这是一篇来自已证抗体库的有关人类 颗粒酶B (granzyme B) 的综述,是根据303篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合颗粒酶B 抗体。
颗粒酶B 同义词: C11; CCPI; CGL-1; CGL1; CSP-B; CSPB; CTLA1; CTSGL1; HLP; SECT

赛默飞世尔
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Thermo Fisher, MA1-80734)被用于被用于流式细胞仪在小鼠样本上. Cancer Cell (2021) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 1:100; 图 5a
赛默飞世尔颗粒酶B抗体(Invitrogen, MHGB04)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5a). Nat Commun (2021) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔颗粒酶B抗体(eBioscience, GB11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 7j
赛默飞世尔颗粒酶B抗体(Thermo Fisher, MHGB04)被用于被用于流式细胞仪在小鼠样本上 (图 7j). Cell Rep Med (2021) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 1:100; 图 s7b
赛默飞世尔颗粒酶B抗体(Thermo Fisher, MHGB05)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7b). Science (2021) ncbi
小鼠 单克隆(GB11)
  • 免疫细胞化学; 人类; 10 ug/ml; 图 6v1
赛默飞世尔颗粒酶B抗体(Thermo Scientific, MA1-80734)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 6v1). elife (2021) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔颗粒酶B抗体(Thermo Fisher Scientific, GB12)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 1:2000
赛默飞世尔颗粒酶B抗体(Invitrogen, GRB18)被用于被用于流式细胞仪在人类样本上浓度为1:2000. bioRxiv (2020) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 1:40; 图 2s1
赛默飞世尔颗粒酶B抗体(Thermo, GRB17)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 2s1). elife (2020) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔颗粒酶B抗体(eBioscience, GB11)被用于被用于流式细胞仪在人类样本上 (图 4a). BMC Immunol (2020) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 2f
赛默飞世尔颗粒酶B抗体(Thermofisher, GRB17)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Immunity (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 s4f
赛默飞世尔颗粒酶B抗体(Invitrogen, GRB18)被用于被用于流式细胞仪在小鼠样本上 (图 s4f). Cell (2019) ncbi
小鼠 单克隆(GB11)
  • 其他; 人类; 1:25; 图 2f
赛默飞世尔颗粒酶B抗体(ThermoFisher Scientific, MA1-80734)被用于被用于其他在人类样本上浓度为1:25 (图 2f). elife (2019) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 s1g
赛默飞世尔颗粒酶B抗体(Invitrogen, MHGB04)被用于被用于流式细胞仪在人类样本上 (图 s1g). Cell (2019) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 6f
赛默飞世尔颗粒酶B抗体(Invitrogen, MHGB04)被用于被用于流式细胞仪在小鼠样本上 (图 6f). PLoS Pathog (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 2f
赛默飞世尔颗粒酶B抗体(Thermo Fisher, GB11)被用于被用于流式细胞仪在人类样本上 (图 2f). Front Immunol (2018) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Virol (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔颗粒酶B抗体(eBioscience, GB11)被用于被用于流式细胞仪在人类样本上 (图 3b). J Exp Med (2018) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔颗粒酶B抗体(invitrogen, GB12)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3d
赛默飞世尔颗粒酶B抗体(eBiosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 3d). Oncoimmunology (2017) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔颗粒酶B抗体(生活技术, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Nat Commun (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3f
赛默飞世尔颗粒酶B抗体(Thermo fischer scientific, 12-8899)被用于被用于流式细胞仪在人类样本上 (图 3f). Cell Res (2017) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; African green monkey; 图 s4
赛默飞世尔颗粒酶B抗体(invitrogen, GB12)被用于被用于流式细胞仪在African green monkey样本上 (图 s4). Nature (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在人类样本上 (图 3a). Immunity (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:125; 图 3h
赛默飞世尔颗粒酶B抗体(Invitrogen, GRB05)被用于被用于流式细胞仪在小鼠样本上浓度为1:125 (图 3h). Nat Commun (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 6m
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 6m). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3c
赛默飞世尔颗粒酶B抗体(eBioscience, GB11)被用于被用于流式细胞仪在人类样本上 (图 3c). Clin Exp Immunol (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类
赛默飞世尔颗粒酶B抗体(LifeTechnologies/Invitrogen, GB11)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 猕猴; 图 6d
赛默飞世尔颗粒酶B抗体(Invitrogen, MHGB05)被用于被用于流式细胞仪在猕猴样本上 (图 6d). Transplantation (2016) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 猕猴; 图 4d
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在猕猴样本上 (图 4d). J Immunol (2016) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔颗粒酶B抗体(Invitrogen, MHGB04)被用于被用于流式细胞仪在人类样本上 (图 4a). J Virol (2016) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 5f
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 5f). J Clin Invest (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔颗粒酶B抗体(Invitrogen, GRB17)被用于被用于流式细胞仪在人类样本上 (图 7). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
赛默飞世尔颗粒酶B抗体(Thermo, PA5-17457)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 4i
赛默飞世尔颗粒酶B抗体(Invitrogen, GRB04)被用于被用于流式细胞仪在小鼠样本上 (图 4i). J Virol (2016) ncbi
小鼠 单克隆(GZB01)
  • 免疫组化; 人类; 1:50; 图 3
赛默飞世尔颗粒酶B抗体(Thermo, MS-1157-S1)被用于被用于免疫组化在人类样本上浓度为1:50 (图 3). Neurol Neuroimmunol Neuroinflamm (2016) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 1:100; 图 3
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 1). Virology (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:50; 图 5
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 5). J Virol (2015) ncbi
大鼠 单克隆(16G6)
  • 免疫印迹; 人类; 图 2c
赛默飞世尔颗粒酶B抗体(eBioscience, 16G6)被用于被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2016) ncbi
小鼠 单克隆(GZB01)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛默飞世尔颗粒酶B抗体(Neomarkers, MS-1157-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Acta Neuropathol Commun (2015) ncbi
大鼠 单克隆(16G6)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(eBioscience, 16G6)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 2f
赛默飞世尔颗粒酶B抗体(生活技术, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Retrovirology (2015) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔颗粒酶B抗体(Invitrogen, #MHGB05)被用于被用于流式细胞仪在人类样本上 (图 5). Front Immunol (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 10a
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 10a). J Exp Med (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔颗粒酶B抗体(Invitrogen, GRB05)被用于被用于流式细胞仪在小鼠样本上 (图 2). Oncoimmunology (2014) ncbi
小鼠 单克隆(GZB01)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔颗粒酶B抗体(Thermo Scientific, GZB01)被用于被用于免疫组化-石蜡切片在人类样本上. Hum Pathol (2015) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔颗粒酶B抗体(eBioscience, GB11)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在小鼠样本上. Cancer Immunol Res (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 犬
赛默飞世尔颗粒酶B抗体(eBioscience, GB11)被用于被用于流式细胞仪在犬样本上. Vet Res Commun (2015) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, MHGB05)被用于被用于流式细胞仪在小鼠样本上. Immunology (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔颗粒酶B抗体(Invitrogen, clone GB11)被用于被用于流式细胞仪在人类样本上 (图 5). Leuk Res (2014) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 7). PLoS Pathog (2014) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, MHGB04)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2014) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类
赛默飞世尔颗粒酶B抗体(eBioscience, GB11)被用于被用于流式细胞仪在人类样本上. Leukemia (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, GRB05)被用于被用于流式细胞仪在小鼠样本上. PLoS Negl Trop Dis (2014) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Caltag Laboratories, MHGB04)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, MHGB04)被用于被用于流式细胞仪在小鼠样本上. J Neuroimmunol (2014) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类
赛默飞世尔颗粒酶B抗体(Invitrogen, FGB12)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类
赛默飞世尔颗粒酶B抗体(Caltag, GB11)被用于被用于流式细胞仪在人类样本上. Front Immunol (2014) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类
赛默飞世尔颗粒酶B抗体(Invitrogen, clone GB11)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在人类样本上. Int Immunol (2014) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 猕猴
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上. Virol Sin (2014) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(GB11)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔颗粒酶B抗体(Caltag, GB11)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Mol Biol Cell (2013) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(生活技术, GRB04)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2013) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Virol (2013) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔颗粒酶B抗体(生活技术, MHGB05)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Commun (2013) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔颗粒酶B抗体(Invitrogen, clone GB11)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2013) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2013) ncbi
小鼠 单克隆(GZB01)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛默飞世尔颗粒酶B抗体(Neomarkers, MS-1157-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Brain (2013) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Virol (2013) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上 (图 2). Front Immunol (2013) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Microbes Infect (2013) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔颗粒酶B抗体(Caltag, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2012) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, MHGB04)被用于被用于流式细胞仪在小鼠样本上. J Virol (2013) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 猕猴; 图 4
赛默飞世尔颗粒酶B抗体(Invitrogen, MHGB04)被用于被用于流式细胞仪在猕猴样本上 (图 4). Hum Vaccin Immunother (2012) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 3). Microbes Infect (2012) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 1:50; 图 2
赛默飞世尔颗粒酶B抗体(Invitrogen, MHGB04)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2). Cell Host Microbe (2012) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔颗粒酶B抗体(Invitrogen, clone GB11)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2012) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2012) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Invitrogen, MHGB05)被用于被用于流式细胞仪在小鼠样本上. Blood (2012) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在人类样本上 (图 5). Blood (2012) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 猕猴; 图 4a
赛默飞世尔颗粒酶B抗体(Invitrogen, GRB11)被用于被用于流式细胞仪在猕猴样本上 (图 4a). Vaccine (2012) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; African green monkey; 图 6
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在African green monkey样本上 (图 6). J Virol (2012) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2012) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2011) ncbi
大鼠 单克隆(16G6)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(eBioscience, 16G6)被用于被用于流式细胞仪在小鼠样本上. EMBO J (2012) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在人类样本上. J Exp Med (2011) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 猕猴; 图 2
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在猕猴样本上 (图 2). Immunology (2011) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2011) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔颗粒酶B抗体(Caltag, clone GB12)被用于被用于流式细胞仪在人类样本上 (图 3). Vaccine (2011) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔颗粒酶B抗体(Caltag, MHGB04)被用于被用于流式细胞仪在小鼠样本上 (图 1). Infect Immun (2011) ncbi
小鼠 单克隆(GZB01)
  • 免疫组化; 人类; 图 3
赛默飞世尔颗粒酶B抗体(NeoMarkers, GZB01)被用于被用于免疫组化在人类样本上 (图 3). Ann Dermatol (2011) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 3). Am J Transplant (2011) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2011) ncbi
小鼠 单克隆(GZB01)
  • 免疫组化; 人类; 1:50; 图 5I
赛默飞世尔颗粒酶B抗体(Thermo Scientific, MS-1157-S1)被用于被用于免疫组化在人类样本上浓度为1:50 (图 5I). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔颗粒酶B抗体(Invitrogen, MHGB05)被用于被用于流式细胞仪在小鼠样本上 (图 5). Blood (2011) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上 (图 2). J Nutr Biochem (2012) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔颗粒酶B抗体(Caltag, MHGB05)被用于被用于流式细胞仪在小鼠样本上 (图 6). Immunol Cell Biol (2012) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔颗粒酶B抗体(Invitrogen, clone GB11-PETxRed)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2011) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔颗粒酶B抗体(Caltag Laboratories, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 2). Infect Immun (2011) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 4). Blood (2011) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 5, 6
