这是一篇来自已证抗体库的有关人类 谷氨酰胺合成 (glutamine synthetase) 的综述,是根据73篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合谷氨酰胺合成 抗体。
谷氨酰胺合成 同义词: GLNS; GS; PIG43; PIG59

艾博抗(上海)贸易有限公司
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 1e
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab64613)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 1e). J Neuroinflammation (2022) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 斑马鱼; 1:100; 图 4e
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, AB64613)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:100 (图 4e). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 2d
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab73593)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 2d). Sci Rep (2021) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 7f
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab64613)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 7f). Life Sci (2021) ncbi
domestic rabbit 单克隆(EPR13022(B))
  • 免疫印迹; 小鼠; 1:1000; 图 6f
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab176562)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6f). elife (2020) ncbi
domestic rabbit 单克隆(EPR13022(B))
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3a
  • 免疫印迹; 大鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab176562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). Endocr Connect (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 图 4a
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, Ab73593)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 4a). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2c
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab73593)被用于被用于免疫组化在小鼠样本上 (图 2c). Cell Metab (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 8h
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab73593)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 8h). elife (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab64613)被用于被用于免疫印迹在人类样本上 (图 2b). Autophagy (2019) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 大鼠; 1:150; 图 2
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab64613)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:150 (图 2). Cell Physiol Biochem (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200
  • 免疫细胞化学; 人类; 1:200; 图 e5c
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, AB73593)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 e5c). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1e
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab73593)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1e). Am J Transl Res (2017) ncbi
domestic rabbit 单克隆(EPR13022(B))
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab176562)被用于被用于免疫印迹在人类样本上 (图 3b). Free Radic Biol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6g
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab73593)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6g). J Biol Chem (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 S4
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab64613)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 S4). Oncotarget (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(abcam, ab64613)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Front Cell Neurosci (2014) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司谷氨酰胺合成抗体(Abcam, ab64613)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
赛默飞世尔
小鼠 单克隆(GT1055)
  • 免疫组化; 小鼠; 1:10,000; 图 3c
  • 免疫印迹; 小鼠; 1:10,000; 图 3c
赛默飞世尔谷氨酰胺合成抗体(Invitrogen, MA5-27749)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3c). Front Cell Dev Biol (2022) ncbi
domestic rabbit 重组(7H9L16)
  • 免疫组化; 小鼠
赛默飞世尔谷氨酰胺合成抗体(Thermo Fisher Scientific, 701989)被用于被用于免疫组化在小鼠样本上. JIMD Rep (2020) ncbi
domestic rabbit 多克隆
赛默飞世尔谷氨酰胺合成抗体(ThermoScientific, PA1-46165)被用于. J Clin Invest (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500; 图 4b
圣克鲁斯生物技术谷氨酰胺合成抗体(Santa Cruz, sc-74430)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4b). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:200; 图 4c, 6e
圣克鲁斯生物技术谷氨酰胺合成抗体(Santa Cruz, sc-74430)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4c, 6e). Hepatology (2019) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 人类; 1 ug/ml; 图 1
圣克鲁斯生物技术谷氨酰胺合成抗体(santa Cruz, sc-74430)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1 ug/ml (图 1). Acta Neuropathol Commun (2016) ncbi
碧迪BD
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
