; 图 5a
  • 免疫印迹; 人类; 图 1f
碧迪BD糖皮质激素受体抗体(BD Biosciences, 611226)被用于被用于核糖核酸免疫沉淀在人类样本上 (图 3c), 被用于免疫沉淀在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 1f). Genes Dev (2016) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化; pigs
徕卡显微系统(上海)贸易有限公司糖皮质激素受体抗体(Novacastra, NCL-GCR)被用于被用于免疫组化在pigs 样本上. Tissue Eng Part A (2014) ncbi
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司糖皮质激素受体抗体(Leica Microsystems, NCL-GCR)被用于被用于免疫组化-石蜡切片在人类样本上. Appl Immunohistochem Mol Morphol (2014) ncbi
文章列表
  1. Song S, Jang W, Jang E, Kim O, Kim H, Son T, et al. Striatal miR-183-5p inhibits methamphetamine-induced locomotion by regulating glucocorticoid receptor signaling. Front Pharmacol. 2022;13:997701 pubmed 出版商
  2. Amaya J, Viho E, Sips H, Lalai R, Sahut Barnola I, Dumontet T, et al. Gene expression changes in the brain of a Cushing's syndrome mouse model. J Neuroendocrinol. 2022;34:e13125 pubmed 出版商
  3. Marchetta P, Eckert P, Lukowski R, Ruth P, Singer W, R xfc ttiger L, et al. Loss of central mineralocorticoid or glucocorticoid receptors impacts auditory nerve processing in the cochlea. iScience. 2022;25:103981 pubmed 出版商
  4. Nataraj N, Noronha A, Lee J, Ghosh S, Mohan Raju H, Sekar A, et al. Nucleoporin-93 reveals a common feature of aggressive breast cancers: robust nucleocytoplasmic transport of transcription factors. Cell Rep. 2022;38:110418 pubmed 出版商
  5. von M xe4 ssenhausen A, Zamora Gonzalez N, Maremonti F, Belavgeni A, Tonnus W, Meyer C, et al. Dexamethasone sensitizes to ferroptosis by glucocorticoid receptor-induced dipeptidase-1 expression and glutathione depletion. Sci Adv. 2022;8:eabl8920 pubmed 出版商
  6. Timmermans S, Verhoog N, Van Looveren K, Dewaele S, Hochepied T, Eggermont M, et al. Point mutation I634A in the glucocorticoid receptor causes embryonic lethality by reduced ligand binding. J Biol Chem. 2022;298:101574 pubmed 出版商
  7. Prekovic S, Schuurman K, Mayayo Peralta I, Manjón A, Buijs M, Yavuz S, et al. Glucocorticoid receptor triggers a reversible drug-tolerant dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nat Commun. 2021;12:4360 pubmed 出版商
  8. Lee B, Hong S, Kim M, Kim E, Park H, Jung H, et al. Lycii radicis cortex inhibits glucocorticoid‑induced bone loss by downregulating Runx2 and BMP‑2 expression. Int J Mol Med. 2021;48: pubmed 出版商
  9. Srivastava S, Zhou H, Setia O, Liu B, Kanasaki K, Koya D, et al. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nat Commun. 2021;12:2368 pubmed 出版商
  10. Chen T, Kuo T, Dandan M, Lee R, Chang M, Villivalam S, et al. The role of striated muscle Pik3r1 in glucose and protein metabolism following chronic glucocorticoid exposure. J Biol Chem. 2021;296:100395 pubmed 出版商
  11. Chen X, Xin N, Pan Y, Zhu L, Yin P, Liu Q, et al. Huntingtin-Associated Protein 1 in Mouse Hypothalamus Stabilizes Glucocorticoid Receptor in Stress Response. Front Cell Neurosci. 2020;14:125 pubmed 出版商
  12. Valbuena Perez J, Linnenberger R, Dembek A, Bruscoli S, Riccardi C, Schulz M, et al. Altered glucocorticoid metabolism represents a feature of macroph-aging. Aging Cell. 2020;19:e13156 pubmed 出版商
  13. Ponce Lina R, Serafin N, Carranza M, Aramburo C, Prado Alcalá R, Luna M, et al. Differential Phosphorylation of the Glucocorticoid Receptor in Hippocampal Subregions Induced by Contextual Fear Conditioning Training. Front Behav Neurosci. 2020;14:12 pubmed 出版商
  14. Ueki S, Fujishima F, Kumagai T, Ishida H, Okamoto H, Takaya K, et al. GR, Sgk1, and NDRG1 in esophageal squamous cell carcinoma: their correlation with therapeutic outcome of neoadjuvant chemotherapy. BMC Cancer. 2020;20:161 pubmed 出版商
  15. Palit S, Vis D, Stelloo S, Lieftink C, Prekovic S, Bekers E, et al. TLE3 loss confers AR inhibitor resistance by facilitating GR-mediated human prostate cancer cell growth. elife. 2019;8: pubmed 出版商