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 5, 6). J Exp Med (2010) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 4). Cancer Res (2010) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 猕猴; 图 6
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在猕猴样本上 (图 6). J Immunol (2010) ncbi
大鼠 单克隆(16G6)
  • 流式细胞仪; 小鼠; 图 2, 3
赛默飞世尔颗粒酶B抗体(eBioscience, 16G6)被用于被用于流式细胞仪在小鼠样本上 (图 2, 3). J Immunol (2010) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔颗粒酶B抗体(Invitrogen, clone GB12)被用于被用于流式细胞仪在人类样本上 (图 6). J Virol (2010) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔颗粒酶B抗体(Caltag, clone GB12)被用于被用于流式细胞仪在人类样本上 (图 3). Blood (2010) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; African green monkey; 图 5
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在African green monkey样本上 (图 5). J Med Primatol (2010) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上 (图 4). Hum Immunol (2010) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Immunol (2010) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2010) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔颗粒酶B抗体(Caltag, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 6). Cancer Res (2010) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 猕猴; 图 5
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在猕猴样本上 (图 5). Blood (2010) ncbi
小鼠 单克隆(GB11)
  • 免疫细胞化学; 人类
赛默飞世尔颗粒酶B抗体(Caltag Laboratories, GB11)被用于被用于免疫细胞化学在人类样本上. Blood (2010) ncbi
大鼠 单克隆(16G6)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔颗粒酶B抗体(eBioscience, 16G6)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Mol Cell Biol (2009) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Caltag Laboratories, GB12)被用于被用于流式细胞仪在小鼠样本上. Blood (2009) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔颗粒酶B抗体(Invitrogen, GB12)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2009) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Caltag, MHGB05)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2009) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔颗粒酶B抗体(Caltag, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 1). Cell Immunol (2009) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类
赛默飞世尔颗粒酶B抗体(Caltag Laboratories, GRB04)被用于被用于流式细胞仪在人类样本上. Mod Rheumatol (2009) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔颗粒酶B抗体(Caltag Laboratories, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Immunol (2009) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在人类样本上. J Exp Med (2009) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔颗粒酶B抗体(Invitrogen, GB11)被用于被用于流式细胞仪在人类样本上 (图 5). J Immunol (2008) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Caltag Laboratories, GB12)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2008) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上 (表 1). J Immunol (2008) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上 (图 1). J Leukoc Biol (2008) ncbi
小鼠 单克隆(GB12)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1). Nat Med (2008) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在小鼠样本上. J Virol (2008) ncbi
大鼠 单克隆(16G6)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔颗粒酶B抗体(eBioscience, 16G6)被用于被用于流式细胞仪在小鼠样本上 (图 4). Blood (2008) ncbi
大鼠 单克隆(16G6)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(eBioscience, 16G6)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2008) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类
赛默飞世尔颗粒酶B抗体(Caltag, Invitrogen,, GB12)被用于被用于流式细胞仪在人类样本上. Mol Immunol (2008) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Caltag Laboratories, GB12)被用于被用于流式细胞仪在小鼠样本上. J Virol (2007) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔颗粒酶B抗体(Caltag, clone GB12)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol Methods (2007) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 3B
  • 流式细胞仪; 人类; 图 5C
赛默飞世尔颗粒酶B抗体(Invitrogen/ Life Technologies, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 3B) 和 被用于流式细胞仪在人类样本上 (图 5C). J Immunol (2007) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔颗粒酶B抗体(Caltag Laboratories, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2007) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔颗粒酶B抗体(Caltag, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 7). Circ Res (2007) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔颗粒酶B抗体(Caltag Laboratories, GB12)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2007) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔颗粒酶B抗体(Caltag Laboratories, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2007) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔颗粒酶B抗体(CALTAG, MHGB04)被用于被用于流式细胞仪在小鼠样本上 (图 4). Eur J Immunol (2007) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 1:200; 图 3A
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3A). Cancer Res (2006) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Caltag, GB11)被用于被用于流式细胞仪在小鼠样本上. J Virol (2006) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 猕猴
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在猕猴样本上. Immunology (2006) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上 (图 2). Int J Immunogenet (2006) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 4). Blood (2006) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔颗粒酶B抗体(Caltag, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2006) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔颗粒酶B抗体(Caltag, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 3). Blood (2006) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上 (表 1). Eur J Haematol (2005) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上 (图 5). Mol Immunol (2006) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2005) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上 (表 2). Eur J Immunol (2005) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 5B
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 5B). J Virol (2005) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔颗粒酶B抗体(Caltag, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2005) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上. Blood (2005) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔颗粒酶B抗体(Caltag Laboratories, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2005) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 1:200; 图 1
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). J Immunol (2005) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 3A
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 3A). J Immunol (2004) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2004) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 1:400
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上浓度为1:400 和 被用于流式细胞仪在小鼠样本上浓度为1:400. Blood (2004) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2003) ncbi
小鼠 单克隆(GB12)
  • 流式细胞仪; 人类; 10 ug/ml
赛默飞世尔颗粒酶B抗体(Caltag, GB12)被用于被用于流式细胞仪在人类样本上浓度为10 ug/ml. Proc Natl Acad Sci U S A (2003) ncbi
小鼠 单克隆(GrB-7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔颗粒酶B抗体(noco, GrB-7)被用于被用于免疫组化-石蜡切片在人类样本上. Clin Exp Immunol (1995) ncbi
BioLegend
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 1:25
BioLegend颗粒酶B抗体(Biolegend, 372206)被用于被用于流式细胞仪在小鼠样本上浓度为1:25. Nat Commun (2022) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 6d, s4a
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 6d, s4a). Front Cell Infect Microbiol (2022) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 1:50; 图 6h
BioLegend颗粒酶B抗体(Biolgend, 372206)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 6h). Nat Commun (2022) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Theranostics (2022) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 s1a, s4f
BioLegend颗粒酶B抗体(BioLegend, 515408)被用于被用于流式细胞仪在小鼠样本上 (图 s1a, s4f). Sci Adv (2022) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Oncoimmunology (2022) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 图 s6d
BioLegend颗粒酶B抗体(Biolegend, QA16A02)被用于被用于流式细胞仪在小鼠样本上 (图 s6d). Nat Commun (2022) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 1:50; 图 6i, s8
BioLegend颗粒酶B抗体(Biolegend, 372213)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 6i, s8). Nat Commun (2022) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 2m
BioLegend颗粒酶B抗体(Biolegend, 515403)被用于被用于流式细胞仪在小鼠样本上 (图 2m). J Immunother Cancer (2022) ncbi
大鼠 重组(QA18A28)
  • 流式细胞仪; 小鼠; 图 1e, s2e
BioLegend颗粒酶B抗体(BioLegend, 396412)被用于被用于流式细胞仪在小鼠样本上 (图 1e, s2e). J Immunother Cancer (2022) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:50; 图 4c
BioLegend颗粒酶B抗体(BioLegend, 515403)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4c). J Biol Chem (2022) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 s10
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 s10). Oncoimmunology (2022) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 1:100; 图 4f, 4g
BioLegend颗粒酶B抗体(Biolegend, 372203)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4f, 4g). Nat Nanotechnol (2022) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:100; 图 3f, 3g, s7c
BioLegend颗粒酶B抗体(Biolegend, 515408)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3f, 3g, s7c). Nat Nanotechnol (2022) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 1:100; 图 1d
BioLegend颗粒酶B抗体(BioLegend, QA16A02)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1d). J Immunother Cancer (2021) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Commun Biol (2021) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 s4c
BioLegend颗粒酶B抗体(Biolegend, 515408)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). J Immunother Cancer (2021) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegend颗粒酶B抗体(Biolegend, 372213)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). J Immunother Cancer (2021) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:100; 图 s4b
BioLegend颗粒酶B抗体(BioLegend, 515405)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4b). iScience (2021) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 1:100; 图 4e
BioLegend颗粒酶B抗体(BioLegend, 372204)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4e). Nat Commun (2021) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 图 s4c
BioLegend颗粒酶B抗体(Biolegend, 372208)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). JCI Insight (2021) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:200; 图 3d
BioLegend颗粒酶B抗体(BioLegend, 515405)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3d). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 1:50; 图 s16a
BioLegend颗粒酶B抗体(BioLegend, QA16A02)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s16a). Sci Transl Med (2021) ncbi
大鼠 重组(QA18A28)
  • 流式细胞仪; 小鼠; 图 8a
BioLegend颗粒酶B抗体(BioLegend, 396413)被用于被用于流式细胞仪在小鼠样本上 (图 8a). Neoplasia (2021) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 人类; 图 2f
  • 流式细胞仪; 小鼠; 图 6f
BioLegend颗粒酶B抗体(Biolegend, 372204)被用于被用于流式细胞仪在人类样本上 (图 2f) 和 被用于流式细胞仪在小鼠样本上 (图 6f). Sci Rep (2021) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3e
BioLegend颗粒酶B抗体(Biolegend, 515406)被用于被用于流式细胞仪在人类样本上 (图 3e). Cell (2020) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:100; 图 ev2c
BioLegend颗粒酶B抗体(BioLegend, 515408)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 ev2c). EMBO Mol Med (2020) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 5f, 5g
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 5f, 5g). Science (2020) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:100; 图 8d