碧迪BD谷氨酰胺合成抗体(BD Bioscience, 610518)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d). Biomedicines (2021) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化; 大鼠; 1:250; 图 2c
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610518)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 2c). Int J Mol Sci (2021) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-冰冻切片; 小鼠; 图 s1a
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610518)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1a). PLoS ONE (2021) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1c
碧迪BD谷氨酰胺合成抗体(BD, 610518)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1c). Nat Commun (2021) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD谷氨酰胺合成抗体(BD Transduction Laboratories, 610517)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Sci Rep (2021) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化; 小鼠; 1:400; 图 s1-1c
  • 免疫印迹; 小鼠; 1:5000; 图 s7-1b
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610518)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s1-1c) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s7-1b). elife (2020) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化; 小鼠; 1:100; 图 2a
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610518)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a). Mol Brain (2020) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
碧迪BD谷氨酰胺合成抗体(BD Bioscience, 610517)被用于. Nat Commun (2020) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫细胞化学; 小鼠; 1:100; 图 s3
  • 免疫组化; 小鼠; 1:100; 图 s1
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610518)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s3) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 s1). Oncogenesis (2020) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化; 人类; 1:1000; 图 s6g
碧迪BD谷氨酰胺合成抗体(Transduction Laboratories, 610,518)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 s6g). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-冰冻切片; 大鼠; 2.5 ug/ml; 图 8a
碧迪BD谷氨酰胺合成抗体(Transduction, 610,518)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为2.5 ug/ml (图 8a). J Comp Neurol (2019) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 12g
碧迪BD谷氨酰胺合成抗体(BD Bioscience, 610517)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 12g). Histochem Cell Biol (2019) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫印迹; 人类; 图 s1b
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610517)被用于被用于免疫印迹在人类样本上 (图 s1b). Cell Metab (2018) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫印迹; 人类; 图 s5e
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610517)被用于被用于免疫印迹在人类样本上 (图 s5e). Cell (2018) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-石蜡切片; 小鼠; 图 s4e
碧迪BD谷氨酰胺合成抗体(BD, 610517)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4e). Nature (2017) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化; 小鼠; 图 s5d
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610517)被用于被用于免疫组化在小鼠样本上 (图 s5d). Nat Commun (2017) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 表 1
碧迪BD谷氨酰胺合成抗体(BD, 610518)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (表 1). Am J Pathol (2017) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化; 小鼠; 图 3g
碧迪BD谷氨酰胺合成抗体(BD, 610517)被用于被用于免疫组化在小鼠样本上 (图 3g). BMC Ophthalmol (2016) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化; 小鼠; 1:100; 图 5a
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610518)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). Neuroscience (2016) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 6e
碧迪BD谷氨酰胺合成抗体(BD Bioscience, 610517)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 6e). PLoS ONE (2016) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 2
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610517)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 2). Eur J Neurosci (2016) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
碧迪BD谷氨酰胺合成抗体(BD Transduction, 610518)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-冰冻切片; 小鼠; 图 2
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610517)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Nat Biotechnol (2016) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫细胞化学; 人类; 1:3000; 表 1
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610518)被用于被用于免疫细胞化学在人类样本上浓度为1:3000 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-石蜡切片; 人类; 表 2
碧迪BD谷氨酰胺合成抗体(Biosciences, 6)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). J Transl Med (2016) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫印迹; 人类; 1:1000; 图 3b