  16. Blair L, Criado Marrero M, Zheng D, Wang X, Kamath S, Nordhues B, et al. The Disease-Associated Chaperone FKBP51 Impairs Cognitive Function by Accelerating AMPA Receptor Recycling. Eneuro. 2019;6: pubmed 出版商
  17. Gennaro V, Wedegaertner H, McMahon S. Interaction between the BAG1S isoform and HSP70 mediates the stability of anti-apoptotic proteins and the survival of osteosarcoma cells expressing oncogenic MYC. BMC Cancer. 2019;19:258 pubmed 出版商
  18. Lee H, Willi M, Shin H, Liu C, Hennighausen L. Progressing super-enhancer landscape during mammary differentiation controls tissue-specific gene regulation. Nucleic Acids Res. 2018;46:10796-10809 pubmed 出版商
  19. Lee B, Stallcup M. Glucocorticoid receptor binding to chromatin is selectively controlled by the coregulator Hic-5 and chromatin remodeling enzymes. J Biol Chem. 2017;292:9320-9334 pubmed 出版商
  20. Trusca V, Fuior E, Fenyo I, Kardassis D, Simionescu M, Gafencu A. Differential action of glucocorticoids on apolipoprotein E gene expression in macrophages and hepatocytes. PLoS ONE. 2017;12:e0174078 pubmed 出版商
  21. Lee H, Willi M, Wang C, Yang C, Smith H, Liu C, et al. Functional assessment of CTCF sites at cytokine-sensing mammary enhancers using CRISPR/Cas9 gene editing in mice. Nucleic Acids Res. 2017;45:4606-4618 pubmed 出版商
  22. Bergström I, Lundberg A, Jonsson S, Särndahl E, Ernerudh J, Jonasson L. Annexin A1 in blood mononuclear cells from patients with coronary artery disease: Its association with inflammatory status and glucocorticoid sensitivity. PLoS ONE. 2017;12:e0174177 pubmed 出版商
  23. Shin S, Kim J, Lee J, Son Y, Lee M, Kim H, et al. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Exp Mol Med. 2017;49:e287 pubmed 出版商
  24. Vispute S, Bu P, Le Y, Cheng X. Activation of GR but not PXR by dexamethasone attenuated acetaminophen hepatotoxicities via Fgf21 induction. Toxicology. 2017;378:95-106 pubmed 出版商
  25. Zeng X, Willi M, Shin H, Hennighausen L, Wang C. Lineage-Specific and Non-specific Cytokine-Sensing Genes Respond Differentially to the Master Regulator STAT5. Cell Rep. 2016;17:3333-3346 pubmed 出版商
  26. Rimando M, Wu H, Liu Y, Lee C, Kuo S, Lo Y, et al. Glucocorticoid receptor and Histone deacetylase 6 mediate the differential effect of dexamethasone during osteogenesis of mesenchymal stromal cells (MSCs). Sci Rep. 2016;6:37371 pubmed 出版商
  27. Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldá A, et al. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res. 2016;17:145 pubmed
  28. Park O, Park J, Yu M, An H, Ko J, Kim Y. Identification and molecular characterization of cellular factors required for glucocorticoid receptor-mediated mRNA decay. Genes Dev. 2016;30:2093-2105 pubmed
  29. Rue L, Bañez Coronel M, Creus Muncunill J, Giralt A, Alcalá Vida R, Mentxaka G, et al. Targeting CAG repeat RNAs reduces Huntington's disease phenotype independently of huntingtin levels. J Clin Invest. 2016;126:4319-4330 pubmed 出版商
  30. Malaise O, Relic B, Charlier E, Zeddou M, Neuville S, Deroyer C, et al. Glucocorticoid-induced leucine zipper (GILZ) is involved in glucocorticoid-induced and mineralocorticoid-induced leptin production by osteoarthritis synovial fibroblasts. Arthritis Res Ther. 2016;18:219 pubmed
  31. Willi M, Yoo K, Wang C, Trajanoski Z, Hennighausen L. Differential cytokine sensitivities of STAT5-dependent enhancers rely on Stat5 autoregulation. Nucleic Acids Res. 2016;44:10277-10291 pubmed
  32. An B, Jung N, Park C, Oh I, Choi Y, Park J, et al. Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells. Mol Cells. 2016;39:631-8 pubmed 出版商