BioLegend颗粒酶B抗体(BioLegend, 515406)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 8d). Nat Commun (2020) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 图 3h
BioLegend颗粒酶B抗体(Biolegend, QA16A02)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Nature (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 2d, 2l
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 2d, 2l). Science (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 s5a
BioLegend颗粒酶B抗体(Biolegend, 515407)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Cell (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 10b
BioLegend颗粒酶B抗体(Biolegend, 515403)被用于被用于流式细胞仪在人类样本上 (图 10b). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend颗粒酶B抗体(Biolegend, 372208)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cell (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:50; 图 4c, 6j
BioLegend颗粒酶B抗体(Biolegend, 515403)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4c, 6j). Nat Commun (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3a
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 2a
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 2a). J Immunol (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:100; 图 s2b
BioLegend颗粒酶B抗体(Biolegend, 515403)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2b). Nat Commun (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 1:100; 图 3h
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3h). elife (2019) ncbi
小鼠 单克隆(M3304B06)
  • 免疫印迹; 人类; 1:500; 图 3s1b
BioLegend颗粒酶B抗体(Biolegend, M3304B06)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3s1b). elife (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 s1d
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 s1d). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend颗粒酶B抗体(Biolegend, 515403)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Cell Rep (2018) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 图 3m
BioLegend颗粒酶B抗体(Biolegend, 372204)被用于被用于流式细胞仪在小鼠样本上 (图 3m). Cancer Res (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 s6a
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 s6a). Sci Immunol (2018) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend颗粒酶B抗体(BioLegend, QA16A02)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cell Immunol (2018) ncbi
小鼠 重组(QA16A02)
  • 流式细胞仪; 人类; 图 6c
BioLegend颗粒酶B抗体(BioLegend, QA16A02)被用于被用于流式细胞仪在人类样本上 (图 6c). Int J Infect Dis (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend颗粒酶B抗体(BioLegend, 515408)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 s10g
BioLegend颗粒酶B抗体(BioLegend, 515403)被用于被用于流式细胞仪在小鼠样本上 (图 s10g). Nature (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:200; 图 8b
BioLegend颗粒酶B抗体(Biolegend, 515403)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 8b). Nat Cell Biol (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 4c
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 4c). Oncotarget (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 6a
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 6a). J Exp Med (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 s6d
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 s6d). Cell Rep (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 4a
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 4a). J Virol (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 1e
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 1e). J Immunol (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:400; 图 3a
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3a). J Clin Invest (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 5
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS Pathog (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 1:200; 表 s2
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 s2). Nat Immunol (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 1
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 s1
BioLegend颗粒酶B抗体(biolegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 s1). J Immunol (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 1
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(GB11)
  • 免疫细胞化学; 人类; 图 2
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于免疫细胞化学在人类样本上 (图 2). J Cell Biol (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 1
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 7
  • 流式细胞仪; 人类; 图 4
BioLegend颗粒酶B抗体(Biolegend, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 7) 和 被用于流式细胞仪在人类样本上 (图 4). J Immunol (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 4
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在人类样本上 (图 4). J Virol (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 5,000 ug/ml; 图 3
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在人类样本上浓度为5,000 ug/ml (图 3). J Surg Res (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 6
BioLegend颗粒酶B抗体(BioLegend, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 6). Am J Pathol (2014) ncbi
小鼠 单克隆(GB11)
BioLegend颗粒酶B抗体(BioLegend, 515403)被用于. Cancer Res (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(GZMB/2403)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s16c
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1e
艾博抗(上海)贸易有限公司颗粒酶B抗体(Abcam, ab237847)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s16c) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1e). Sci Transl Med (2021) ncbi
domestic rabbit 单克隆(EPR8260)
  • 免疫组化; 人类; 1:300; 图 2b
艾博抗(上海)贸易有限公司颗粒酶B抗体(Abcam, ab134933)被用于被用于免疫组化在人类样本上浓度为1:300 (图 2b). Cancer Immunol Immunother (2020) ncbi
domestic rabbit 单克隆(EPR8260)
  • 免疫组化; 人类; 图 9a
艾博抗(上海)贸易有限公司颗粒酶B抗体(Abcam, EPR8260)被用于被用于免疫组化在人类样本上 (图 9a). Front Immunol (2017) ncbi
圣克鲁斯生物技术
小鼠 单克隆(2C5)
  • 免疫印迹; 小鼠; 1:1000; 图 8g
圣克鲁斯生物技术颗粒酶B抗体(Santa Cruz Biotechnology, sc-8022)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8g). Nat Commun (2022) ncbi
小鼠 单克隆(2C5)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 2
圣克鲁斯生物技术颗粒酶B抗体(Santa Cruz Biotechnology, sc-8022)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 2). PLoS ONE (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司颗粒酶B抗体(AbD Serotec, GB11)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2014) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(GrB-7)
  • 免疫组化-石蜡切片; 人类; 表 3
丹科医疗器械技术服务(上海)有限公司颗粒酶B抗体(DAKO, GRB-7)被用于被用于免疫组化-石蜡切片在人类样本上 (表 3). J Eur Acad Dermatol Venereol (2017) ncbi
小鼠 单克隆(GrB-7)
  • 免疫组化-石蜡切片; 人类; 图 5f
丹科医疗器械技术服务(上海)有限公司颗粒酶B抗体(Dako, GrB-7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5f). J Immunol (2016) ncbi
小鼠 单克隆(GrB-7)
  • 免疫组化; 小鼠; 图 6a
丹科医疗器械技术服务(上海)有限公司颗粒酶B抗体(DAKO, GrB-7)被用于被用于免疫组化在小鼠样本上 (图 6a). Clin Cancer Res (2017) ncbi
小鼠 单克隆(GrB-7)
  • 免疫组化; 人类; 1:10
丹科医疗器械技术服务(上海)有限公司颗粒酶B抗体(Dako, GrB7)被用于被用于免疫组化在人类样本上浓度为1:10. J Cutan Pathol (2015) ncbi
小鼠 单克隆(GrB-7)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司颗粒酶B抗体(Dako, GrB-7)被用于被用于免疫组化-石蜡切片在人类样本上. J Cutan Pathol (2015) ncbi
小鼠 单克隆(GrB-7)
  • 免疫组化; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司颗粒酶B抗体(Dako, GrB-7)被用于被用于免疫组化在人类样本上浓度为1:40. J Cutan Pathol (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司颗粒酶B抗体(Cell Signaling Technology, 4275)被用于被用于流式细胞仪在小鼠样本上. EMBO Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3d
赛信通(上海)生物试剂有限公司颗粒酶B抗体(Cell Signaling Technology, 4275)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D6E9W)
  • 免疫组化; 小鼠; 图 2v
赛信通(上海)生物试剂有限公司颗粒酶B抗体(Cell Signaling, D6E9W)被用于被用于免疫组化在小鼠样本上 (图 2v). J Immunol (2019) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司颗粒酶B抗体(Cell Signaling, 4275)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s11a
赛信通(上海)生物试剂有限公司颗粒酶B抗体(Cell Signaling, 4275)被用于被用于免疫印迹在人类样本上 (图 s11a). Mol Syst Biol (2017) ncbi
碧迪BD
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3i
碧迪BD颗粒酶B抗体(BD, 560211)被用于被用于流式细胞仪在人类样本上 (图 3i). Nat Commun (2022) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 4c
  • 流式细胞仪; 人类; 图 2c
碧迪BD颗粒酶B抗体(BD, 560212)被用于被用于流式细胞仪在小鼠样本上 (图 4c) 和 被用于流式细胞仪在人类样本上 (图 2c). Sci Adv (2022) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 1:100; 图 s1c
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1c). Nature (2021) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 7a-7b
碧迪BD颗粒酶B抗体(BD Biosciences, 560212)被用于被用于流式细胞仪在人类样本上 (图 7a-7b). elife (2020) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 14a
碧迪BD颗粒酶B抗体(BD Biosciences, 560211)被用于被用于流式细胞仪在人类样本上 (图 14a). Hum Vaccin Immunother (2020) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 3a, 6g
碧迪BD颗粒酶B抗体(BD Biosciences, 562462)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 6g). Cell Rep (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 6c
碧迪BD颗粒酶B抗体(BD Pharmingen, 561142)被用于被用于流式细胞仪在人类样本上 (图 6c). Sci Rep (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 s6g
碧迪BD颗粒酶B抗体(BD Biosciences, 560213)被用于被用于流式细胞仪在小鼠样本上 (图 s6g). Cell (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 1b
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 1b). Eur J Immunol (2019) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 2d
碧迪BD颗粒酶B抗体(BD Biosciences, 560213)被用于被用于流式细胞仪在人类样本上 (图 2d). Cell Rep (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 s3a
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 s3a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 s6
碧迪BD颗粒酶B抗体(BD, GB11)被用于被用于流式细胞仪在人类样本上 (图 s6). J Clin Invest (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3d
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 3d). Clin Exp Immunol (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; African green monkey; 图 s5a
碧迪BD颗粒酶B抗体(BD Biosciences, 561142)被用于被用于流式细胞仪在African green monkey样本上 (图 s5a). J Clin Invest (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 2g
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 2g). J Clin Invest (2018) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3b
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 3b). JCI Insight (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 5c
碧迪BD颗粒酶B抗体(BD Bioscience, GB11)被用于被用于流式细胞仪在人类样本上 (图 5c). Sci Rep (2017) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 猕猴; 图 2b
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在猕猴样本上 (图 2b). PLoS Pathog (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cell (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 1e
碧迪BD颗粒酶B抗体(BD, GB11)被用于被用于流式细胞仪在人类样本上 (图 1e). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3a
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 s4b
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 s4b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3
碧迪BD颗粒酶B抗体(BD Biosciences, 560211)被用于被用于流式细胞仪在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 2a
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 2a). Sci Rep (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 s1
碧迪BD颗粒酶B抗体(Becton-Dickinson, GB11)被用于被用于流式细胞仪在人类样本上 (图 s1). J Immunol (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3
碧迪BD颗粒酶B抗体(BD Biosciences, 561998)被用于被用于流式细胞仪在人类样本上 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 1
碧迪BD颗粒酶B抗体(BD Pharmigen, 560212)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3e
碧迪BD颗粒酶B抗体(BD, GB11)被用于被用于流式细胞仪在人类样本上 (图 3e). J Clin Invest (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; African green monkey; 图 1g
碧迪BD颗粒酶B抗体(BD, GB11)被用于被用于流式细胞仪在African green monkey样本上 (图 1g). J Med Primatol (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3
碧迪BD颗粒酶B抗体(BD PharMingen, GB11)被用于被用于流式细胞仪在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3c
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 3c). Science (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 1