碧迪BD谷氨酰胺合成抗体(BD Transduction Labs, 610517)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Cell Biol (2015) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s6
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610518)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-石蜡切片; African green monkey; 1:500; 图 9
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 11
  • 免疫组化-石蜡切片; common marmoset; 1:500; 图 9
碧迪BD谷氨酰胺合成抗体(BD Transduction, 610517)被用于被用于免疫组化-石蜡切片在African green monkey样本上浓度为1:500 (图 9), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 11) 和 被用于免疫组化-石蜡切片在common marmoset样本上浓度为1:500 (图 9). Brain Struct Funct (2016) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化; degu; 1:500; 图 2e
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610518)被用于被用于免疫组化在degu样本上浓度为1:500 (图 2e). PLoS ONE (2015) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610518)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. J Neurosci (2015) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-石蜡切片; 小鼠; 1:2500
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610517)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2500. Dev Biol (2015) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫细胞化学; 日本大米鱼; 1:500
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610517)被用于被用于免疫细胞化学在日本大米鱼样本上浓度为1:500. Development (2014) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化; 小鼠; 1:500
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610517)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
碧迪BD谷氨酰胺合成抗体(BD Transduction, 610518)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). Development (2014) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-石蜡切片; 大鼠; 1:1,000
  • 免疫组化-石蜡切片; 小鼠; 1:1,000
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610518)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1,000 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1,000. J Comp Neurol (2013) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-自由浮动切片; spiny lobsters; 1:100
碧迪BD谷氨酰胺合成抗体(Becton Dickinson Biosciences, 610518)被用于被用于免疫组化-自由浮动切片在spiny lobsters样本上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-冰冻切片; 小鼠; 1:200
碧迪BD谷氨酰胺合成抗体(BD Transduction Labs, 610517)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Comp Neurol (2008) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-冰冻切片; 小鼠; 1:500
碧迪BD谷氨酰胺合成抗体(BD Biosciences Pharmingen, 610517)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD谷氨酰胺合成抗体(BD Biosciences, 610518)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-自由浮动切片; 大鼠; 1:1,000
碧迪BD谷氨酰胺合成抗体(BD Transduction Laboratories, 610517)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(6/Glutamine Synthetase)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
碧迪BD谷氨酰胺合成抗体(BD Transduction Laboratories, 610517)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. J Comp Neurol (2007) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 3e
西格玛奥德里奇谷氨酰胺合成抗体(Sigma-Aldrich, G2781)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3e). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:5000; 图 2a
西格玛奥德里奇谷氨酰胺合成抗体(Sigma, G2781)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5000 (图 2a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3b
西格玛奥德里奇谷氨酰胺合成抗体(Sigma, G2781)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Am J Pathol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 2j
西格玛奥德里奇谷氨酰胺合成抗体(Cell SignalingSigma, G2781)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2j). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s1e
西格玛奥德里奇谷氨酰胺合成抗体(Sigma-Aldrich, G2781)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1e). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 1:1500; 图 8b, s6a, 6
西格玛奥德里奇谷氨酰胺合成抗体(Sigma, G2781)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1500 (图 8b, s6a, 6). Hepatology (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s2b
西格玛奥德里奇谷氨酰胺合成抗体(Sigma, G2781)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2b). Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st1
西格玛奥德里奇谷氨酰胺合成抗体(Sigma, G2781)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2
西格玛奥德里奇谷氨酰胺合成抗体(Sigma-Aldrich, G2781)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2). Biomed Res Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1d
西格玛奥德里奇谷氨酰胺合成抗体(Sigma, G-2781)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1d). J Clin Invest (2016) ncbi
文章列表
  1. Karadayi R, Mazzocco J, Leclère L, Buteau B, Gregoire S, Belloir C, et al. Plasmalogens Regulate Retinal Connexin 43 Expression and Müller Glial Cells Gap Junction Intercellular Communication and Migration. Front Cell Dev Biol. 2022;10:864599 pubmed 出版商