  33. Yasuda M, Shinoda M, Honda K, Fujita M, Kawata A, Nagashima H, et al. Maternal Separation Induces Orofacial Mechanical Allodynia in Adulthood. J Dent Res. 2016;95:1191-7 pubmed 出版商
  34. Shin H, Willi M, HyunYoo K, Zeng X, Wang C, Metser G, et al. Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat Genet. 2016;48:904-911 pubmed 出版商
  35. Kovacevic S, Nestorov J, Matić G, Elaković I. Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action. Eur J Nutr. 2017;56:2115-2128 pubmed 出版商
  36. Kassi E, Nasiri Ansari N, Spilioti E, Kalotychou V, Apostolou P, Moutsatsou P, et al. Vitamin D interferes with glucocorticoid responsiveness in human peripheral blood mononuclear target cells. Cell Mol Life Sci. 2016;73:4341-4354 pubmed
  37. Demuyser T, Bentea E, Deneyer L, Albertini G, Massie A, Smolders I. Disruption of the HPA-axis through corticosterone-release pellets induces robust depressive-like behavior and reduced BDNF levels in mice. Neurosci Lett. 2016;626:119-25 pubmed 出版商
  38. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with ?-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863:2006-16 pubmed 出版商
  39. Vitellius G, Fagart J, Delemer B, Amazit L, Ramos N, Bouligand J, et al. Three Novel Heterozygous Point Mutations of NR3C1 Causing Glucocorticoid Resistance. Hum Mutat. 2016;37:794-803 pubmed 出版商
  40. Lin S, Kao C, Lee H, Creighton C, Ittmann M, Tsai S, et al. Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of prostate cancer. Nat Commun. 2016;7:11418 pubmed 出版商
  41. Relic B, Charlier E, Deroyer C, Malaise O, Neuville S, Desoroux A, et al. BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget. 2016;7:23370-82 pubmed 出版商
  42. Ma X, Xu L, Mueller E. Forkhead box A3 mediates glucocorticoid receptor function in adipose tissue. Proc Natl Acad Sci U S A. 2016;113:3377-82 pubmed 出版商
  43. Grundy S, Plumb J, Kaur M, Ray D, Singh D. Additive anti-inflammatory effects of corticosteroids and phosphodiesterase-4 inhibitors in COPD CD8 cells. Respir Res. 2016;17:9 pubmed 出版商
  44. Baker G, Murphy T, Block T, Nguyen D, Lynch F. Development and validation of an immunohistochemistry assay to assess glucocorticoid receptor expression for clinical trials of mifepristone in breast cancer. Cancer Manag Res. 2015;7:361-8 pubmed 出版商
  45. Arango Lievano M, Lambert W, Bath K, Garabedian M, Chao M, Jeanneteau F. Neurotrophic-priming of glucocorticoid receptor signaling is essential for neuronal plasticity to stress and antidepressant treatment. Proc Natl Acad Sci U S A. 2015;112:15737-42 pubmed 出版商
  46. Zhu J, Chen Z, Zhu L, Meng Z, Wu G, Tian Z. Arginine Vasopressin and Arginine Vasopressin Receptor 1b Involved in Electroacupuncture-Attenuated Hypothalamic-Pituitary-Adrenal Axis Hyperactivity in Hepatectomy Rats. Neuromodulation. 2016;19:498-506 pubmed 出版商
  47. Kroon J, Puhr M, Buijs J, van der Horst G, Hemmer D, Marijt K, et al. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer. Endocr Relat Cancer. 2016;23:35-45 pubmed 出版商
  48. Whitaker A, Farooq M, Edwards S, Gilpin N. Post-traumatic stress avoidance is attenuated by corticosterone and associated with brain levels of steroid receptor co-activator-1 in rats. Stress. 2016;19:69-77 pubmed 出版商
  49. Nagy Z, Acs B, Butz H, Feldman K, Marta A, Szabó P, et al. Overexpression of GRß in colonic mucosal cell line partly reflects altered gene expression in colonic mucosa of patients with inflammatory bowel disease. J Steroid Biochem Mol Biol. 2016;155:76-84 pubmed 出版商
  50. Gallina D, Zelinka C, Cebulla C, Fischer A. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity. Exp Neurol. 2015;273:114-25 pubmed 出版商