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 1). Nat Immunol (2016) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 s7
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 s7). PLoS ONE (2015) ncbi
小鼠 单克隆(2C5/F5)
  • 流式细胞仪; 小鼠; 图 4c
碧迪BD颗粒酶B抗体(BD Pharmingen, 2C5/F5)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Clin Invest (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 1
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 1a
碧迪BD颗粒酶B抗体(BD Bioscience, GB11)被用于被用于流式细胞仪在人类样本上 (图 1a). Kidney Int (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类
碧迪BD颗粒酶B抗体(BD, GB11)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类
碧迪BD颗粒酶B抗体(BD, GB11)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(2C5/F5)
  • 免疫印迹; 人类
碧迪BD颗粒酶B抗体(BD Biosciences, 2C5/F5)被用于被用于免疫印迹在人类样本上. Mol Immunol (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 表 s2
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (表 s2). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 图 3
碧迪BD颗粒酶B抗体(BD Biosciences, GB11)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类; 表 s5
碧迪BD颗粒酶B抗体(BD Bioscience, GB11)被用于被用于流式细胞仪在人类样本上 (表 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类
碧迪BD颗粒酶B抗体(BD, GB11)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类
碧迪BD颗粒酶B抗体(BD Pharmigen, GB11)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(GB11)
  • 流式细胞仪; 人类
碧迪BD颗粒酶B抗体(BD Bioscience, GB11)被用于被用于流式细胞仪在人类样本上. Med Microbiol Immunol (2014) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆(11F1)
  • 免疫组化; 人类; 1:100
徕卡显微系统(上海)贸易有限公司颗粒酶B抗体(Novocastra, 11F1)被用于被用于免疫组化在人类样本上浓度为1:100. Ann Hematol (2021) ncbi
单克隆(11F1)
  • 免疫组化-石蜡切片; 人类; 图 1a
徕卡显微系统(上海)贸易有限公司颗粒酶B抗体(Leica, PA0299)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Cancer Res (2021) ncbi
小鼠 单克隆(11F1)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 s3
徕卡显微系统(上海)贸易有限公司颗粒酶B抗体(Novocastra, NCL-Gran-B)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 s3). Oncoimmunology (2017) ncbi
单克隆(11F1)
  • 免疫组化; 人类; 图 3a
徕卡显微系统(上海)贸易有限公司颗粒酶B抗体(Leica Biosysytems, PA0299)被用于被用于免疫组化在人类样本上 (图 3a). PLoS ONE (2017) ncbi
文章列表
  1. Yang P, Qin H, Li Y, Xiao A, Zheng E, Zeng H, et al. CD36-mediated metabolic crosstalk between tumor cells and macrophages affects liver metastasis. Nat Commun. 2022;13:5782 pubmed 出版商
  2. Hou X, Shi Y, Kang X, Rousu Z, Li D, Wang M, et al. Echinococcus granulosus: The establishment of the metacestode in the liver is associated with control of the CD4+ T-cell-mediated immune response in patients with cystic echinococcosis and a mouse model. Front Cell Infect Microbiol. 2022;12:983119 pubmed 出版商
  3. Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461 pubmed 出版商
  4. Wu B, Song M, Dong Q, Xiang G, Li J, Ma X, et al. UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced PDL1 transcription in triple negative breast cancer. Theranostics. 2022;12:5086-5102 pubmed 出版商
  5. Lei X, Lin H, Wang J, Ou Z, Ruan Y, Sadagopan A, et al. Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression. Nat Commun. 2022;13:3882 pubmed 出版商
  6. Chen P, Katsuyama E, Satyam A, Li H, Rubio J, Jung S, et al. CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy. Sci Adv. 2022;8:eabo4271 pubmed 出版商
  7. Garnier L, Pick R, Montorfani J, Sun M, Brighouse D, Liaudet N, et al. IFN-γ-dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis. Sci Adv. 2022;8:eabl5162 pubmed 出版商
  8. Pan C, Wu Q, Wang S, Mei Z, Zhang L, Gao X, et al. Combination with Toll-like receptor 4 (TLR4) agonist reverses GITR agonism mediated M2 polarization of macrophage in Hepatocellular carcinoma. Oncoimmunology. 2022;11:2073010 pubmed 出版商
  9. Piao W, Li L, Saxena V, Iyyathurai J, Lakhan R, Zhang Y, et al. PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nat Commun. 2022;13:2176 pubmed 出版商
  10. Xiong W, Gao X, Zhang T, Jiang B, Hu M, Bu X, et al. USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nat Commun. 2022;13:1700 pubmed 出版商
  11. van Vloten J, Matuszewska K, Minow M, Minott J, Santry L, Pereira M, et al. Oncolytic Orf virus licenses NK cells via cDC1 to activate innate and adaptive antitumor mechanisms and extends survival in a murine model of late-stage ovarian cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  12. Tang T, Huang X, Zhang G, Lu M, Hong Z, Wang M, et al. Oncolytic peptide LTX-315 induces anti-pancreatic cancer immunity by targeting the ATP11B-PD-L1 axis. J Immunother Cancer. 2022;10: pubmed 出版商
  13. Cha J, Chan L, Wang Y, Chu Y, Wang C, Lee H, et al. Ephrin receptor A10 monoclonal antibodies and the derived chimeric antigen receptor T cells exert an antitumor response in mouse models of triple-negative breast cancer. J Biol Chem. 2022;298:101817 pubmed 出版商
  14. Kono M, Komatsuda H, Yamaki H, Kumai T, Hayashi R, Wakisaka R, et al. Immunomodulation via FGFR inhibition augments FGFR1 targeting T-cell based antitumor immunotherapy for head and neck squamous cell carcinoma. Oncoimmunology. 2022;11:2021619 pubmed 出版商
  15. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  16. Liu H, Pedros C, Kong K, Canonigo Balancio A, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer. 2021;9: pubmed 出版商
  17. Susukida T, Kuwahara S, Song B, Kazaoka A, Aoki S, Ito K. Regulation of the immune tolerance system determines the susceptibility to HLA-mediated abacavir-induced skin toxicity. Commun Biol. 2021;4:1137 pubmed 出版商
  18. Lu C, Liu Z, Klement J, Yang D, Merting A, Poschel D, et al. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer. 2021;9: pubmed 出版商
  19. Oberhardt V, Luxenburger H, Kemming J, Schulien I, Ciminski K, Giese S, et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature. 2021;597:268-273 pubmed 出版商
  20. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  21. James O, Vandereyken M, Marchingo J, Singh F, Bray S, Wilson J, et al. IL-15 and PIM kinases direct the metabolic programming of intestinal intraepithelial lymphocytes. Nat Commun. 2021;12:4290 pubmed 出版商
  22. Lauret Marie Joseph E, Kirilovsky A, Lecoester B, El Sissy C, Boullerot L, Rangan L, et al. Chemoradiation triggers antitumor Th1 and tissue resident memory-polarized immune responses to improve immune checkpoint inhibitors therapy. J Immunother Cancer. 2021;9: pubmed 出版商
  23. Souza C, Ketelut Carneiro N, Milanezi C, Faccioli L, Gardinassi L, Silva J. NLRC4 inhibits NLRP3 inflammasome and abrogates effective antifungal CD8+ T cell responses. iScience. 2021;24:102548 pubmed 出版商
  24. Uyanik B, Goloudina A, Akbarali A, Grigorash B, Petukhov A, Singhal S, et al. Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses. Nat Commun. 2021;12:3622 pubmed 出版商
  25. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  26. Bonilla W, Kirchhammer N, Marx A, Kallert S, Krzyzaniak M, Lu M, et al. Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack. Cell Rep Med. 2021;2:100209 pubmed 出版商
  27. Brune M, Stussi G, Lundberg P, Vela V, Heim D, Manz M, et al. Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann Hematol. 2021;100:1169-1179 pubmed 出版商
  28. Xiao Y, Shu L, Wu X, Liu Y, Cheong L, Liao B, et al. Fatty acid binding protein 4 promotes autoimmune diabetes by recruitment and activation of pancreatic islet macrophages. JCI Insight. 2021;6: pubmed 出版商
  29. Lu M, Dravid P, Zhang Y, Trivedi S, Li A, Harder O, et al. A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  30. Mondal T, Shivange G, Tihagam R, Lyerly E, Battista M, Talwar D, et al. Unexpected PD-L1 immune evasion mechanism in TNBC, ovarian, and other solid tumors by DR5 agonist antibodies. EMBO Mol Med. 2021;13:e12716 pubmed 出版商
  31. Li Y, Sun Y, Kulke M, Hechler T, Van der Jeught K, Dong T, et al. Targeted immunotherapy for HER2-low breast cancer with 17p loss. Sci Transl Med. 2021;13: pubmed 出版商
  32. Davenport M, Echols J, Silva A, Anderson J, Owens P, Yates C, et al. miR-31 displays subtype specificity in lung cancer. Cancer Res. 2021;: pubmed 出版商
  33. Wang F, Ye W, Wang S, He Y, Zhong H, Wang Y, et al. Discovery of a new inhibitor targeting PD-L1 for cancer immunotherapy. Neoplasia. 2021;23:281-293 pubmed 出版商
  34. Xu K, Yin N, Peng M, Stamatiades E, Shyu A, Li P, et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 2021;371:405-410 pubmed 出版商
  35. Wang Y, Mohseni M, Grauel A, Diez J, Guan W, Liang S, et al. SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms. Sci Rep. 2021;11:1399 pubmed 出版商
  36. Lafouresse F, Jugele R, Müller S, Doineau M, Duplan Eche V, Espinosa E, et al. Stochastic asymmetric repartition of lytic machinery in dividing CD8+ T cells generates heterogeneous killing behavior. elife. 2021;10: pubmed 出版商
  37. Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita A, et al. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. elife. 2020;9: pubmed 出版商
  38. Piersma S, Poursine Laurent J, Yang L, Barber G, Parikh B, Yokoyama W. Virus infection is controlled by hematopoietic and stromal cell sensing of murine cytomegalovirus through STING. elife. 2020;9: pubmed 出版商
  39. Mathew D, Giles J, Baxter A, Greenplate A, Wu J, Alanio C, et al. Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions. bioRxiv. 2020;: pubmed 出版商
  40. Gunesch J, Dixon A, Ebrahim T, Berrien Elliott M, Tatineni S, Kumar T, et al. CD56 regulates human NK cell cytotoxicity through Pyk2. elife. 2020;9: pubmed 出版商
  41. Grifoni A, Weiskopf D, Ramirez S, Mateus J, Dan J, Moderbacher C, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489-1501.e15 pubmed 出版商
  42. Fan Z, Tian Y, Chen Z, Liu L, Zhou Q, He J, et al. Blocking interaction between SHP2 and PD-1 denotes a novel opportunity for developing PD-1 inhibitors. EMBO Mol Med. 2020;12:e11571 pubmed 出版商
  43. Liu G, Yu Y, Feng F, Zhu P, Zhang H, Zhang D, et al. Human CD8+CD28- T suppressor cells expanded by common gamma chain (γc) cytokines retain steady allospecific suppressive capacity in vivo. BMC Immunol. 2020;21:23 pubmed 出版商
  44. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  45. Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S, Okumura K, et al. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun. 2020;11:609 pubmed 出版商
  46. Boudewijns S, Bloemendal M, de Haas N, Westdorp H, Bol K, Schreibelt G, et al. Autologous monocyte-derived DC vaccination combined with cisplatin in stage III and IV melanoma patients: a prospective, randomized phase 2 trial. Cancer Immunol Immunother. 2020;69:477-488 pubmed 出版商
  47. Wei J, Long L, Zheng W, Dhungana Y, Lim S, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471-476 pubmed 出版商
  48. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  49. Ma A, Motyka B, Gutfreund K, Shi Y, George R. A dendritic cell receptor-targeted chimeric immunotherapeutic protein (C-HBV) for the treatment of chronic hepatitis B. Hum Vaccin Immunother. 2020;16:756-778 pubmed 出版商
  50. Chen Z, Ji Z, Ngiow S, Manne S, Cai Z, Huang A, et al. TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision. Immunity. 2019;51:840-855.e5 pubmed 出版商
  51. Nelson C, Thompson E, Quarnstrom C, Fraser K, Seelig D, Bhela S, et al. Robust Iterative Stimulation with Self-Antigens Overcomes CD8+ T Cell Tolerance to Self- and Tumor Antigens. Cell Rep. 2019;28:3092-3104.e5 pubmed 出版商
  52. Wolf Y, Bartok O, Patkar S, Eli G, Cohen S, Litchfield K, et al. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell. 2019;179:219-235.e21 pubmed 出版商
  53. Di Blasi D, Boldanova T, Mori L, Terracciano L, Heim M, De Libero G. Unique T-Cell Populations Define Immune-Inflamed Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol. 2020;9:195-218 pubmed 出版商
  54. Dong M, Wang G, Chow R, Ye L, Zhu L, Dai X, et al. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell. 2019;178:1189-1204.e23 pubmed 出版商