  2. Cui H, Liu F, Fang Y, Wang T, Yuan B, Ma C. Neuronal FcεRIα directly mediates ocular itch via IgE-immune complex in a mouse model of allergic conjunctivitis. J Neuroinflammation. 2022;19:55 pubmed 出版商
  3. Huang C, Huang Y, Shen Z, Lin C, Tsai T. Cisd2 Preserves the Youthful Pattern of the Liver Proteome during Natural Aging of Mice. Biomedicines. 2021;9: pubmed 出版商
  4. Luo J, Lu C, Feng M, Dai L, Wang M, Qiu Y, et al. Cooperation between liver-specific mutations of pten and tp53 genetically induces hepatocarcinogenesis in zebrafish. J Exp Clin Cancer Res. 2021;40:262 pubmed 出版商
  5. Boon N, Alves C, Mulder A, Andriessen C, Buck T, Quinn P, et al. Defining Phenotype, Tropism, and Retinal Gene Therapy Using Adeno-Associated Viral Vectors (AAVs) in New-Born Brown Norway Rats with a Spontaneous Mutation in Crb1. Int J Mol Sci. 2021;22: pubmed 出版商
  6. Dahl T, Reed M, Gerstner C, Ying G, Baehr W. Effect of conditional deletion of cytoplasmic dynein heavy chain DYNC1H1 on postnatal photoreceptors. PLoS ONE. 2021;16:e0248354 pubmed 出版商
  7. Helms T, Mullins R, Thomas Ahner J, Kulp S, Campbell M, Lucas F, et al. Inhibition of androgen/AR signaling inhibits diethylnitrosamine (DEN) induced tumour initiation and remodels liver immune cell networks. Sci Rep. 2021;11:3646 pubmed 出版商
  8. Lin H, Huang Y, Fustin J, Doi M, Chen H, Lai H, et al. Hyperpolyploidization of hepatocyte initiates preneoplastic lesion formation in the liver. Nat Commun. 2021;12:645 pubmed 出版商
  9. Maddala R, Gao J, Mathias R, Lewis T, Arshavsky V, Levine A, et al. Absence of S100A4 in the mouse lens induces an aberrant retina-specific differentiation program and cataract. Sci Rep. 2021;11:2203 pubmed 出版商
  10. Ao H, Li H, Zhao X, Liu B, Lu L. TXNIP positively regulates the autophagy and apoptosis in the rat müller cell of diabetic retinopathy. Life Sci. 2021;267:118988 pubmed 出版商
  11. Brown M, Gibson K, Schmidt M, Walters D, Arning E, Bottiglieri T, et al. Cellular and molecular outcomes of glutamine supplementation in the brain of succinic semialdehyde dehydrogenase-deficient mice. JIMD Rep. 2020;56:58-69 pubmed 出版商
  12. Riou R, Ladli M, Gerbal Chaloin S, Bossard P, Gougelet A, Godard C, et al. ARID1A loss in adult hepatocytes activates β-catenin-mediated erythropoietin transcription. elife. 2020;9: pubmed 出版商
  13. Scheckel C, Imeri M, Schwarz P, Aguzzi A. Ribosomal profiling during prion disease uncovers progressive translational derangement in glia but not in neurons. elife. 2020;9: pubmed 出版商
  14. Katoozi S, Rao S, Skauli N, Froehner S, Ottersen O, Adams M, et al. Functional specialization of retinal Müller cell endfeet depends on an interplay between two syntrophin isoforms. Mol Brain. 2020;13:40 pubmed 出版商
  15. Singh C, Tran V, McCollum L, Bolok Y, Allan K, Yuan A, et al. Hyperoxia induces glutamine-fuelled anaplerosis in retinal Müller cells. Nat Commun. 2020;11:1277 pubmed 出版商
  16. Chen X, Lan T, Wang Y, He Y, Wu Z, Tian Y, et al. Entorhinal cortex-based metabolic profiling of chronic restraint stress mice model of depression. Aging (Albany NY). 2020;12:3042-3052 pubmed 出版商
  17. Zocchi L, Mehta A, Wu S, Wu J, Gu Y, Wang J, et al. Chromatin remodeling protein HELLS is critical for retinoblastoma tumor initiation and progression. Oncogenesis. 2020;9:25 pubmed 出版商
  18. Al Dalahmah O, Sosunov A, Shaik A, Ofori K, Liu Y, Vonsattel J, et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol Commun. 2020;8:19 pubmed 出版商
  19. Hu J, Chen Q, Ding X, Zheng X, Tang X, Li S, et al. Glutamine metabolism in the proliferation of GS-expression pituitary tumor cells. Endocr Connect. 2020;: pubmed 出版商
  20. Dragan M, Nguyen M, Guzman S, Goertzen C, Brackstone M, Dhillo W, et al. G protein-coupled kisspeptin receptor induces metabolic reprograming and tumorigenesis in estrogen receptor-negative breast cancer. Cell Death Dis. 2020;11:106 pubmed 出版商
  21. Nomura Komoike K, Saitoh F, Fujieda H. Phosphatidylserine recognition and Rac1 activation are required for Müller glia proliferation, gliosis and phagocytosis after retinal injury. Sci Rep. 2020;10:1488 pubmed 出版商
  22. Zhang X, Olsavszky V, Yin Y, Wang B, Engleitner T, Ollinger R, et al. Angiocrine Hepatocyte Growth Factor Signaling Controls Physiological Organ and Body Size and Dynamic Hepatocyte Proliferation to Prevent Liver Damage during Regeneration. Am J Pathol. 2020;190:358-371 pubmed 出版商