  51. Gao L, Rabbitt E, Condon J, Renthal N, Johnston J, Mitsche M, et al. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition. J Clin Invest. 2015;125:2808-24 pubmed 出版商
  52. Goodman C, Sato T, Peck A, Girondo M, Yang N, Liu C, et al. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism. Oncogene. 2016;35:1373-85 pubmed 出版商
  53. Lim H, Uhlenhaut N, Rauch A, Weiner J, Hübner S, Hübner N, et al. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo. Genome Res. 2015;25:836-44 pubmed 出版商
  54. Najm F, Madhavan M, Zaremba A, Shick E, Karl R, Factor D, et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature. 2015;522:216-20 pubmed 出版商
  55. Shibata A, Troster E, Wong H. Glucocorticoid Receptor Expression in Peripheral WBCs of Critically Ill Children. Pediatr Crit Care Med. 2015;16:e132-40 pubmed 出版商
  56. Stavreva D, Coulon A, Baek S, Sung M, John S, Stixova L, et al. Dynamics of chromatin accessibility and long-range interactions in response to glucocorticoid pulsing. Genome Res. 2015;25:845-57 pubmed 出版商
  57. Wang H, Bai Y, Chen Y, Zhang R, Wang H, Zhang Y, et al. Repetitive transcranial magnetic stimulation ameliorates anxiety-like behavior and impaired sensorimotor gating in a rat model of post-traumatic stress disorder. PLoS ONE. 2015;10:e0117189 pubmed 出版商
  58. Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7:240-58 pubmed 出版商
  59. Macut D, Božić Antić I, Nestorov J, Topalović V, Bjekić Macut J, Panidis D, et al. The influence of combined oral contraceptives containing drospirenone on hypothalamic-pituitary-adrenocortical axis activity and glucocorticoid receptor expression and function in women with polycystic ovary syndrome. Hormones (Athens). 2015;14:109-17 pubmed 出版商
  60. Shang H, Meng W, Sloboda D, Li S, Ehrlich L, Plagemann A, et al. Effects of maternal dexamethasone treatment early in pregnancy on glucocorticoid receptors in the ovine placenta. Reprod Sci. 2015;22:534-44 pubmed 出版商
  61. Connors E, Shaik A, Migliore M, Kentner A. Environmental enrichment mitigates the sex-specific effects of gestational inflammation on social engagement and the hypothalamic pituitary adrenal axis-feedback system. Brain Behav Immun. 2014;42:178-90 pubmed 出版商
  62. Peffer M, Chandran U, Luthra S, Volonte D, Galbiati F, Garabedian M, et al. Caveolin-1 regulates genomic action of the glucocorticoid receptor in neural stem cells. Mol Cell Biol. 2014;34:2611-23 pubmed
  63. Allan A, Goggin S, Caldwell K. Prenatal alcohol exposure modifies glucocorticoid receptor subcellular distribution in the medial prefrontal cortex and impairs frontal cortex-dependent learning. PLoS ONE. 2014;9:e96200 pubmed 出版商
  64. Bullers S, Baker S, Ingham E, Southgate J. The human tissue-biomaterial interface: a role for PPAR?-dependent glucocorticoid receptor activation in regulating the CD163+ M2 macrophage phenotype. Tissue Eng Part A. 2014;20:2390-401 pubmed 出版商
  65. Lambert W, Xu C, Neubert T, Chao M, Garabedian M, Jeanneteau F. Brain-derived neurotrophic factor signaling rewrites the glucocorticoid transcriptome via glucocorticoid receptor phosphorylation. Mol Cell Biol. 2013;33:3700-14 pubmed 出版商
  66. Kakiuchi Kiyota S, Lappin P, Heintz C, Brown P, Pinho F, Ryan A, et al. Expression of proto-oncogene cFMS protein in lung, breast, and ovarian cancers. Appl Immunohistochem Mol Morphol. 2014;22:188-99 pubmed 出版商
  67. Blackford J, Guo C, Zhu R, Dougherty E, Chow C, Simons S. Identification of location and kinetically defined mechanism of cofactors and reporter genes in the cascade of steroid-regulated transactivation. J Biol Chem. 2012;287:40982-95 pubmed 出版商
  68. Wiench M, John S, Baek S, Johnson T, Sung M, Escobar T, et al. DNA methylation status predicts cell type-specific enhancer activity. EMBO J. 2011;30:3028-39 pubmed 出版商