  55. Benci J, Johnson L, Choa R, Xu Y, Qiu J, Zhou Z, et al. Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell. 2019;178:933-948.e14 pubmed 出版商
  56. Ramaglia V, Sheikh Mohamed S, Legg K, Park C, Rojas O, Zandee S, et al. Multiplexed imaging of immune cells in staged multiple sclerosis lesions by mass cytometry. elife. 2019;8: pubmed 出版商
  57. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  58. Meckiff B, Ladell K, McLaren J, Ryan G, Leese A, James E, et al. Primary EBV Infection Induces an Acute Wave of Activated Antigen-Specific Cytotoxic CD4+ T Cells. J Immunol. 2019;203:1276-1287 pubmed 出版商
  59. Shokri M, Bozorgmehr M, Ghanavatinejad A, Falak R, Aleahmad M, Kazemnejad S, et al. Human menstrual blood-derived stromal/stem cells modulate functional features of natural killer cells. Sci Rep. 2019;9:10007 pubmed 出版商
  60. Kim A, Han C, Driver I, Olow A, Sewell A, Zhang Z, et al. LILRB1 Blockade Enhances Bispecific T Cell Engager Antibody-Induced Tumor Cell Killing by Effector CD8+ T Cells. J Immunol. 2019;203:1076-1087 pubmed 出版商
  61. LaFleur M, Nguyen T, Coxe M, Yates K, Trombley J, Weiss S, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10:1668 pubmed 出版商
  62. Spolski R, West E, Li P, Veenbergen S, Yung S, Kazemian M, et al. IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus. elife. 2019;8: pubmed 出版商
  63. Poggio M, Hu T, Pai C, Chu B, BELAIR C, Chang A, et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell. 2019;177:414-427.e13 pubmed 出版商
  64. Cao Y, Trillo Tinoco J, Sierra R, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 2019;10:1280 pubmed 出版商
  65. Remmerswaal E, Hombrink P, Nota B, Pircher H, ten Berge I, van Lier R, et al. Expression of IL-7Rα and KLRG1 defines functionally distinct CD8+ T-cell populations in humans. Eur J Immunol. 2019;49:694-708 pubmed 出版商
  66. Mayassi T, Ladell K, Gudjonson H, McLaren J, Shaw D, Tran M, et al. Chronic Inflammation Permanently Reshapes Tissue-Resident Immunity in Celiac Disease. Cell. 2019;176:967-981.e19 pubmed 出版商
  67. Sorrelle N, Ganguly D, Dominguez A, Zhang Y, Huang H, Dahal L, et al. Improved Multiplex Immunohistochemistry for Immune Microenvironment Evaluation of Mouse Formalin-Fixed, Paraffin-Embedded Tissues. J Immunol. 2019;202:292-299 pubmed 出版商
  68. Muscate F, Stetter N, Schramm C, Schulze zur Wiesch J, Bosurgi L, Jacobs T. HVEM and CD160: Regulators of Immunopathology During Malaria Blood-Stage. Front Immunol. 2018;9:2611 pubmed 出版商
  69. Kim C, Hu B, Jadhav R, Jin J, Zhang H, Cavanagh M, et al. Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Rep. 2018;25:2148-2162.e5 pubmed 出版商
  70. Dias J, Boulouis C, Gorin J, van den Biggelaar R, Lal K, Gibbs A, et al. The CD4-CD8- MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. Proc Natl Acad Sci U S A. 2018;115:E11513-E11522 pubmed 出版商
  71. Jensen I, Winborn C, Fosdick M, Shao P, Tremblay M, Shan Q, et al. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog. 2018;14:e1007405 pubmed 出版商
  72. Petrelli A, Mijnheer G, Hoytema van Konijnenburg D, van der Wal M, Giovannone B, Mocholí E, et al. PD-1+CD8+ T cells are clonally expanding effectors in human chronic inflammation. J Clin Invest. 2018;128:4669-4681 pubmed 出版商
  73. Geary C, Krishna C, Lau C, Adams N, Gearty S, Pritykin Y, et al. Non-redundant ISGF3 Components Promote NK Cell Survival in an Auto-regulatory Manner during Viral Infection. Cell Rep. 2018;24:1949-1957.e6 pubmed 出版商
  74. Hartana C, Ahlén Bergman E, Broome A, Berglund S, Johansson M, Alamdari F, et al. Tissue-resident memory T cells are epigenetically cytotoxic with signs of exhaustion in human urinary bladder cancer. Clin Exp Immunol. 2018;194:39-53 pubmed 出版商
  75. Tan B, Shi X, Zhang J, Qin J, Zhang N, Ren H, et al. Inhibition of Rspo-Lgr4 Facilitates Checkpoint Blockade Therapy by Switching Macrophage Polarization. Cancer Res. 2018;78:4929-4942 pubmed 出版商
  76. Galperin M, Farenc C, Mukhopadhyay M, Jayasinghe D, Decroos A, Benati D, et al. CD4+ T cell-mediated HLA class II cross-restriction in HIV controllers. Sci Immunol. 2018;3: pubmed 出版商
  77. Provine N, Binder B, FitzPatrick M, Schuch A, Garner L, Williamson K, et al. Unique and Common Features of Innate-Like Human Vδ2+ γδT Cells and Mucosal-Associated Invariant T Cells. Front Immunol. 2018;9:756 pubmed 出版商
  78. Ferrando Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, et al. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest. 2018;128:2089-2103 pubmed 出版商
  79. Harker J, Wong K, Dallari S, Bao P, Dolgoter A, Jo Y, et al. Interleukin-27R Signaling Mediates Early Viral Containment and Impacts Innate and Adaptive Immunity after Chronic Lymphocytic Choriomeningitis Virus Infection. J Virol. 2018;92: pubmed 出版商
  80. Xiao F, Ai G, Yan W, Wan X, Luo X, Ning Q. Intrahepatic recruitment of cytotoxic NK cells contributes to autoimmune hepatitis progression. Cell Immunol. 2018;327:13-20 pubmed 出版商
  81. Li M, Zhang W, Liu J, Li M, Zhang Y, Xiong Y, et al. Dynamic changes in the immunological characteristics of T lymphocytes in surviving patients with severe fever with thrombocytopenia syndrome (SFTS). Int J Infect Dis. 2018;70:72-80 pubmed 出版商
  82. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  83. Li N, van Unen V, Höllt T, Thompson A, van Bergen J, Pezzotti N, et al. Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine. J Exp Med. 2018;215:1383-1396 pubmed 出版商
  84. Böttcher J, Bonavita E, Chakravarty P, Blees H, Cabeza Cabrerizo M, Sammicheli S, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell. 2018;172:1022-1037.e14 pubmed 出版商
  85. Pizzolla A, Nguyen T, Sant S, Jaffar J, Loudovaris T, Mannering S, et al. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J Clin Invest. 2018;128:721-733 pubmed 出版商
  86. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  87. Wasiuk A, Testa J, Weidlick J, Sisson C, Vitale L, Widger J, et al. CD27-Mediated Regulatory T Cell Depletion and Effector T Cell Costimulation Both Contribute to Antitumor Efficacy. J Immunol. 2017;199:4110-4123 pubmed 出版商
  88. Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Hayashi T, Nakachi K, et al. Fate Decision Between Group 3 Innate Lymphoid and Conventional NK Cell Lineages by Notch Signaling in Human Circulating Hematopoietic Progenitors. J Immunol. 2017;199:2777-2793 pubmed 出版商
  89. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19:1116-1129 pubmed 出版商
  90. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  91. Gorvel L, Korenfeld D, Tung T, Klechevsky E. Dendritic Cell-Derived IL-32?: A Novel Inhibitory Cytokine of NK Cell Function. J Immunol. 2017;199:1290-1300 pubmed 出版商
  92. Garcia Hernandez M, Uribe Uribe N, Espinosa González R, Kast W, Khader S, Rangel Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol. 2017;8:563 pubmed 出版商
  93. Domae E, Hirai Y, Ikeo T, Goda S, Shimizu Y. Cytokine-mediated activation of human ex vivo-expanded V?9V?2 T cells. Oncotarget. 2017;8:45928-45942 pubmed 出版商
  94. Tong A, Hashem H, Eid S, Allen F, Kingsley D, Huang A. Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma. Oncoimmunology. 2017;6:e1303586 pubmed 出版商
  95. Djaoud Z, Guethlein L, Horowitz A, Azzi T, Nemat Gorgani N, Olive D, et al. Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and ?? T cells. J Exp Med. 2017;214:1827-1841 pubmed 出版商
  96. Berthel A, Zoernig I, Valous N, Kahlert C, Klupp F, Ulrich A, et al. Detailed resolution analysis reveals spatial T cell heterogeneity in the invasive margin of colorectal cancer liver metastases associated with improved survival. Oncoimmunology. 2017;6:e1286436 pubmed 出版商
  97. Klein J, Moses K, Zelinskyy G, Sody S, Buer J, Lang S, et al. Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun. 2017;8:14600 pubmed 出版商
  98. Su S, Liao J, Liu J, Huang D, He C, Chen F, et al. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer. Cell Res. 2017;27:461-482 pubmed 出版商
  99. Collins A, Rothman N, Liu K, Reiner S. Eomesodermin and T-bet mark developmentally distinct human natural killer cells. JCI Insight. 2017;2:e90063 pubmed 出版商
  100. Nishimura Y, Gautam R, Chun T, Sadjadpour R, Foulds K, Shingai M, et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature. 2017;543:559-563 pubmed 出版商
  101. Egashira A, Morita M, Kumagai R, Taguchi K, Ueda M, Yamaguchi S, et al. Neuroendocrine carcinoma of the esophagus: Clinicopathological and immunohistochemical features of 14 cases. PLoS ONE. 2017;12:e0173501 pubmed 出版商
  102. Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang S, Marquardt N, et al. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin. Immunity. 2017;46:287-300 pubmed 出版商
  103. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  104. Knudson K, Pritzl C, Saxena V, Altman A, Daniels M, Teixeiro E. NFκB-Pim-1-Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A. 2017;114:E1659-E1667 pubmed 出版商
  105. Jeffery H, Jeffery L, Lutz P, Corrigan M, Webb G, Hirschfield G, et al. Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol. 2017;188:394-411 pubmed 出版商
  106. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  107. Scott N, Rogers L, Prudova A, Brown N, Fortelny N, Overall C, et al. Interactome disassembly during apoptosis occurs independent of caspase cleavage. Mol Syst Biol. 2017;13:906 pubmed 出版商
  108. Roberts E, Carnathan D, Li H, Shaw G, Silvestri G, Betts M. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog. 2016;12:e1006135 pubmed 出版商
  109. Moroishi T, Hayashi T, Pan W, Fujita Y, Holt M, Qin J, et al. The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity. Cell. 2016;167:1525-1539.e17 pubmed 出版商
  110. Ryan P, Sumaria N, Holland C, Bradford C, Izotova N, Grandjean C, et al. Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc Natl Acad Sci U S A. 2016;113:14378-14383 pubmed
  111. Hippen K, Watkins B, Tkachev V, Lemire A, Lehnen C, Riddle M, et al. Preclinical Testing of Antihuman CD28 Fab' Antibody in a Novel Nonhuman Primate Small Animal Rodent Model of Xenogenic Graft-Versus-Host Disease. Transplantation. 2016;100:2630-2639 pubmed 出版商
  112. Galindo Albarrán A, López Portales O, Gutiérrez Reyna D, Rodríguez Jorge O, Sánchez Villanueva J, Ramirez Pliego O, et al. CD8+ T Cells from Human Neonates Are Biased toward an Innate Immune Response. Cell Rep. 2016;17:2151-2160 pubmed 出版商
  113. Kadivar M, Petersson J, Svensson L, Marsal J. CD8??+ ?? T Cells: A Novel T Cell Subset with a Potential Role in Inflammatory Bowel Disease. J Immunol. 2016;197:4584-4592 pubmed
  114. Srivastava R, Khan A, Garg S, Syed S, Furness J, Vahed H, et al. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocula. J Virol. 2017;91: pubmed 出版商
  115. Cuff A, Robertson F, Stegmann K, Pallett L, Maini M, Davidson B, et al. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation. J Immunol. 2016;197:4283-4291 pubmed
  116. Peters C, Häsler R, Wesch D, Kabelitz D. Human Vδ2 T cells are a major source of interleukin-9. Proc Natl Acad Sci U S A. 2016;113:12520-12525 pubmed
  117. Starobinets H, Ye J, Broz M, Barry K, Goldsmith J, Marsh T, et al. Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment. J Clin Invest. 2016;126:4417-4429 pubmed 出版商
  118. Hu X, Valentin A, Dayton F, Kulkarni V, Alicea C, Rosati M, et al. DNA Prime-Boost Vaccine Regimen To Increase Breadth, Magnitude, and Cytotoxicity of the Cellular Immune Responses to Subdominant Gag Epitopes of Simian Immunodeficiency Virus and HIV. J Immunol. 2016;197:3999-4013 pubmed
  119. Chandele A, Sewatanon J, Gunisetty S, Singla M, Onlamoon N, Akondy R, et al. Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India. J Virol. 2016;90:11259-11278 pubmed
  120. Klotz L, Kuzmanov I, Hucke S, Gross C, Posevitz V, Dreykluft A, et al. B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6182-E6191 pubmed