  23. Bott A, Shen J, Tonelli C, Zhan L, Sivaram N, Jiang Y, et al. Glutamine Anabolism Plays a Critical Role in Pancreatic Cancer by Coupling Carbon and Nitrogen Metabolism. Cell Rep. 2019;29:1287-1298.e6 pubmed 出版商
  24. Choi W, Kim H, Kim M, Cinar R, Yi H, Eun H, et al. Glutamate Signaling in Hepatic Stellate Cells Drives Alcoholic Steatosis. Cell Metab. 2019;30:877-889.e7 pubmed 出版商
  25. Katsuda T, Matsuzaki J, Yamaguchi T, Yamada Y, Prieto Vila M, Hosaka K, et al. Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes. elife. 2019;8: pubmed 出版商
  26. K lm n M, Oszwald E, P csai K. Three-plane description of astroglial populations of OVLT subdivisions in rat: Tanycyte connections to distant parts of third ventricle. J Comp Neurol. 2019;527:2793-2812 pubmed 出版商
  27. Mammone T, Chidlow G, Casson R, Wood J. Improved immunohistochemical detection of phosphorylated mitogen-activated protein kinases in the injured rat optic nerve head. Histochem Cell Biol. 2019;151:435-456 pubmed 出版商
  28. Wang B, Kaufmann B, Engleitner T, Lu M, Mogler C, Olsavszky V, et al. Brg1 promotes liver regeneration after partial hepatectomy via regulation of cell cycle. Sci Rep. 2019;9:2320 pubmed 出版商
  29. Huang X, Gan G, Wang X, Xu T, Xie W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 2019;15:1258-1279 pubmed 出版商
  30. Russell J, Lu W, Okabe H, Abrams M, Oertel M, Poddar M, et al. Hepatocyte-Specific β-Catenin Deletion During Severe Liver Injury Provokes Cholangiocytes to Differentiate Into Hepatocytes. Hepatology. 2019;69:742-759 pubmed 出版商
  31. Tajan M, Hock A, Blagih J, Robertson N, Labuschagne C, Kruiswijk F, et al. A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metab. 2018;28:721-736.e6 pubmed 出版商
  32. Sheng X, Wang J, Guo J, Xu Y, Jiang H, Zheng C, et al. Effects of Baicalin on Diabetic Cardiac Autonomic Neuropathy Mediated by the P2Y12 Receptor in Rat Stellate Ganglia. Cell Physiol Biochem. 2018;46:986-998 pubmed 出版商
  33. Savitski M, Zinn N, Faelth Savitski M, Poeckel D, Gade S, Becher I, et al. Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis. Cell. 2018;173:260-274.e25 pubmed 出版商
  34. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  35. Tammela T, Sanchez Rivera F, Cetinbas N, Wu K, Joshi N, Helenius K, et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature. 2017;545:355-359 pubmed 出版商
  36. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  37. Ji H, Xiong Y, Zhang E, Song W, Gao Z, Yao F, et al. Which has more stem-cell characteristics: Müller cells or Müller cells derived from in vivo culture in neurospheres?. Am J Transl Res. 2017;9:611-619 pubmed
  38. Gómez Pastor R, Burchfiel E, Neef D, Jaeger A, Cabiscol E, McKinstry S, et al. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease. Nat Commun. 2017;8:14405 pubmed 出版商
  39. Stock P, Bielohuby M, Staege M, Hsu M, Bidlingmaier M, Christ B. Impairment of Host Liver Repopulation by Transplanted Hepatocytes in Aged Rats and the Release by Short-Term Growth Hormone Treatment. Am J Pathol. 2017;187:553-569 pubmed 出版商
  40. Zeng C, Wu Q, Wang J, Yao B, Ma L, Yang Z, et al. NOX4 supports glycolysis and promotes glutamine metabolism in non-small cell lung cancer cells. Free Radic Biol Med. 2016;101:236-248 pubmed 出版商
  41. Cho S, Song J, Shin J, Kim S. Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model. BMC Ophthalmol. 2016;16:193 pubmed
  42. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  43. Griffith C, Xie M, Qiu W, Sharp A, Ma C, Pan A, et al. Aberrant expression of the pore-forming KATP channel subunit Kir6.2 in hippocampal reactive astrocytes in the 3xTg-AD mouse model and human Alzheimer's disease. Neuroscience. 2016;336:81-101 pubmed 出版商
  44. Larrayoz I, Rey Funes M, Contartese D, Rolón F, Sarotto A, Dorfman V, et al. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures. PLoS ONE. 2016;11:e0161458 pubmed 出版商
  45. Saadane A, Mast N, Dao T, Ahmad B, Pikuleva I. Retinal Hypercholesterolemia Triggers Cholesterol Accumulation and Esterification in Photoreceptor Cells. J Biol Chem. 2016;291:20427-39 pubmed 出版商
  46. Skytt D, Toft Kehler A, Brændstrup C, Cejvanovic S, Gurubaran I, Bergersen L, et al. Glia-Neuron Interactions in the Retina Can Be Studied in Cocultures of Müller Cells and Retinal Ganglion Cells. Biomed Res Int. 2016;2016:1087647 pubmed 出版商
  47. Sanges D, Simonte G, Di Vicino U, Romo N, Pinilla I, Nicolas M, et al. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest. 2016;126:3104-16 pubmed 出版商
  48. Koeppen A, Ramirez R, Becker A, Mazurkiewicz J. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol Commun. 2016;4:46 pubmed 出版商
  49. Brüggen B, Kremser C, Bickert A, Ebel P, Vom Dorp K, Schultz K, et al. Defective ceramide synthases in mice cause reduced amplitudes in electroretinograms and altered sphingolipid composition in retina and cornea. Eur J Neurosci. 2016;44:1700-13 pubmed 出版商
  50. Klooster J, Kamermans M. An Ultrastructural and Immunohistochemical Analysis of the Outer Plexiform Layer of the Retina of the European Silver Eel (Anguilla anguilla L). PLoS ONE. 2016;11:e0152967 pubmed 出版商
  51. Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34:334-8 pubmed 出版商
  52. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  53. Peng C, Kaščáková S, Chiappini F, Olaya N, Sandt C, Yousef I, et al. Discrimination of cirrhotic nodules, dysplastic lesions and hepatocellular carcinoma by their vibrational signature. J Transl Med. 2016;14:9 pubmed 出版商
  54. Tardito S, Oudin A, Ahmed S, Fack F, Keunen O, Zheng L, et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol. 2015;17:1556-68 pubmed 出版商
  55. Bhate A, Parker D, Bebee T, Ahn J, Arif W, Rashan E, et al. ESRP2 controls an adult splicing programme in hepatocytes to support postnatal liver maturation. Nat Commun. 2015;6:8768 pubmed 出版商
  56. Chidlow G, Wood J, Knoops B, Casson R. Expression and distribution of peroxiredoxins in the retina and optic nerve. Brain Struct Funct. 2016;221:3903-3925 pubmed
  57. Du L, Chang L, Ardiles A, Tapia Rojas C, Araya J, Inestrosa N, et al. Alzheimer's Disease-Related Protein Expression in the Retina of Octodon degus. PLoS ONE. 2015;10:e0135499 pubmed 出版商
  58. Liu Y, Miao Q, Yuan J, Han S, Zhang P, Li S, et al. Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo. J Neurosci. 2015;35:9336-55 pubmed 出版商
  59. Poncy A, Antoniou A, Cordi S, Pierreux C, Jacquemin P, Lemaigre F. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev Biol. 2015;404:136-48 pubmed 出版商
  60. Usui Y, Westenskow P, Kurihara T, Aguilar E, Sakimoto S, Paris L, et al. Neurovascular crosstalk between interneurons and capillaries is required for vision. J Clin Invest. 2015;125:2335-46 pubmed 出版商
  61. Yu D, Shi X, Meng G, Chen J, Yan C, Jiang Y, et al. Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma. Oncotarget. 2015;6:7619-31 pubmed
  62. Gruol D, Vo K, Bray J. Increased astrocyte expression of IL-6 or CCL2 in transgenic mice alters levels of hippocampal and cerebellar proteins. Front Cell Neurosci. 2014;8:234 pubmed 出版商
  63. Centanin L, Ander J, Hoeckendorf B, Lust K, Kellner T, Kraemer I, et al. Exclusive multipotency and preferential asymmetric divisions in post-embryonic neural stem cells of the fish retina. Development. 2014;141:3472-82 pubmed 出版商
  64. Whitney I, Keeley P, St John A, Kautzman A, Kay J, Reese B. Sox2 regulates cholinergic amacrine cell positioning and dendritic stratification in the retina. J Neurosci. 2014;34:10109-21 pubmed 出版商
  65. Wang C, Yang S, Zhang N, Mu Y, Ren H, Wang Y, et al. Long-term supranutritional supplementation with selenate decreases hyperglycemia and promotes fatty liver degeneration by inducing hyperinsulinemia in diabetic db/db mice. PLoS ONE. 2014;9:e101315 pubmed 出版商
  66. Hoffmann S, Hos D, Küspert M, Lang R, Lovell Badge R, Wegner M, et al. Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes. Development. 2014;141:39-50 pubmed 出版商
  67. de Sevilla Müller L, Liu J, Solomon A, Rodriguez A, Brecha N. Expression of voltage-gated calcium channel ?(2)?(4) subunits in the mouse and rat retina. J Comp Neurol. 2013;521:2486-501 pubmed 出版商
  68. Schmidt M, Derby C. Cytoarchitecture and ultrastructure of neural stem cell niches and neurogenic complexes maintaining adult neurogenesis in the olfactory midbrain of spiny lobsters, Panulirus argus. J Comp Neurol. 2011;519:2283-319 pubmed 出版商
  69. Poche R, Furuta Y, Chaboissier M, Schedl A, Behringer R. Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller glial cell development. J Comp Neurol. 2008;510:237-50 pubmed 出版商
  70. Kawano J, Tanizawa Y, Shinoda K. Wolfram syndrome 1 (Wfs1) gene expression in the normal mouse visual system. J Comp Neurol. 2008;510:1-23 pubmed 出版商
  71. O Brien B, Caldwell J, Ehring G, Bumsted O Brien K, Luo S, Levinson S. Tetrodotoxin-resistant voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 are expressed in the retina. J Comp Neurol. 2008;508:940-51 pubmed 出版商
  72. Ding J, Weinberg R. Distribution of soluble guanylyl cyclase in rat retina. J Comp Neurol. 2007;502:734-45 pubmed
  73. Ding J, Weinberg R. Distribution of soluble guanylyl cyclase in rat retina. J Comp Neurol. 2007;500:734-45 pubmed