  121. Willemen Y, Van den Bergh J, Bonte S, Anguille S, Heirman C, Stein B, et al. The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells. Oncotarget. 2016;7:73960-73970 pubmed 出版商
  122. Pachnio A, Ciáurriz M, Begum J, Lal N, Zuo J, Beggs A, et al. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium. PLoS Pathog. 2016;12:e1005832 pubmed 出版商
  123. Lewis G, Wehrens E, Labarta Bajo L, Streeck H, Zuniga E. TGF-? receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Invest. 2016;126:3799-3813 pubmed 出版商
  124. Jiang J, Chen X, An H, Yang B, Zhang F, Cheng X. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling. Sci Rep. 2016;6:32320 pubmed 出版商
  125. Torrelo A, Noguera Morel L, Hernandez Martin A, Clemente D, Barja J, Buzon L, et al. Recurrent lipoatrophic panniculitis of children. J Eur Acad Dermatol Venereol. 2017;31:536-543 pubmed 出版商
  126. Hervier B, Perez M, Allenbach Y, Devilliers H, Cohen F, Uzunhan Y, et al. Involvement of NK Cells and NKp30 Pathway in Antisynthetase Syndrome. J Immunol. 2016;197:1621-30 pubmed 出版商
  127. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  128. Kritikou J, Dahlberg C, Baptista M, Wagner A, Banerjee P, Gwalani L, et al. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep. 2016;6:30636 pubmed 出版商
  129. Hirayama M, Tomita Y, Yuno A, Tsukamoto H, Senju S, Imamura Y, et al. An oncofetal antigen, IMP-3-derived long peptides induce immune responses of both helper T cells and CTLs. Oncoimmunology. 2016;5:e1123368 pubmed 出版商
  130. Wang Y, Sun H, Wang J, Wang H, Meng L, Xu C, et al. DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity. Cell Death Dis. 2016;7:e2316 pubmed 出版商
  131. Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, et al. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203 pubmed 出版商
  132. Ashizawa T, Iizuka A, Nonomura C, Kondou R, Maeda C, Miyata H, et al. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse. Clin Cancer Res. 2017;23:149-158 pubmed 出版商
  133. Gorman M, Poddar S, Farzan M, Diamond M. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis. J Virol. 2016;90:8212-25 pubmed 出版商
  134. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  135. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  136. Golombeck K, Bönte K, Mönig C, van Loo K, Hartwig M, Schwindt W, et al. Evidence of a pathogenic role for CD8(+) T cells in anti-GABAB receptor limbic encephalitis. Neurol Neuroimmunol Neuroinflamm. 2016;3:e232 pubmed 出版商
  137. Yin W, Tong S, Zhang Q, Shao J, Liu Q, Peng H, et al. Functional dichotomy of Vδ2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-γ production. Sci Rep. 2016;6:26296 pubmed 出版商
  138. Marafini I, Monteleone I, Di Fusco D, Sedda S, Cupi M, Fina D, et al. Celiac Disease-Related Inflammation Is Marked by Reduction of Nkp44/Nkp46-Double Positive Natural Killer Cells. PLoS ONE. 2016;11:e0155103 pubmed 出版商
  139. Urban S, Berg L, Welsh R. Type 1 interferon licenses naïve CD8 T cells to mediate anti-viral cytotoxicity. Virology. 2016;493:52-9 pubmed 出版商
  140. Lee Chang C, Bodogai M, Moritoh K, Chen X, Wersto R, Sen R, et al. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers. J Immunol. 2016;196:3385-97 pubmed 出版商
  141. McGranahan N, Furness A, Rosenthal R, Ramskov S, Lyngaa R, Saini S, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463-9 pubmed 出版商
  142. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  143. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  144. Lucas T, Richner J, Diamond M. The Interferon-Stimulated Gene Ifi27l2a Restricts West Nile Virus Infection and Pathogenesis in a Cell-Type- and Region-Specific Manner. J Virol. 2015;90:2600-15 pubmed 出版商
  145. Mangan M, Bird C, Kaiserman D, Matthews A, Hitchen C, Steer D, et al. A Novel Serpin Regulatory Mechanism: SerpinB9 IS REVERSIBLY INHIBITED BY VICINAL DISULFIDE BOND FORMATION IN THE REACTIVE CENTER LOOP. J Biol Chem. 2016;291:3626-38 pubmed 出版商
  146. Höftberger R, Leisser M, Bauer J, Lassmann H. Autoimmune encephalitis in humans: how closely does it reflect multiple sclerosis ?. Acta Neuropathol Commun. 2015;3:80 pubmed 出版商
  147. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17:95-103 pubmed 出版商
  148. Deisting W, Raum T, Kufer P, Baeuerle P, Münz M. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110. PLoS ONE. 2015;10:e0141669 pubmed 出版商
  149. Kurtulus S, Sakuishi K, Ngiow S, Joller N, Tan D, Teng M, et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 2015;125:4053-62 pubmed 出版商
  150. Marković Lipkovski J, Životić M, Müller C, Tampe B, Ćirović S, VjeÅ¡tica J, et al. Variable Expression of Neural Cell Adhesion Molecule Isoforms in Renal Tissue: Possible Role in Incipient Renal Fibrosis. PLoS ONE. 2015;10:e0137028 pubmed 出版商
  151. Pearce V, Bouabe H, MacQueen A, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. J Immunol. 2015;195:3206-17 pubmed 出版商
  152. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley M, et al. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog. 2015;11:e1005072 pubmed 出版商
  153. Weist B, Wehler P, El Ahmad L, Schmueck Henneresse M, Millward J, Nienen M, et al. A revised strategy for monitoring BKV-specific cellular immunity in kidney transplant patients. Kidney Int. 2015;88:1293-1303 pubmed 出版商
  154. Littwitz Salomon E, Akhmetzyanova I, Vallet C, Francois S, Dittmer U, Gibbert K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology. 2015;12:66 pubmed 出版商
  155. Vogel A, Brown D. Single-Dose CpG Immunization Protects Against a Heterosubtypic Challenge and Generates Antigen-Specific Memory T Cells. Front Immunol. 2015;6:327 pubmed 出版商
  156. Marshall M, Pattu V, Halimani M, Maier Peuschel M, Müller M, Becherer U, et al. VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity. J Cell Biol. 2015;210:135-51 pubmed 出版商
  157. Herz J, Johnson K, McGavern D. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J Exp Med. 2015;212:1153-69 pubmed 出版商
  158. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  159. Schmueck Henneresse M, Sharaf R, Vogt K, Weist B, Landwehr Kenzel S, Fuehrer H, et al. Peripheral blood-derived virus-specific memory stem T cells mature to functional effector memory subsets with self-renewal potency. J Immunol. 2015;194:5559-67 pubmed 出版商
  160. Sharma S, Chintala N, Vadrevu S, Patel J, Karbowniczek M, Markiewski M. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol. 2015;194:5529-38 pubmed 出版商
  161. Jeon Y, Kim J, Sung J, Han J, Ko Y. Epstein-Barr virus-positive nodal T/NK-cell lymphoma: an analysis of 15 cases with distinct clinicopathological features. Hum Pathol. 2015;46:981-90 pubmed 出版商
  162. Chen M, Hu P, Ling N, Peng H, Lei Y, Hu H, et al. Enhanced functions of peripheral γδ T cells in chronic hepatitis B infection during interferon α treatment in vivo and in vitro. PLoS ONE. 2015;10:e0120086 pubmed 出版商
  163. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  164. Tomasini D, Niccoli A, Crivelli F. Pagetoid reticulosis tumor cells with double expression of TCRγδ and TCRαβ: an off-target phenomenon or genuine expression?. J Cutan Pathol. 2015;42:427-34 pubmed 出版商
  165. Ebsen H, Lettau M, Kabelitz D, Janssen O. Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol Immunol. 2015;65:416-28 pubmed 出版商
  166. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  167. Marquardt N, Béziat V, Nyström S, Hengst J, Ivarsson M, Kekäläinen E, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol. 2015;194:2467-71 pubmed 出版商
  168. Hu Z, Blackman M, Kaye K, Usherwood E. Functional heterogeneity in the CD4+ T cell response to murine γ-herpesvirus 68. J Immunol. 2015;194:2746-56 pubmed 出版商
  169. Bhela S, Kempsell C, Manohar M, Dominguez Villar M, Griffin R, Bhatt P, et al. Nonapoptotic and extracellular activity of granzyme B mediates resistance to regulatory T cell (Treg) suppression by HLA-DR-CD25hiCD127lo Tregs in multiple sclerosis and in response to IL-6. J Immunol. 2015;194:2180-9 pubmed 出版商
  170. Triplett T, Tucker C, Triplett K, Alderman Z, Sun L, Ling L, et al. STAT3 Signaling Is Required for Optimal Regression of Large Established Tumors in Mice Treated with Anti-OX40 and TGFβ Receptor Blockade. Cancer Immunol Res. 2015;3:526-35 pubmed 出版商
  171. Srivastava R, Khan A, Spencer D, Vahed H, Lopes P, Thai N, et al. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic. J Immunol. 2015;194:2232-48 pubmed 出版商
  172. Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci U S A. 2015;112:E556-65 pubmed 出版商
  173. Khan A, Srivastava R, Spencer D, Garg S, Fremgen D, Vahed H, et al. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol. 2015;89:3776-92 pubmed 出版商
  174. Zhang P, Lu X, Tao K, Shi L, Li W, Wang G, et al. Siglec-10 is associated with survival and natural killer cell dysfunction in hepatocellular carcinoma. J Surg Res. 2015;194:107-13 pubmed 出版商
  175. Grøndahl Rosado C, Bønsdorff T, Brun Hansen H, Storset A. NCR1+ cells in dogs show phenotypic characteristics of natural killer cells. Vet Res Commun. 2015;39:19-30 pubmed 出版商
  176. Wang L, Wang G, Gao T. Acneiform primary cutaneous CD4-positive small/medium pleomorphic T-cell lymphoma with prominent necrosis. J Cutan Pathol. 2015;42:265-70 pubmed 出版商
  177. Lester L, Ewalt M, Warnke R, Kim J. Systemic panniculitis-like T-cell lymphoma with involvement of mesenteric fat and subcutis. J Cutan Pathol. 2015;42:46-9 pubmed 出版商
  178. Mouchacca P, Chasson L, Frick M, Foray C, Schmitt Verhulst A, Boyer C. Visualization of granzyme B-expressing CD8 T cells during primary and secondary immune responses to Listeria monocytogenes. Immunology. 2015;145:24-33 pubmed 出版商
  179. Wang X, Sumida H, Cyster J. GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment. J Exp Med. 2014;211:2351-9 pubmed 出版商
  180. Sullivan E, Jeha S, Kang G, Cheng C, Rooney B, Holladay M, et al. NK cell genotype and phenotype at diagnosis of acute lymphoblastic leukemia correlate with postinduction residual disease. Clin Cancer Res. 2014;20:5986-94 pubmed 出版商
  181. Srivastava P, Paluch B, Matsuzaki J, James S, Collamat Lai G, Karbach J, et al. Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells and xenografts. Leuk Res. 2014;38:1332-41 pubmed 出版商
  182. Urban S, Welsh R. Out-of-sequence signal 3 as a mechanism for virus-induced immune suppression of CD8 T cell responses. PLoS Pathog. 2014;10:e1004357 pubmed 出版商
  183. Kobayashi T, Hamaguchi Y, Hasegawa M, Fujimoto M, Takehara K, Matsushita T. B cells promote tumor immunity against B16F10 melanoma. Am J Pathol. 2014;184:3120-9 pubmed 出版商
  184. Antsiferova O, Müller A, Rämer P, Chijioke O, Chatterjee B, Raykova A, et al. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLoS Pathog. 2014;10:e1004333 pubmed 出版商
  185. Penaloza MacMaster P, Kamphorst A, Wieland A, Araki K, Iyer S, West E, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211:1905-18 pubmed 出版商
  186. Weist B, Schmueck M, Fuehrer H, Sattler A, Reinke P, Babel N. The role of CD4(+) T cells in BKV-specific T cell immunity. Med Microbiol Immunol. 2014;203:395-408 pubmed 出版商
  187. Boding L, Hansen A, Meroni G, Johansen B, Braunstein T, Bonefeld C, et al. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol. 2014;44:3109-18 pubmed 出版商
  188. Baker G, Chockley P, Yadav V, Doherty R, Ritt M, Sivaramakrishnan S, et al. Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity. Cancer Res. 2014;74:5079-90 pubmed 出版商
  189. Pegram H, Purdon T, van Leeuwen D, Curran K, Giralt S, Barker J, et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia. 2015;29:415-22 pubmed 出版商
  190. Smith N, Wissink E, Wang J, Pinello J, Davenport M, Grimson A, et al. Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J Immunol. 2014;193:177-84 pubmed 出版商
  191. Vargas A, Zhou S, Ethier Chiasson M, Flipo D, Lafond J, Gilbert C, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;28:3703-19 pubmed 出版商
  192. Teixeira C, Gomes R, Oliveira F, Meneses C, Gilmore D, Elnaiem D, et al. Characterization of the early inflammatory infiltrate at the feeding site of infected sand flies in mice protected from vector-transmitted Leishmania major by exposure to uninfected bites. PLoS Negl Trop Dis. 2014;8:e2781 pubmed 出版商
  193. Pick J, Arra A, Lingel H, Hegel J, Huber M, Nishanth G, et al. CTLA-4 (CD152) enhances the Tc17 differentiation program. Eur J Immunol. 2014;44:2139-52 pubmed 出版商
  194. Ntranos A, Hall O, Robinson D, Grishkan I, Schott J, Tosi D, et al. FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway. J Neuroimmunol. 2014;270:13-21 pubmed 出版商
  195. Prinz P, Mendler A, Brech D, Masouris I, Oberneder R, Noessner E. NK-cell dysfunction in human renal carcinoma reveals diacylglycerol kinase as key regulator and target for therapeutic intervention. Int J Cancer. 2014;135:1832-41 pubmed 出版商
  196. Sleiman M, Brons N, Kaoma T, Dogu F, Villa Forte A, Lenoble P, et al. NK cell killer Ig-like receptor repertoire acquisition and maturation are strongly modulated by HLA class I molecules. J Immunol. 2014;192:2602-10 pubmed 出版商
  197. Bacchetta R, Lucarelli B, Sartirana C, Gregori S, Lupo Stanghellini M, Miqueu P, et al. Immunological Outcome in Haploidentical-HSC Transplanted Patients Treated with IL-10-Anergized Donor T Cells. Front Immunol. 2014;5:16 pubmed 出版商
  198. Poonia B, Pauza C. Levels of CD56+TIM-3- effector CD8 T cells distinguish HIV natural virus suppressors from patients receiving antiretroviral therapy. PLoS ONE. 2014;9:e88884 pubmed 出版商
  199. Hagn M, Blackwell S, Beyer T, Ebel V, Fabricius D, Lindner S, et al. B-CLL cells acquire APC- and CTL-like phenotypic characteristics after stimulation with CpG ODN and IL-21. Int Immunol. 2014;26:383-95 pubmed 出版商
  200. Kulkarni V, Valentin A, Rosati M, Alicea C, Singh A, Jalah R, et al. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques. PLoS ONE. 2014;9:e86254 pubmed 出版商
  201. Joedicke J, Dietze K, Zelinskyy G, Dittmer U. The phenotype and activation status of regulatory T cells during Friend retrovirus infection. Virol Sin. 2014;29:48-60 pubmed 出版商
  202. Kim E, Gasper D, Lee S, Plisch E, Svaren J, Suresh M. Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J Immunol. 2014;192:985-95 pubmed 出版商
  203. Tuli A, Thiery J, James A, Michelet X, Sharma M, Garg S, et al. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell-mediated cytotoxicity. Mol Biol Cell. 2013;24:3721-35 pubmed 出版商
  204. Lauterbach H, Pätzold J, Kassub R, Bathke B, Brinkmann K, Chaplin P, et al. Genetic Adjuvantation of Recombinant MVA with CD40L Potentiates CD8 T Cell Mediated Immunity. Front Immunol. 2013;4:251 pubmed 出版商
  205. Durant L, Makris S, Voorburg C, Loebbermann J, Johansson C, Openshaw P. Regulatory T cells prevent Th2 immune responses and pulmonary eosinophilia during respiratory syncytial virus infection in mice. J Virol. 2013;87:10946-54 pubmed 出版商
  206. Nakajima K, Maekawa Y, Kataoka K, Ishifune C, Nishida J, Arimochi H, et al. The ARNT-STAT3 axis regulates the differentiation of intestinal intraepithelial TCR???CD8??? cells. Nat Commun. 2013;4:2112 pubmed 出版商
  207. Tejera M, Kim E, Sullivan J, Plisch E, Suresh M. FoxO1 controls effector-to-memory transition and maintenance of functional CD8 T cell memory. J Immunol. 2013;191:187-99 pubmed 出版商
  208. Hu Z, Zhang W, Usherwood E. Regulatory CD8+ T cells associated with erosion of immune surveillance in persistent virus infection suppress in vitro and have a reversible proliferative defect. J Immunol. 2013;191:312-22 pubmed 出版商
  209. Fischer M, Wimmer I, Hoftberger R, Gerlach S, Haider L, Zrzavy T, et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain. 2013;136:1799-815 pubmed 出版商
  210. Manzke N, Akhmetzyanova I, Hasenkrug K, Trilling M, Zelinskyy G, Dittmer U. CD4+ T cells develop antiretroviral cytotoxic activity in the absence of regulatory T cells and CD8+ T cells. J Virol. 2013;87:6306-13 pubmed 出版商
  211. Mellor Heineke S, Villanueva J, Jordan M, Marsh R, Zhang K, Bleesing J, et al. Elevated Granzyme B in Cytotoxic Lymphocytes is a Signature of Immune Activation in Hemophagocytic Lymphohistiocytosis. Front Immunol. 2013;4:72 pubmed 出版商
  212. Schmitt D, O Dee D, Brown M, Horzempa J, Russo B, Morel P, et al. Role of NK cells in host defense against pulmonary type A Francisella tularensis infection. Microbes Infect. 2013;15:201-11 pubmed 出版商
  213. Deguine J, Breart B, Lemaitre F, Bousso P. Cutting edge: tumor-targeting antibodies enhance NKG2D-mediated NK cell cytotoxicity by stabilizing NK cell-tumor cell interactions. J Immunol. 2012;189:5493-7 pubmed 出版商
  214. Penaloza MacMaster P, Provine N, Ra J, Borducchi E, McNally A, Simmons N, et al. Alternative serotype adenovirus vaccine vectors elicit memory T cells with enhanced anamnestic capacity compared to Ad5 vectors. J Virol. 2013;87:1373-84 pubmed 出版商
  215. Jalah R, Patel V, Kulkarni V, Rosati M, Alicea C, Ganneru B, et al. IL-12 DNA as molecular vaccine adjuvant increases the cytotoxic T cell responses and breadth of humoral immune responses in SIV DNA vaccinated macaques. Hum Vaccin Immunother. 2012;8:1620-9 pubmed 出版商
  216. Bhadra R, Khan I. IL-7 and IL-15 do not synergize during CD8 T cell recall response against an obligate intracellular parasite. Microbes Infect. 2012;14:1160-8 pubmed 出版商
  217. Walsh K, Teijaro J, Zuniga E, Welch M, Fremgen D, Blackburn S, et al. Toll-like receptor 7 is required for effective adaptive immune responses that prevent persistent virus infection. Cell Host Microbe. 2012;11:643-53 pubmed 出版商
  218. Chang P, Lee S, Hu X, Davey G, Duan G, Cho J, et al. Breakdown in repression of IFN-? mRNA leads to accumulation of self-reactive effector CD8+ T cells. J Immunol. 2012;189:701-10 pubmed 出版商
  219. Zhang N, Bevan M. TGF-? signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol. 2012;13:667-73 pubmed 出版商
  220. Robb R, Lineburg K, Kuns R, Wilson Y, Raffelt N, Olver S, et al. Identification and expansion of highly suppressive CD8(+)FoxP3(+) regulatory T cells after experimental allogeneic bone marrow transplantation. Blood. 2012;119:5898-908 pubmed 出版商
  221. Ribeiro Dos Santos P, Turnbull E, Monteiro M, Legrand A, Conrod K, Baalwa J, et al. Chronic HIV infection affects the expression of the 2 transcription factors required for CD8 T-cell differentiation into cytolytic effectors. Blood. 2012;119:4928-38 pubmed 出版商
  222. Hutnick N, Myles D, Hirao L, Scott V, Ferraro B, Khan A, et al. An optimized SIV DNA vaccine can serve as a boost for Ad5 and provide partial protection from a high-dose SIVmac251 challenge. Vaccine. 2012;30:3202-8 pubmed 出版商
  223. Loebbermann J, Schnoeller C, Thornton H, Durant L, Sweeney N, Schuijs M, et al. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE. 2012;7:e32371 pubmed 出版商
  224. CLAY C, Donart N, Fomukong N, Knight J, Lei W, Price L, et al. Primary severe acute respiratory syndrome coronavirus infection limits replication but not lung inflammation upon homologous rechallenge. J Virol. 2012;86:4234-44 pubmed 出版商
  225. Loebbermann J, Thornton H, Durant L, Sparwasser T, Webster K, Sprent J, et al. Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol. 2012;5:161-72 pubmed 出版商
  226. Salti S, Hammelev E, Grewal J, Reddy S, Zemple S, Grossman W, et al. Granzyme B regulates antiviral CD8+ T cell responses. J Immunol. 2011;187:6301-9 pubmed 出版商
  227. Adoro S, McCaughtry T, Erman B, Alag A, Van Laethem F, Park J, et al. Coreceptor gene imprinting governs thymocyte lineage fate. EMBO J. 2012;31:366-77 pubmed 出版商
  228. Randall K, Chan S, Ma C, Fung I, Mei Y, Yabas M, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med. 2011;208:2305-20 pubmed 出版商
  229. Vargas Inchaustegui D, Demberg T, Robert Guroff M. A CD8?(-) subpopulation of macaque circulatory natural killer cells can mediate both antibody-dependent and antibody-independent cytotoxic activities. Immunology. 2011;134:326-40 pubmed 出版商
  230. Brincks E, Gurung P, Langlois R, Hemann E, Legge K, Griffith T. The magnitude of the T cell response to a clinically significant dose of influenza virus is regulated by TRAIL. J Immunol. 2011;187:4581-8 pubmed 出版商
  231. Mahnke Y, Saqr A, Hazenfeld S, Brady R, Roederer M, Subbramanian R. Age-related changes in durability and function of vaccine-elicited influenza-specific CD4(+) T-cell responses. Vaccine. 2011;29:8606-14 pubmed 出版商
  232. Hsieh S, Lin J, Huang J, Wu S, Chu C, Kung J, et al. Immunization with apoptotic phagocytes containing Histoplasma capsulatum activates functional CD8(+) T cells to protect against histoplasmosis. Infect Immun. 2011;79:4493-502 pubmed 出版商
  233. Lee D, Yang J, Lee S, Won C, Chang S, Lee M, et al. Subcutaneous panniculitis-like T-cell lymphoma: a clinical and pathologic study of 14 korean patients. Ann Dermatol. 2011;23:329-37 pubmed 出版商
  234. Desmarets M, Mylvaganam G, Waller E, Josephson C, Pack C, Lukacher A, et al. Minor antigens on transfused RBCs crossprime CD8 T cells but do not induce full effector function. Am J Transplant. 2011;11:1825-34 pubmed 出版商
  235. Zelinskyy G, Myers L, Dietze K, Gibbert K, Roggendorf M, Liu J, et al. Virus-specific CD8+ T cells upregulate programmed death-1 expression during acute friend retrovirus infection but are highly cytotoxic and control virus replication. J Immunol. 2011;187:3730-7 pubmed 出版商
  236. Ruffell B, Au A, Rugo H, Esserman L, Hwang E, Coussens L. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796-801 pubmed 出版商
  237. Robb R, Kreijveld E, Kuns R, Wilson Y, Olver S, Don A, et al. Type I-IFNs control GVHD and GVL responses after transplantation. Blood. 2011;118:3399-409 pubmed 出版商
  238. D Eliseo D, Manzi L, Merendino N, Velotti F. Docosahexaenoic acid inhibits invasion of human RT112 urinary bladder and PT45 pancreatic carcinoma cells via down-modulation of granzyme B expression. J Nutr Biochem. 2012;23:452-7 pubmed 出版商
  239. Tate M, Brooks A, Reading P, Mintern J. Neutrophils sustain effective CD8(+) T-cell responses in the respiratory tract following influenza infection. Immunol Cell Biol. 2012;90:197-205 pubmed 出版商
  240. Meythaler M, Wang Z, Martinot A, Pryputniewicz S, Kasheta M, McClure H, et al. Early induction of polyfunctional simian immunodeficiency virus (SIV)-specific T lymphocytes and rapid disappearance of SIV from lymph nodes of sooty mangabeys during primary infection. J Immunol. 2011;186:5151-61 pubmed 出版商
  241. Haque A, Best S, Amante F, Ammerdorffer A, de Labastida F, Pereira T, et al. High parasite burdens cause liver damage in mice following Plasmodium berghei ANKA infection independently of CD8(+) T cell-mediated immune pathology. Infect Immun. 2011;79:1882-8 pubmed 出版商
  242. Kallies A, Carotta S, Huntington N, Bernard N, Tarlinton D, Smyth M, et al. A role for Blimp1 in the transcriptional network controlling natural killer cell maturation. Blood. 2011;117:1869-79 pubmed 出版商
  243. Hubert S, Rissiek B, Klages K, Huehn J, Sparwasser T, Haag F, et al. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J Exp Med. 2010;207:2561-8 pubmed 出版商
  244. Klages K, Mayer C, Lahl K, Loddenkemper C, Teng M, Ngiow S, et al. Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma. Cancer Res. 2010;70:7788-99 pubmed 出版商
  245. von Gegerfelt A, Valentin A, Alicea C, Van Rompay K, Marthas M, Montefiori D, et al. Emergence of simian immunodeficiency virus-specific cytotoxic CD4+ T cells and increased humoral responses correlate with control of rebounding viremia in CD8-depleted macaques infected with Rev-independent live-attenuated simian immunodeficiency vir. J Immunol. 2010;185:3348-58 pubmed 出版商
  246. Lin P, Sun L, Thibodeaux S, Ludwig S, Vadlamudi R, Hurez V, et al. B7-H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J Immunol. 2010;185:2747-53 pubmed 出版商
  247. Yuen T, Flesch I, Hollett N, Dobson B, Russell T, Fahrer A, et al. Analysis of A47, an immunoprevalent protein of vaccinia virus, leads to a reevaluation of the total antiviral CD8+ T cell response. J Virol. 2010;84:10220-9 pubmed 出版商
  248. Antonelli L, Mahnke Y, Hodge J, Porter B, Barber D, DerSimonian R, et al. Elevated frequencies of highly activated CD4+ T cells in HIV+ patients developing immune reconstitution inflammatory syndrome. Blood. 2010;116:3818-27 pubmed 出版商
  249. Rout N, Else J, Yue S, Connole M, Exley M, Kaur A. Heterogeneity in phenotype and function of CD8+ and CD4/CD8 double-negative Natural Killer T cell subsets in sooty mangabeys. J Med Primatol. 2010;39:224-34 pubmed 出版商
  250. Cairo C, Armstrong C, Cummings J, Deetz C, Tan M, Lu C, et al. Impact of age, gender, and race on circulating ?? T cells. Hum Immunol. 2010;71:968-75 pubmed 出版商
  251. Tait E, Jordan K, Dupont C, Harris T, Gregg B, Wilson E, et al. Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. J Immunol. 2010;185:1502-12 pubmed 出版商
  252. Marshall H, Prince A, Berg L, Welsh R. IFN-alpha beta and self-MHC divert CD8 T cells into a distinct differentiation pathway characterized by rapid acquisition of effector functions. J Immunol. 2010;185:1419-28 pubmed 出版商
  253. Tran Thang N, Derouazi M, Philippin G, Arcidiaco S, Di Berardino Besson W, Masson F, et al. Immune infiltration of spontaneous mouse astrocytomas is dominated by immunosuppressive cells from early stages of tumor development. Cancer Res. 2010;70:4829-39 pubmed 出版商
  254. Reeves R, Gillis J, Wong F, Yu Y, Connole M, Johnson R. CD16- natural killer cells: enrichment in mucosal and secondary lymphoid tissues and altered function during chronic SIV infection. Blood. 2010;115:4439-46 pubmed 出版商
  255. Thiery J, Keefe D, Saffarian S, Martinvalet D, Walch M, Boucrot E, et al. Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood. 2010;115:1582-93 pubmed 出版商
  256. Waugh C, Sinclair L, Finlay D, Bayascas J, Cantrell D. Phosphoinositide (3,4,5)-triphosphate binding to phosphoinositide-dependent kinase 1 regulates a protein kinase B/Akt signaling threshold that dictates T-cell migration, not proliferation. Mol Cell Biol. 2009;29:5952-62 pubmed 出版商
  257. Zelinskyy G, Dietze K, Hüsecken Y, Schimmer S, Nair S, Werner T, et al. The regulatory T-cell response during acute retroviral infection is locally defined and controls the magnitude and duration of the virus-specific cytotoxic T-cell response. Blood. 2009;114:3199-207 pubmed 出版商
  258. Hagn M, Schwesinger E, Ebel V, Sontheimer K, Maier J, Beyer T, et al. Human B cells secrete granzyme B when recognizing viral antigens in the context of the acute phase cytokine IL-21. J Immunol. 2009;183:1838-45 pubmed 出版商
  259. Moffat J, Gebhardt T, Doherty P, Turner S, Mintern J. Granzyme A expression reveals distinct cytolytic CTL subsets following influenza A virus infection. Eur J Immunol. 2009;39:1203-10 pubmed 出版商
  260. Brown D, Kamperschroer C, Dilzer A, Roberts D, Swain S. IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells. Cell Immunol. 2009;257:69-79 pubmed 出版商
  261. Aramaki T, Ida H, Izumi Y, Fujikawa K, Huang M, Arima K, et al. A significantly impaired natural killer cell activity due to a low activity on a per-cell basis in rheumatoid arthritis. Mod Rheumatol. 2009;19:245-52 pubmed 出版商
  262. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  263. Ribeiro de Almeida C, Heath H, Krpic S, Dingjan G, van Hamburg J, Bergen I, et al. Critical role for the transcription regulator CCCTC-binding factor in the control of Th2 cytokine expression. J Immunol. 2009;182:999-1010 pubmed
  264. Huntington N, Legrand N, Alves N, Jaron B, Weijer K, Plet A, et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med. 2009;206:25-34 pubmed 出版商
  265. Brincks E, Katewa A, Kucaba T, Griffith T, Legge K. CD8 T cells utilize TRAIL to control influenza virus infection. J Immunol. 2008;181:4918-25 pubmed
  266. Jenkins M, Mintern J, La Gruta N, Kedzierska K, Doherty P, Turner S. Cell cycle-related acquisition of cytotoxic mediators defines the progressive differentiation to effector status for virus-specific CD8+ T cells. J Immunol. 2008;181:3818-22 pubmed
  267. Lages C, Suffia I, Velilla P, Huang B, Warshaw G, Hildeman D, et al. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol. 2008;181:1835-48 pubmed
  268. Cummings J, Cairo C, Armstrong C, Davis C, Pauza C. Impacts of HIV infection on Vgamma2Vdelta2 T cell phenotype and function: a mechanism for reduced tumor immunity in AIDS. J Leukoc Biol. 2008;84:371-9 pubmed 出版商
  269. Chiarle R, Martinengo C, Mastini C, Ambrogio C, D Escamard V, Forni G, et al. The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nat Med. 2008;14:676-80 pubmed 出版商
  270. Sridhar S, Reyes Sandoval A, Draper S, Moore A, Gilbert S, Gao G, et al. Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol. 2008;82:3822-33 pubmed 出版商
  271. Ahonen C, Wasiuk A, Fuse S, Turk M, Ernstoff M, Suriawinata A, et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood. 2008;111:3116-25 pubmed 出版商
  272. Hickman H, Takeda K, Skon C, Murray F, Hensley S, Loomis J, et al. Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nat Immunol. 2008;9:155-65 pubmed 出版商
  273. Wagner C, Stegmaier S, Hänsch G. Expression of granzyme B in peripheral blood polymorphonuclear neutrophils (PMN), myeloid cell lines and in PMN derived from haemotopoietic stem cells in vitro. Mol Immunol. 2008;45:1761-6 pubmed
  274. Zelinskyy G, Balkow S, Schimmer S, Werner T, Simon M, Dittmer U. The level of friend retrovirus replication determines the cytolytic pathway of CD8+ T-cell-mediated pathogen control. J Virol. 2007;81:11881-90 pubmed
  275. Chan K, Kaur A. Flow cytometric detection of degranulation reveals phenotypic heterogeneity of degranulating CMV-specific CD8+ T lymphocytes in rhesus macaques. J Immunol Methods. 2007;325:20-34 pubmed
  276. Masson F, Calzascia T, Di Berardino Besson W, De Tribolet N, Dietrich P, Walker P. Brain microenvironment promotes the final functional maturation of tumor-specific effector CD8+ T cells. J Immunol. 2007;179:845-53 pubmed
  277. Jenkins M, Kedzierska K, Doherty P, Turner S. Heterogeneity of effector phenotype for acute phase and memory influenza A virus-specific CTL. J Immunol. 2007;179:64-70 pubmed
  278. Love V, Grabie N, Duramad P, Stavrakis G, Sharpe A, Lichtman A. CTLA-4 ablation and interleukin-12 driven differentiation synergistically augment cardiac pathogenicity of cytotoxic T lymphocytes. Circ Res. 2007;101:248-57 pubmed
  279. Romagnani C, Juelke K, Falco M, Morandi B, D Agostino A, Costa R, et al. CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol. 2007;178:4947-55 pubmed
  280. Coquet J, Kyparissoudis K, Pellicci D, Besra G, Berzins S, Smyth M, et al. IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J Immunol. 2007;178:2827-34 pubmed
  281. Tao J, Gao Y, Li M, He W, Chen L, Harvev B, et al. JNK2 negatively regulates CD8+ T cell effector function and anti-tumor immune response. Eur J Immunol. 2007;37:818-29 pubmed
  282. Yang Z, Novak A, Ziesmer S, Witzig T, Ansell S. Attenuation of CD8(+) T-cell function by CD4(+)CD25(+) regulatory T cells in B-cell non-Hodgkin's lymphoma. Cancer Res. 2006;66:10145-52 pubmed
  283. Obar J, Fuse S, Leung E, Bellfy S, Usherwood E. Gammaherpesvirus persistence alters key CD8 T-cell memory characteristics and enhances antiviral protection. J Virol. 2006;80:8303-15 pubmed
  284. Macchia I, Gauduin M, Kaur A, Johnson R. Expression of CD8alpha identifies a distinct subset of effector memory CD4+ T lymphocytes. Immunology. 2006;119:232-42 pubmed
  285. McIlroy D, Meyer L, Dudoit Y, Samri A, Delfraissy J, Autran B, et al. Polymorphism in the proximal promoter region of the perforin gene and its impact on the course of HIV infection. Int J Immunogenet. 2006;33:73-9 pubmed
  286. Zhao D, Thornton A, DiPaolo R, Shevach E. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood. 2006;107:3925-32 pubmed
  287. Yang T, Millar J, Groves T, Grinshtein N, Parsons R, Takenaka S, et al. The CD8+ T cell population elicited by recombinant adenovirus displays a novel partially exhausted phenotype associated with prolonged antigen presentation that nonetheless provides long-term immunity. J Immunol. 2006;176:200-10 pubmed
  288. Matsuda J, Zhang Q, Ndonye R, Richardson S, Howell A, Gapin L. T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells. Blood. 2006;107:2797-805 pubmed
  289. Gopcsa L, Banyai A, Jakab K, Kormos L, Tamaska J, Matolcsy A, et al. Extensive flow cytometric characterization of plasmacytoid dendritic cell leukemia cells. Eur J Haematol. 2005;75:346-51 pubmed
  290. Brischwein K, Schlereth B, Guller B, Steiger C, Wolf A, Lutterbuese R, et al. MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol Immunol. 2006;43:1129-43 pubmed
  291. Irwin S, Izzo A, Dow S, Skeiky Y, Reed S, Alderson M, et al. Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun. 2005;73:5809-16 pubmed
  292. Bratke K, Kuepper M, Bade B, Virchow J, Luttmann W. Differential expression of human granzymes A, B, and K in natural killer cells and during CD8+ T cell differentiation in peripheral blood. Eur J Immunol. 2005;35:2608-16 pubmed
  293. Zelinskyy G, Robertson S, Schimmer S, Messer R, Hasenkrug K, Dittmer U. CD8+ T-cell dysfunction due to cytolytic granule deficiency in persistent Friend retrovirus infection. J Virol. 2005;79:10619-26 pubmed
  294. Klebanoff C, Gattinoni L, Torabi Parizi P, Kerstann K, Cardones A, Finkelstein S, et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci U S A. 2005;102:9571-6 pubmed
  295. Grossman W, Radhi M, Schauer D, Gerday E, Grose C, Goldman F. Development of hemophagocytic lymphohistiocytosis in triplets infected with HHV-8. Blood. 2005;106:1203-6 pubmed
  296. Lang A, Nikolich Zugich J. Development and migration of protective CD8+ T cells into the nervous system following ocular herpes simplex virus-1 infection. J Immunol. 2005;174:2919-25 pubmed
  297. Gondek D, Lu L, Quezada S, Sakaguchi S, Noelle R. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol. 2005;174:1783-6 pubmed
  298. Quemeneur L, Beloeil L, Michallet M, Angelov G, Tomkowiak M, Revillard J, et al. Restriction of de novo nucleotide biosynthesis interferes with clonal expansion and differentiation into effector and memory CD8 T cells. J Immunol. 2004;173:4945-52 pubmed
  299. Metkar S, Froelich C. Human neutrophils lack granzyme A, granzyme B, and perforin. Blood. 2004;104:905-6; author reply 907-8 pubmed
  300. Grossman W, Verbsky J, Tollefsen B, Kemper C, Atkinson J, Ley T. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood. 2004;104:2840-8 pubmed
  301. Byers A, Kemball C, Moser J, Lukacher A. Cutting edge: rapid in vivo CTL activity by polyoma virus-specific effector and memory CD8+ T cells. J Immunol. 2003;171:17-21 pubmed
  302. McIlroy D, Cartron P, Tuffery P, Dudoit Y, Samri A, Autran B, et al. A triple-mutated allele of granzyme B incapable of inducing apoptosis. Proc Natl Acad Sci U S A. 2003;100:2562-7 pubmed
  303. Kummer J, Kamp A, Tadema T, Vos W, Meijer C, Hack C. Localization and identification of granzymes A and B-expressing cells in normal human lymphoid tissue and peripheral blood. Clin Exp Immunol. 1995;100:164-72 pubmed